1
|
Boccalini C, Peretti DE, Mathoux G, Iaccarino L, Ribaldi F, Scheffler M, Perani D, Frisoni GB, Garibotto V. Early-phase 18F-Flortaucipir tau-PET as a proxy of brain metabolism in Alzheimer's disease: a comparison with 18F-FDG-PET and early-phase amyloid-PET. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-024-07063-4. [PMID: 39849149 DOI: 10.1007/s00259-024-07063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/29/2024] [Indexed: 01/25/2025]
Abstract
PURPOSE As dual-phase amyloid-PET can evaluate amyloid (A) and neurodegeneration (N) with a single tracer injection, dual-phase tau-PET might be able to provide both tau (T) and N. Our study aims to assess the association of early-phase tau-PET scans and 18F-fluorodeoxyglucose (FDG) PET and their comparability in discriminating Alzheimer's disease (AD) patients and differentiating neurodegenerative patterns. METHODS 58 subjects evaluated at the Geneva Memory Center underwent dual-phase 18F-Flortaucipir-PET with early-phase acquisition (eTAU) and 18F-FDG-PET within 1 year. A subsample of 36 participants also underwent dual-phase amyloid-PET (eAMY). Standardized uptake value ratios (SUVRs) were calculated to assess the correlation of eTAU and their respective 18F-FDG-PET and eAMY scans. Hypometabolism and hypoperfusion maps and their spatial overlap were also evaluated at the individual level visually and semiquantitatively. Receiver operating characteristic analyses were performed to compare the discriminative power of eTAU, FDG, and eAMY SUVR between A-/T- and A+/T + participants. RESULTS Strong positive correlations were found between eTAU and FDG SUVRs (r = 0.84, p < 0.001) and eTAU and eAMY SUVRs (r > 0.87, p < 0.001). Clusters of significant hypoperfusion with good correspondence to hypometabolism topographies were found at the individual level, independently of the underlying neurodegenerative patterns. Both eTAU and FDG SUVRs significantly distinguished A+/T + from A-/T- individuals (AUCeTAU=0.604, AUCFDG=0.748) with FDG performing better than eTAU (p = 0.04). eAMY and eTAU SUVR showed comparable discriminative power. CONCLUSION Early-phase 18F-Flortaucipir-PET can provide perfusion information closely related to brain regional glucose metabolism and perfusion measured by early-phase amyloid-PET, even if less accurate than FDG-PET as a biomarker for neurodegeneration.
Collapse
Affiliation(s)
- Cecilia Boccalini
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Debora Elisa Peretti
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gregory Mathoux
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
| | | | | | - Max Scheffler
- Division of Radiology, Geneva University Hospitals, Geneva, Switzerland
| | - Daniela Perani
- Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | | | - Valentina Garibotto
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland.
- CIBM Center for Biomedical Imaging, Geneva, Switzerland.
| |
Collapse
|
2
|
Kimura N, Aota T, Aso Y, Yabuuchi K, Sasaki K, Masuda T, Eguchi A, Maeda Y, Aoshima K, Matsubara E. Predicting positron emission tomography brain amyloid positivity using interpretable machine learning models with wearable sensor data and lifestyle factors. Alzheimers Res Ther 2023; 15:212. [PMID: 38087316 PMCID: PMC10714506 DOI: 10.1186/s13195-023-01363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Developing a screening method for identifying individuals at higher risk of elevated brain amyloid burden is important to reduce costs and burden to patients in clinical trials on Alzheimer's disease or the clinical setting. We developed machine learning models using objectively measured lifestyle factors to predict elevated brain amyloid burden on positron emission tomography. METHODS Our prospective cohort study of non-demented, community-dwelling older adults aged ≥ 65 years was conducted from August 2015 to September 2019 in Usuki, Oita Prefecture, Japan. One hundred and twenty-two individuals with mild cognitive impairment or subjective memory complaints (54 men and 68 women, median age: 75.50 years) wore wearable sensors and completed self-reported questionnaires, cognitive test, and positron emission tomography imaging at baseline. Moreover, 99 individuals in the second year and 61 individuals in the third year were followed up. In total, 282 eligible records with valid wearable sensors, cognitive test results, and amyloid imaging and data on demographic characteristics, living environments, and health behaviors were used in the machine learning models. Amyloid positivity was defined as a standardized uptake value ratio of ≥ 1.4. Models were constructed using kernel support vector machine, Elastic Net, and logistic regression for predicting amyloid positivity. The mean score among 10 times fivefold cross-validation repeats was utilized for evaluation. RESULTS In Elastic Net, the mean area under the receiver operating characteristic curve of the model using objectively measured lifestyle factors alone was 0.70, whereas that of the models using wearable sensors in combination with demographic characteristics and health and life environment questionnaires was 0.79. Moreover, 22 variables were common to all machine learning models. CONCLUSION Our machine learning models are useful for predicting elevated brain amyloid burden using readily-available and noninvasive variables without the need to visit a hospital. TRIAL REGISTRATION This prospective study was conducted in accordance with the Declaration of Helsinki and was approved by the local ethics committee of Oita University Hospital (UMIN000017442). A written informed consent was obtained from all participants. This research was performed based on the Strengthening the Reporting of Observational Studies in Epidemiology reporting guideline.
Collapse
Affiliation(s)
- Noriyuki Kimura
- Department of Neurology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama, Yufu, Oita, 879-5593, Japan.
| | - Tomoki Aota
- Microbes & Host Defense Domain Deep Human Biology Learning, Eisai Co., Ltd, 5-1-3, Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan
| | - Yasuhiro Aso
- Department of Neurology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama, Yufu, Oita, 879-5593, Japan
| | - Kenichi Yabuuchi
- Department of Neurology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama, Yufu, Oita, 879-5593, Japan
| | - Kotaro Sasaki
- Microbes & Host Defense Domain Deep Human Biology Learning, Eisai Co., Ltd, 5-1-3, Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan
| | - Teruaki Masuda
- Department of Neurology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama, Yufu, Oita, 879-5593, Japan
| | - Atsuko Eguchi
- Department of Neurology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama, Yufu, Oita, 879-5593, Japan
| | - Yoshitaka Maeda
- Microbes & Host Defense Domain Deep Human Biology Learning, Eisai Co., Ltd, 5-1-3, Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan
| | - Ken Aoshima
- Microbes & Host Defense Domain Deep Human Biology Learning, Eisai Co., Ltd, 5-1-3, Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan.
- School of Integrative and Global Majors, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Etsuro Matsubara
- Department of Neurology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama, Yufu, Oita, 879-5593, Japan
| |
Collapse
|
3
|
Tuncel H, Visser D, Timmers T, Wolters EE, Ossenkoppele R, van der Flier WM, van Berckel BNM, Boellaard R, Golla SSV. Head-to-head comparison of relative cerebral blood flow derived from dynamic [ 18F]florbetapir and [ 18F]flortaucipir PET in subjects with subjective cognitive decline. EJNMMI Res 2023; 13:93. [PMID: 37889456 PMCID: PMC10611685 DOI: 10.1186/s13550-023-01041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Dynamic PET imaging studies provide accurate estimates of specific binding, but also measure the relative tracer delivery (R1), which is a proxy for relative cerebral blood flow (rCBF). Recently, studies suggested that R1 obtained from different tracers could be used interchangeably and is irrespective of target tissue. However, the similarities or differences of R1 obtained from different PET tracers still require validation. Therefore, the goal of the current study was to compare R1 estimates, derived from dynamic [18F]florbetapir (amyloid) and [18F]flortaucipir (tau) PET, in the same subjects with subjective cognitive decline (SCD). RESULTS Voxel-wise analysis presented a small cluster (1.6% of the whole brain) with higher R1 values for [18F]flortaucipir compared to [18F]florbetapir in the Aβ-negative group. These voxels were part of the hippocampus and the left middle occipital gyrus. In part of the thalamus, midbrain and cerebellum, voxels (2.5% of the whole brain) with higher R1 values for [18F]florbetapir were observed. In the Aβ-positive group, a cluster (0.2% of the whole brain) of higher R1 values was observed in part of the hippocampus, right parahippocampal gyrus and in the left sagittal stratum for [18F]flortaucipir compared to [18F]florbetapir. Furthermore, in part of the thalamus, left amygdala, midbrain and right parahippocampal gyrus voxels (0.4% of the whole brain) with higher R1 values for [18F]florbetapir were observed. Despite these differences, [18F]florbetapir R1 had high correspondence with [18F]flortaucipir R1 across all regions of interest (ROIs) and subjects (Aβ-:r2 = 0.79, slope = 0.85, ICC = 0.76; Aβ+: r2 = 0.87, slope = 0.93, ICC = 0.77). CONCLUSION [18F]flortaucipir and [18F]florbetapir showed similar R1 estimates in cortical regions. This finding, put together with previous studies, indicates that R1 could be considered a surrogate for relative cerebral blood flow (rCBF) in the cortex and may be used interchangeably, but with caution, regardless of the choice of these two tracers.
Collapse
Affiliation(s)
- Hayel Tuncel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Denise Visser
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Tessa Timmers
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Emma E Wolters
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Department of Neurology, Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Wiesje M van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Sandeep S V Golla
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Jonasson M, Frick A, Fazio P, Hjorth O, Danfors T, Axelsson J, Appel L, Furmark T, Varrone A, Lubberink M. Striatal dopamine transporter and receptor availability correlate with relative cerebral blood flow measured with [ 11C]PE2I, [ 18F]FE-PE2I and [ 11C]raclopride PET in healthy individuals. J Cereb Blood Flow Metab 2023; 43:1206-1215. [PMID: 36912083 PMCID: PMC10291448 DOI: 10.1177/0271678x231160881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 03/14/2023]
Abstract
The aim of this retrospective study was to investigate relationships between relative cerebral blood flow and striatal dopamine transporter and dopamine D2/3 availability in healthy subjects. The data comprised dynamic PET scans with two dopamine transporter tracers [11C]PE2I (n = 20) and [18F]FE-PE2I (n = 20) and the D2/3 tracer [11C]raclopride (n = 18). Subjects with a [11C]PE2I scan also underwent a dynamic scan with the serotonin transporter tracer [11C]DASB. Binding potential (BPND) and relative tracer delivery (R1) values were calculated on regional and voxel-level. Striatal R1 and BPND values were correlated, using either an MRI-based volume of interest (VOI) or an isocontour VOI based on the parametric BPND image. An inter-tracer comparison between [11C]PE2I BPND and [11C]DASB R1 was done on a VOI-level and simulations were performed to investigate whether the constraints of the modeling could cause correlation of the parameters. A positive association was found between BPND and R1 for all three dopamine tracers. A similar correlation was found for the inter-tracer correlation between [11C]PE2I BPND and [11C]DASB R1. Simulations showed that this relationship was not caused by cross-correlation between parameters in the kinetic model. In conclusion, these results suggest an association between resting-state striatal dopamine function and relative blood flow in healthy subjects.
Collapse
Affiliation(s)
- My Jonasson
- Department of Surgical Sciences, Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Andreas Frick
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Patrik Fazio
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Olof Hjorth
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Torsten Danfors
- Department of Surgical Sciences, Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Jan Axelsson
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden
| | - Lieuwe Appel
- Department of Surgical Sciences, Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Tomas Furmark
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Mark Lubberink
- Department of Surgical Sciences, Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
5
|
Guehl NJ, Dhaynaut M, Hanseeuw BJ, Moon SH, Lois C, Thibault E, Fu JF, Price JC, Johnson KA, El Fakhri G, Normandin MD. Measurement of Cerebral Perfusion Indices from the Early Phase of [ 18F]MK6240 Dynamic Tau PET Imaging. J Nucl Med 2023; 64:968-975. [PMID: 36997330 PMCID: PMC10241011 DOI: 10.2967/jnumed.122.265072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 04/01/2023] Open
Abstract
6-(fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18F]MK6240) has high affinity and selectivity for hyperphosphorylated tau and readily crosses the blood-brain barrier. This study investigated whether the early phase of [18F]MK6240 can be used to provide a surrogate index of cerebral perfusion. Methods: Forty-nine subjects who were cognitively normal (CN), had mild cognitive impairment (MCI), or had Alzheimer's disease (AD) underwent paired dynamic [18F]MK6240 and [11C]Pittsburgh compound B (PiB) PET, as well as structural MRI to obtain anatomic information. Arterial blood samples were collected in a subset of 24 subjects for [18F]MK6240 scans to derive metabolite-corrected arterial input functions. Regional time-activity curves were extracted using atlases available in the Montreal Neurologic Institute template space and using FreeSurfer. The early phase of brain time-activity curves was analyzed using a 1-tissue-compartment model to obtain a robust estimate of the rate of transfer from plasma to brain tissue, K 1 (mL⋅cm-3⋅min-1), and the simplified reference tissue model 2 was investigated for noninvasive estimation of the relative delivery rate, R 1 (unitless). A head-to-head comparison with R 1 derived from [11C]PiB scans was performed. Grouped differences in R 1 were evaluated among CN, MCI, and AD subjects. Results: Regional K 1 values suggested a relatively high extraction fraction. R 1 estimated noninvasively from simplified reference tissue model 2 agreed well with R 1 calculated indirectly from the blood-based compartment modeling (r = 0.99; mean difference, 0.024 ± 0.027), suggesting that robust estimates were obtained. R 1 measurements obtained with [18F]MK6240 correlated strongly and overall agreed well with those obtained from [11C]PiB (r = 0.93; mean difference, -0.001 ± 0.068). Statistically significant differences were observed in regional R 1 measurements among CN, MCI, and AD subjects, notably in the temporal and parietal cortices. Conclusion: Our results provide evidence that the early phase of [18F]MK6240 images may be used to derive a useful index of cerebral perfusion. The early and late phases of a [18F]MK6240 dynamic acquisition may thus offer complementary information about the pathophysiologic mechanisms of the disease.
