1
|
Mu J, Zou X, Bao X, Yang Z, Hao P, Duan H, Zhao W, Gao Y, Wu J, Miao K, So KF, Chen L, Mao Y, Li X. bFGF-Chitosan "brain glue" promotes functional recovery after cortical ischemic stroke. Bioact Mater 2025; 46:386-405. [PMID: 39850018 PMCID: PMC11755050 DOI: 10.1016/j.bioactmat.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
The mammalian brain has an extremely limited ability to regenerate lost neurons and to recover function following ischemic stroke. A biomaterial strategy of slowly-releasing various regeneration-promoting factors to activate endogenous neurogenesis represents a safe and practical neuronal replacement therapy. In this study, basic fibroblast growth factor (bFGF)-Chitosan gel is injected into the stroke cavity. This approach promotes the proliferation of vascular endothelial cell, the formation of functional vascular network, and the final restoration of cerebral blood flow. Additionally, bFGF-Chitosan gel activates neural progenitor cells (NPCs) in the subventricular zone (SVZ), promotes the NPCs' migration toward the stroke cavity and differentiation into mature neurons with diverse cell types (inhibitory gamma-aminobutyric acid neurons and excitatory glutamatergic neuron) and layer architecture (superficial cortex and deep cortex). These new-born neurons form functional synaptic connections with the host brain and reconstruct nascent neural networks. Furthermore, synaptogenesis in the stroke cavity and Nestin lineage cells respectively contribute to the improvement of sensorimotor function induced by bFGF-Chitosan gel after ischemic stroke. Lastly, bFGF-Chitosan gel inhibits microglia activation in the peri-infarct cortex. Our findings indicate that filling the stroke cavity with bFGF-Chitosan "brain glue" promotes angiogenesis, endogenous neurogenesis and synaptogenesis to restore function, offering innovative ideas and methods for the clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jiao Mu
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Department of Pathology, Hebei North University, No. 11 Zuanshinan Road, Zhangjiakou, Hebei, 075000, China
| | - Xiang Zou
- Department of Neurosurgery, Huashan Hospital, Fudan University, No. 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yudan Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jinting Wu
- Department of Neurosurgery, Yuquan Hospital, School of Medicine, Tsinghua University, Beijing, China
| | - Kun Miao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, 510632, Guangzhou, Guangdong Province, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510530, Guangzhou, Guangdong Province, China
- Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, 999077, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao, Greater Bay Area, 510515, Guangzhou, Guangdong Province, China
- Co-innovation Center of Neuroregeneration, Nantong University, 226001, Nantong, Jiangsu Province, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, No. 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, No. 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
2
|
He X, Lei M, Chen X, Xu F, Liu H, Wei Z. Dynamic Hydrogel-Based Strategy for Traumatic Brain Injury Modeling and Therapy. CNS Neurosci Ther 2025; 31:e70148. [PMID: 39788897 PMCID: PMC11717553 DOI: 10.1111/cns.70148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the most traumatizing and poses serious health risks to people's bodies due to its unique pathophysiological characteristics. The investigations on the pathological mechanism and valid interventions of TBI have attracted widespread attention worldwide. With bio-mimic mechanic cues, the dynamic hydrogels with dynamic stiffness changes or reversible crosslinking have been suggested to construct the in vitro disease models or novel therapeutic agents for TBI. However, there is a lack of clarification on the dynamic hydrogels currently reported and their biomedical applications on TBI. Our review starts with introducing the native mechanical characters and changes in TBI and then summarizes the common chemical strategies of the dynamic hydrogels with dynamically tunable stiffness and reversible networks for in vitro modeling and therapy. Finally, we prospect the future development of dynamic hydrogels in the mechanical modeling of TBI, providing new mechanical insights for TBI and guidance for tailored brain-targeted biomaterials.
Collapse
Affiliation(s)
- Xin He
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher EducationZunyiPeople's Republic of China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Meng Lei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Xuewen Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Heng Liu
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher EducationZunyiPeople's Republic of China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| |
Collapse
|
3
|
Ebert ET, Schwinghamer KM, Siahaan TJ. Delivery of Neuroregenerative Proteins to the Brain for Treatments of Neurodegenerative Brain Diseases. Life (Basel) 2024; 14:1456. [PMID: 39598254 PMCID: PMC11595909 DOI: 10.3390/life14111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Neurodegenerative brain diseases such as Alzheimer's disease (AD), multiple sclerosis (MS), and Parkinson's disease (PD) are difficult to treat. Unfortunately, many therapeutic agents for neurodegenerative disease only halt the progression of these diseases and do not reverse neuronal damage. There is a demand for finding solutions to reverse neuronal damage in the central nervous system (CNS) of patients with neurodegenerative brain diseases. Therefore, the purpose of this review is to discuss the potential for therapeutic agents like specific neurotrophic and growth factors in promoting CNS neuroregeneration in brain diseases. We discuss how BDNF, NGF, IGF-1, and LIF could potentially be used for the treatment of brain diseases. The molecule's different mechanisms of action in stimulating neuroregeneration and methods to analyze their efficacy are described. Methods that can be utilized to deliver these proteins to the brain are also discussed.
Collapse
Affiliation(s)
| | | | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA; (E.T.E.); (K.M.S.)
| |
Collapse
|
4
|
Wilson KL, Joseph NI, Onweller LA, Anderson AR, Darling NJ, David-Bercholz J, Segura T. SDF-1 Bound Heparin Nanoparticles Recruit Progenitor Cells for Their Differentiation and Promotion of Angiogenesis after Stroke. Adv Healthc Mater 2024; 13:e2302081. [PMID: 38009291 PMCID: PMC11128481 DOI: 10.1002/adhm.202302081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Angiogenesis after stroke is correlated with enhanced tissue repair and functional outcomes. The existing body of research in biomaterials for stroke focuses on hydrogels for the delivery of stem cells, growth factors, or small molecules or drugs. Despite the ability of hydrogels to enhance all these delivery methods, no material has significantly regrown vasculature within the translatable timeline of days to weeks after stroke. Here, two novel biomaterial formulations of granular hydrogels are developed for tissue regeneration after stroke: highly porous microgels (i.e., Cryo microgels) and microgels bound with heparin-norbornene nanoparticles with covalently bound SDF-1α. The combination of these materials results in perfused vessels throughout the stroke core in only 10 days, in addition to increased neural progenitor cell recruitment, maintenance, and increased neuronal differentiation.
Collapse
Affiliation(s)
- Katrina L. Wilson
- Department of Biomedical Engineering, Duke University, Durham NC 27708-0281, USA
| | - Neica I. Joseph
- Department of Biomedical Engineering, Duke University, Durham NC 27708-0281, USA
| | - Lauren A. Onweller
- Department of Biomedical Engineering, Duke University, Durham NC 27708-0281, USA
| | - Alexa R. Anderson
- Department of Biomedical Engineering, Duke University, Durham NC 27708-0281, USA
| | - Nicole J. Darling
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham NC 27708-0281, USA
- Department of Neurology, Duke University, Durham, NC, 27708-0281 USA
- Department of Dermatology, Duke University, Durham, NC, 27708-0281 USA
| |
Collapse
|
5
|
Hassan LF, Sen R, O'Shea TM. Trehalose-based coacervates for local bioactive protein delivery to the central nervous system. Biomaterials 2024; 309:122594. [PMID: 38701641 DOI: 10.1016/j.biomaterials.2024.122594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/30/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Therapeutic outcomes of local biomolecule delivery to the central nervous system (CNS) using bulk biomaterials are limited by inadequate drug loading, neuropil disruption, and severe foreign body responses. Effective CNS delivery requires addressing these issues and developing well-tolerated, highly-loaded carriers that are dispersible within local neural parenchyma. Here, we synthesized biodegradable trehalose-based polyelectrolyte oligomers using facile A2:B3:AR thiol-ene Michael addition reactions that form complex coacervates upon mixing of oppositely charged oligomers. Coacervates permit high concentration loading and controlled release of bioactive growth factors, enzymes, and antibodies, with modular formulation parameters that confer tunable release kinetics. Coacervates are cytocompatible with cultured neural cells in vitro and can be formulated to either direct intracellular protein delivery or sequester media containing proteins and remain extracellular. Coacervates serve as effective vehicles for precisely delivering biomolecules, including bioactive neurotrophins, to the mouse striatum following intraparenchymal injection. These results support the use of trehalose-based coacervates as part of therapeutic protein delivery strategies for CNS disorders.
Collapse
Affiliation(s)
- Laboni F Hassan
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Riya Sen
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Timothy M O'Shea
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA.
| |
Collapse
|
6
|
Fernández-Serra R, Lekouaghet A, Peracho L, Yonesi M, Alcázar A, Chioua M, Marco-Contelles J, Pérez-Rigueiro J, Rojo FJ, Panetsos F, Guinea GV, González-Nieto D. Permselectivity of Silk Fibroin Hydrogels for Advanced Drug Delivery Neurotherapies. Biomacromolecules 2024; 25:5233-5250. [PMID: 39018332 PMCID: PMC11323009 DOI: 10.1021/acs.biomac.4c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 07/19/2024]
Abstract
A promising trend in tissue engineering is using biomaterials to improve the control of drug concentration in targeted tissue. These vehicular systems are of specific interest when the required treatment time window is higher than the stability of therapeutic molecules in the body. Herein, the capacity of silk fibroin hydrogels to release different molecules and drugs in a sustained manner was evaluated. We found that a biomaterial format, obtained by an entirely aqueous-based process, could release molecules of variable molecular weight and charge with a preferential delivery of negatively charged molecules. Although the theoretical modeling suggested that drug delivery was more likely to be driven by Fickian diffusion, the external media had a considerable influence on the release, with lipophilic organic solvents such as acetonitrile-methanol (ACN-MeOH) intensifying the release of hydrophobic molecules. Second, we found that silk fibroin could be used as a vehicular system to treat a variety of brain disorders as this biomaterial sustained the release of different factors with neurotrophic (brain-derived neurotrophic factor) (BDNF), chemoattractant (C-X-C motif chemokine 12) (CXCL12), anti-inflammatory (TGF-β-1), and angiogenic (VEGF) capacities. Finally, we demonstrated that this biomaterial hydrogel could release cholesteronitrone ISQ201, a nitrone with antioxidant capacity, showing neuroprotective activity in an in vitro model of ischemia-reoxygenation. Given the slow degradation rate shown by silk fibroin in many biological tissues, including the nervous system, our study expands the restricted list of drug delivery-based biomaterial systems with therapeutic capacity for both short- and especially long-term treatment windows and has merit for use with brain pathologies.