Collapse
Affiliation(s)
- Nicolas J Guehl
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| | - Maeva Dhaynaut
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bernard J Hanseeuw
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium; and
| | - Sung-Hyun Moon
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cristina Lois
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Emma Thibault
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jessie Fanglu Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julie C Price
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Keith A Johnson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Visser D, Tuncel H, Ossenkoppele R, Yaqub M, Wolters EE, Timmers T, Weltings E, Coomans EM, den Hollander ME, van der Flier WM, van Berckel BN, Golla SS. Longitudinal Tau PET Using 18F-Flortaucipir: The Effect of Relative Cerebral Blood Flow on Quantitative and Semiquantitative Parameters. J Nucl Med 2023; 64:281-286. [PMID: 36265910 PMCID: PMC9902853 DOI: 10.2967/jnumed.122.263926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 02/04/2023] Open
Abstract
Semiquantitative PET measures such as SUV ratio (SUVr) have several advantages over quantitative measures, such as practical applicability and relative computational simplicity. However, SUVr may potentially be affected by changes in blood flow, whereas quantitative measures such as nondisplaceable binding potential (BPND) are not. For 18F-flortaucipir PET, the sensitivity of SUVr for changes in blood flow is currently unknown. Therefore, we compared semiquantitative (SUVr) and quantitative (BPND) parameters of longitudinal 18F-flortaucipir PET scans and assessed their vulnerability to changes in blood flow. Methods: Subjects with subjective cognitive decline (n = 38) and Alzheimer disease patients (n = 24) underwent baseline and 2-y follow-up dynamic 18F-flortaucipir PET scans. BPND and relative tracer delivery were estimated using receptor parametric mapping, and SUVr at 80-100 min was calculated. Regional SUVrs were compared with corresponding distribution volume ratio (BPND + 1) using paired t tests. Additionally, simulations were performed to model effects of larger flow changes in different binding categories. Results: Results in subjective cognitive decline and Alzheimer disease showed only minor differences between SUVr and BPND changes over time. Relative tracer delivery changes were small in all groups. Simulations illustrated a variable bias for SUVr depending on the amount of binding. Conclusion: SUVr provided an accurate estimate of changes in specific binding for 18F-flortaucipir over a 2-y follow-up during which changes in flow were small. Notwithstanding, simulations showed that large(r) flow changes may affect 18F-flortaucipir SUVr. Given that it is currently unknown to what order of magnitude pharmacotherapeutic interventions may induce changes in cerebral blood flow, caution may be warranted when changes in flow are potentially large(r), as in clinical trials.
Collapse
Affiliation(s)
- Denise Visser
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands;
| | - Hayel Tuncel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands;,Clinical Memory Research Unit, Lund University, Lund, Sweden; and
| | - Maqsood Yaqub
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Emma E. Wolters
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands;,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Tessa Timmers
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands;,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Emma Weltings
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Emma M. Coomans
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marijke E. den Hollander
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M. van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands;,Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bart N.M. van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sandeep S.V. Golla
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Boccalini C, Peretti DE, Ribaldi F, Scheffler M, Stampacchia S, Tomczyk S, Rodriguez C, Montandon ML, Haller S, Giannakopoulos P, Frisoni GB, Perani D, Garibotto V. Early-phase 18F-Florbetapir and 18F-Flutemetamol images as proxies of brain metabolism in a memory clinic setting. J Nucl Med 2022; 64:jnumed.122.264256. [PMID: 35863896 PMCID: PMC9902851 DOI: 10.2967/jnumed.122.264256] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Alzheimer's disease (AD) neuropathologic changes are β-amyloid (Aβ) deposition, pathologic tau, and neurodegeneration. Dual-phase amyloid-PET might be able to evaluate Aβ deposition and neurodegeneration with a single tracer injection. Early-phase amyloid-PET scans provide a proxy for cerebral perfusion, which has shown good correlations with neural dysfunction measured through metabolic consumption, while the late frames depict amyloid distribution. Our study aims to assess the comparability between early-phase amyloid-PET scans and 18F-fluorodeoxyglucose (18F-FDG)-PET brain topography at the individual level, and their ability to discriminate patients. Methods: 166 subjects evaluated at the Geneva Memory Center, ranging from cognitively unimpaired to Mild Cognitive Impairment (MCI) and dementia, underwent early-phase amyloid-PET - using either 18F-florbetapir (eFBP) (n = 94) or 18F-flutemetamol (eFMM) (n = 72) - and 18F-FDG-PET. Aβ status was assessed. Standardized uptake value ratios (SUVR) were extracted to evaluate the correlation of eFBP/eFMM and their respective 18F-FDG-PET scans. The single-subject procedure was applied to investigate hypometabolism and hypoperfusion maps and their spatial overlap by Dice coefficient. Receiver operating characteristic analyses were performed to compare the discriminative power of eFBP/eFMM, and 18F-FDG-PET SUVR in AD-related metaROI between Aβ-negative healthy controls and cases in the AD continuum. Results: Positive correlations were found between eFBP/eFMM and 18F-FDG-PET SUVR independently of Aβ status and Aβ radiotracer (R>0.72, p<0.001). eFBP/eFMM single-subject analysis revealed clusters of significant hypoperfusion with good correspondence to hypometabolism topographies, independently of the underlying neurodegenerative patterns. Both eFBP/eFMM and 18F-FDG-PET SUVR significantly discriminated AD patients from controls in the AD-related metaROIs (AUCFBP = 0.888; AUCFMM=0.801), with 18F-FDG-PET performing slightly better, however not significantly (all p-value higher than 0.05), than others (AUCFDG=0.915 and 0.832 for subjects evaluated with 18F-FBP and 18F-FMM, respectively). Conclusion: The distribution of perfusion was comparable to that of metabolism at the single-subject level by parametric analysis, particularly in the presence of a high neurodegeneration burden. Our findings indicate that eFBP/eFMM imaging can replace 18F-FDG-PET imaging, as they reveal typical neurodegenerative patterns, or allow to exclude the presence of neurodegeneration. The finding shows cost-saving capacities of amyloid-PET and supports the routine use of the modality for individual classification in clinical practice.
Collapse
Affiliation(s)
- Cecilia Boccalini
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Vita-Salute San Raffaele University, Milan, Italy
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Débora Elisa Peretti
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Max Scheffler
- Division of Radiology, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - Sara Stampacchia
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Szymon Tomczyk
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
| | - Cristelle Rodriguez
- Division of Institutional Measures, Medical Direction, University Hospitals of Geneva, Geneva, Switzerland
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marie-Louise Montandon
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Sven Haller
- CIMC–Centre d’Imagerie Médicale de Cornavin, Geneva, Switzerland
- Faculty of Medicine of University of Geneva, Geneva, Switzerland
- Division of Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Panteleimon Giannakopoulos
- Division of Institutional Measures, Medical Direction, University Hospitals of Geneva, Geneva, Switzerland
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Giovanni B. Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | - Valentina Garibotto
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland; and
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| |
Collapse
|
8
|
Pascoal TA, Chamoun M, Lax E, Wey HY, Shin M, Ng KP, Kang MS, Mathotaarachchi S, Benedet AL, Therriault J, Lussier FZ, Schroeder FA, DuBois JM, Hightower BG, Gilbert TM, Zürcher NR, Wang C, Hopewell R, Chakravarty M, Savard M, Thomas E, Mohaddes S, Farzin S, Salaciak A, Tullo S, Cuello AC, Soucy JP, Massarweh G, Hwang H, Kobayashi E, Hyman BT, Dickerson BC, Guiot MC, Szyf M, Gauthier S, Hooker JM, Rosa-Neto P. [ 11C]Martinostat PET analysis reveals reduced HDAC I availability in Alzheimer's disease. Nat Commun 2022; 13:4171. [PMID: 35853847 PMCID: PMC9296476 DOI: 10.1038/s41467-022-30653-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 05/04/2022] [Indexed: 11/26/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the brain accumulation of amyloid-β and tau proteins. A growing body of literature suggests that epigenetic dysregulations play a role in the interplay of hallmark proteinopathies with neurodegeneration and cognitive impairment. Here, we aim to characterize an epigenetic dysregulation associated with the brain deposition of amyloid-β and tau proteins. Using positron emission tomography (PET) tracers selective for amyloid-β, tau, and class I histone deacetylase (HDAC I isoforms 1–3), we find that HDAC I levels are reduced in patients with AD. HDAC I PET reduction is associated with elevated amyloid-β PET and tau PET concentrations. Notably, HDAC I reduction mediates the deleterious effects of amyloid-β and tau on brain atrophy and cognitive impairment. HDAC I PET reduction is associated with 2-year longitudinal neurodegeneration and cognitive decline. We also find HDAC I reduction in the postmortem brain tissue of patients with AD and in a transgenic rat model expressing human amyloid-β plus tau pathology in the same brain regions identified in vivo using PET. These observations highlight HDAC I reduction as an element associated with AD pathophysiology. The link between amyloid and tau proteins with Alzheimer’s disease progression remains unclear. Here, the authors propose HDACs I downregulation as an element linking the deleterious effects of brain proteinopathies with disease progression.
Collapse
Affiliation(s)
- Tharick A Pascoal
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada.,Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Departments of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Elad Lax
- Department of Molecular Biology, Ariel University, Ariel, Israel.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Hsiao-Ying Wey
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Monica Shin
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Kok Pin Ng
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Min Su Kang
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada.,Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sulantha Mathotaarachchi
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Andrea L Benedet
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Firoza Z Lussier
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Frederick A Schroeder
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jonathan M DuBois
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Baileigh G Hightower
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Tonya M Gilbert
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Nicole R Zürcher
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Changning Wang
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Robert Hopewell
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mallar Chakravarty
- Departments of Biological and Biomedical Engineering and Psychiatry, Douglas Mental Health University Institute, Brain Imaging Centre, Montreal, QC, Canada
| | - Melissa Savard
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Emilie Thomas
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Sara Mohaddes
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Sarah Farzin
- Departments of Biological and Biomedical Engineering and Psychiatry, Douglas Mental Health University Institute, Brain Imaging Centre, Montreal, QC, Canada
| | - Alyssa Salaciak
- Departments of Biological and Biomedical Engineering and Psychiatry, Douglas Mental Health University Institute, Brain Imaging Centre, Montreal, QC, Canada
| | - Stephanie Tullo
- Departments of Biological and Biomedical Engineering and Psychiatry, Douglas Mental Health University Institute, Brain Imaging Centre, Montreal, QC, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Jean-Paul Soucy
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Gassan Massarweh
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Heungsun Hwang
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Eliane Kobayashi
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bradford C Dickerson
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Psychology, McGill University, Montreal, QC, Canada
| | | | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Jacob M Hooker
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada. .,Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Peretti DE, Vállez García D, Renken RJ, Reesink FE, Doorduin J, de Jong BM, De Deyn PP, Dierckx RAJO, Boellaard R. Alzheimer's disease pattern derived from relative cerebral flow as an alternative for the metabolic pattern using SSM/PCA. EJNMMI Res 2022; 12:37. [PMID: 35737201 PMCID: PMC9226207 DOI: 10.1186/s13550-022-00909-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 2-Deoxy-2-[18F]fluoroglucose (FDG) PET is an important tool for the identification of Alzheimer's disease (AD) patients through the characteristic neurodegeneration pattern that these patients present. Regional cerebral blood flow (rCBF) images derived from dynamic 11C-labelled Pittsburgh Compound B (PIB) have been shown to present a similar pattern as FDG. Moreover, multivariate analysis techniques, such as scaled subprofile modelling using principal component analysis (SSM/PCA), can be used to generate disease-specific patterns (DP) that may aid in the classification of subjects. Therefore, the aim of this study was to compare rCBF AD-DPs with FDG AD-DP and their respective performances. Therefore, 52 subjects were included in this study. Fifteen AD and 16 healthy control subjects were used to generate four AD-DP: one based on relative cerebral trace blood (R1), two based on time-weighted average of initial frame intervals (ePIB), and one based on FDG images. Furthermore, 21 subjects diagnosed with mild cognitive impairment were tested against these AD-DPs. RESULTS In general, the rCBF and FDG AD-DPs were characterized by a reduction in cortical frontal, temporal, and parietal lobes. FDG and rCBF methods presented similar score distribution. CONCLUSION rCBF images may provide an alternative for FDG PET scans for the identification of AD patients through SSM/PCA.
Collapse
Affiliation(s)
- Débora E Peretti
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - David Vállez García
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Remco J Renken
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Fransje E Reesink
- Department of Neurology, Alzheimer Centre, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bauke M de Jong
- Department of Neurology, Alzheimer Centre, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter P De Deyn
- Department of Neurology, Alzheimer Centre, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. .,Department of Radiology and Nuclear Medicine, Location VU Medical Center, Amsterdam University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Chen B, Marquez-Nostra B, Belitzky E, Toyonaga T, Tong J, Huang Y, Cai Z. PET Imaging in Animal Models of Alzheimer’s Disease. Front Neurosci 2022; 16:872509. [PMID: 35685772 PMCID: PMC9171374 DOI: 10.3389/fnins.2022.872509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The successful development and translation of PET imaging agents targeting β-amyloid plaques and hyperphosphorylated tau tangles have allowed for in vivo detection of these hallmarks of Alzheimer’s disease (AD) antemortem. Amyloid and tau PET have been incorporated into the A/T/N scheme for AD characterization and have become an integral part of ongoing clinical trials to screen patients for enrollment, prove drug action mechanisms, and monitor therapeutic effects. Meanwhile, preclinical PET imaging in animal models of AD can provide supportive information for mechanistic studies. With the recent advancement of gene editing technologies and AD animal model development, preclinical PET imaging in AD models will further facilitate our understanding of AD pathogenesis/progression and the development of novel treatments. In this study, we review the current state-of-the-art in preclinical PET imaging using animal models of AD and suggest future research directions.