Collapse
Affiliation(s)
- Rocío Fernández-Serra
- Center
for Biomedical Technology, Universidad Politécnica
de Madrid, Pozuelo de Alarcón 28223, Spain
- Silk
Biomed SL, Calle Navacerrada
18, Urb. Puerto Galapagar. Galapagar 28260, Spain
| | - Amira Lekouaghet
- Center
for Biomedical Technology, Universidad Politécnica
de Madrid, Pozuelo de Alarcón 28223, Spain
| | - Lorena Peracho
- Department
of Research, Hospital Universitario Ramón
y Cajal, Madrid 28034, Spain
- Proteomics
Unit, Instituto Ramón y Cajal de
Investigación Sanitaria (IRYCIS), Madrid 28034, Spain
| | - Mahdi Yonesi
- Center
for Biomedical Technology, Universidad Politécnica
de Madrid, Pozuelo de Alarcón 28223, Spain
| | - Alberto Alcázar
- Department
of Research, Hospital Universitario Ramón
y Cajal, Madrid 28034, Spain
- Proteomics
Unit, Instituto Ramón y Cajal de
Investigación Sanitaria (IRYCIS), Madrid 28034, Spain
| | - Mourad Chioua
- Laboratory
of Medicinal Chemistry, Institute of General
Organic Chemistry (CSIC), Madrid 28006, Spain
| | - José Marco-Contelles
- Laboratory
of Medicinal Chemistry, Institute of General
Organic Chemistry (CSIC), Madrid 28006, Spain
- Center
for
Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid 28029, Spain
| | - José Pérez-Rigueiro
- Center
for Biomedical Technology, Universidad Politécnica
de Madrid, Pozuelo de Alarcón 28223, Spain
- Silk
Biomed SL, Calle Navacerrada
18, Urb. Puerto Galapagar. Galapagar 28260, Spain
- Departamento
de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid 28040, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Biomaterials
and Regenerative Medicine Group, Instituto de Investigación
Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, Madrid 28040, Spain
| | - Francisco J. Rojo
- Center
for Biomedical Technology, Universidad Politécnica
de Madrid, Pozuelo de Alarcón 28223, Spain
- Silk
Biomed SL, Calle Navacerrada
18, Urb. Puerto Galapagar. Galapagar 28260, Spain
- Departamento
de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid 28040, Spain
- Biomaterials
and Regenerative Medicine Group, Instituto de Investigación
Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, Madrid 28040, Spain
| | - Fivos Panetsos
- Silk
Biomed SL, Calle Navacerrada
18, Urb. Puerto Galapagar. Galapagar 28260, Spain
- Biomaterials
and Regenerative Medicine Group, Instituto de Investigación
Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, Madrid 28040, Spain
- Neurocomputing
and Neurorobotics Research Group, Faculty of Biology and Faculty of
Optics, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Gustavo V. Guinea
- Center
for Biomedical Technology, Universidad Politécnica
de Madrid, Pozuelo de Alarcón 28223, Spain
- Silk
Biomed SL, Calle Navacerrada
18, Urb. Puerto Galapagar. Galapagar 28260, Spain
- Departamento
de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid 28040, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Biomaterials
and Regenerative Medicine Group, Instituto de Investigación
Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, Madrid 28040, Spain
| | - Daniel González-Nieto
- Center
for Biomedical Technology, Universidad Politécnica
de Madrid, Pozuelo de Alarcón 28223, Spain
- Silk
Biomed SL, Calle Navacerrada
18, Urb. Puerto Galapagar. Galapagar 28260, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Departamento de
Tecnología Fotónica y Bioingeniería,
ETSI Telecomunicaciones, Universidad Politécnica
de Madrid, Madrid 28040, Spain
| |
Collapse
|
7
|
Rotaru-Zăvăleanu AD, Dinescu VC, Aldea M, Gresita A. Hydrogel-Based Therapies for Ischemic and Hemorrhagic Stroke: A Comprehensive Review. Gels 2024; 10:476. [PMID: 39057499 PMCID: PMC11276304 DOI: 10.3390/gels10070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Stroke remains the second leading cause of death and a major cause of disability worldwide, significantly impacting individuals, families, and healthcare systems. This neurological emergency can be triggered by ischemic events, including small vessel arteriolosclerosis, cardioembolism, and large artery atherothromboembolism, as well as hemorrhagic incidents resulting from macrovascular lesions, venous sinus thrombosis, or vascular malformations, leading to significant neuronal damage. The resultant motor impairment, cognitive dysfunction, and emotional disturbances underscore the urgent need for effective therapeutic interventions. Recent advancements in biomaterials, particularly hydrogels, offer promising new avenues for stroke management. Hydrogels, composed of three-dimensional networks of hydrophilic polymers, are notable for their ability to absorb and retain substantial amounts of water. Commonly used polymers in hydrogel formulations include natural polymers like alginate, chitosan, and collagen, as well as synthetic polymers such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), and polyacrylamide. Their customizable characteristics-such as their porosity, swelling behavior, mechanical strength, and degradation rates-make hydrogels ideal for biomedical applications, including drug delivery, cell delivery, tissue engineering, and the controlled release of therapeutic agents. This review comprehensively explores hydrogel-based approaches to both ischemic and hemorrhagic stroke therapy, elucidating the mechanisms by which hydrogels provide neuroprotection. It covers their application in drug delivery systems, their role in reducing inflammation and secondary injury, and their potential to support neurogenesis and angiogenesis. It also discusses current advancements in hydrogel technology and the significant challenges in translating these innovations from research into clinical practice. Additionally, it emphasizes the limited number of clinical trials utilizing hydrogel therapies for stroke and addresses the associated limitations and constraints, underscoring the need for further research in this field.
Collapse
Affiliation(s)
- Alexandra-Daniela Rotaru-Zăvăleanu
- Department of Epidemiology, University of Medicine and Pharmacy of Craiova, 2-4 Petru Rares Str., 200349 Craiova, Romania;
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Venera Cristina Dinescu
- Department of Health Promotion and Occupational Medicine, University of Medicine and Pharmacy of Craiova, 2–4 Petru Rares Str., 200349 Craiova, Romania
| | - Madalina Aldea
- Psychiatry Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Andrei Gresita
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680, USA
| |
Collapse
|
8
|
Wang Z, Huang C, Shi Z, Liu H, Han X, Chen Z, Li S, Wang Z, Huang J. A taurine-based hydrogel with the neuroprotective effect and the ability to promote neural stem cell proliferation. BIOMATERIALS ADVANCES 2024; 161:213895. [PMID: 38795474 DOI: 10.1016/j.bioadv.2024.213895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
Ischemic stroke, a cerebrovascular disease caused by arterial occlusion in the brain, can lead to brain impairment and even death. Stem cell therapies have shown positive advantages to treat ischemic stroke because of their extended time window, but the cell viability is poor when transplanted into the brain directly. Therefore, a new hydrogel GelMA-T was developed by introducing taurine on GelMA to transplant neural stem cells. The GelMA-T displayed the desired photocuring ability, micropore structure, and cytocompatibility. Its compressive modulus was more similar to neural tissue compared to that of GelMA. The GelMA-T could protect SH-SY5Y cells from injury induced by OGD/R. Furthermore, the NE-4C cells showed better proliferation performance in GelMA-T than that in GelMA during both 2D and 3D cultures. All results demonstrate that GelMA-T possesses a neuroprotective effect for ischemia/reperfusion injury against ischemic stroke and plays a positive role in promoting NSC proliferation. The novel hydrogel is anticipated to function as cell vehicles for the transplantation of neural stem cells into the stroke cavity, aiming to treat ischemic stroke.
Collapse
Affiliation(s)
- Zhichao Wang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Chuanzhen Huang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Zhenyu Shi
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Hanlian Liu
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Xu Han
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhuang Chen
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Shuying Li
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhen Wang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jun Huang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
9
|
Ansari MA, Tripathi T, Venkidasamy B, Monziani A, Rajakumar G, Alomary MN, Alyahya SA, Onimus O, D'souza N, Barkat MA, Al-Suhaimi EA, Samynathan R, Thiruvengadam M. Multifunctional Nanocarriers for Alzheimer's Disease: Befriending the Barriers. Mol Neurobiol 2024; 61:3042-3089. [PMID: 37966683 DOI: 10.1007/s12035-023-03730-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Neurodegenerative diseases (NDDs) have been increasing in incidence in recent years and are now widespread worldwide. Neuronal death is defined as the progressive loss of neuronal structure or function which is closely associated with NDDs and represents the intrinsic features of such disorders. Amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's, Parkinson's, and Huntington's diseases (AD, PD, and HD, respectively) are considered neurodegenerative diseases that affect a large number of people worldwide. Despite the testing of various drugs, there is currently no available therapy that can remedy or effectively slow the progression of these diseases. Nanomedicine has the potential to revolutionize drug delivery for the management of NDDs. The use of nanoparticles (NPs) has recently been developed to improve drug delivery efficiency and is currently subjected to extensive studies. Nanoengineered particles, known as nanodrugs, can cross the blood-brain barrier while also being less invasive compared to the most treatment strategies in use. Polymeric, magnetic, carbonic, and inorganic NPs are examples of NPs that have been developed to improve drug delivery efficiency. Primary research studies using NPs to cure AD are promising, but thorough research is needed to introduce these approaches to clinical use. In the present review, we discussed the role of metal-based NPs, polymeric nanogels, nanocarrier systems such as liposomes, solid lipid NPs, polymeric NPs, exosomes, quantum dots, dendrimers, polymersomes, carbon nanotubes, and nanofibers and surfactant-based systems for the therapy of neurodegenerative diseases. In addition, we highlighted nanoformulations such as N-butyl cyanoacrylate, poly(butyl cyanoacrylate), D-penicillamine, citrate-coated peptide, magnetic iron oxide, chitosan (CS), lipoprotein, ceria, silica, metallic nanoparticles, cholinesterase inhibitors, an acetylcholinesterase inhibitors, metal chelators, anti-amyloid, protein, and peptide-loaded NPs for the treatment of AD.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Takshashila Tripathi
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Alan Monziani
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Govindasamy Rajakumar
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology, 11442, Riyadh, Saudi Arabia
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology, 11442, Riyadh, Saudi Arabia
| | - Oriane Onimus
- Faculty of Basic and Biomedical Sciences, University of Paris, Paris, France
| | - Naomi D'souza
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin, Saudi Arabia
| | - Ebtesam A Al-Suhaimi
- Research Consultation Department, Vice Presidency for Scientific Research and Innovation, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Ramkumar Samynathan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
10
|
Zhou G, Cao Y, Yan Y, Xu H, Zhang X, Yan T, Wan H. Injectable Hydrogels Based on Hyaluronic Acid and Gelatin Combined with Salvianolic Acid B and Vascular Endothelial Growth Factor for Treatment of Traumatic Brain Injury in Mice. Molecules 2024; 29:1705. [PMID: 38675525 PMCID: PMC11052029 DOI: 10.3390/molecules29081705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Traumatic brain injury (TBI) leads to structural damage in the brain, and is one of the major causes of disability and death in the world. Herein, we developed a composite injectable hydrogel (HA/Gel) composed of hyaluronic acid (HA) and gelatin (Gel), loaded with vascular endothelial growth factor (VEGF) and salvianolic acid B (SAB) for treatment of TBI. The HA/Gel hydrogels were formed by the coupling of phenol-rich tyramine-modified HA (HA-TA) and tyramine-modified Gel (Gel-TA) catalyzed by horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H2O2). SEM results showed that HA/Gel hydrogel had a porous structure. Rheological test results showed that the hydrogel possessed appropriate rheological properties, and UV spectrophotometry results showed that the hydrogel exhibited excellent SAB release performance. The results of LIVE/DEAD staining, CCK-8 and Phalloidin/DAPI fluorescence staining showed that the HA/Gel hydrogel possessed good cell biocompatibility. Moreover, the hydrogels loaded with SAB and VEGF (HA/Gel/SAB/VEGF) could effectively promote the proliferation of bone marrow mesenchymal stem cells (BMSCs). In addition, the results of H&E staining, CD31 and α-SMA immunofluorescence staining showed that the HA/Gel/SAB/VEGF hydrogel possessed good in vivo biocompatibility and pro-angiogenic ability. Furthermore, immunohistochemical results showed that the injection of HA/Gel/SAB/VEGF hydrogel to the injury site could effectively reduce the volume of defective tissues in traumatic brain injured mice. Our results suggest that the injection of HA/Gel hydrogel loaded with SAB and VEGF might provide a new approach for therapeutic brain tissue repair after traumatic brain injury.
Collapse
Affiliation(s)
- Guoying Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (G.Z.); (Y.C.); (Y.Y.); (H.X.); (X.Z.)
| | - Yajie Cao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (G.Z.); (Y.C.); (Y.Y.); (H.X.); (X.Z.)
| | - Yujia Yan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (G.Z.); (Y.C.); (Y.Y.); (H.X.); (X.Z.)
| | - Haibo Xu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (G.Z.); (Y.C.); (Y.Y.); (H.X.); (X.Z.)
| | - Xiao Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (G.Z.); (Y.C.); (Y.Y.); (H.X.); (X.Z.)
| | - Tingzi Yan
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Haitong Wan
- Institute of Cardio-Cerebrovascular Disease, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
11
|
Politrón-Zepeda GA, Fletes-Vargas G, Rodríguez-Rodríguez R. Injectable Hydrogels for Nervous Tissue Repair-A Brief Review. Gels 2024; 10:190. [PMID: 38534608 PMCID: PMC10970171 DOI: 10.3390/gels10030190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
The repair of nervous tissue is a critical research field in tissue engineering because of the degenerative process in the injured nervous system. In this review, we summarize the progress of injectable hydrogels using in vitro and in vivo studies for the regeneration and repair of nervous tissue. Traditional treatments have not been favorable for patients, as they are invasive and inefficient; therefore, injectable hydrogels are promising for the treatment of damaged tissue. This review will contribute to a better understanding of injectable hydrogels as potential scaffolds and drug delivery system for neural tissue engineering applications.
Collapse
Affiliation(s)
- Gladys Arline Politrón-Zepeda
- Ingeniería en Sistemas Biológicos, Centro Universitario de los Valles (CUVALLES), Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Ameca 46600, Jalisco, Mexico;
| | - Gabriela Fletes-Vargas
- Departamento de Ciencias Clínicas, Centro Universitario de los Altos (CUALTOS), Universidad de Guadalajara, Carretera Tepatitlán-Yahualica de González Gallo, Tepatitlán de Morelos 47620, Jalisco, Mexico;
| | - Rogelio Rodríguez-Rodríguez
- Departamento de Ciencias Naturales y Exactas, Centro Universitario de los Valles (CUVALLES), Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Ameca 46600, Jalisco, Mexico
| |
Collapse
|
12
|
Singh M, Krishnamoorthy VR, Kim S, Khurana S, LaPorte HM. Brain-derived neuerotrophic factor and related mechanisms that mediate and influence progesterone-induced neuroprotection. Front Endocrinol (Lausanne) 2024; 15:1286066. [PMID: 38469139 PMCID: PMC10925611 DOI: 10.3389/fendo.2024.1286066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/15/2024] [Indexed: 03/13/2024] Open
Abstract
Historically, progesterone has been studied significantly within the context of reproductive biology. However, there is now an abundance of evidence for its role in regions of the central nervous system (CNS) associated with such non-reproductive functions that include cognition and affect. Here, we describe mechanisms of progesterone action that support its brain-protective effects, and focus particularly on the role of neurotrophins (such as brain-derived neurotrophic factor, BDNF), the receptors that are critical for their regulation, and the role of certain microRNA in influencing the brain-protective effects of progesterone. In addition, we describe evidence to support the particular importance of glia in mediating the neuroprotective effects of progesterone. Through this review of these mechanisms and our own prior published work, we offer insight into why the effects of a progestin on brain protection may be dependent on the type of progestin (e.g., progesterone versus the synthetic, medroxyprogesterone acetate) used, and age, and as such, we offer insight into the future clinical implication of progesterone treatment for such disorders that include Alzheimer's disease, stroke, and traumatic brain injury.
Collapse
Affiliation(s)
- Meharvan Singh
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | | | | | | | | |
Collapse
|
13
|
Shan BH, Wu FG. Hydrogel-Based Growth Factor Delivery Platforms: Strategies and Recent Advances. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210707. [PMID: 37009859 DOI: 10.1002/adma.202210707] [Citation(s) in RCA: 77] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Growth factors play a crucial role in regulating a broad variety of biological processes and are regarded as powerful therapeutic agents in tissue engineering and regenerative medicine in the past decades. However, their application is limited by their short half-lives and potential side effects in physiological environments. Hydrogels are identified as having the promising potential to prolong the half-lives of growth factors and mitigate their adverse effects by restricting them within the matrix to reduce their rapid proteolysis, burst release, and unwanted diffusion. This review discusses recent progress in the development of growth factor-containing hydrogels for various biomedical applications, including wound healing, brain tissue repair, cartilage and bone regeneration, and spinal cord injury repair. In addition, the review introduces strategies for optimizing growth factor release including affinity-based delivery, carrier-assisted delivery, stimuli-responsive delivery, spatial structure-based delivery, and cellular system-based delivery. Finally, the review presents current limitations and future research directions for growth factor-delivering hydrogels.
Collapse
Affiliation(s)
- Bai-Hui Shan
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
14
|
Duan H, Li S, Hao P, Hao F, Zhao W, Gao Y, Qiao H, Gu Y, Lv Y, Bao X, Chiu K, So KF, Yang Z, Li X. Activation of endogenous neurogenesis and angiogenesis by basic fibroblast growth factor-chitosan gel in an adult rat model of ischemic stroke. Neural Regen Res 2024; 19:409-415. [PMID: 37488905 PMCID: PMC10503635 DOI: 10.4103/1673-5374.375344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/04/2023] [Accepted: 04/12/2023] [Indexed: 07/26/2023] Open
Abstract
Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation, differentiation, migration, and survival, as well as angiogenesis, in the context of brain injury. However, whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown. In this study, we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats. The gel slowly released basic fibroblast growth factor, which improved the local microenvironment, activated endogenous neural stem/progenitor cells, and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons, while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery. This study revealed the mechanism by which bioactive materials repair ischemic strokes, thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shulun Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Hao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yudan Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hui Qiao
- Department of Epidemiology and Statistics, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yiming Gu
- Department of Physical Education, Capital University of Economics and Businessm, Beijing, China
| | - Yang Lv
- Department of Epidemiology and Statistics, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kin Chiu
- Department of Psychology, State Key Lab of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administration Region, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
- Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administration Region, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, Guangdong Province, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoguang Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
15
|
Gao Y, Zhang TL, Zhang HJ, Gao J, Yang PF. A Promising Application of Injectable Hydrogels in Nerve Repair and Regeneration for Ischemic Stroke. Int J Nanomedicine 2024; 19:327-345. [PMID: 38229707 PMCID: PMC10790665 DOI: 10.2147/ijn.s442304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
Ischemic stroke, a condition that often leads to severe nerve damage, induces complex pathological and physiological changes in nerve tissue. The mature central nervous system (CNS) lacks intrinsic regenerative capacity, resulting in a poor prognosis and long-term neurological impairments. There is no available therapy that can fully restore CNS functionality. However, the utilization of injectable hydrogels has emerged as a promising strategy for nerve repair and regeneration. Injectable hydrogels possess exceptional properties, such as biocompatibility, tunable mechanical properties, and the ability to provide a supportive environment for cell growth and tissue regeneration. Recently, various hydrogel-based tissue engineering approaches, including cell encapsulation, controlled release of therapeutic factors, and incorporation of bioactive molecules, have demonstrated great potential in the treatment of CNS injuries caused by ischemic stroke. This article aims to provide a comprehensive review of the application and development of injectable hydrogels for the treatment of ischemic stroke-induced CNS injuries, shedding light on their therapeutic prospects, challenges, recent advancements, and future directions. Additionally, it will discuss the underlying mechanisms involved in hydrogel-mediated nerve repair and regeneration, as well as the need for further preclinical and clinical studies to validate their efficacy and safety.
Collapse
Affiliation(s)
- Yuan Gao
- Oriental Pan-Vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Ting-Lin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Hong-Jian Zhang
- Oriental Pan-Vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Peng-Fei Yang
- Oriental Pan-Vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
16
|
Aqel S, Al-Thani N, Haider MZ, Abdelhady S, Al Thani AA, Kobeissy F, Shaito AA. Biomaterials in Traumatic Brain Injury: Perspectives and Challenges. BIOLOGY 2023; 13:21. [PMID: 38248452 PMCID: PMC10813103 DOI: 10.3390/biology13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 01/23/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and long-term impairment globally. TBI has a dynamic pathology, encompassing a variety of metabolic and molecular events that occur in two phases: primary and secondary. A forceful external blow to the brain initiates the primary phase, followed by a secondary phase that involves the release of calcium ions (Ca2+) and the initiation of a cascade of inflammatory processes, including mitochondrial dysfunction, a rise in oxidative stress, activation of glial cells, and damage to the blood-brain barrier (BBB), resulting in paracellular leakage. Currently, there are no FDA-approved drugs for TBI, but existing approaches rely on delivering micro- and macromolecular treatments, which are constrained by the BBB, poor retention, off-target toxicity, and the complex pathology of TBI. Therefore, there is a demand for innovative and alternative therapeutics with effective delivery tactics for the diagnosis and treatment of TBI. Tissue engineering, which includes the use of biomaterials, is one such alternative approach. Biomaterials, such as hydrogels, including self-assembling peptides and electrospun nanofibers, can be used alone or in combination with neuronal stem cells to induce neurite outgrowth, the differentiation of human neural stem cells, and nerve gap bridging in TBI. This review examines the inclusion of biomaterials as potential treatments for TBI, including their types, synthesis, and mechanisms of action. This review also discusses the challenges faced by the use of biomaterials in TBI, including the development of biodegradable, biocompatible, and mechanically flexible biomaterials and, if combined with stem cells, the survival rate of the transplanted stem cells. A better understanding of the mechanisms and drawbacks of these novel therapeutic approaches will help to guide the design of future TBI therapies.
Collapse
Affiliation(s)
- Sarah Aqel
- Medical Research Center, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Najlaa Al-Thani
- Research and Development Department, Barzan Holdings, Doha P.O. Box 7178, Qatar
| | - Mohammad Z. Haider
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria 21544, Egypt;
| | - Asmaa A. Al Thani
- Biomedical Research Center and Department of Biomedical Sciences, College of Health Science, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA
| | - Abdullah A. Shaito
- Biomedical Research Center, Department of Biomedical Sciences at College of Health Sciences, College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
17
|
Gu C, Li Y, Liu J, Liu S, Long J, Zhang Q, Duan W, Feng T, Huang J, Qiu Y, Ahmed W, Cai H, Hu Y, Wu Y, Chen L. Neural stem cell-derived exosomes-loaded adhesive hydrogel controlled-release promotes cerebral angiogenesis and neurological function in ischemic stroke. Exp Neurol 2023; 370:114547. [PMID: 37743000 DOI: 10.1016/j.expneurol.2023.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
OBJECTIVE Ischemic stroke has become one of the leading diseases for international death, which brings burden to the economy and society. Exosomes (Exos) derived following neural stem cells (NSCs) stimulation promote neurogenesis and migration of NSCs. However, Exos themselves are easily to be removed in vivo. Our study is to investigate whether adhesive hyaluronic acid (HAD) hydrogel loading NSCs-derived-Exo (HAD-Exo) would promote the recovery of ischemic stroke. METHODS A mouse model of middle cerebral artery occlusion (MCAO) was established. PBS, Exo, HAD, and HAD-Exo groups were independently stereotactically injected in mice, respectively. The modified neurological severity score scale and behaviour tests were used to evaluate neurological improvement. Neuroimagings were used to observe the improvement of cerebral infarct volume and vessels. Immunofluorescence staining was used to verify the expression of vascular and cell proliferation-related proteins. RESULTS The structural and mechanical property of HAD and HAD-Exo were detected. Behavioral results showed that HAD-Exo significantly improved neurological functions, especially motor function. Neuroimagings showed that HAD-Exo significantly promoted infarct volume and angiogenesis. Immunofluorescence staining showed that HAD-Exo significantly promoted the cerebral angiogenesis and anti-inflammation. CONCLUSION NSCs derived exosomes-loaded adhesive HAD hydrogel controlled-release could promote cerebral angiogenesis and neurological function for ischemic stroke.