Collapse
|
11
|
Goto M, Kimura N, Matsubara E. Association of serum thyroid hormone levels with positron emission tomography imaging in non-demented older adults. Psychogeriatrics 2022; 22:373-381. [PMID: 35293067 DOI: 10.1111/psyg.12825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/05/2022] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Although increasing evidence indicates that even variations in normal range thyroid function are associated with Alzheimer's disease (AD), the association between serum thyroid hormone levels within the reference range and AD biomarkers remains unclear. This study examined whether variations in thyroid hormones within the reference range are associated with brain amyloid burden and cortical glucose metabolism in older adults without dementia. METHODS One hundred and two non-demented older adults underwent 11 C-Pittsburgh Compound B positron emission tomography (PiB-PET), 18 F-fluorodeoxyglucose (FDG)-PET, and measurement of serum thyroid-stimulating hormone (TSH), free triiodothyronine (T3), and free thyroxine (T4) levels. The discrimination between PiB-negative and PiB-positive subgroup was made on the basis of a subject's cortical uptake value ratio greater than 1.4. The association of serum thyroid hormone levels with global PiB or FDG uptake, and PiB or FDG uptake in each region of interest, including frontal and temporoparietal lobes and posterior cingulate gyrus, was analysed using a multiple regression model with adjustment for covariates, including age, gender, years of education, apolipoprotein E4 status or PiB uptake value. RESULTS In the PiB-positive subgroup, the serum TSH levels positively associated with the global FDG uptake (β = 0.471, P = 0.003) and FDG uptake in the frontal and temporoparietal lobes (β = 0.466, P = 0.003, β = 0.394, P = 0.012, respectively); the serum-free T3 levels negatively associated with the FDG uptake in the temporoparietal lobe and posterior cingulate region (β = -0.351, P = 0.033, β = -0.544, P = 0.002, respectively). The PiB-negative subgroup showed no significant associations. The serum thyroid hormone levels did not correlate with the global PiB uptake and PiB uptake in each region. CONCLUSIONS The variations in the thyroid hormones within the reference ranges are associated with glucose metabolism, particularly in the specific regions affected by the neuropathologic changes of AD, in non-demented older adults with brain amyloid burden.
Collapse
Affiliation(s)
- Megumi Goto
- Department of Neurology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Noriyuki Kimura
- Department of Neurology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Etsuro Matsubara
- Department of Neurology, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW This article reviews tau PET imaging with an emphasis on first-generation and second-generation tau radiotracers and their application in neurodegenerative disorders, including Alzheimer's disease and non-Alzheimer's disease tauopathies. RECENT FINDINGS Tau is a critical protein, abundant in neurons within the central nervous system, which plays an important role in maintaining microtubules by binding to tubulin in axons. In its abnormal hyperphosphorylated form, accumulation of tau has been linked to a variety of neurodegenerative disorders, collectively referred to as tauopathies, which include Alzheimer's disease and non-Alzheimer's disease tauopathies [e.g., corticobasal degeneration (CBD), argyrophilic grain disease, progressive supranuclear palsy (PSP), and Pick's disease]. A number of first-generation and second-generation tau PET radiotracers have been developed, including the first FDA-approved agent [18F]-flortaucipir, which allow for in-vivo molecular imaging of underlying histopathology antemortem, ultimately guiding disease staging and development of disease-modifying therapeutics. SUMMARY Tau PET is an emerging imaging modality in the diagnosis and staging of tauopathies.
Collapse
Affiliation(s)
| | - Michelle Roytman
- Department of Radiology, New York-Presbyterian Hospital/Weill Cornell Medical College, New York
| | - Gloria C. Chiang
- Department of Radiology, New York-Presbyterian Hospital/Weill Cornell Medical College, New York
| | - Yi Li
- Department of Radiology, New York-Presbyterian Hospital/Weill Cornell Medical College, New York
| | - Marc L. Gordon
- Departments of Neurology and Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, The Litwin-Zucker Research Center, Feinstein Institutes for Medical Research, Manhasset
| | - Ana M. Franceschi
- Neuroradiology Division, Department of Radiology, Northwell Health/Donald and Barbara Zucker School of Medicine, Lenox Hill Hospital, New York, New York, USA
| |
Collapse
|
13
|
Raman F, Fang YHD, Grandhi S, Murchison CF, Kennedy RE, Morris JC, Massoumzadeh P, Benzinger T, Roberson ED, McConathy J. Dynamic Amyloid PET: Relationships to 18F-Flortaucipir Tau PET Measures. J Nucl Med 2022; 63:287-293. [PMID: 34049986 PMCID: PMC8805772 DOI: 10.2967/jnumed.120.254490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
Measuring amyloid and predicting tau status using a single amyloid PET study would be valuable for assessing brain AD pathophysiology. We hypothesized that early-frame amyloid PET (efAP) correlates with the presence of tau pathology because the initial regional brain concentrations of radioactivity are determined primarily by blood flow, which is expected to be decreased in the setting of tau pathology. Methods: The study included 120 participants (63 amyloid-positive and 57 amyloid-negative) with dynamic 18F-florbetapir PET and static 18F-flortaucipir PET scans obtained within 6 mo of each other. These subjects were predominantly cognitively intact in both the amyloid-positive (63%) and the amyloid-negative (93%) groups. Parameters for efAP quantification were optimized for stratification of tau PET positivity, assessed by either a tauopathy score or Braak regions. The ability of efAP to stratify tau positivity was measured using receiver-operating-characteristic analysis of area under the curve (AUC). Pearson r and Spearman ρ were used for parametric and nonparametric comparisons between efAP and tau PET, respectively. Standardized net benefit was used to evaluate improvement in using efAP as an additional copredictor over hippocampal volume in predicting tau PET positivity. Results: Measuring efAP within the hippocampus and summing the first 3 min of brain activity after injection showed the strongest discriminative ability to stratify for tau positivity (AUC, 0.67-0.89 across tau PET Braak regions) in amyloid-positive individuals. Hippocampal efAP correlated significantly with a global tau PET tauopathy score in amyloid-positive participants (r = -0.57, P < 0.0001). Compared with hippocampal volume, hippocampal efAP showed a stronger association with tau PET Braak stage (ρ = -0.58 vs. -0.37) and superior stratification of tau PET tauopathy score (AUC, 0.86 vs. 0.66; P = 0.002). Conclusion: Hippocampal efAP can provide additional information to conventional amyloid PET, including estimation of the likelihood of tau positivity in amyloid-positive individuals.
Collapse
Affiliation(s)
- Fabio Raman
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
- Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yu-Hua Dean Fang
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sameera Grandhi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
- Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Charles F Murchison
- Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Richard E Kennedy
- Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | - John C Morris
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri; and
| | - Parinaz Massoumzadeh
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Tammie Benzinger
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Erik D Roberson
- Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama;
- Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
14
|
Myoraku A, Klein G, Landau S, Tosun D. Regional uptakes from early-frame amyloid PET and 18F-FDG PET scans are comparable independent of disease state. Eur J Hybrid Imaging 2022; 6:2. [PMID: 35039928 PMCID: PMC8763988 DOI: 10.1186/s41824-021-00123-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/10/2021] [Indexed: 12/04/2022] Open
Abstract
Purpose Positron emission tomography (PET) imaging with amyloid-beta (Aβ) tracers and 2-[18F] fluoro-2-Deoxy-d-glucose (18F-FDG) is extensively employed in Alzheimer’s disease (AD) studies as biomarkers of AD pathology and neurodegeneration. To reduce cost and additional burdens to the patient, early-frame uptake during Aβ PET scanning has been proposed as a surrogate measure of regional glucose metabolism. Considering the disease state specific impact of AD on neurovascular coupling, we investigated to what extent the information captured in the early frames of an Aβ-PET (18F-florbetapir or 18F-florbetaben) scan is comparable to that of a 18F-FDG PET scan, independent of disease state. Method A partial correlation was performed on early-frame 18F-florbetapir and 18F-FDG regional data from 100 participants. In a secondary analysis, we compared 92 18F-florbetapir and 21 18F-florbetaben early-frame Aβ scans from cognitively unimpaired and mild cognitive impairment participants to ascertain if regional early-frame information was similar across different Aβ-PET radioligands. Results The partial correlation of early-frame 18F-florbetapir with 18F-FDG was significant in all 84 brain ROIs, with correlation values ranging from 0.61 to 0.94. There were no significant differences between early-frame 18F-florbetapir and 18F-florbetaben images. Conclusion Overall, we find that the regional uptake measurements from early-frame 18F-florbetapir are strongly correlated with regional glucose metabolism as measured in ground-truth 18F-FDG PET scans, regardless of disease state. Future studies should focus on longitudinal early-frame amyloid PET imaging studies to further assess the value of early-frame imaging as a marker of brain metabolic decline.
Supplementary Information The online version contains supplementary material available at 10.1186/s41824-021-00123-0.
Collapse
Affiliation(s)
- Alison Myoraku
- Northern California Institute for Research and Education, VA Medical Center, 4150 Clement Street, 114M, San Francisco, CA, 94121, USA. .,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA.
| | - Gregory Klein
- Roche Pharma Research and Early Development, Basel, Switzerland
| | - Susan Landau
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720-3190, USA
| | - Duygu Tosun
- Northern California Institute for Research and Education, VA Medical Center, 4150 Clement Street, 114M, San Francisco, CA, 94121, USA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94143, USA
| | | |
Collapse
|
15
|
Differential associations between neocortical tau pathology and blood flow with cognitive deficits in early-onset vs late-onset Alzheimer's disease. Eur J Nucl Med Mol Imaging 2022; 49:1951-1963. [PMID: 34997294 PMCID: PMC9016024 DOI: 10.1007/s00259-021-05669-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022]
Abstract
Purpose Early-onset Alzheimer’s disease (EOAD) and late-onset Alzheimer’s disease (LOAD) differ in neuropathological burden and type of cognitive deficits. Assessing tau pathology and relative cerebral blood flow (rCBF) measured with [18F]flortaucipir PET in relation to cognition may help explain these differences between EOAD and LOAD. Methods Seventy-nine amyloid-positive individuals with a clinical diagnosis of AD (EOAD: n = 35, age-at-PET = 59 ± 5, MMSE = 23 ± 4; LOAD: n = 44, age-at-PET = 71 ± 5, MMSE = 23 ± 4) underwent a 130-min dynamic [18F]flortaucipir PET scan and extensive neuropsychological assessment. We extracted binding potentials (BPND) and R1 (proxy of rCBF) from parametric images using receptor parametric mapping, in medial and lateral temporal, parietal, occipital, and frontal regions-of-interest and used nine neuropsychological tests covering memory, attention, language, and executive functioning. We first examined differences between EOAD and LOAD in BPND or R1 using ANOVA (region-of-interest analysis) and voxel-wise contrasts. Next, we performed linear regression models to test for potential interaction effects between age-at-onset and BPND/R1 on cognition. Results Both region-of-interest and voxel-wise contrasts showed higher [18F]flortaucipir BPND values across all neocortical regions in EOAD. By contrast, LOAD patients had lower R1 values (indicative of more reduced rCBF) in medial temporal regions. For both tau and flow in lateral temporal, and occipitoparietal regions, associations with cognitive impairment were stronger in EOAD than in LOAD (EOAD BPND − 0.76 ≤ stβ ≤ − 0.48 vs LOAD − 0.18 ≤ stβ ≤ − 0.02; EOAD R1 0.37 ≤ stβ ≤ 0.84 vs LOAD − 0.25 ≤ stβ ≤ 0.16). Conclusions Compared to LOAD, the degree of lateral temporal and occipitoparietal tau pathology and relative cerebral blood-flow is more strongly associated with cognition in EOAD. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05669-6.