Collapse
Affiliation(s)
- Chenyang Gu
- Department of Neurosurgery, Neuroscience Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, PR China; Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Yajing Li
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523059, PR China
| | - Jiale Liu
- Department of Neurosurgery, Neuroscience Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, PR China
| | - Sitian Liu
- Guangdong Engineering Research Centre for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Jun Long
- Department of Neurosurgery, Neuroscience Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, PR China
| | - Qiankun Zhang
- Department of Neurosurgery, Neuroscience Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, PR China
| | - Wenjie Duan
- Department of Neurosurgery, Neuroscience Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, PR China
| | - Tingle Feng
- Department of Neurosurgery, Neuroscience Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, PR China
| | - Jiajun Huang
- Department of Neurosurgery, Neuroscience Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, PR China
| | - Yunhui Qiu
- Department of Pathology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, PR China
| | - Waqas Ahmed
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Hengsen Cai
- Department of Neurosurgery, The Second People's Hospital of Pingnan, Pingnan 537300, PR China
| | - Yong Hu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hongkong 999077, PR China
| | - Yaobin Wu
- Guangdong Engineering Research Centre for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, PR China.
| |
Collapse
|
18
|
Chen MH, Lin HC, Chao T, Lee VSY, Hou CL, Wang TJ, Chen JR. Hyaluronic Acid Conjugated with 17β-Estradiol Effectively Alleviates Estropause-Induced Cognitive Deficits in Rats. Int J Mol Sci 2023; 24:15569. [PMID: 37958552 PMCID: PMC10649161 DOI: 10.3390/ijms242115569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Women are at a higher risk of cognitive impairments and Alzheimer's disease (AD), particularly after the menopause, when the estrous cycle becomes irregular and diminishes. Numerous studies have shown that estrogen deficiency, especially estradiol (E2) deficiency, plays a key role in this phenomenon. Recently, a novel polymeric drug, hyaluronic acid-17β-estradiol conjugate (HA-E2), has been introduced for the delivery of E2 to brain tissues. Studies have indicated that HA-E2 crosses the blood-brain barrier (BBB) and facilitates a prolonged E2 release profile while lowering the risk of estrogen-supplement-related side effects. In this study, we used ovariohysterectomy (OHE) rats, a postmenopausal cognitive deficit model, to explore the effect of a 2-week HA-E2 treatment (210 ng/kg body weight, twice a week) on the cholinergic septo-hippocampal innervation system, synaptic transmission in hippocampal pyramidal neurons and cognitive improvements. Our study revealed an 11% rise in choline acetyltransferase (ChAT) expression in both the medial septal nucleus (MS nucleus) and the hippocampus, along with a 14-18% increase in dendritic spine density in hippocampal pyramidal neurons, following HA-E2 treatment in OHE rats. These enhancements prompted the recovery of cognitive functions such as spatial learning and memory. These findings suggest that HA-E2 may prevent and improve estrogen-deficiency-induced cognitive impairment and AD.
Collapse
Affiliation(s)
- Mu-Hsuan Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, No. 145, Xingda Rd., Taichung 402202, Taiwan; (M.-H.C.); (H.-C.L.); (T.C.)
| | - Hsiao-Chun Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, No. 145, Xingda Rd., Taichung 402202, Taiwan; (M.-H.C.); (H.-C.L.); (T.C.)
| | - Tzu Chao
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, No. 145, Xingda Rd., Taichung 402202, Taiwan; (M.-H.C.); (H.-C.L.); (T.C.)
| | - Viola Szu-Yuan Lee
- Basic Research Division, Holy Stone Healthcare Co., Ltd., Taipei 11493, Taiwan; (V.S.-Y.L.); (C.-L.H.)
| | - Chia-Lung Hou
- Basic Research Division, Holy Stone Healthcare Co., Ltd., Taipei 11493, Taiwan; (V.S.-Y.L.); (C.-L.H.)
| | - Tsyr-Jiuan Wang
- Department of Nursing, National Taichung University of Science and Technology, No. 193, Section 1, Sanmin Rd., Taichung 403027, Taiwan
| | - Jeng-Rung Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, No. 145, Xingda Rd., Taichung 402202, Taiwan; (M.-H.C.); (H.-C.L.); (T.C.)
| |
Collapse
|
19
|
Du W, Wang T, Hu S, Luan J, Tian F, Ma G, Xue J. Engineering of electrospun nanofiber scaffolds for repairing brain injury. ENGINEERED REGENERATION 2023; 4:289-303. [DOI: 10.1016/j.engreg.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023] Open
|
20
|
Mu J, Hao P, Duan H, Zhao W, Wang Z, Yang Z, Li X. Non-human primate models of focal cortical ischemia for neuronal replacement therapy. J Cereb Blood Flow Metab 2023; 43:1456-1474. [PMID: 37254891 PMCID: PMC10414004 DOI: 10.1177/0271678x231179544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/13/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Despite the high prevalence, stroke remains incurable due to the limited regeneration capacity in the central nervous system. Neuronal replacement strategies are highly diverse biomedical fields that attempt to replace lost neurons by utilizing exogenous stem cell transplants, biomaterials, and direct neuronal reprogramming. Although these approaches have achieved encouraging outcomes mostly in the rodent stroke model, further preclinical validation in non-human primates (NHP) is still needed prior to clinical trials. In this paper, we briefly review the recent progress of promising neuronal replacement therapy in NHP stroke studies. Moreover, we summarize the key characteristics of the NHP as highly valuable translational tools and discuss (1) NHP species and their advantages in terms of genetics, physiology, neuroanatomy, immunology, and behavior; (2) various methods for establishing NHP focal ischemic models to study the regenerative and plastic changes associated with motor functional recovery; and (3) a comprehensive analysis of experimentally and clinically accessible outcomes and a potential adaptive mechanism. Our review specifically aims to facilitate the selection of the appropriate NHP cortical ischemic models and efficient prognostic evaluation methods in preclinical stroke research design of neuronal replacement strategies.
Collapse
Affiliation(s)
- Jiao Mu
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing, China
| | - Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zijue Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Wilson KL, Onweller LA, Joseph NI, David-Bercholz J, Darling NJ, Segura T. SDF-1 Bound Heparin Nanoparticles Recruit Progenitor Cells for Their Differentiation and Promotion of Angiogenesis After Stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547800. [PMID: 37461490 PMCID: PMC10349963 DOI: 10.1101/2023.07.05.547800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Angiogenesis after stroke is correlated with enhanced tissue repair and functional outcomes. The existing body of research in biomaterials for stroke focuses on hydrogels for the delivery of stem cells, growth factors, or small molecules or drugs. Despite the ability of hydrogels to enhance all these delivery methods, no material has significantly regrown vasculature within the translatable timeline of days to weeks after stroke. Here we developed 2 novel biomaterials for tissue regeneration after stroke, a highly porous granular hydrogel termed Cryo microgels, and heparin-norbornene nanoparticles with covalently bound SDF-1α. The combination of these materials resulted in fully revascularized vessels throughout the stroke core in only 10 days, as well as increased neural progenitor cell migration and maintenance and increased neurons.
Collapse
|
22
|
Damle EB, Morrison VE, Cioma J, Volic M, Bix GJ. Co-administration of extracellular matrix-based biomaterials with neural stem cell transplantation for treatment of central nervous system injury. Front Neurosci 2023; 17:1177040. [PMID: 37255752 PMCID: PMC10225608 DOI: 10.3389/fnins.2023.1177040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Injuries and disorders of the central nervous system (CNS) present a particularly difficult challenge for modern medicine to address, given the complex nature of the tissues, obstacles in researching and implementing therapies, and barriers to translating efficacious treatments into human patients. Recent advancements in neural stem cell (NSC) transplantation, endogenous neurogenesis, and in vivo reprogramming of non-neural cells into the neuronal lineage represent multiple approaches to resolving CNS injury. However, we propose that one practice that must be incorporated universally in neuroregeneration studies is the use of extracellular matrix (ECM)-mimicking biomaterials to supply the architectural support and cellular microenvironment necessary for partial or complete restoration of function. Through consideration of developmental processes including neurogenesis, cellular migration, and establishment of functional connectivity, as well as evaluation of process-specific interactions between cells and ECM components, insights can be gained to harness and modulate native and induced neurobiological processes to promote CNS tissue repair. Further, evaluation of the current landscape of regenerative medicine and tissue engineering techniques external to the neurosciences provides key perspectives into the role of the ECM in the use of stem cell-based therapies, and the potential directions future neuroregenerative approaches may take. If the most successful of these approaches achieve wide-spread adoption, innovative paired NSC-ECM strategies for neuroregeneration may become prominent in the near future, and with the rapid advances these techniques are poised to herald, a new era of treatment for CNS injury may dawn.
Collapse
Affiliation(s)
- Eshan B. Damle
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Vivianne E. Morrison
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jozef Cioma
- Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Milla Volic
- Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Gregory J. Bix
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
23
|
Adhikari B, Stager MA, Krebs MD. Cell-instructive biomaterials in tissue engineering and regenerative medicine. J Biomed Mater Res A 2023; 111:660-681. [PMID: 36779265 DOI: 10.1002/jbm.a.37510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/14/2023]
Abstract
The field of biomaterials aims to improve regenerative outcomes or scientific understanding for a wide range of tissue types and ailments. Biomaterials can be fabricated from natural or synthetic sources and display a plethora of mechanical, electrical, and geometrical properties dependent on their desired application. To date, most biomaterial systems designed for eventual translation to the clinic rely on soluble signaling moieties, such as growth factors, to elicit a specific cellular response. However, these soluble factors are often limited by high cost, convoluted synthesis, low stability, and difficulty in regulation, making the translation of these biomaterials systems to clinical or commercial applications a long and arduous process. In response to this, significant effort has been dedicated to researching cell-directive biomaterials which can signal for specific cell behavior in the absence of soluble factors. Cells of all tissue types have been shown to be innately in tune with their microenvironment, which is a biological phenomenon that can be exploited by researchers to design materials that direct cell behavior based on their intrinsic characteristics. This review will focus on recent developments in biomaterials that direct cell behavior using biomaterial properties such as charge, peptide presentation, and micro- or nano-geometry. These next generation biomaterials could offer significant strides in the development of clinically relevant medical devices which improve our understanding of the cellular microenvironment and enhance patient care in a variety of ailments.
Collapse
Affiliation(s)
- Bikram Adhikari
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Michael A Stager
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Melissa D Krebs
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado, USA
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| |
Collapse
|
24
|
Geribaldi-Doldán N, Carrascal L, Pérez-García P, Oliva-Montero JM, Pardillo-Díaz R, Domínguez-García S, Bernal-Utrera C, Gómez-Oliva R, Martínez-Ortega S, Verástegui C, Nunez-Abades P, Castro C. Migratory Response of Cells in Neurogenic Niches to Neuronal Death: The Onset of Harmonic Repair? Int J Mol Sci 2023; 24:6587. [PMID: 37047560 PMCID: PMC10095545 DOI: 10.3390/ijms24076587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Harmonic mechanisms orchestrate neurogenesis in the healthy brain within specific neurogenic niches, which generate neurons from neural stem cells as a homeostatic mechanism. These newly generated neurons integrate into existing neuronal circuits to participate in different brain tasks. Despite the mechanisms that protect the mammalian brain, this organ is susceptible to many different types of damage that result in the loss of neuronal tissue and therefore in alterations in the functionality of the affected regions. Nevertheless, the mammalian brain has developed mechanisms to respond to these injuries, potentiating its capacity to generate new neurons from neural stem cells and altering the homeostatic processes that occur in neurogenic niches. These alterations may lead to the generation of new neurons within the damaged brain regions. Notwithstanding, the activation of these repair mechanisms, regeneration of neuronal tissue within brain injuries does not naturally occur. In this review, we discuss how the different neurogenic niches respond to different types of brain injuries, focusing on the capacity of the progenitors generated in these niches to migrate to the injured regions and activate repair mechanisms. We conclude that the search for pharmacological drugs that stimulate the migration of newly generated neurons to brain injuries may result in the development of therapies to repair the damaged brain tissue.
Collapse
Affiliation(s)
- Noelia Geribaldi-Doldán
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Livia Carrascal
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patricia Pérez-García
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - José M. Oliva-Montero
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Ricardo Pardillo-Díaz
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Samuel Domínguez-García
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Department of Neuroscience, Karolinska Institutet, Biomedicum, 17177 Stockholm, Sweden
| | - Carlos Bernal-Utrera
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, 41009 Sevilla, Spain
| | - Ricardo Gómez-Oliva
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Sergio Martínez-Ortega
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Cristina Verástegui
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Carmen Castro
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| |
Collapse
|
25
|
Inoue T, Ikegami R, Takamatsu Y, Fukuchi M, Haga S, Ozaki M, Maejima H. Temporal dynamics of brain BDNF expression following a single bout of exercise: A bioluminescence imaging study. Neurosci Lett 2023; 799:137120. [PMID: 36764480 DOI: 10.1016/j.neulet.2023.137120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Physical exercise increases brain-derived neurotrophic factor (BDNF) expression in the brain. However, the absence of non-invasive and repetitive monitoring of BDNF expression in the brains of living animals has limited the understanding of how BDNF expression changes after exercise. This study aimed to elucidate the temporal dynamics of BDNF expression in the brain after a single bout of exercise, using in vivo bioluminescence imaging. This study included Bdnf-Luc mice with a firefly Luciferase gene inserted at the translation start site of the mouse Bdnf gene. BDNF expression was evaluated based on the luminescence signal of the luciferase substrate administered to mice. Bioluminescence imaging was performed at 0, 1, 3, 6, 12, and 24 h after treadmill exercise (15 m/min for 1 h). Compared to the sedentary condition of each mouse, the luminescence signal increased by approximately 60 % between 1 and 3 h after exercise. The luminescence signal remained slightly increased by approximately 20 % even 6-24 h after exercise. This study is the first to demonstrate exercise-enhanced BDNF expression in the brains of living animals. These results provide evidence that a single bout of exercise transiently increases BDNF expression in the brain within a limited time window.
Collapse
Affiliation(s)
- Takahiro Inoue
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan; Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
| | - Ryo Ikegami
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Yasuyuki Takamatsu
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Mamoru Fukuchi
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma 370-0033, Japan
| | - Sanae Haga
- Department of Biological Response and Regulation, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Michitaka Ozaki
- Department of Biological Response and Regulation, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Hiroshi Maejima
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
26
|
Alamri FF, Karamyan ST, Karamyan VT. A Low-Budget Photothrombotic Rodent Stroke Model. Methods Mol Biol 2023; 2616:21-28. [PMID: 36715924 DOI: 10.1007/978-1-0716-2926-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A number of animal stroke models have been developed and used over the years to study the pathological mechanisms of this disorder and develop new therapies. Among them, the photothrombotic model of ischemic stroke has been central in various studies focusing on understanding of the basic biology of neural repair, identification and validation of key molecular targets involved in post-stroke recovery, and preclinical testing of various therapeutic approaches. To facilitate uniformity among various experimental groups using this expert-recommended mouse model of choice for stroke recovery studies, in this chapter we describe in detail a low-budget technique to induce photothrombosis in the mouse primary motor cortex. Additionally, we provide tips for conducting this procedure in other cerebral cortical regions of the mouse brain and in rats.
Collapse
Affiliation(s)
- Faisal F Alamri
- College of Sciences and Health Profession, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Serob T Karamyan
- Department of Pharmacology, Faculty of Pharmacy, Yerevan State Medical University, Yerevan, Armenia
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA.
| |
Collapse
|
27
|
Bhuiyan MH, Houlton J, Clarkson AN. Hydrogels and Nanoscaffolds for Long-Term Intraparenchymal Therapeutic Delivery After Stroke. Methods Mol Biol 2023; 2616:379-390. [PMID: 36715947 DOI: 10.1007/978-1-0716-2926-0_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Stroke remains a leading cause of adult disability with treatments limited to thrombolytic therapies that are severely limited by a narrow therapeutic window. The potential of hundreds of other therapeutic agents cannot be evaluated due to their poor ability to cross the blood-brain barrier. Recently, biopolymer hydrogels have shown promise at overcoming these obstacles via the delivering of therapeutic molecules (pharmacological, mRNA, stem cells, etc.) to injured nervous tissue to afford functional recovery in rodent models of stroke. To date, we have tested different biopolymer hydrogels in mouse models of stroke for their ability to promote post-stroke recovery and for in situ delivery of growth factors, small pharmacological compounds, siRNAs, and stem cells. Here, we describe practical instructions on how to prepare various biopolymer hydrogels in house with further guidance on how to use them for intracerebral administration of therapeutic agents in preclinical stroke models.
Collapse
Affiliation(s)
- Mozammel H Bhuiyan
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand.,Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Josh Houlton
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
28
|
Britsch DRS, Syeara N, Stowe AM, Karamyan VT. Rodent Stroke Models to Study Functional Recovery and Neural Repair. Methods Mol Biol 2023; 2616:3-12. [PMID: 36715922 DOI: 10.1007/978-1-0716-2926-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rodent ischemic stroke models are essential research tools for studying this highly prevalent disease and represent a critical element in the translational pipeline for development of new therapies. The majority of ischemic stroke models have been developed to study the acute phase of the disease and neuroprotective strategies, but a subset of models is better suited for studying stroke recovery. Each model therefore has characteristics that lend itself to certain types of investigations and outcome measures, and it is important to consider both explicit and implicit details when designing experiments that utilize each model. The following chapter briefly summarizes the known aspects of the main rodent stroke models with emphasis on their clinical relevance and suitability for studying recovery and neural repair following stroke.
Collapse
Affiliation(s)
- Daimen R S Britsch
- Department of Neurology, Department of Neuroscience, The University of Kentucky, Lexington, KY, USA
| | - Nausheen Syeara
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Ann M Stowe
- Department of Neurology, Department of Neuroscience, The University of Kentucky, Lexington, KY, USA
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA.
| |
Collapse
|
29
|
Yu W, Gong E, Liu B, Zhou L, Che C, Hu S, Zhang Z, Liu J, Shi J. Hydrogel-mediated drug delivery for treating stroke. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
30
|
Yu Q, Jian Z, Yang D, Zhu T. Perspective insights into hydrogels and nanomaterials for ischemic stroke. Front Cell Neurosci 2023; 16:1058753. [PMID: 36761147 PMCID: PMC9902513 DOI: 10.3389/fncel.2022.1058753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023] Open
Abstract
Ischemic stroke (IS) is a neurological disorder prevalent worldwide with a high disability and mortality rate. In the clinic setting, tissue plasminogen activator (tPA) and thrombectomy could restore blood flow of the occlusion region and improve the outcomes of IS patients; however, these therapies are restricted by a narrow time window. Although several preclinical trials have revealed the molecular and cellular mechanisms underlying infarct lesions, the translatability of most findings is unsatisfactory, which contributes to the emergence of new biomaterials, such as hydrogels and nanomaterials, for the treatment of IS. Biomaterials function as structural scaffolds or are combined with other compounds to release therapeutic drugs. Biomaterial-mediated drug delivery approaches could optimize the therapeutic effects based on their brain-targeting property, biocompatibility, and functionality. This review summarizes the advances in biomaterials in the last several years, aiming to discuss the therapeutic potential of new biomaterials from the bench to bedside. The promising prospects of new biomaterials indicate the possibility of an organic combination between materialogy and medicine, which is a novel field under exploration.
Collapse
Affiliation(s)
- Qingbo Yu
- Laboratory of Anesthesia & Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China,Department of Anesthesiology, North Sichuan Medical College, Nanchong, China
| | - Zhang Jian
- Sichuan Provincial Maternity and Child Health Care Hospital, Women’s and Children’s Hospital Affiliated of Chengdu Medical College, Chengdu, China
| | - Dan Yang
- Department of Anesthesiology, North Sichuan Medical College, Nanchong, China
| | - Tao Zhu
- Laboratory of Anesthesia & Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China,*Correspondence: Tao Zhu,
| |
Collapse
|
31
|
Zhang J, Xiao X, Jin Q, Li J, Zhong D, Li Y, Qin Y, Zhang H, Liu X, Xue C, Zheng Z, Jin R. The effect and safety of constraint-induced movement therapy for post-stroke motor dysfunction: a meta-analysis and trial sequential analysis. Front Neurol 2023; 14:1137320. [PMID: 37144004 PMCID: PMC10151521 DOI: 10.3389/fneur.2023.1137320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023] Open
Abstract
Background Due to motor function insufficiency, patients with post-stroke motor dysfunction (PSMD) have limitations in performing an activity, feel restricted during social participation, and feel impaired in their quality of life. Constraint-induced movement therapy (CIMT) is a neurorehabilitation technique, but its effectiveness on PSMD after stroke still remains controversial. Objective This meta-analysis and trial sequential analysis (TSA) aimed to comprehensively evaluate the effect and safety of CIMT for PSMD. Methods Four electronic databases were searched from their inception to 1 January 2023 to identify randomized controlled trials (RCTs) investigating the effectiveness of CIMT for PSMD. Two reviewers independently extracted the data and assessed the risk of bias and reporting quality. The primary outcome was a motor activity log for the amount of use (MAL-AOU) and the quality of movement (MAL-QOM). RevMan 5.4, Statistical Package for Social Sciences (SPSS) 25.0, and STATA 13.0 software were used for statistical analysis. The certainty of the evidence was appraised using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system. We also performed the TSA to assess the reliability of the evidence. Results A total of 44 eligible RCTs were included. Our results showed that CIMT combined with conventional rehabilitation (CR) was superior to CR in improving MAL-AOU and MAL-QOM scores. The results of TSA indicated that the above evidence was reliable. Subgroup analysis demonstrated that CIMT (≥6 h per day or duration ≤ 20 days) combined with CR was more effective than CR. Meanwhile, both CIMT and modified CIMT (mCIMT) combined with CR were more efficient than CR at all stages of stroke. No severe CIMT-related adverse events occurred. Conclusion CIMT may be an optional and safe rehabilitation therapy to improve PSMD. However, due to limited studies, the optimal protocol of CIMT for PSMD was undetermined, and more RCTs are required for further exploration. Clinical trial registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=143490, identifier: CRD42019143490.