Collapse
|
16
|
Zhou Y, Flores S, Mansor S, Hornbeck RC, Tu Z, Perlmutter JS, Ances B, Morris JC, Gropler RJ, Benzinger TLS. Spatially constrained kinetic modeling with dual reference tissues improves 18F-flortaucipir PET in studies of Alzheimer disease. Eur J Nucl Med Mol Imaging 2021; 48:3172-3186. [PMID: 33599811 PMCID: PMC8371062 DOI: 10.1007/s00259-020-05134-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/20/2020] [Indexed: 01/03/2023]
Abstract
PURPOSE Recent studies have shown that standard compartmental models using plasma input or the cerebellum reference tissue input are generally not reliable for quantifying tau burden in dynamic 18F-flortaucipir PET studies of Alzheimer disease. So far, the optimal reference region for estimating 18F-flortaucipir delivery and specific tau binding has yet to be determined. The objective of the study is to improve 18F-flortaucipir brain tau PET quantification using a spatially constrained kinetic model with dual reference tissues. METHODS Participants were classified as either cognitively normal (CN) or cognitively impaired (CI) based on clinical assessment. T1-weighted structural MRI and 105-min dynamic 18F-flortaucipir PET scans were acquired for each participant. Using both a simplified reference tissue model (SRTM2) and Logan plot with either cerebellum gray matter or centrum semiovale (CS) white matter as the reference tissue, we estimated distribution volume ratios (DVRs) and the relative transport rate constant R1 for region of interest-based (ROI) and voxelwise-based analyses. Conventional linear regression (LR) and LR with spatially constrained (LRSC) parametric imaging algorithms were then evaluated. Noise-induced bias in the parametric images was compared to estimates from ROI time activity curve-based kinetic modeling. We finally evaluated standardized uptake value ratios at early phase (SUVREP, 0.7-2.9 min) and late phase (SUVRLP, 80-105 min) to approximate R1 and DVR, respectively. RESULTS The percent coefficients of variation of R1 and DVR estimates from SRTM2 with spatially constrained modeling were comparable to those from the Logan plot and SUVRs. The SRTM2 using CS reference tissue with LRSC reduced noise-induced underestimation in the LR generated DVR images to negligible levels (< 1%). Inconsistent overestimation of DVR in the SUVRLP only occurred using the cerebellum reference tissue-based measurements. The CS reference tissue-based DVR and SUVRLP, and cerebellum-based SUVREP and R1 provided higher Cohen's effect size d to detect increased tau deposition and reduced relative tracer transport rate in CI individuals. CONCLUSION Using a spatially constrained kinetic model with dual reference tissues significantly improved quantification of relative perfusion and tau binding. Cerebellum and CS are the suggested reference tissues to estimate R1 and DVR, respectively, for dynamic 18F-flortaucipir PET studies. Cerebellum-based SUVREP and CS-based SUVRLP may be used to simplify 18F-flortaucipir PET study.
Collapse
Affiliation(s)
- Yun Zhou
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Blvd, St Louis, MO, 63110, USA.
| | - Shaney Flores
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Blvd, St Louis, MO, 63110, USA
| | - Syahir Mansor
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Blvd, St Louis, MO, 63110, USA
| | - Russ C Hornbeck
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Blvd, St Louis, MO, 63110, USA
| | - Zhude Tu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Blvd, St Louis, MO, 63110, USA
| | - Joel S Perlmutter
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Blvd, St Louis, MO, 63110, USA
- Departments of Neurology and Neuroscience, Programs of Physical Therapy and Occupational Therapy, Washington University School of Medicine, Saint Louis, MO, USA
| | - Beau Ances
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - John C Morris
- Departments of Neurology and Neuroscience, Programs of Physical Therapy and Occupational Therapy, Washington University School of Medicine, Saint Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Robert J Gropler
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Blvd, St Louis, MO, 63110, USA
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Blvd, St Louis, MO, 63110, USA
- Departments of Neurology and Neuroscience, Programs of Physical Therapy and Occupational Therapy, Washington University School of Medicine, Saint Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
17
|
Tuncel H, Visser D, Yaqub M, Timmers T, Wolters EE, Ossenkoppele R, van der Flier WM, van Berckel BNM, Boellaard R, Golla SSV. Effect of Shortening the Scan Duration on Quantitative Accuracy of [ 18F]Flortaucipir Studies. Mol Imaging Biol 2021; 23:604-613. [PMID: 33496930 PMCID: PMC8277654 DOI: 10.1007/s11307-021-01581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/04/2022]
Abstract
PURPOSE Dynamic positron emission tomography (PET) protocols allow for accurate quantification of [18F]flortaucipir-specific binding. However, dynamic acquisitions can be challenging given the long required scan duration of 130 min. The current study assessed the effect of shorter scan protocols for [18F]flortaucipir on its quantitative accuracy. PROCEDURES Two study cohorts with Alzheimer's disease (AD) patients and healthy controls (HC) were included. All subjects underwent a 130-min dynamic [18F]flortaucipir PET scan consisting of two parts (0-60/80-130 min) post-injection. Arterial sampling was acquired during scanning of the first cohort only. For the second cohort, a second PET scan was acquired within 1-4 weeks of the first PET scan to assess test-retest repeatability (TRT). Three alternative time intervals were explored for the second part of the scan: 80-120, 80-110 and 80-100 min. Furthermore, the first part of the scan was also varied: 0-50, 0-40 and 0-30 min time intervals were assessed. The gap in the reference TACs was interpolated using four different interpolation methods: population-based input function 2T4k_VB (POP-IP_2T4k_VB), cubic, linear and exponential. Regional binding potential (BPND) and relative tracer delivery (R1) values estimated using simplified reference tissue model (SRTM) and/or receptor parametric mapping (RPM). The different scan protocols were compared to the respective values estimated using the original scan acquisition. In addition, TRT of the RPM BPND and R1 values estimated using the optimal shortest scan duration was also assessed. RESULTS RPM BPND and R1 obtained using 0-30/80-100 min scan and POP-IP_2T4k_VB reference region interpolation had an excellent correlation with the respective parametric values estimated using the original scan duration (r2 > 0.95). The TRT of RPM BPND and R1 using the shortest scan duration was - 1 ± 5 % and - 1 ± 6 % respectively. CONCLUSIONS This study demonstrated that [18F]flortaucipir PET scan can be acquired with sufficient quantitative accuracy using only 50 min of dual-time-window scanning time.
Collapse
Affiliation(s)
- Hayel Tuncel
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Denise Visser
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Maqsood Yaqub
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Tessa Timmers
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Emma E Wolters
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Epidemiology and Data Sciences, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Sandeep S V Golla
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Seiffert AP, Gómez-Grande A, Villarejo-Galende A, González-Sánchez M, Bueno H, Gómez EJ, Sánchez-González P. High Correlation of Static First-Minute-Frame (FMF) PET Imaging after 18F-Labeled Amyloid Tracer Injection with [ 18F]FDG PET Imaging. SENSORS (BASEL, SWITZERLAND) 2021; 21:5182. [PMID: 34372416 PMCID: PMC8348394 DOI: 10.3390/s21155182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/17/2023]
Abstract
Dynamic early-phase PET images acquired with radiotracers binding to fibrillar amyloid-beta (Aβ) have shown to correlate with [18F]fluorodeoxyglucose (FDG) PET images and provide perfusion-like information. Perfusion information of static PET scans acquired during the first minute after radiotracer injection (FMF, first-minute-frame) is compared to [18F]FDG PET images. FMFs of 60 patients acquired with [18F]florbetapir (FBP), [18F]flutemetamol (FMM), and [18F]florbetaben (FBB) are compared to [18F]FDG PET images. Regional standardized uptake value ratios (SUVR) are directly compared and intrapatient Pearson's correlation coefficients are calculated to evaluate the correlation of FMFs to their corresponding [18F]FDG PET images. Additionally, regional interpatient correlations are calculated. The intensity profiles of mean SUVRs among the study cohort (r = 0.98, p < 0.001) and intrapatient analyses show strong correlations between FMFs and [18F]FDG PET images (r = 0.93 ± 0.05). Regional VOI-based analyses also result in high correlation coefficients. The FMF shows similar information to the cerebral metabolic patterns obtained by [18F]FDG PET imaging. Therefore, it could be an alternative to the dynamic imaging of early phase amyloid PET and be used as an additional neurodegeneration biomarker in amyloid PET studies in routine clinical practice while being acquired at the same time as amyloid PET images.
Collapse
Affiliation(s)
- Alexander P. Seiffert
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Adolfo Gómez-Grande
- Department of Nuclear Medicine, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.V.-G.); (H.B.)
| | - Alberto Villarejo-Galende
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.V.-G.); (H.B.)
- Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Marta González-Sánchez
- Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Héctor Bueno
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.V.-G.); (H.B.)
- Department of Cardiology and Instituto de Investigación Sanitaria (imas12), Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Enrique J. Gómez
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Patricia Sánchez-González
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
19
|
Yoon HJ, Kim BS, Jeong JH, Kim GH, Park HK, Chun MY, Ha S. Dual-phase 18F-florbetaben PET provides cerebral perfusion proxy along with beta-amyloid burden in Alzheimer's disease. NEUROIMAGE-CLINICAL 2021; 31:102773. [PMID: 34339946 PMCID: PMC8346681 DOI: 10.1016/j.nicl.2021.102773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND This study investigated changes in brain perfusion and Aβ burden according to the progression of Alzheimer's disease (AD) by using a dual-phase 18F-florbetaben (FBB) PET protocol. METHODS Sixty subjects, including 12 with Aβ-negative normal cognition (Aβ-NC), 32 with Aβ-positive mild cognitive impairment (Aβ+MCI), and 16 with Aβ-positive AD (Aβ+AD), were enrolled. A dynamic PET scan was obtained in the early phase (0-10 min, eFBB) and delayed phase (90-110 min, dFBB), which were then averaged into a single frame, respectively. In addition to the averaged eFBB, an R1 parametric map was calculated from the eFBB scan based on a simplified reference tissue model (SRTM). Between-group regional and voxel-wise analyses of the images were performed. The associations between cognitive profiles and PET-derived parameters were investigated. RESULTS Both the R1 and eFBB perfusion reductions in the cortical regions were not significantly different between the Aβ-NC and Aβ+MCI groups, while they were significantly reduced from the Aβ+MCI to Aβ+AD groups in regional and voxel-wise analyses. However, cortical Aβ depositions on dFBB were not significantly different between the Aβ+MCI and Aβ+AD groups. There were strong positive correlations between the R1 and eFBB images in regional and voxel-wise analyses. Both perfusion components showed significant correlations with general and specific cognitive profiles. CONCLUSION The results of this study demonstrated the feasibility of dual-phase 18F-FBB PET to evaluate different trajectories of dual biomarkers for neurodegeneration and Aβ burden over the course of AD. In addition, both eFBB and SRTM-based R1 can provide robust indices of brain perfusion.
Collapse
Affiliation(s)
- Hai-Jeon Yoon
- Department of Nuclear Medicine, Ewha Womans University, School of Medicine, Seoul, Republic of Korea
| | - Bom Sahn Kim
- Department of Nuclear Medicine, Ewha Womans University, School of Medicine, Seoul, Republic of Korea.
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University School of Medicine, Republic of Korea.
| | - Geon Ha Kim
- Department of Neurology, Ewha Womans University School of Medicine, Republic of Korea
| | - Hee Kyung Park
- Department of Neurology, Ewha Womans University School of Medicine, Republic of Korea; Division of Psychiatry, Department of mental health care of older people, University College London, London, UK
| | - Min Young Chun
- Department of Neurology, Ewha Womans University School of Medicine, Republic of Korea
| | - Seunggyun Ha
- Division of Nuclear Medicine, Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
20
|
Vanhoutte M, Landeau B, Sherif S, de la Sayette V, Dautricourt S, Abbas A, Manrique A, Chocat A, Chételat G. Evaluation of the early-phase [ 18F]AV45 PET as an optimal surrogate of [ 18F]FDG PET in ageing and Alzheimer's clinical syndrome. Neuroimage Clin 2021; 31:102750. [PMID: 34247116 PMCID: PMC8274342 DOI: 10.1016/j.nicl.2021.102750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/05/2022]
Abstract
Dual-phase [18F]AV45 positron emission tomography (PET) is highly promising in the assessment of neurodegenerative diseases, allowing to obtain information on both neurodegeneration (early-phase; eAV45) and amyloid deposition (late-phase; lAV45) which are highly complementary; yet eAV45 needs further evaluation. This study aims at validating eAV45 as an optimal proxy of [18F]FDG PET in a large mixed-population of healthy ageing and Alzheimer's clinical syndrome participants (n = 191) who had [18F]FDG PET, eAV45 and lAV45 scans. We found early time frame 0-4 min to give maximal correlation with [18F]FDG PET and minimal correlation with lAV45. Moreover, maximal overlap of [18F]FDG PET versus eAV45 associations with clinical diagnosis and cognition was obtained with pons scaling. Across reference regions, classification performance between clinical subgroups was similar for both eAV45 and [18F]FDG PET. These findings highlight the optimal use of eAV45 to assess neurodegeneration as a validated proxy of [18F]FDG PET. On top of this purpose, this study showed that combined [18F]AV45 PET dual-biomarker even outperformed [18F]FDG PET or lAV45 alone.