Collapse
Affiliation(s)
- Jiaming Zhang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xianjun Xiao
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qizu Jin
- The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Juan Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Dongling Zhong
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuxi Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yan Qin
- The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Hong Zhang
- The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Xiaobo Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chen Xue
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhong Zheng
- Center for Neurobiological Detection, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Zhong Zheng
| | - Rongjiang Jin
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Rongjiang Jin
| |
Collapse
|
32
|
Zhang X, Khan S, Wei R, Zhang Y, Liu Y, Wee Yong V, Xue M. Application of nanomaterials in the treatment of intracerebral hemorrhage. J Tissue Eng 2023; 14:20417314231157004. [PMID: 37032735 PMCID: PMC10074624 DOI: 10.1177/20417314231157004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/28/2023] [Indexed: 04/05/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a non-traumatic hemorrhage caused by the rupture of blood vessels in the brain parenchyma, with an acute mortality rate of 30%‒40%. Currently, available treatment options that include surgery are not promising, and new approaches are urgently needed. Nanotechnology offers new prospects in ICH because of its unique benefits. In this review, we summarize the applications of various nanomaterials in ICH. Nanomaterials not only enhance the therapeutic effects of drugs as delivery carriers but also contribute to several facets after ICH such as repressing detrimental neuroinflammation, resisting oxidative stress, reducing cell death, and improving functional deficits.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Voon Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
33
|
Carmichael ST, Llorente IL. The Ties That Bind: Glial Transplantation in White Matter Ischemia and Vascular Dementia. Neurotherapeutics 2023; 20:39-47. [PMID: 36357662 PMCID: PMC10119342 DOI: 10.1007/s13311-022-01322-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
White matter injury is a progressive vascular disease that leads to neurological deficits and vascular dementia. It comprises up to 30% of all diagnosed strokes, though up to ten times as many events go undiagnosed in early stages. There are several pathologies that can lead to white matter injury. While some studies suggest that white matter injury starts as small infarcts in deep penetrating blood vessels in the brain, others point to the breakdown of endothelial function or the blood-brain barrier as the primary cause of the disease. Whether due to local endothelial or BBB dysfunction, or to local small infarcts (or a combination), white matter injury progresses, accumulates, and expands from preexisting lesions into adjacent white matter to produce motor and cognitive deficits that present as vascular dementia in the elderly. Vascular dementia is the second leading cause of dementia, and white matter injury-attributed vascular dementia represents 40% of all diagnosed dementias and aggravates Alzheimer's pathology. Despite the advances in the last 15 years, there are few animal models of progressive subcortical white matter injury or vascular dementia. This review will discuss recent progress in animal modeling of white matter injury and the emerging principles to enhance glial function as a means of promoting repair and recovery.
Collapse
Affiliation(s)
- S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles E Young Drive South, NRB 407, Los Angeles, CA, 90095, USA
| | - Irene L Llorente
- Department of Neurosurgery, Stanford University, 3801 Miranda Ave, 94304, Palo alto, USA.
| |
Collapse
|
34
|
Huo Y, Feng Q, Fan J, Huang J, Zhu Y, Wu Y, Hou A, Zhu L. Serum brain-derived neurotrophic factor in coronary heart disease: Correlation with the T helper (Th)1/Th2 ratio, Th17/regulatory T (Treg) ratio, and major adverse cardiovascular events. J Clin Lab Anal 2022; 37:e24803. [PMID: 36510348 PMCID: PMC9833972 DOI: 10.1002/jcla.24803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) exerts protective roles against dyslipidemia, atherosclerosis, and inflammation in cardiovascular diseases; meanwhile, it retards CD4+ T cell differentiation into T helper (Th)1 and Th17 cells. Hence, this study aimed to investigate the linkage of serum BDNF with Th1/Th2 ratio, Th17/regulatory T (Treg) ratio, and major adverse cardiovascular events (MACE) risk in the coronary heart disease (CHD) patients. METHODS This prospective study detected serum BDNF in 210 CHD patients, 50 disease controls (DCs), and 50 healthy controls (HCs) using an enzyme-linked immunosorbent assay. For CHD patients only, the proportion of Th1, Th2, Th17, and Treg cells in blood CD4+ T cells was calculated by flow cytometry. RESULTS The BDNF varied among CHD patients, DC, and HC (p < 0.001). Specifically, BDNF was declined in CHD patients compared with DCs (p < 0.001) and HCs (p < 0.001). In CHD patients, BDNF was negatively related to Th1 cells (p = 0.031), Th1/Th2 ratio (p = 0.026), Th17 cells (p = 0.001), and Th17/Treg ratio (p = 0.002). Concerning the prognosis, BDNF was reduced in patients with MACE occurrence compared to patients without MACE occurrence (p = 0.006). Furthermore, BDNF showed a trend (lacked statistical significance) to relate to longer MACE-free survival (p = 0.059). Besides, BDNF was related to the absence of obesity (p = 0.019), decreased total cholesterol (p = 0.043), low-density lipoprotein cholesterol (p = 0.019), C-reactive protein (p = 0.012), and Gensini score (p = 0.005). CONCLUSION Serum BDNF negatively correlates with Th1/Th2 ratio, Th17/Treg ratio, and estimates lower MACE risk in CHD patients.
Collapse
Affiliation(s)
- Yanfei Huo
- Physical Examination CenterHanDan Central HospitalHandanChina
| | - Qiang Feng
- Department of CardiologyHanDan Central HospitalHandanChina
| | - Jie Fan
- Department of CardiologyHanDan Central HospitalHandanChina
| | - Jing Huang
- Geriatrics DepartmentHanDan Central HospitalHandanChina
| | - Yanling Zhu
- Department of CardiologyHanDan Central HospitalHandanChina
| | - Yanqiang Wu
- Department of CardiologyHanDan Central HospitalHandanChina
| | - Aijun Hou
- Department of CardiologyHanDan Central HospitalHandanChina
| | - Lin Zhu
- Department of CardiologyHanDan Central HospitalHandanChina
| |
Collapse
|
35
|
Fan H, Duan H, Hao P, Gao Y, Zhao W, Hao F, Li X, Yang Z. Cellular regeneration treatments for traumatic brain injury. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
36
|
Advancements in Hydrogel Application for Ischemic Stroke Therapy. Gels 2022; 8:gels8120777. [PMID: 36547301 PMCID: PMC9778209 DOI: 10.3390/gels8120777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Ischemic stroke is a major cause of death and disability worldwide. There is almost no effective treatment for this disease. Therefore, developing effective treatment for ischemic stroke is urgently needed. Efficient delivery of therapeutic drugs to ischemic sites remained a great challenge for improved treatment of strokes. In recent years, hydrogel-based strategies have been widely investigated for new and improved therapies. They have the advantage of delivering therapeutics in a controlled manner to the poststroke sites, aiming to enhance the intrinsic repair and regeneration. In this review, we discuss the pathophysiology of stroke and the development of injectable hydrogels in the application of both stroke treatment and neural tissue engineering. We also discuss the prospect and the challenges of hydrogels in the treatment of ischemic strokes.
Collapse
|
37
|
Alfonsetti M, d’Angelo M, Castelli V. Neurotrophic factor-based pharmacological approaches in neurological disorders. Neural Regen Res 2022; 18:1220-1228. [PMID: 36453397 PMCID: PMC9838155 DOI: 10.4103/1673-5374.358619] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aging is a physiological event dependent on multiple pathways that are linked to lifespan and processes leading to cognitive decline. This process represents the major risk factor for aging-related diseases such as Alzheimer's disease, Parkinson's disease, and ischemic stroke. The incidence of all these pathologies increases exponentially with age. Research on aging biology has currently focused on elucidating molecular mechanisms leading to the development of those pathologies. Cognitive deficit and neurodegeneration, common features of aging-related pathologies, are related to the alteration of the activity and levels of neurotrophic factors, such as brain-derived neurotrophic factor, nerve growth factor, and glial cell-derived neurotrophic factor. For this reason, treatments that modulate neurotrophin levels have acquired a great deal of interest in preventing neurodegeneration and promoting neural regeneration in several neurological diseases. Those treatments include both the direct administration of neurotrophic factors and the induced expression with viral vectors, neurotrophins' binding with biomaterials or other molecules to increase their bioavailability but also cell-based therapies. Considering neurotrophins' crucial role in aging pathologies, here we discuss the involvement of several neurotrophic factors in the most common brain aging-related diseases and the most recent therapeutic approaches that provide direct and sustained neurotrophic support.
Collapse
Affiliation(s)
- Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy,Correspondence to: Vanessa Castelli, .
| |
Collapse
|
38
|
Li Y, Li F, Qin D, Chen H, Wang J, Wang J, Song S, Wang C, Wang Y, Liu S, Gao D, Wang ZH. The role of brain derived neurotrophic factor in central nervous system. Front Aging Neurosci 2022; 14:986443. [PMID: 36158555 PMCID: PMC9493475 DOI: 10.3389/fnagi.2022.986443] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022] Open
Abstract
Brain derived neurotrophic factor (BDNF) has multiple biological functions which are mediated by the activation of two receptors, tropomyosin receptor kinase B (TrkB) receptor and the p75 neurotrophin receptor, involving in physiological and pathological processes throughout life. The diverse presence and activity of BDNF indicate its potential role in the pathogenesis, progression and treatment of both neurological and psychiatric disorders. This review is to provide a comprehensive assessment of the current knowledge and future directions in BDNF-associated research in the central nervous system (CNS), with an emphasis on the physiological and pathological functions of BDNF as well as its potential treatment effects in CNS diseases, including depression, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis, and cerebral ischemic stroke.
Collapse
Affiliation(s)
- Yiyi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongdong Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongyu Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianhao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiabei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shafei Song
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yamei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songyan Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dandan Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Hao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Zhi-Hao Wang,
| |
Collapse
|
39
|
Paro MR, Chakraborty AR, Angelo S, Nambiar S, Bulsara KR, Verma R. Molecular mediators of angiogenesis and neurogenesis after ischemic stroke. Rev Neurosci 2022; 34:425-442. [PMID: 36073599 DOI: 10.1515/revneuro-2022-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022]
Abstract
The mechanisms governing neurological and functional recovery after ischemic stroke are incompletely understood. Recent advances in knowledge of intrinsic repair processes of the CNS have so far translated into minimal improvement in outcomes for stroke victims. Better understanding of the processes underlying neurological recovery after stroke is necessary for development of novel therapeutic approaches. Angiogenesis and neurogenesis have emerged as central mechanisms of post-stroke recovery and potential targets for therapeutics. Frameworks have been developed for conceptualizing cerebral angiogenesis and neurogenesis at the tissue and cellular levels. These models highlight that angiogenesis and neurogenesis are linked to each other and to functional recovery. However, knowledge of the molecular framework linking angiogenesis and neurogenesis after stroke is limited. Studies of potential therapeutics typically focus on one mediator or pathway with minimal discussion of its role within these multifaceted biochemical processes. In this article, we briefly review the current understanding of the coupled processes of angiogenesis and neurogenesis after stroke. We then identify the molecular mediators and signaling pathways found in pre-clinical studies to upregulate both processes after stroke and contextualizes them within the current framework. This report thus contributes to a more-unified understanding of the molecular mediators governing angiogenesis and neurogenesis after stroke, which we hope will help guide the development of novel therapeutic approaches for stroke survivors.