Collapse
Affiliation(s)
- Matthieu Vanhoutte
- Inserm UMR-S U1237, Caen-Normandie University, GIP Cyceron, Caen, France.
| | - Brigitte Landeau
- Inserm UMR-S U1237, Caen-Normandie University, GIP Cyceron, Caen, France
| | - Siya Sherif
- Inserm UMR-S U1237, Caen-Normandie University, GIP Cyceron, Caen, France
| | - Vincent de la Sayette
- Inserm U1077, Caen-Normandie University, École Pratique des Hautes Études, Caen, France; University Hospital, Neurology Department, Caen, France
| | - Sophie Dautricourt
- Inserm UMR-S U1237, Caen-Normandie University, GIP Cyceron, Caen, France; University Hospital, Neurology Department, Caen, France
| | - Ahmed Abbas
- Inserm U1077, Caen-Normandie University, École Pratique des Hautes Études, Caen, France
| | - Alain Manrique
- University Hospital, Nuclear Medicine Department, Caen, France
| | - Anne Chocat
- Inserm UMR-S U1237, Caen-Normandie University, GIP Cyceron, Caen, France
| | - Gaël Chételat
- Inserm UMR-S U1237, Caen-Normandie University, GIP Cyceron, Caen, France; Inserm U1077, Caen-Normandie University, École Pratique des Hautes Études, Caen, France.
| |
Collapse
|
21
|
Early-phase 18F-FP-CIT and 18F-flutemetamol PET were significantly correlated. Sci Rep 2021; 11:12297. [PMID: 34112926 PMCID: PMC8192502 DOI: 10.1038/s41598-021-91891-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/02/2021] [Indexed: 02/02/2023] Open
Abstract
Little is known about whether early-phase PET images of 18F-FP-CIT match those of amyloid PET. Here, we compared early-phase 18F-FP-CIT and 18F-flutemetamol PET images in patients who underwent both within a 1-month interval. The SUVR on early-phase 18F-FP-CIT PET (median, 0.86) was significantly lower than that of 18F-flutemetamol PET (median, 0.91, p < 0.001) for total brain regions including all cerebral lobes and central structures. This significant difference persisted for each brain region except central structures (p = 0.232). The SUVR of total brain regions obtained from early 18F-FP-CIT PET showed a very strong correlation with that of 18F-flutemetamol PET (rho = 0.80, p < 0.001). Among the kinetic parameters, only R1 showed a statistically significant correlation between the two techniques for all brain regions (rho = 0.89, p < 0.001). R1 from 18F-FP-CIT (median, 0.77) was significantly lower in all areas of the brain compared to R1 from 18F-flutemetamol PET (median, 0.81, p < 0.001).18F-FP-CIT demonstrated lower uptake in cortical brain regions than 18F-flutemetamol on early-phase PET. However, both early-phase PETs demonstrated significant correlation of uptake.
Collapse
|
22
|
Abstract
Pathological accumulated misfolded tau underlies various neurodegenerative diseases and associated clinical syndromes. To diagnose those diseases reliable before death or even at early stages, many different tau-specific radiotracers have been developed in the last decade to be used with positron-emission-tomography. In contrast to amyloid-β imaging, different isoforms of tau exist further complicating radiotracer development. First-generation radiotracers like [11C]PBB3, [18F]AV1451 and [18F]THK5351 have been extensively investigated in vitro and in vivo. In Alzheimer's disease (AD), high specific binding could be detected, and evidence of clinical applicability recently led to clinical approval of [18F]flortaucipir ([18F]AV1451) by the FDA. Nevertheless, absent or minor binding to non-AD tau isoforms and high off-target binding to non-tau brain structures limit the diagnostic applicability especially in non-AD tauopathies demanding further tracer development. In vitro assays and autoradiography results of next-generation radiotracers [18F]MK-6240, [18F]RO-948, [18F]PM-PBB3, [18F]GTP-1 and [18F]PI-2620 clearly indicate less off-target binding and high specific binding to tau neurofibrils. First in human studies have been conducted with promising results for all tracers in AD patients, and also some positive experience in non-AD tauopathies. Overall, larger scaled autoradiography and human studies are needed to further evaluate the most promising candidates and support future clinical approval.
Collapse
Affiliation(s)
- Leonie Beyer
- Department of Nuclear Medicine, University Hospital of Munich, Munich, Germany.
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
23
|
Wolters EE, van de Beek M, Ossenkoppele R, Golla SSV, Verfaillie SCJ, Coomans EM, Timmers T, Visser D, Tuncel H, Barkhof F, Boellaard R, Windhorst AD, van der Flier WM, Scheltens P, Lemstra AW, van Berckel BNM. Tau PET and relative cerebral blood flow in dementia with Lewy bodies: A PET study. Neuroimage Clin 2020; 28:102504. [PMID: 33395993 PMCID: PMC7714680 DOI: 10.1016/j.nicl.2020.102504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Alpha-synuclein often co-occurs with Alzheimer's disease (AD) pathology in Dementia with Lewy Bodies (DLB). From a dynamic [18F]flortaucipir PET scan we derived measures of both tau binding and relative cerebral blood flow (rCBF). We tested whether regional tau binding or rCBF differed between DLB patients and AD patients and controls and examined their association with clinical characteristics of DLB. METHODS Eighteen patients with probable DLB, 65 AD patients and 50 controls underwent a dynamic 130-minute [18F]flortaucipir PET scan. DLB patients with positive biomarkers for AD based on cerebrospinal fluid or amyloid PET were considered as DLB with AD pathology (DLB-AD+). Receptor parametric mapping (cerebellar gray matter reference region) was used to extract regional binding potential (BPND) and R1, reflecting (AD-specific) tau pathology and rCBF, respectively. First, we performed regional comparisons of [18F]flortaucipir BPND and R1 between diagnostic groups. In DLB patients only, we performed regression analyses between regional [18F]flortaucipir BPND, R1 and performance on ten neuropsychological tests. RESULTS Regional [18F]flortaucipir BPND in DLB was comparable with tau binding in controls (p > 0.05). Subtle higher tau binding was observed in DLB-AD+ compared to DLB-AD- in the medial temporal and parietal lobe (both p < 0.05). Occipital and lateral parietal R1 was lower in DLB compared to AD and controls (all p < 0.01). Lower frontal R1 was associated with impaired performance on digit span forward (standardized beta, stβ = 0.72) and category fluency (stβ = 0.69) tests. Lower parietal R1 was related to lower delayed (stβ = 0.50) and immediate (stβ = 0.48) recall, VOSP number location (stβ = 0.70) and fragmented letters (stβ = 0.59) scores. Lower occipital R1 was associated to worse performance on VOSP fragmented letters (stβ = 0.61), all p < 0.05. CONCLUSION The amount of tau binding in DLB was minimal and did not differ from controls. However, there were DLB-specific occipital and lateral parietal relative cerebral blood flow reductions compared to both controls and AD patients. Regional rCBF, but not tau binding, was related to cognitive impairment. This indicates that assessment of rCBF may give more insight into disease mechanisms in DLB than tau PET.
Collapse
Affiliation(s)
- E E Wolters
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - M van de Beek
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - R Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - S S V Golla
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - S C J Verfaillie
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - E M Coomans
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - T Timmers
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - D Visser
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - H Tuncel
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - F Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Institutes of Neurology & Healthcare Engineering, UCL, London, United Kingdom
| | - R Boellaard
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - A D Windhorst
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - W M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ph Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - A W Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - B N M van Berckel
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Visser D, Wolters EE, Verfaillie SCJ, Coomans EM, Timmers T, Tuncel H, Reimand J, Boellaard R, Windhorst AD, Scheltens P, van der Flier WM, Ossenkoppele R, van Berckel BNM. Tau pathology and relative cerebral blood flow are independently associated with cognition in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2020; 47:3165-3175. [PMID: 32462397 PMCID: PMC7680306 DOI: 10.1007/s00259-020-04831-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
Abstract
Purpose We aimed to investigate associations between tau pathology and relative cerebral blood flow (rCBF), and their relationship with cognition in Alzheimer’s disease (AD), by using a single dynamic [18F]flortaucipir positron emission tomography (PET) scan. Methods Seventy-one subjects with AD (66 ± 8 years, mini-mental state examination (MMSE) 23 ± 4) underwent a dynamic 130-min [18F]flortaucipir PET scan. Cognitive assessment consisted of composite scores of four cognitive domains. For tau pathology and rCBF, receptor parametric mapping (cerebellar gray matter reference region) was used to create uncorrected and partial volume-corrected parametric images of non-displaceable binding potential (BPND) and R1, respectively. (Voxel-wise) linear regressions were used to investigate associations between BPND and/or R1 and cognition. Results Higher [18F]flortaucipir BPND was associated with lower R1 in the lateral temporal, parietal and occipital regions. Higher medial temporal BPND was associated with worse memory, and higher lateral temporal BPND with worse executive functioning and language. Higher parietal BPND was associated with worse executive functioning, language and attention, and higher occipital BPND with lower cognitive scores across all domains. Higher frontal BPND was associated with worse executive function and attention. For [18F]flortaucipir R1, lower values in the lateral temporal and parietal ROIs were associated with worse executive functioning, language and attention, and lower occipital R1 with lower language and attention scores. When [18F]flortaucipir BPND and R1 were modelled simultaneously, associations between lower R1 in the lateral temporal ROI and worse attention remained, as well as for lower parietal R1 and worse executive functioning and attention. Conclusion Tau pathology was associated with locally reduced rCBF. Tau pathology and low rCBF were both independently associated with worse cognitive performance. For tau pathology, these associations spanned widespread neocortex, while for rCBF, independent associations were restricted to lateral temporal and parietal regions and the executive functioning and attention domains. These findings indicate that each biomarker may independently contribute to cognitive impairment in AD. Electronic supplementary material The online version of this article (10.1007/s00259-020-04831-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Denise Visser
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Emma E Wolters
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sander C J Verfaillie
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Emma M Coomans
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Tessa Timmers
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hayel Tuncel
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Juhan Reimand
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Bart N M van Berckel
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Early-phase [ 18F]PI-2620 tau-PET imaging as a surrogate marker of neuronal injury. Eur J Nucl Med Mol Imaging 2020; 47:2911-2922. [PMID: 32318783 PMCID: PMC7567714 DOI: 10.1007/s00259-020-04788-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/24/2020] [Indexed: 12/31/2022]
Abstract
Purpose Second-generation tau radiotracers for use with positron emission tomography (PET) have been developed for visualization of tau deposits in vivo. For several β-amyloid and first-generation tau-PET radiotracers, it has been shown that early-phase images can be used as a surrogate of neuronal injury. Therefore, we investigated the performance of early acquisitions of the novel tau-PET radiotracer [18F]PI-2620 as a potential substitute for [18F]fluorodeoxyglucose ([18F]FDG). Methods Twenty-six subjects were referred with suspected tauopathies or overlapping parkinsonian syndromes (Alzheimer’s disease, progressive supranuclear palsy, corticobasal syndrome, multi-system atrophy, Parkinson’s disease, multi-system atrophy, Parkinson's disease, frontotemporal dementia) and received a dynamic [18F]PI-2620 tau-PET (0–60 min p.i.) and static [18F]FDG-PET (30–50 min p.i.). Regional standardized uptake value ratios of early-phase images (single frame SUVr) and the blood flow estimate (R1) of [18F]PI-2620-PET were correlated with corresponding quantification of [18F]FDG-PET (global mean/cerebellar normalization). Reduced tracer uptake in cortical target regions was also interpreted visually using 3-dimensional stereotactic surface projections by three more and three less experienced readers. Spearman rank correlation coefficients were calculated between early-phase [18F]PI-2620 tau-PET and [18F]FDG-PET images for all cortical regions and frequencies of disagreement between images were compared for both more and less experienced readers. Results Highest agreement with [18F]FDG-PET quantification was reached for [18F]PI-2620-PET acquisition from 0.5 to 2.5 min p.i. for global mean (lowest R = 0.69) and cerebellar scaling (lowest R = 0.63). Correlation coefficients (summed 0.5–2.5 min SUVr & R1) displayed strong agreement in all cortical target regions for global mean (RSUVr 0.76, RR1 = 0.77) and cerebellar normalization (RSUVr 0.68, RR1 = 0.68). Visual interpretation revealed high regional correlations between early-phase tau-PET and [18F]FDG-PET. There were no relevant differences between more and less experienced readers. Conclusion Early-phase imaging of [18F]PI-2620 can serve as a surrogate biomarker for neuronal injury. Dynamic imaging or a dual time-point protocol for tau-PET imaging could supersede additional [18F]FDG-PET imaging by indexing both the distribution of tau and the extent of neuronal injury. Electronic supplementary material The online version of this article (10.1007/s00259-020-04788-w) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
QModeling: a Multiplatform, Easy-to-Use and Open-Source Toolbox for PET Kinetic Analysis. Neuroinformatics 2019; 17:103-114. [PMID: 29956130 DOI: 10.1007/s12021-018-9384-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Kinetic modeling is at the basis of most quantification methods for dynamic PET data. Specific software is required for it, and a free and easy-to-use kinetic analysis toolbox can facilitate routine work for clinical research. The relevance of kinetic modeling for neuroimaging encourages its incorporation into image processing pipelines like those of SPM, also providing preprocessing flexibility to match the needs of users. The aim of this work was to develop such a toolbox: QModeling. It implements four widely-used reference-region models: Simplified Reference Tissue Model (SRTM), Simplified Reference Tissue Model 2 (SRTM2), Patlak Reference and Logan Reference. A preliminary validation was also performed: The obtained parameters were compared with the gold standard provided by PMOD, the most commonly-used software in this field. Execution speed was also compared, for time-activity curve (TAC) estimation, model fitting and image generation. QModeling has a simple interface, which guides the user through the analysis: Loading data, obtaining TACs, preprocessing the model for pre-evaluation, generating parametric images and visualizing them. Relative differences between QModeling and PMOD in the parameter values are almost always below 10-8. The SRTM2 algorithm yields relative differences from 10-3 to 10-5 when [Formula: see text] is not fixed, since different, validated methods are used to fit this parameter. The new toolbox works efficiently, with execution times of the same order as those of PMOD. Therefore, QModeling allows applying reference-region models with reliable results in efficient computation times. It is free, flexible, multiplatform, easy-to-use and open-source, and it can be easily expanded with new models.