Collapse
Affiliation(s)
- Mitch R Paro
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA.,Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06032, USA
| | - Arijit R Chakraborty
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - Sophia Angelo
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - Shyam Nambiar
- University of Connecticut, 75 North Eagleville Rd, Storrs, CT 06269, USA
| | - Ketan R Bulsara
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA.,Division of Neurosurgery, University of Connecticut Health, 135 Dowling Way, Farmington, CT 06030, USA
| | - Rajkumar Verma
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA.,Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06032, USA
| |
Collapse
|
40
|
Mishchenko TA, Klimenko MO, Kuznetsova AI, Yarkov RS, Savelyev AG, Sochilina AV, Mariyanats AO, Popov VK, Khaydukov EV, Zvyagin AV, Vedunova MV. 3D-printed hyaluronic acid hydrogel scaffolds impregnated with neurotrophic factors (BDNF, GDNF) for post-traumatic brain tissue reconstruction. Front Bioeng Biotechnol 2022; 10:895406. [PMID: 36091441 PMCID: PMC9453866 DOI: 10.3389/fbioe.2022.895406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Brain tissue reconstruction posttraumatic injury remains a long-standing challenge in neurotransplantology, where a tissue-engineering construct (scaffold, SC) with specific biochemical properties is deemed the most essential building block. Such three-dimensional (3D) hydrogel scaffolds can be formed using brain-abundant endogenous hyaluronic acid modified with glycidyl methacrylate by employing our proprietary photopolymerisation technique. Herein, we produced 3D hyaluronic scaffolds impregnated with neurotrophic factors (BDNF, GDNF) possessing 600 kPa Young’s moduli and 336% swelling ratios. Stringent in vitro testing of fabricated scaffolds using primary hippocampal cultures revealed lack of significant cytotoxicity: the number of viable cells in the SC+BDNF (91.67 ± 1.08%) and SC+GDNF (88.69 ± 1.2%) groups was comparable to the sham values (p > 0.05). Interestingly, BDNF-loaded scaffolds promoted the stimulation of neuronal process outgrowth during the first 3 days of cultures development (day 1: 23.34 ± 1.46 µm; day 3: 37.26 ± 1.98 µm, p < 0.05, vs. sham), whereas GDNF-loaded scaffolds increased the functional activity of neuron-glial networks of cultures at later stages of cultivation (day 14) manifested in a 1.3-fold decrease in the duration coupled with a 2.4-fold increase in the frequency of Ca2+ oscillations (p < 0.05, vs. sham). In vivo studies were carried out using C57BL/6 mice with induced traumatic brain injury, followed by surgery augmented with scaffold implantation. We found positive dynamics of the morphological changes in the treated nerve tissue in the post-traumatic period, where the GDNF-loaded scaffolds indicated more favorable regenerative potential. In comparison with controls, the physiological state of the treated mice was improved manifested by the absence of severe neurological deficit, significant changes in motor and orienting-exploratory activity, and preservation of the ability to learn and retain long-term memory. Our results suggest in favor of biocompatibility of GDNF-loaded scaffolds, which provide a platform for personalized brain implants stimulating effective morphological and functional recovery of nerve tissue after traumatic brain injury.
Collapse
Affiliation(s)
- Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Maria O. Klimenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alisa I. Kuznetsova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Roman S. Yarkov
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexander G. Savelyev
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk-Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anastasia V. Sochilina
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk-Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Alexandra O. Mariyanats
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk-Moscow, Russia
| | - Vladimir K. Popov
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk-Moscow, Russia
| | - Evgeny V. Khaydukov
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk-Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Andrei V. Zvyagin
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- MQ Photonics Centre, Macquarie University, Sydney, NSW, Australia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- *Correspondence: Maria V. Vedunova,
| |
Collapse
|
41
|
Wu Y, Rakotoarisoa M, Angelov B, Deng Y, Angelova A. Self-Assembled Nanoscale Materials for Neuronal Regeneration: A Focus on BDNF Protein and Nucleic Acid Biotherapeutic Delivery. NANOMATERIALS 2022; 12:nano12132267. [PMID: 35808102 PMCID: PMC9268293 DOI: 10.3390/nano12132267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023]
Abstract
Enabling challenging applications of nanomedicine and precision medicine in the treatment of neurodegenerative disorders requires deeper investigations of nanocarrier-mediated biomolecular delivery for neuronal targeting and recovery. The successful use of macromolecular biotherapeutics (recombinant growth factors, antibodies, enzymes, synthetic peptides, cell-penetrating peptide–drug conjugates, and RNAi sequences) in clinical developments for neuronal regeneration should benefit from the recent strategies for enhancement of their bioavailability. We highlight the advances in the development of nanoscale materials for drug delivery in neurodegenerative disorders. The emphasis is placed on nanoformulations for the delivery of brain-derived neurotrophic factor (BDNF) using different types of lipidic nanocarriers (liposomes, liquid crystalline or solid lipid nanoparticles) and polymer-based scaffolds, nanofibers and hydrogels. Self-assembled soft-matter nanoscale materials show favorable neuroprotective characteristics, safety, and efficacy profiles in drug delivery to the central and peripheral nervous systems. The advances summarized here indicate that neuroprotective biomolecule-loaded nanoparticles and injectable hydrogels can improve neuronal survival and reduce tissue injury. Certain recently reported neuronal dysfunctions in long-COVID-19 survivors represent early manifestations of neurodegenerative pathologies. Therefore, BDNF delivery systems may also help in prospective studies on recovery from long-term COVID-19 neurological complications and be considered as promising systems for personalized treatment of neuronal dysfunctions and prevention or retarding of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yu Wu
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, F-92290 Châtenay-Malabry, France; (Y.W.); (M.R.)
| | - Miora Rakotoarisoa
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, F-92290 Châtenay-Malabry, France; (Y.W.); (M.R.)
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic;
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, No. 1, Jinlian Road, Longwan District, Wenzhou 325001, China;
| | - Angelina Angelova
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, F-92290 Châtenay-Malabry, France; (Y.W.); (M.R.)
- Correspondence:
| |
Collapse
|
42
|
Liu X, Yang M, Lei F, Wang Y, Yang M, Mao C. Highly Effective Stroke Therapy Enabled by Genetically Engineered Viral Nanofibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201210. [PMID: 35315947 DOI: 10.1002/adma.202201210] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Stroke results in the formation of a cavity in the infarcted brain tissue. Angiogenesis and neurogenesis are poor in the cavity, preventing brain-tissue regeneration for stroke therapy. To regenerate brain tissue in the cavity, filamentous phages, the human-safe nanofiber-like bacteria-specific viruses, are genetically engineered to display many copies of RGD peptide on the sidewalls. The viral nanofibers, electrostatically coated on biocompatible injectable silk protein microparticles, not only promote adhesion, proliferation, and infiltration of neural stem cells (NSCs), but also induce NSCs to differentiate preferentially into neurons in basal medium within 3 d. After the NSC-loaded microparticles are injected into the stroke cavity of rat models, the phage nanofibers on the microparticles stimulate angiogenesis and neurogenesis in the stroke sites within two weeks for brain regeneration, leading to functional recovery of limb motor control of rats within 12 weeks. The viral nanofibers also brought about the desired outcomes for stroke therapy, such as reducing inflammatory response, decreasing thickness of astrocytes scars, and increasing neuroblasts response in the subventricular zone. As virtually any functional peptide can be displayed on the phage by genetic means, the phage nanofibers hold promise as a unique and effective injectable biomaterial for stroke therapy.
Collapse
Affiliation(s)
- Xiangyu Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Mei Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, P. R. China
| | - Fang Lei
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yaru Wang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, P. R. China
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, P. R. China
| | - Chuanbin Mao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
43
|
Houlton J, Zubkova OV, Clarkson AN. Recovery of Post-Stroke Spatial Memory and Thalamocortical Connectivity Following Novel Glycomimetic and rhBDNF Treatment. Int J Mol Sci 2022; 23:ijms23094817. [PMID: 35563207 PMCID: PMC9101131 DOI: 10.3390/ijms23094817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Stroke-induced cognitive impairments remain of significant concern, with very few treatment options available. The involvement of glycosaminoglycans in neuroregenerative processes is becoming better understood and recent advancements in technology have allowed for cost-effective synthesis of novel glycomimetics. The current study evaluated the therapeutic potential of two novel glycomimetics, compound A and G, when administered systemically five-days post-photothrombotic stroke to the PFC. As glycosaminoglycans are thought to facilitate growth factor function, we also investigated the combination of our glycomimetics with intracerebral, recombinant human brain-derived neurotrophic factor (rhBDNF). C56BL/6J mice received sham or stroke surgery and experimental treatment (day-5), before undergoing the object location recognition task (OLRT). Four-weeks post-surgery, animals received prelimbic injections of the retrograde tracer cholera toxin B (CTB), before tissue was collected for quantification of thalamo-PFC connectivity and reactive astrogliosis. Compound A or G treatment alone modulated a degree of reactive astrogliosis yet did not influence spatial memory performance. Contrastingly, compound G+rhBDNF treatment significantly improved spatial memory, dampened reactive astrogliosis and limited stroke-induced loss of connectivity between the PFC and midline thalamus. As rhBDNF treatment had negligible effects, these findings support compound A acted synergistically to enhance rhBDNF to restrict secondary degeneration and facilitate functional recovery after PFC stroke.
Collapse
Affiliation(s)
- Josh Houlton
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand;
| | - Olga V. Zubkova
- The Ferrier Research Institute, Gracefield Research Centre, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand;
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand;
- Correspondence: ; Tel./Fax: +64-3-279-7326
| |
Collapse
|
44
|
Ma X, Wang M, Ran Y, Wu Y, Wang J, Gao F, Liu Z, Xi J, Ye L, Feng Z. Design and Fabrication of Polymeric Hydrogel Carrier for Nerve Repair. Polymers (Basel) 2022; 14:polym14081549. [PMID: 35458307 PMCID: PMC9031091 DOI: 10.3390/polym14081549] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
Nerve regeneration and repair still remain a huge challenge for both central nervous and peripheral nervous system. Although some therapeutic substances, including neuroprotective agents, clinical drugs and stem cells, as well as various growth factors, are found to be effective to promote nerve repair, a carrier system that possesses a sustainable release behavior, in order to ensure high on-site concentration during the whole repair and regeneration process, and high bioavailability is still highly desirable. Hydrogel, as an ideal delivery system, has an excellent loading capacity and sustainable release behavior, as well as tunable physical and chemical properties to adapt to various biomedical scenarios; thus, it is thought to be a suitable carrier system for nerve repair. This paper reviews the structure and classification of hydrogels and summarizes the fabrication and processing methods that can prepare a suitable hydrogel carrier with specific physical and chemical properties. Furthermore, the modulation of the physical and chemical properties of hydrogels is also discussed in detail in order to obtain a better therapeutic effect to promote nerve repair. Finally, the future perspectives of hydrogel microsphere carriers for stroke rehabilitation are highlighted.
Collapse
Affiliation(s)
- Xiaoyu Ma
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.M.); (Z.F.)
| | - Mengjie Wang
- School of Beijing Rehabilitation Medicine, Capital Medical University, Beijing 100044, China;
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
| | - Yusi Wu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (Y.W.); (J.W.)
- NUIST-UoR International Research Institute, Reading Academy, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jin Wang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (Y.W.); (J.W.)
| | - Fuhai Gao
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
- Correspondence: (Z.L.); (J.X.); (L.Y.); Tel.: +86-1056981363 (Z.L.); +86-1056981279 (J.X.); +86-1068912650 (L.Y.)
| | - Jianing Xi
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
- Correspondence: (Z.L.); (J.X.); (L.Y.); Tel.: +86-1056981363 (Z.L.); +86-1056981279 (J.X.); +86-1068912650 (L.Y.)
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.M.); (Z.F.)