Collapse
|
27
|
Segovia F, Gómez-Río M, Sánchez-Vañó R, Górriz JM, Ramírez J, Triviño-Ibáñez E, Carnero-Pardo C, Martínez-Lozano MD, Sopena-Novales P. Usefulness of Dual-Point Amyloid PET Scans in Appropriate Use Criteria: A Multicenter Study. J Alzheimers Dis 2019; 65:765-779. [PMID: 30103321 DOI: 10.3233/jad-180232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Biomarkers of neurodegeneration play a major role in the diagnosis of Alzheimer's disease (AD). Information on both amyloid-β accumulation, e.g., from amyloid positron emission tomography (PET), and downstream neuronal injury, e.g., from 18F-fluorodeoxyglucose (FDG) PET, would ideally be obtained in a single procedure. OBJECTIVE On the basis that the parallelism between brain perfusion and glucose metabolism is well documented, the objective of this work is to evaluate whether brain perfusion estimated in a dual-point protocol of 18F-florbetaben (FBB) PET can be a surrogate of FDG PET in appropriate use criteria (AUC) for amyloid PET. METHODS This study included 47 patients fulfilling international AUC for amyloid PET. FDG PET, early FBB (pFBB) PET (0-10 min post injection), and standard FBB (sFBB) PET (90-110 min post injection) scans were acquired. Results of clinical subjective reports and of quantitative region of interest (ROI)-based analyses were compared between procedures using statistical techniques such as Pearson's correlation coefficients and t-tests. RESULTS pFBB and FDG visual reports on the 47 patients showed good agreement (k > 0.74); ROI quantitative analysis indicated that both data modalities are highly correlated; and the t-test analysis does not reject the null hypothesis that data from pFBB and FDG examinations comes from independent random samples from normal distributions with equal means and variances. CONCLUSIONS A good agreement was found between pFBB and FDG data as obtained by subjective visual and quantitative analyses. Dual-point FBB PET scans could offer complementary information (similar to that from FDG PET and FBB PET) in a single procedure, considering pFBB as a surrogate of FDG.
Collapse
Affiliation(s)
- Fermín Segovia
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain.,DASCI Institute, University of Granada, Granada, Spain
| | - Manuel Gómez-Río
- Department of Nuclear Medicine, "Virgen de las Nieves" University Hospital, Granada, Spain.,Biosanitary Investigation Institute of Granada, Granada, Spain
| | - Raquel Sánchez-Vañó
- Department of Nuclear Medicine, "9 de Octubre" Hospital, Valencia, Spain.,Clinical Medicine and Public Health Doctoral Program of the University of Granada, Granada, Spain
| | - Juan Manuel Górriz
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain.,DASCI Institute, University of Granada, Granada, Spain.,Biosanitary Investigation Institute of Granada, Granada, Spain
| | - Javier Ramírez
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain.,DASCI Institute, University of Granada, Granada, Spain.,Biosanitary Investigation Institute of Granada, Granada, Spain
| | - Eva Triviño-Ibáñez
- Department of Nuclear Medicine, "Virgen de las Nieves" University Hospital, Granada, Spain.,Biosanitary Investigation Institute of Granada, Granada, Spain
| | - Cristóbal Carnero-Pardo
- Biosanitary Investigation Institute of Granada, Granada, Spain.,Department of Neurology, "Virgen de las Nieves" University Hospital, Granada, Spain
| | | | | |
Collapse
|
28
|
18F-FDG PET, the early phases and the delivery rate of 18F-AV45 PET as proxies of cerebral blood flow in Alzheimer's disease: Validation against 15O-H 2O PET. Alzheimers Dement 2019; 15:1172-1182. [PMID: 31405824 DOI: 10.1016/j.jalz.2019.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/27/2019] [Accepted: 05/21/2019] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Dual-biomarker positron emission tomography (PET), providing complementary information on cerebral blood flow and amyloid-β deposition, is of clinical interest for Alzheimer's disease (AD). The purpose of this study was to validate the perfusion components of early-phase 18F-florbetapir (eAV45), the 18F-AV45 delivery rate (R1), and 18F-FDG against 15O-H2O PET and assess how they change with disease severity. METHODS This study included ten controls, 19 amnestic mild cognitive impairment, and 10 AD dementia subjects. Within-subject regional correlations between modalities, between-group regional and voxel-wise analyses of covariance per modality, and receiver operating characteristic analyses for discrimination between groups were performed. RESULTS FDG standardized uptake value ratio, eAV45 (0-2 min) standardized uptake value ratio, and AV45-R1 were significantly associated with H2O PET (regional Pearson r = 0.54-0.82, 0.70-0.94, and 0.65-0.92, respectively; P < .001). All modalities confirmed reduced cerebral blood flow in the posterior cingulate of patients with amnestic mild cognitive impairment and AD dementia, which was associated with lower cognition (r = 0.36-0.65, P < .025) and could discriminate between patient and control groups (area under the curve > 0.80). However, eAV45 was less sensitive to reflect the disease severity than AV45-R1 or FDG. DISCUSSION R1 is preferable over eAV45 for accurate representation of brain perfusion in dual-biomarker PET for AD.
Collapse
|
29
|
Richter N, Nellessen N, Dronse J, Dillen K, Jacobs HIL, Langen KJ, Dietlein M, Kracht L, Neumaier B, Fink GR, Kukolja J, Onur OA. Spatial distributions of cholinergic impairment and neuronal hypometabolism differ in MCI due to AD. NEUROIMAGE-CLINICAL 2019; 24:101978. [PMID: 31422337 PMCID: PMC6706587 DOI: 10.1016/j.nicl.2019.101978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/24/2019] [Accepted: 08/08/2019] [Indexed: 12/31/2022]
Abstract
Elucidating the relationship between neuronal metabolism and the integrity of the cholinergic system is prerequisite for a profound understanding of cholinergic dysfunction in Alzheimer's disease. The cholinergic system can be investigated specifically using positron emission tomography (PET) with [11C]N-methyl-4-piperidyl-acetate (MP4A), while neuronal metabolism is often assessed with 2-deoxy-2-[18F]fluoro-d-glucose-(FDG) PET. We hypothesised a close correlation between MP4A-perfusion and FDG-uptake, permitting inferences about metabolism from MP4A-perfusion, and investigated the patterns of neuronal hypometabolism and cholinergic impairment in non-demented AD patients. MP4A-PET was performed in 18 cognitively normal adults and 19 patients with mild cognitive impairment (MCI) and positive AD biomarkers. In nine patients with additional FDG-PET, the sum images of every combination of consecutive early MP4A-frames were correlated with FDG-scans to determine the optimal time window for assessing MP4A-perfusion. Acetylcholinesterase (AChE) activity was estimated using a 3-compartmental model. Group comparisons of MP4A-perfusion and AChE-activity were performed using the entire sample. The highest correlation between MP4A-perfusion and FDG-uptake across the cerebral cortex was observed 60-450 s after injection (r = 0.867). The patterns of hypometabolism (FDG-PET) and hypoperfusion (MP4A-PET) in MCI covered areas known to be hypometabolic early in AD, while AChE activity was mainly reduced in the lateral temporal cortex and the occipital lobe, sparing posterior midline structures. Data indicate that patterns of cholinergic impairment and neuronal hypometabolism differ significantly at the stage of MCI in AD, implying distinct underlying pathologies, and suggesting potential predictors of the response to cholinergic pharmacotherapy.
Collapse
Affiliation(s)
- Nils Richter
- Department of Neurology, University Hospital Cologne, 50937 Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, 52425 Jülich, Germany; Max-Planck-Institute for Metabolism Research, 50937 Cologne, Germany.
| | - Nils Nellessen
- Department of Neurology, University Hospital Cologne, 50937 Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, 52425 Jülich, Germany
| | - Julian Dronse
- Department of Neurology, University Hospital Cologne, 50937 Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, 52425 Jülich, Germany
| | - Kim Dillen
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, 52425 Jülich, Germany
| | - Heidi I L Jacobs
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, 52425 Jülich, Germany; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States of America; The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States of America; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Karl-Josef Langen
- Medical Imaging Physics (INM-4), Institute of Neuroscience and Medicine (INM-4), Research Center Jülich, 52425 Jülich, Germany
| | - Markus Dietlein
- Department of Nuclear Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Lutz Kracht
- Max-Planck-Institute for Metabolism Research, 50937 Cologne, Germany; Department of Nuclear Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Bernd Neumaier
- Institute for Radiochemistry and Experimental Molecular Imaging, University Hospital Cologne, 50937 Cologne, Germany; Nuclear Chemistry, Institute of Neuroscience and Medicine (INM-5), Research Center Jülich, 52425 Jülich, Germany
| | - Gereon R Fink
- Department of Neurology, University Hospital Cologne, 50937 Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, 52425 Jülich, Germany
| | - Juraj Kukolja
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, 52425 Jülich, Germany; Department of Neurology and Neurophysiology, Helios University Hospital Wuppertal, 42283 Wuppertal, Germany
| | - Oezguer A Onur
- Department of Neurology, University Hospital Cologne, 50937 Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, 52425 Jülich, Germany
| |
Collapse
|
30
|
Brown EE, Rashidi-Ranjbar N, Caravaggio F, Gerretsen P, Pollock BG, Mulsant BH, Rajji TK, Fischer CE, Flint A, Mah L, Herrmann N, Bowie CR, Voineskos AN, Graff-Guerrero A. Brain Amyloid PET Tracer Delivery is Related to White Matter Integrity in Patients with Mild Cognitive Impairment. J Neuroimaging 2019; 29:721-729. [PMID: 31270885 DOI: 10.1111/jon.12646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/31/2019] [Accepted: 06/14/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Amyloid deposition, tau neurofibrillary tangles, and cerebrovascular dysfunction are important pathophysiologic features in Alzheimer's disease. Pittsburgh compound B ([11 C]-PIB) is a positron emission tomography (PET) radiotracer used to quantify amyloid deposition in vivo. In addition, certain models of [11 C]-PIB delivery reflect cerebral blood flow rather than amyloid plaques. As cerebral blood flow and perfusion deficits are associated with white matter pathology, we hypothesized that [11 C]-PIB delivery in white matter regions may reflect white matter integrity. METHODS We obtained [11 C]-PIB-PET scans and quantified white matter hyperintensities and global fractional anisotropy on magnetic resonance images as biomarkers of white matter pathology in 34 older participants with mild cognitive impairment with or without a history of major depressive disorder. We analyzed the [11 C]-PIB time-activity curve data with models associated with cerebral blood flow: the early maximum standard uptake value and the relative delivery parameter R1. We used a global white matter region of interest. RESULTS Both of the partial-volume corrected PET parameters were correlated with white matter hyperintensities and fractional anisotropy. CONCLUSION Future studies are warranted to explore whether [11 C]-PIB PET is a "triple biomarker" that may provide information about amyloid deposition, cerebral blood flow, and white matter pathology.
Collapse
Affiliation(s)
- Eric E Brown
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Neda Rashidi-Ranjbar
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Bruce G Pollock
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Benoit H Mulsant
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Tarek K Rajji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Corinne E Fischer
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Keenan Research Centre for Biomedical Research, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Alastair Flint
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Centre for Mental Health, University Health Network, Toronto, Ontario, Canada
| | - Linda Mah
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest Health Sciences Centre, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Christopher R Bowie
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Queen's University, Kingston, Ontario, Canada
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | -
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Göttler J, Preibisch C, Riederer I, Pasquini L, Alexopoulos P, Bohn KP, Yakushev I, Beller E, Kaczmarz S, Zimmer C, Grimmer T, Drzezga A, Sorg C. Reduced blood oxygenation level dependent connectivity is related to hypoperfusion in Alzheimer's disease. J Cereb Blood Flow Metab 2019; 39:1314-1325. [PMID: 29431005 PMCID: PMC6668525 DOI: 10.1177/0271678x18759182] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Functional connectivity of blood oxygenation level dependent signal fluctuations (BOLD-FC) is decreased in Alzheimer's disease (AD), and suggested to reflect reduced coherence in neural population activity; however, as both neuronal and vascular-hemodynamic processes underlie BOLD signals, impaired perfusion might also contribute to reduced BOLD-FC; 42 AD patients and 27 controls underwent simultaneous PET/MR imaging. Resting-state functional MRI assessed BOLD co-activity to quantify BOLD-FC, pulsed arterial spin labeling (pASL) assessed cerebral blood flow (CBF) as proxy for vascular hemodynamics, and 18F-fluorodeoxyglucose PET assessed glucose metabolism (GluMet) to index neuronal activity. Patients' BOLD-FC, CBF, and GluMet were reduced within the same precuneal parietal regions. BOLD-FC was positively associated with mean CBF, specifically in patients and controlled for GluMet levels, suggesting that BOLD-FC reductions correlate with pASL-derived hypoperfusion in AD, independently from 18F-fluorodeoxyglucose PET-derived hypometabolism. Data indicate that impaired vascular hemodynamic processes contribute to reduced BOLD connectivity in AD.