- Correspondence: (Z.L.); (J.X.); (L.Y.); Tel.: +86-1056981363 (Z.L.); +86-1056981279 (J.X.); +86-1068912650 (L.Y.)
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.M.); (Z.F.)
| |
Collapse
|
45
|
Omar NA, Kumar J, Teoh SL. Neurotrophin-3 and neurotrophin-4: The unsung heroes that lies behind the meninges. Neuropeptides 2022; 92:102226. [PMID: 35030377 DOI: 10.1016/j.npep.2022.102226] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/06/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022]
Abstract
Neurotrophin is a growth factor that regulates the development and repair of the nervous system. From all factors, two pioneer groups, the nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF), have been widely explored for their role in disease pathogenesis and potential use as therapeutic agents. Nonetheless, neurotrophin-3 (NT3) and neurotrophin-4 (NT4) also have promising potential, albeit less popular than their counterparts. This review focuses on the latter two factors and their roles in the pathogenesis of brain disorders and potential therapies. An extensive literature search of NT3 and NT4 with their receptors, the TrkB and TrkC on the nervous system were extracted and analyzed. We found that NT3 and NT4 are not only involved in the pathogenesis of some neurodegenerative diseases, but also have promising therapeutic potential on injury- and vascular-related nervous system disease, neuropsychiatry, neurodegeneration and peripheral nerve diseases. In conclusion, the role of NT3 and NT4 should be further emphasized, and more studies could be explored on the potential use of these neurotrophins in the human study.
Collapse
Affiliation(s)
- Noor Azzizah Omar
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia; Department of Medical Sciences, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, 71800 Nilai, Negeri Sembilan, Malaysia.
| | - Jaya Kumar
- Department of Physiology, Universiti Kebangsaan Malaysia Medical Centre, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia.
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia.
| |
Collapse
|
46
|
Bioactive injectable hydrogels for on demand molecule/cell delivery and for tissue regeneration in the central nervous system. Acta Biomater 2022; 140:88-101. [PMID: 34852302 DOI: 10.1016/j.actbio.2021.11.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022]
Abstract
Currently there are no potential curative therapies that can improve the central nervous system (CNS) regeneration after traumatic injuries or diseases. Indeed, the regeneration of CNS is greatly impaired by limited drug penetration across the blood brain barrier (BBB), poor drug targeting, deficient progenitor neural cells and limited proliferation of mature neural cells. To overcome these limitations, bioengineered injectable hydrogels in combination with drug and cell therapy have been proposed to mimic the complexity of the CNS microenvironment and architecture. Additionally, to enhance relevant CNS regeneration, proper biophysical and biochemical cues are needed. Recently, great efforts have been devoted to tailor stimuli-responsive hydrogels as novel carrier systems which are able to guide neural tissue regeneration. This review provides an extensive overview on the most promising injectable hydrogels for neural tissue engineering. A special emphasis is made to highlight the ability of these hydrogels to deliver bioactive compounds/cells upon the exposure to internal and external stimuli. Bioactive injectable hydrogels have a broad application in central nervous system's (CNS) regeneration. This review gives an overview of the latest pioneering approaches in CNS recovery using stimuli-responsive hydrogels for several neurodegenerative disorders. STATEMENT OF SIGNIFICANCE: This review summarizes the latest innovations on bioactive injectable hydrogels, focusing on tailoring internal/external stimuli-responsive hydrogels for the new injectable systems design, able to guide neural tissue response. The purpose is to highlight the advantages and the limitations of thermo-responsive, photo responsive, magnetic responsive, electric responsive, ultrasound responsive and enzymes-triggered injectable hydrogels in developing customizable neurotherapies. We believe that this comprehensive review will help in identifying the strengths and gaps in the existing literature and to further support the use of injectable hydrogels in stimulating CNS regeneration.
Collapse
|
47
|
Inorganic Nanomaterial for Biomedical Imaging of Brain Diseases. Molecules 2021; 26:molecules26237340. [PMID: 34885919 PMCID: PMC8658999 DOI: 10.3390/molecules26237340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 01/10/2023] Open
Abstract
In the past few decades, brain diseases have taken a heavy toll on human health and social systems. Magnetic resonance imaging (MRI), photoacoustic imaging (PA), computed tomography (CT), and other imaging modes play important roles in disease prevention and treatment. However, the disadvantages of traditional imaging mode, such as long imaging time and large noise, limit the effective diagnosis of diseases, and reduce the precision treatment of diseases. The ever-growing applications of inorganic nanomaterials in biomedicine provide an exciting way to develop novel imaging systems. Moreover, these nanomaterials with special physicochemical characteristics can be modified by surface modification or combined with functional materials to improve targeting in different diseases of the brain to achieve accurate imaging of disease regions. This article reviews the potential applications of different types of inorganic nanomaterials in vivo imaging and in vitro detection of different brain disease models in recent years. In addition, the future trends, opportunities, and disadvantages of inorganic nanomaterials in the application of brain diseases are also discussed. Additionally, recommendations for improving the sensitivity and accuracy of inorganic nanomaterials in screening/diagnosis of brain diseases.
Collapse
|
48
|
Nelson DW, Gilbert RJ. Extracellular Matrix-Mimetic Hydrogels for Treating Neural Tissue Injury: A Focus on Fibrin, Hyaluronic Acid, and Elastin-Like Polypeptide Hydrogels. Adv Healthc Mater 2021; 10:e2101329. [PMID: 34494398 PMCID: PMC8599642 DOI: 10.1002/adhm.202101329] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Neurological and functional recovery is limited following central nervous system injury and severe injury to the peripheral nervous system. Extracellular matrix (ECM)-mimetic hydrogels are of particular interest as regenerative scaffolds for the injured nervous system as they provide 3D bioactive interfaces that modulate cellular response to the injury environment and provide naturally degradable scaffolding for effective tissue remodeling. In this review, three unique ECM-mimetic hydrogels used in models of neural injury are reviewed: fibrin hydrogels, which rely on a naturally occurring enzymatic gelation, hyaluronic acid hydrogels, which require chemical modification prior to chemical crosslinking, and elastin-like polypeptide (ELP) hydrogels, which exhibit a temperature-sensitive gelation. The hydrogels are reviewed by summarizing their unique biological properties, their use as drug depots, and their combination with other biomaterials, such as electrospun fibers and nanoparticles. This review is the first to focus on these three ECM-mimetic hydrogels for their use in neural tissue engineering. Additionally, this is the first review to summarize the use of ELP hydrogels for nervous system applications. ECM-mimetic hydrogels have shown great promise in preclinical models of neural injury and future advancements in their design and use can likely lead to viable treatments for patients with neural injury.
Collapse
Affiliation(s)
- Derek W Nelson
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| |
Collapse
|
49
|
Samal J, Segura T. Injectable biomaterial shuttles for cell therapy in stroke. Brain Res Bull 2021; 176:25-42. [PMID: 34391821 PMCID: PMC8524625 DOI: 10.1016/j.brainresbull.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023]
Abstract
Ischemic stroke (IS) is the leading cause of disability and contributes to a significant socio-economic cost in the western world. Brain repair strategies investigated in the pre-clinical models include the delivery of drug or cell-based therapeutics; which is hindered by the complex anatomy and functional organization of the brain. Biomaterials can be instrumental in alleviating some of these challenges by providing a structural support, localization, immunomodulation and/or modulating cellular cross-talk in the brain. This review addresses the significance of and challenges associated with cell therapy in an ischemic brain. This is followed by a detailed insight into the biomaterial-based delivery systems which have been designed to provide sustained trophic factor delivery for endogenous repair and to support transplanted cell survival and integration. A biomaterial intervention uses a multifaceted approach in enhancing the survival and engraftment of cells during transplantation and this has driven them as potential candidates for the treatment of IS. The biological processes that are activated as a response to the biomaterials and how to modulate them is one of the key factors contributing to the success of the biomaterial-based therapeutic approach. Future perspectives highlight the need of a combinative approach of merging the material design with disease biology to fabricate effective biomaterial-based intervention of stroke.
Collapse
Affiliation(s)
- Juhi Samal
- Department of Biomedical Engineering, 534 Research Drive, Durham, NC 27708, United States
| | - Tatiana Segura
- Department of Biomedical Engineering, 534 Research Drive, Durham, NC 27708, United States.
| |
Collapse
|
50
|
Shabani Z, Rahbarghazi R, Karimipour M, Ghadiri T, Salehi R, Sadigh‐Eteghad S, Farhoudi M. Transplantation of bioengineered Reelin-loaded PLGA/PEG micelles can accelerate neural tissue regeneration in photothrombotic stroke model of mouse. Bioeng Transl Med 2021; 7:e10264. [PMID: 35111956 PMCID: PMC8780906 DOI: 10.1002/btm2.10264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/20/2021] [Accepted: 10/16/2021] [Indexed: 01/09/2023] Open
Abstract
Ischemic stroke is characterized by extensive neuronal loss, glial scar formation, neural tissue degeneration that leading to profound changes in the extracellular matrix, neuronal circuitry, and long-lasting functional disabilities. Although transplanted neural stem cells (NSCs) can recover some of the functional deficit after stroke, retrieval is not complete and repair of lost tissue is negligible. Therefore, the current challenge is to use the combination of NSCs with suitably enriched biomaterials to retain these cells within the infarct cavity and accelerate the formation of a de novo tissue. This study aimed to test the regenerative potential of polylactic-co-glycolic acid-polyethylene glycol (PLGA-PEG) micelle biomaterial enriched with Reelin and embryonic NSCs on photothrombotic stroke model of mice to gain appropriate methods in tissue engineering. For this purpose, two sets of experiments, either in vitro or in vivo models, were performed. In vitro analyses exhibited PLGA-PEG plus Reelin-induced proliferation rate (Ki-67+ NSCs) and neurite outgrowth (axonization and dendritization) compared to PLGA-PEG + NSCs and Reelin + NSCs groups (p < 0.05). Besides, neural differentiation (Map-2+ cells) was high in NSCs cultured in the presence of Reelin-loaded PLGA-PEG micelles (p < 0.05). Double immunofluorescence staining showed that Reelin-loaded PLGA-PEG micelles increased the number of migrating neural progenitor cells (DCX+ cells) and mature neurons (NeuN+ cells) around the lesion site compared to the groups received PLGA-PEG and Reelin alone after 1 month (p < 0.05). Immunohistochemistry results showed that the PLGA/PEG plus Reelin significantly decreased the astrocytic gliosis and increased local angiogenesis (vWF-positive cells) relative to the other groups. These changes led to the reduction of cavity size in the Reelin-loaded PLGA-PEG+NSCs group. Neurobehavioral tests indicated Reelin-loaded PLGA-PEG+NSCs promoted neurological outcome and functional recovery (p < 0.05). These results indicated that Reelin-loaded PLGA-PEG is capable of promoting NSCs dynamic growth, neuronal differentiation, and local angiogenesis following ischemic injury via providing a desirable microenvironment. These features can lead to neural tissue regeneration and functional recovery.
Collapse
Affiliation(s)
- Zahra Shabani
- Neurosciences Research Center (NSRC)Tabriz University of Medical SciencesTabrizIran,Department of Neurosciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Reza Rahbarghazi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran,Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Mohammad Karimipour
- Department of Neurosciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran,Department of Anatomical Sciences, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Tahereh Ghadiri
- Department of Neurosciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Saeed Sadigh‐Eteghad
- Neurosciences Research Center (NSRC)Tabriz University of Medical SciencesTabrizIran
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC)Tabriz University of Medical SciencesTabrizIran
| |
Collapse
|