Collapse
Affiliation(s)
- Jens Göttler
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Christine Preibisch
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,3 Clinic for Neurology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Isabelle Riederer
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Lorenzo Pasquini
- 2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,4 Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Panagiotis Alexopoulos
- 5 Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Karl Peter Bohn
- 6 Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Igor Yakushev
- 2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,6 Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Ebba Beller
- 7 Department of Radiology, Klinikum Großhadern, Ludwig-Maximilans-Universität München, Munich, Germany
| | - Stephan Kaczmarz
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Claus Zimmer
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Timo Grimmer
- 2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,5 Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Alexander Drzezga
- 6 Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,8 Department of Nuclear Medicine, University of Cologne, Cologne, Germany
| | - Christian Sorg
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,5 Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
32
|
Bunai T, Kakimoto A, Yoshikawa E, Terada T, Ouchi Y. Biopathological Significance of Early-Phase Amyloid Imaging in the Spectrum of Alzheimer’s Disease. J Alzheimers Dis 2019; 69:529-538. [DOI: 10.3233/jad-181188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Tomoyasu Bunai
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Akihiro Kakimoto
- PET Medical Application Group, Central Research Laboratory, Hamamatsu Photonics K.K., Hamakita-ku, Hamamatsu, Japan
| | - Etsuji Yoshikawa
- PET Medical Application Group, Central Research Laboratory, Hamamatsu Photonics K.K., Hamakita-ku, Hamamatsu, Japan
| | - Tatsuhiro Terada
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
- Department of Neurology, Shizuoka Institute of Epilepsy and Neurological Disorders, Aoi-ku, Shizuoka, Japan
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| |
Collapse
|
33
|
Mainta IC, Vargas MI, Trombella S, Frisoni GB, Unschuld PG, Garibotto V. Hybrid PET-MRI in Alzheimer's Disease Research. Methods Mol Biol 2019; 1750:185-200. [PMID: 29512073 DOI: 10.1007/978-1-4939-7704-8_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Multiple factors, namely amyloid, tau, inflammation, metabolic, and perfusion changes, contribute to the cascade of neurodegeneration and functional decline occurring in Alzheimer's disease (AD). These molecular and cellular processes and related functional and morphological changes can be visualized in vivo by two imaging modalities, namely positron emission tomography (PET) and magnetic resonance imaging (MRI). These imaging biomarkers are now part of the diagnostic algorithm and of particular interest for patient stratification and targeted drug development.In this field the availability of hybrid PET/MR systems not only offers a comprehensive evaluation in a single imaging session, but also opens new possibilities for the integration of the two imaging information. Here, we cover the clinical protocols and practical details of FDG, amyloid, and tau PET/MR imaging as applied in our institutions.
Collapse
Affiliation(s)
- Ismini C Mainta
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland. .,Faculty of Medicine, Nuclear Medicine Department, Geneva University Medical Center, University of Geneva, Geneva, Switzerland.
| | - Maria I Vargas
- Faculty of Medicine, Nuclear Medicine Department, Geneva University Medical Center, University of Geneva, Geneva, Switzerland.,Division of Neuroradiology, Geneva University Hospitals, Geneva, Switzerland
| | - Sara Trombella
- Faculty of Medicine, Nuclear Medicine Department, Geneva University Medical Center, University of Geneva, Geneva, Switzerland
| | - Giovanni B Frisoni
- Faculty of Medicine, Nuclear Medicine Department, Geneva University Medical Center, University of Geneva, Geneva, Switzerland.,Department of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Paul G Unschuld
- Institute for Regenerative Medicine and Hospital for Psychogeriatric Medicine, University of Zurich, Zurich, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, Nuclear Medicine Department, Geneva University Medical Center, University of Geneva, Geneva, Switzerland
| |
Collapse
|
34
|
Optimal timing of tau pathology imaging and automatic extraction of a reference region using dynamic [ 18F]THK5317 PET. NEUROIMAGE-CLINICAL 2019; 22:101681. [PMID: 30710871 PMCID: PMC6357848 DOI: 10.1016/j.nicl.2019.101681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/18/2018] [Accepted: 01/20/2019] [Indexed: 12/27/2022]
Abstract
[18F]THK5317 is a PET tracer for in-vivo imaging of tau associated with Alzheimer's disease (AD). This work aimed to evaluate optimal timing for standardized uptake value ratio (SUVR) measures with [18F]THK5317 and automated generation of SUVR-1 and relative cerebral blood flow (R1) parametric images. Nine AD patients and nine controls underwent 90 min [18F]THK5317 scans. SUVR-1 was calculated at transient equilibrium (TE) and for seven different 20 min intervals and compared with distribution volume ratio (DVR; reference Logan). Cerebellar grey matter (MRI) was used as reference region. A supervised cluster analysis (SVCA) method was implemented to automatically generate a reference region, directly from the dynamic PET volume without the need of a structural MRI scan, for computation of SUVR-1 and R1 images for a scan duration matching the optimal timing. TE was reached first in putamen, frontal- and parietal cortex at 22 ± 4 min for AD patients and in putamen at 20 ± 0 min in controls. Over all regions and subjects, SUVR20-40-1 correlated best with DVR-1, R2 = 0.97. High correlation was found between values generated using MRI- and SVCA-based reference (R2 = 0.93 for SUVR20-40-1; R2 = 0.94 for R1). SUVR20-40 allows for accurate semi-quantitative assessment of tau pathology and SVCA may be used to obtain a reference region for calculation of both SUVR-1 and R1 with 40 min scan duration.
Collapse
|
35
|
Peretti DE, Vállez García D, Reesink FE, van der Goot T, De Deyn PP, de Jong BM, Dierckx RAJO, Boellaard R. Relative cerebral flow from dynamic PIB scans as an alternative for FDG scans in Alzheimer's disease PET studies. PLoS One 2019; 14:e0211000. [PMID: 30653612 PMCID: PMC6336325 DOI: 10.1371/journal.pone.0211000] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/04/2019] [Indexed: 11/29/2022] Open
Abstract
In Alzheimer's Disease (AD) dual-tracer positron emission tomography (PET) studies with 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) and 11C-labelled Pittsburgh Compound B (PIB) are used to assess metabolism and cerebral amyloid-β deposition, respectively. Regional cerebral metabolism and blood flow (rCBF) are closely coupled, both providing an index for neuronal function. The present study compared PIB-derived rCBF, estimated by the ratio of tracer influx in target regions relative to reference region (R1) and early-stage PIB uptake (ePIB), to FDG scans. Fifteen PIB positive (+) patients and fifteen PIB negative (-) subjects underwent both FDG and PIB PET scans to assess the use of R1 and ePIB as a surrogate for FDG. First, subjects were classified based on visual inspection of the PIB PET images. Then, discriminative performance (PIB+ versus PIB-) of rCBF methods were compared to normalized regional FDG uptake. Strong positive correlations were found between analyses, suggesting that PIB-derived rCBF provides information that is closely related to what can be seen on FDG scans. Yet group related differences between method's distributions were seen as well. Also, a better correlation with FDG was found for R1 than for ePIB. Further studies are needed to validate the use of R1 as an alternative for FDG studies in clinical applications.
Collapse
Affiliation(s)
- Débora E. Peretti
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Groningen, The Netherlands
| | - David Vállez García
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Groningen, The Netherlands
| | - Fransje E. Reesink
- Department of Neurology, Alzheimer Research Centre, University Medical Center Groningen, University of Groningen, Groningen, Groningen, The Netherlands
| | - Tim van der Goot
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Groningen, The Netherlands
| | - Peter P. De Deyn
- Department of Neurology, Alzheimer Research Centre, University Medical Center Groningen, University of Groningen, Groningen, Groningen, The Netherlands
- Institute Born-Bunge, Laboratory of Neurochemistry and Behaviour, University of Antwerp, Antwerp, Antwerp, Belgium
| | - Bauke M. de Jong
- Department of Neurology, Alzheimer Research Centre, University Medical Center Groningen, University of Groningen, Groningen, Groningen, The Netherlands
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Groningen, The Netherlands
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Groningen, The Netherlands
| |
Collapse
|
36
|
Joseph-Mathurin N, Su Y, Blazey TM, Jasielec M, Vlassenko A, Friedrichsen K, Gordon BA, Hornbeck RC, Cash L, Ances BM, Veale T, Cash DM, Brickman AM, Buckles V, Cairns NJ, Cruchaga C, Goate A, Jack CR, Karch C, Klunk W, Koeppe RA, Marcus DS, Mayeux R, McDade E, Noble JM, Ringman J, Saykin AJ, Thompson PM, Xiong C, Morris JC, Bateman RJ, Benzinger TL. Utility of perfusion PET measures to assess neuronal injury in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2018; 10:669-677. [PMID: 30417072 PMCID: PMC6215983 DOI: 10.1016/j.dadm.2018.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is commonly used to estimate neuronal injury in Alzheimer's disease (AD). Here, we evaluate the utility of dynamic PET measures of perfusion using 11C-Pittsburgh compound B (PiB) to estimate neuronal injury in comparison to FDG PET. METHODS FDG, early frames of PiB images, and relative PiB delivery rate constants (PiB-R1) were obtained from 110 participants from the Dominantly Inherited Alzheimer Network. Voxelwise, regional cross-sectional, and longitudinal analyses were done to evaluate the correlation between images and estimate the relationship of the imaging biomarkers with estimated time to disease progression based on family history. RESULTS Metabolism and perfusion images were spatially correlated. Regional PiB-R1 values and FDG, but not early frames of PiB images, significantly decreased in the mutation carriers with estimated year to onset and with increasing dementia severity. DISCUSSION Hypometabolism estimated by PiB-R1 may provide a measure of brain perfusion without increasing radiation exposure.
Collapse
Affiliation(s)
- Nelly Joseph-Mathurin
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Tyler M. Blazey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Mateusz Jasielec
- Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrei Vlassenko
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Karl Friedrichsen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Brian A. Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Russ C. Hornbeck
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lisa Cash
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Beau M. Ances
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Thomas Veale
- Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - David M. Cash
- Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Adam M. Brickman
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Virginia Buckles
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Nigel J. Cairns
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Alison Goate
- Neuroscience Department Laboratories, Mount Sinai School of Medicine, New York, NY, USA
| | | | - Celeste Karch
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - William Klunk
- Departments of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert A. Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel S. Marcus
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Eric McDade
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - James M. Noble
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - John Ringman
- Memory and Aging Center, Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Andrew J. Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul M. Thompson
- Laboratory of Neuroimaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, USA
| | - John C. Morris
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Tammie L.S. Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | | |
Collapse
|
37
|
Brain Network Alterations in Alzheimer's Disease Identified by Early-Phase PIB-PET. CONTRAST MEDIA & MOLECULAR IMAGING 2018. [PMID: 29531506 PMCID: PMC5817202 DOI: 10.1155/2018/6830105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this study was to identify the brain networks from early-phase 11C-PIB (perfusion PIB, pPIB) data and to compare the brain networks of patients with differentiating Alzheimer's disease (AD) with cognitively normal subjects (CN) and of mild cognitively impaired patients (MCI) with CN. Forty participants (14 CN, 12 MCI, and 14 AD) underwent 11C-PIB and 18F-FDG PET/CT scans. Parallel independent component analysis (pICA) was used to identify correlated brain networks from the 11C-pPIB and 18F-FDG data, and a two-sample t-test was used to evaluate group differences in the corrected brain networks between AD and CN, and between MCI and CN. Our study identified a brain network of perfusion (early-phase 11C-PIB) that highly correlated with a glucose metabolism (18F-FDG) brain network and colocalized with the default mode network (DMN) in an AD-specific neurodegenerative cohort. Particularly, decreased 18F-FDG uptake correlated with a decreased regional cerebral blood flow in the frontal, parietal, and temporal regions of the DMN. The group comparisons revealed similar spatial patterns of the brain networks derived from the 11C-pPIB and 18F-FDG data. Our findings indicate that 11C-pPIB derived from the early-phase 11C-PIB could provide complementary information for 18F-FDG examination in AD.
Collapse
|
38
|
de la Torre JC. Are Major Dementias Triggered by Poor Blood Flow to the Brain? Theoretical Considerations. J Alzheimers Dis 2018; 57:353-371. [PMID: 28211814 DOI: 10.3233/jad-161266] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is growing evidence that chronic brain hypoperfusion plays a central role in the development of Alzheimer's disease (AD) long before dyscognitive symptoms or amyloid-β accumulation in the brain appear. This commentary proposes that dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), and Creutzfeldt-Jakob disease (CJD) may also develop from chronic brain hypoperfusion following a similar but not identical neurometabolic breakdown as AD. The argument to support this conclusion is that chronic brain hypoperfusion, which is found at the early stages of the three dementias reviewed here, will reduce oxygen delivery and lower oxidative phosphorylation promoting a steady decline in the synthesis of the cell energy fuel adenosine triphosphate (ATP). This process is known to lead to oxidative stress. Virtually all neurodegenerative diseases, including FTD, DLB, and CJD, are characterized by oxidative stress that promotes inclusion bodies which differ in structure, location, and origin, as well as which neurological disorder they typify. Inclusion bodies have one thing in common; they are known to diminish autophagic activity, the protective intracellular degradative process that removes malformed proteins, protein aggregates, and damaged subcellular organelles that can disrupt neuronal homeostasis. Neurons are dependent on autophagy for their normal function and survival. When autophagic activity is diminished or impaired in neurons, high levels of unfolded or misfolded proteins overwhelm and downregulate the neuroprotective activity of unfolded protein response which is unable to get rid of dysfunctional organelles such as damaged mitochondria and malformed proteins at the synapse. The endpoint of this neuropathologic process results in damaged synapses, impaired neurotransmission, cognitive decline, and dementia.
Collapse
|
39
|
Study of the Influence of Age in 18F-FDG PET Images Using a Data-Driven Approach and Its Evaluation in Alzheimer's Disease. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:3786083. [PMID: 29581708 PMCID: PMC5822896 DOI: 10.1155/2018/3786083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/18/2017] [Accepted: 12/18/2017] [Indexed: 12/02/2022]
Abstract
Objectives 18F-FDG PET scan is one of the most frequently used neural imaging scans. However, the influence of age has proven to be the greatest interfering factor for many clinical dementia diagnoses when analyzing 18F-FDG PET images, since radiologists encounter difficulties when deciding whether the abnormalities in specific regions correlate with normal aging, disease, or both. In the present paper, the authors aimed to define specific brain regions and determine an age-correction mathematical model. Methods A data-driven approach was used based on 255 healthy subjects. Results The inferior frontal gyrus, the left medial part and the left medial orbital part of superior frontal gyrus, the right insula, the left anterior cingulate, the left median cingulate, and paracingulate gyri, and bilateral superior temporal gyri were found to have a strong negative correlation with age. For evaluation, an age-correction model was applied to 262 healthy subjects and 50 AD subjects selected from the ADNI database, and partial correlations between SUVR mean and three clinical results were carried out before and after age correction. Conclusion All correlation coefficients were significantly improved after the age correction. The proposed model was effective in the age correction of both healthy and AD subjects.
Collapse
|
40
|
Leuzy A, Rodriguez-Vieitez E, Saint-Aubert L, Chiotis K, Almkvist O, Savitcheva I, Jonasson M, Lubberink M, Wall A, Antoni G, Nordberg A. Longitudinal uncoupling of cerebral perfusion, glucose metabolism, and tau deposition in Alzheimer's disease. Alzheimers Dement 2017; 14:652-663. [PMID: 29268078 DOI: 10.1016/j.jalz.2017.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Cross-sectional findings using the tau tracer [18F]THK5317 (THK5317) have shown that [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) data can be approximated using perfusion measures (early-frame standardized uptake value ratio; ratio of tracer delivery in target to reference regions). In this way, a single PET study can provide both functional and molecular information. METHODS We included 16 patients with Alzheimer's disease who completed follow-up THK5317 and FDG studies 17 months after baseline investigations. Linear mixed-effects models and annual percentage change maps were used to examine longitudinal change. RESULTS Limited spatial overlap was observed between areas showing declines in THK5317 perfusion measures and FDG. Minimal overlap was seen between areas showing functional change and those showing increased retention of THK5317. DISCUSSION Our findings suggest a spatiotemporal offset between functional changes and tau pathology and a partial uncoupling between perfusion and metabolism, possibly as a function of Alzheimer's disease severity.
Collapse
Affiliation(s)
- Antoine Leuzy
- Division of Translational Alzheimer Neurobiology, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Elena Rodriguez-Vieitez
- Division of Translational Alzheimer Neurobiology, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Laure Saint-Aubert
- Division of Translational Alzheimer Neurobiology, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Konstantinos Chiotis
- Division of Translational Alzheimer Neurobiology, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Ove Almkvist
- Division of Translational Alzheimer Neurobiology, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatric Medicine, Karolinska University Hospital, Huddinge, Sweden; Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Irina Savitcheva
- Department of Radiology, Karolinska University Hospital, Huddinge, Sweden
| | - My Jonasson
- Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Mark Lubberink
- Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Anders Wall
- Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Gunnar Antoni
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Agneta Nordberg
- Division of Translational Alzheimer Neurobiology, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatric Medicine, Karolinska University Hospital, Huddinge, Sweden.
| |
Collapse
|
41
|
Multimodal correlation of dynamic [ 18F]-AV-1451 perfusion PET and neuronal hypometabolism in [ 18F]-FDG PET. Eur J Nucl Med Mol Imaging 2017; 44:2249-2256. [PMID: 29026951 DOI: 10.1007/s00259-017-3840-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/22/2017] [Indexed: 01/30/2023]
Abstract
PURPOSE Cerebral glucose metabolism measured with [18F]-FDG PET is a well established marker of neuronal dysfunction in neurodegeneration. The tau-protein tracer [18F]-AV-1451 PET is currently under evaluation and shows promising results. Here, we assess the feasibility of early perfusion imaging with AV-1451 as a substite for FDG PET in assessing neuronal injury. METHODS Twenty patients with suspected neurodegeneration underwent FDG and early phase AV-1451 PET imaging. Ten one-minute timeframes were acquired after application of 200 MBq AV-1451. FDG images were acquired on a different date according to clinical protocol. Early AV-1451 timeframes were coregistered to individual FDG-scans and spatially normalized. Voxel-wise intermodal correlations were calculated on within-subject level for every possible time window. The window with highest pooled correlation was considered optimal. Z-transformed deviation maps (ZMs) were created from both FDG and early AV-1451 images, comparing against FDG images of healthy controls. RESULTS Regional patterns and extent of perfusion deficits were highly comparable to metabolic deficits. Best results were observed in a time window from 60 to 360 s (r = 0.86). Correlation strength ranged from r = 0.96 (subcortical gray matter) to 0.83 (frontal lobe) in regional analysis. ZMs of early AV-1451 and FDG images were highly similar. CONCLUSION Perfusion imaging with AV-1451 is a valid biomarker for assessment of neuronal dysfunction in neurodegenerative diseases. Radiation exposure and complexity of the diagnostic workup could be reduced significantly by routine acquisition of early AV-1451 images, sparing additional FDG PET.
Collapse
|
42
|
Brendel M, Wagner L, Levin J, Zach C, Lindner S, Bartenstein P, Okamura N, Rominger A. Perfusion-Phase [ 18F]THK5351 Tau-PET Imaging as a Surrogate Marker for Neurodegeneration. J Alzheimers Dis Rep 2017; 1:109-113. [PMID: 30480233 PMCID: PMC6159627 DOI: 10.3233/adr-170023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We aimed to test if early, perfusion phase tau-PET imaging with [18F]THK5351 might substitute for [18F]FDG PET information on neurodegeneration, as has been previously shown for amyloid-tracers. A patient with cognitive impairment and positive amyloid-PET was examined by [18F]THK5351 tau-PET and [18F]FDG PET. The pattern of early phase of [18F]THK5351 uptake was compared to [18F]FDG visually and by the dice similarity coefficient. Visual inspection of axial slices and stereotactic-surface projection indicated a striking agreement between combined 0–2 min p.i. perfusion images of [18F]THK5351 and standard [18F]FDG 30–60 min p.i. A two-phase protocol of [18F]THK5351 PET might give information on neurodegeneration and tau pathology in a single session.
Collapse
Affiliation(s)
- Matthias Brendel
- Department of Nuclear Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Leonie Wagner
- Department of Nuclear Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Zach
- Department of Nuclear Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Tohoku, Japan
| | - Axel Rominger
- Department of Nuclear Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
43
|
Farid K, Charidimou A, Baron JC. Amyloid positron emission tomography in sporadic cerebral amyloid angiopathy: A systematic critical update. NEUROIMAGE-CLINICAL 2017; 15:247-263. [PMID: 28560150 PMCID: PMC5435601 DOI: 10.1016/j.nicl.2017.05.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 01/07/2023]
Abstract
Sporadic cerebral amyloid angiopathy (CAA) is a very common small vessel disease of the brain, showing preferential and progressive amyloid-βdeposition in the wall of small arterioles and capillaries of the leptomeninges and cerebral cortex. CAA now encompasses not only a specific cerebrovascular pathological trait, but also different clinical syndromes - including spontaneous lobar intracerebral haemorrhage (ICH), dementia and ‘amyloid spells’ - an expanding spectrum of brain parenchymal MRI lesions and a set of diagnostic criteria – the Boston criteria, which have resulted in increasingly detecting CAA during life. Although currently available validated diagnostic criteria perform well in multiple lobar ICH, a formal diagnosis is currently lacking unless a brain biopsy is performed. This is partly because in practice CAA MRI biomarkers provide only indirect evidence for the disease. An accurate diagnosis of CAA in different clinical settings would have substantial impact for ICH risk stratification and antithrombotic drug use in elderly people, but also for sample homogeneity in drug trials. It has recently been demonstrated that vascular (in addition to parenchymal) amyloid-βdeposition can be detected and quantified in vivo by positron emission tomography (PET) amyloid tracers. This non-invasive approach has the potential to provide a molecular signature of CAA, and could in turn have major clinical impact. However, several issues around amyloid-PET in CAA remain unsettled and hence its diagnostic utility is limited. In this article we systematically review and critically appraise the published literature on amyloid-PET (PiB and other tracers) in sporadic CAA. We focus on two key areas: (a) the diagnostic utility of amyloid-PET in CAA and (b) the use of amyloid-PET as a window to understand pathophysiological mechanism of the disease. Key issues around amyloid-PET imaging in CAA, including relevant technical aspects are also covered in depth. A total of six small-scale studies have addressed (or reported data useful to address) the diagnostic utility of late-phase amyloid PET imaging in CAA, and one additional study dealt with early PiB images as a proxy of brain perfusion. Across these studies, amyloid PET imaging has definite diagnostic utility (currently tested only in probable CAA): it helps rule out CAA if negative, whether compared to healthy controls or to hypertensive deep ICH controls. If positive, however, differentiation from underlying incipient Alzheimer's disease (AD) can be challenging and so far, no approach (regional values, ratios, visual assessment) seems sufficient and specific enough, although early PiB data seem to hold promise. Based on the available evidence reviewed, we suggest a tentative diagnostic flow algorithm for amyloid-PET use in the clinical setting of suspected CAA, combining early- and late-phase PiB-PET images. We also identified ten mechanistic amyloid-PET studies providing early but promising proof-of-concept data on CAA pathophysiology and its various manifestations including key MRI lesions, cognitive impairment and large scale brain alterations. Key open questions that should be addressed in future studies of amyloid-PET imaging in CAA are identified and highlighted. CAA is a major cause of brain haemorrhage and cognitive impairment in aged subjects. Without brain biopsy, its current diagnosis largely relies on indirect MRI markers. Amyloid PET may provide a non-invasive molecular signature to formally diagnose CAA. Based on our review, amyloid PET has excellent sensitivity but specificity is unclear. Amyloid PET is also useful to investigate mechanisms underlying CAA manifestations.
Collapse
Affiliation(s)
- Karim Farid
- Department of Nuclear Medicine, Martinique University Hospital, Fort-de-France, Martinique
| | - Andreas Charidimou
- Massachusetts General Hospital, Department of Neurology, Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Jean-Claude Baron
- U894, Centre Hospitalier Sainte Anne, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
44
|
Aberrant iPSC-derived human astrocytes in Alzheimer's disease. Cell Death Dis 2017; 8:e2696. [PMID: 28333144 PMCID: PMC5386580 DOI: 10.1038/cddis.2017.89] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 12/25/2022]
Abstract
The pathological potential of human astroglia in Alzheimer's disease (AD) was analysed in vitro using induced pluripotent stem cell (iPSC) technology. Here, we report development of a human iPSC-derived astrocyte model created from healthy individuals and patients with either early-onset familial AD (FAD) or the late-onset sporadic form of AD (SAD). Our chemically defined and highly efficient model provides >95% homogeneous populations of human astrocytes within 30 days of differentiation from cortical neural progenitor cells (NPCs). All astrocytes expressed functional markers including glial fibrillary acidic protein (GFAP), excitatory amino acid transporter-1 (EAAT1), S100B and glutamine synthetase (GS) comparable to that of adult astrocytes in vivo. However, induced astrocytes derived from both SAD and FAD patients exhibit a pronounced pathological phenotype, with a significantly less complex morphological appearance, overall atrophic profiles and abnormal localisation of key functional astroglial markers. Furthermore, NPCs derived from identical patients did not show any differences, therefore, validating that remodelled astroglia are not as a result of defective neural intermediates. This work not only presents a novel model to study the mechanisms of human astrocytes in vitro, but also provides an ideal platform for further interrogation of early astroglial cell autonomous events in AD and the possibility of identification of novel therapeutic targets for the treatment of AD.
Collapse
|
45
|
Saint-Aubert L, Lemoine L, Chiotis K, Leuzy A, Rodriguez-Vieitez E, Nordberg A. Tau PET imaging: present and future directions. Mol Neurodegener 2017; 12:19. [PMID: 28219440 PMCID: PMC5319037 DOI: 10.1186/s13024-017-0162-3] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/15/2017] [Indexed: 12/15/2022] Open
Abstract
Abnormal aggregation of tau in the brain is a major contributing factor in various neurodegenerative diseases. The role of tau phosphorylation in the pathophysiology of tauopathies remains unclear. Consequently, it is important to be able to accurately and specifically target tau deposits in vivo in the brains of patients. The advances of molecular imaging in the recent years have now led to the recent development of promising tau-specific tracers for positron emission tomography (PET), such as THK5317, THK5351, AV-1451, and PBB3. These tracers are now available for clinical assessment in patients with various tauopathies, including Alzheimer's disease, as well as in healthy subjects. Exploring the patterns of tau deposition in vivo for different pathologies will allow discrimination between neurodegenerative diseases, including different tauopathies, and monitoring of disease progression. The variety and complexity of the different types of tau deposits in the different diseases, however, has resulted in quite a challenge for the development of tau PET tracers. Extensive work remains in order to fully characterize the binding properties of the tau PET tracers, and to assess their usefulness as an early biomarker of the underlying pathology. In this review, we summarize recent findings on the most promising tau PET tracers to date, discuss what has been learnt from these findings, and offer some suggestions for the next steps that need to be achieved in a near future.
Collapse
Affiliation(s)
- Laure Saint-Aubert
- Department NVS, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Novum 5th floor, 141 57, Huddinge, Sweden
| | - Laetitia Lemoine
- Department NVS, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Novum 5th floor, 141 57, Huddinge, Sweden
| | - Konstantinos Chiotis
- Department NVS, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Novum 5th floor, 141 57, Huddinge, Sweden
| | - Antoine Leuzy
- Department NVS, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Novum 5th floor, 141 57, Huddinge, Sweden
| | - Elena Rodriguez-Vieitez
- Department NVS, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Novum 5th floor, 141 57, Huddinge, Sweden
| | - Agneta Nordberg
- Department NVS, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Novum 5th floor, 141 57, Huddinge, Sweden. .,Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|