1
|
Huang R, Pang Q, Zheng L, Lin J, Li H, Wan L, Wang T. Cholesterol metabolism: physiological versus pathological aspects in intracerebral hemorrhage. Neural Regen Res 2025; 20:1015-1030. [PMID: 38989934 PMCID: PMC11438341 DOI: 10.4103/nrr.nrr-d-23-01462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/19/2023] [Accepted: 01/27/2024] [Indexed: 07/12/2024] Open
Abstract
Cholesterol is an important component of plasma membranes and participates in many basic life functions, such as the maintenance of cell membrane stability, the synthesis of steroid hormones, and myelination. Cholesterol plays a key role in the establishment and maintenance of the central nervous system. The brain contains 20% of the whole body's cholesterol, 80% of which is located within myelin. A huge number of processes (e.g., the sterol regulatory element-binding protein pathway and liver X receptor pathway) participate in the regulation of cholesterol metabolism in the brain via mechanisms that include cholesterol biosynthesis, intracellular transport, and efflux. Certain brain injuries or diseases involving crosstalk among the processes above can affect normal cholesterol metabolism to induce detrimental consequences. Therefore, we hypothesized that cholesterol-related molecules and pathways can serve as therapeutic targets for central nervous system diseases. Intracerebral hemorrhage is the most severe hemorrhagic stroke subtype, with high mortality and morbidity. Historical cholesterol levels are associated with the risk of intracerebral hemorrhage. Moreover, secondary pathological changes after intracerebral hemorrhage are associated with cholesterol metabolism dysregulation, such as neuroinflammation, demyelination, and multiple types of programmed cell death. Intracellular cholesterol accumulation in the brain has been found after intracerebral hemorrhage. In this paper, we review normal cholesterol metabolism in the central nervous system, the mechanisms known to participate in the disturbance of cholesterol metabolism after intracerebral hemorrhage, and the links between cholesterol metabolism and cell death. We also review several possible and constructive therapeutic targets identified based on cholesterol metabolism to provide cholesterol-based perspectives and a reference for those interested in the treatment of intracerebral hemorrhage.
Collapse
Affiliation(s)
- Ruoyu Huang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Qiuyu Pang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Lexin Zheng
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Jiaxi Lin
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Hanxi Li
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Lingbo Wan
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Tao Wang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Chen W, Liang C, Peng S, Bao S, Xue F, Lian X, Liu Y, Wang G. Aquaporin-4 activation facilitates glymphatic system function and hematoma clearance post-intracerebral hemorrhage. Glia 2025; 73:368-380. [PMID: 39530196 DOI: 10.1002/glia.24639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Efficient clearance of hematomas is crucial for improving clinical outcomes in patients with intracerebral hemorrhage (ICH). The glymphatic system, facilitated by aquaporin-4 (AQP4), plays a crucial role in cerebrospinal fluid (CSF) entry and metabolic waste clearance. This study examined the role of the glymphatic system in ICH pathology, with a focus on AQP4. Collagenase-induced ICH models were established, with AQP4 expression regulated through mifepristone as an agonist, TGN-020 as an inhibitor, and Aqp4 gene knockout. Fluorescence tracing and multimodal magnetic resonance imaging (MRI) were employed to observe glymphatic system functionality, hematoma, and edema volumes. Neurological deficit scoring was performed using the modified Garcia Scale. AQP4 expression was quantified using RT-qPCR and Western blotting, and cellular localization was explored using immunofluorescence. The brain tissue sections were examined for neuronal morphology, degenerative changes, and iron deposition. Three days post-ICH, the AQP4 agonist group showed increased AQP4 protein expression and perivascular polarization, decreased hemoglobin levels, and reduced iron deposition. Conversely, the inhibition group exhibited contrasting trends. AQP4 activation improved glymphatic system function, leading to a wider distribution, improved neurological function, and reduced hematoma. Pharmacological inhibition and genetic knockout of AQP4 have opposing effects. The glymphatic system, facilitated by AQP4, plays a crucial role in hematoma clearance following cerebral hemorrhage. Upregulation of AQP4 improves glymphatic system function, facilitates hematoma clearance, and promotes brain tissue recovery.
Collapse
Affiliation(s)
- Wenchao Chen
- Department of Neurology, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chuntian Liang
- Department of Neurology, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Neurology, Sanya Central Hospital (Hainan Third People's Hospital), Hainan Medical University, Sanya, Hainan, China
| | - Shasha Peng
- Department of Pharmacology, School of Basical Medical Sciences, Shanxi Medical University, Taiyuan, China
- Department of Pharmacy, Sanya Central Hospital (Hainan Third People's Hospital), Hainan Medical University, Sanya, China
| | - Shuangjin Bao
- Department of Pathology and Pathophysiology, Basic Medical College, Shanxi Medical University, Taiyuan, China
- Department of Pathology, West China Fourth Hospital, Chengdu, China
| | - Fang Xue
- Department of Neurology, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xia Lian
- Department of Neurology, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yinghong Liu
- Department of Neurology, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Gaiqing Wang
- Department of Neurology, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Neurology, Sanya Central Hospital (Hainan Third People's Hospital), Hainan Medical University, Sanya, Hainan, China
| |
Collapse
|
3
|
Wang YY, Li K, Wang JJ, Hua W, Liu Q, Sun YL, Qi JP, Song YJ. Bone marrow-derived mesenchymal stem cell-derived exosome-loaded miR-129-5p targets high-mobility group box 1 attenuates neurological-impairment after diabetic cerebral hemorrhage. World J Diabetes 2024; 15:1979-2001. [PMID: 39280179 PMCID: PMC11372641 DOI: 10.4239/wjd.v15.i9.1979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Diabetic intracerebral hemorrhage (ICH) is a serious complication of diabetes. The role and mechanism of bone marrow mesenchymal stem cell (BMSC)-derived exosomes (BMSC-exo) in neuroinflammation post-ICH in patients with diabetes are unknown. In this study, we investigated the regulation of BMSC-exo on hyperglycemia-induced neuroinflammation. AIM To study the mechanism of BMSC-exo on nerve function damage after diabetes complicated with cerebral hemorrhage. METHODS BMSC-exo were isolated from mouse BMSC media. This was followed by transfection with microRNA-129-5p (miR-129-5p). BMSC-exo or miR-129-5p-overexpressing BMSC-exo were intravitreally injected into a diabetes mouse model with ICH for in vivo analyses and were cocultured with high glucose-affected BV2 cells for in vitro analyses. The dual luciferase test and RNA immunoprecipitation test verified the targeted binding relationship between miR-129-5p and high-mobility group box 1 (HMGB1). Quantitative polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay were conducted to assess the levels of some inflammation factors, such as HMGB1, interleukin 6, interleukin 1β, toll-like receptor 4, and tumor necrosis factor α. Brain water content, neural function deficit score, and Evans blue were used to measure the neural function of mice. RESULTS Our findings indicated that BMSC-exo can promote neuroinflammation and functional recovery. MicroRNA chip analysis of BMSC-exo identified miR-129-5p as the specific microRNA with a protective role in neuroinflammation. Overexpression of miR-129-5p in BMSC-exo reduced the inflammatory response and neurological impairment in comorbid diabetes and ICH cases. Furthermore, we found that miR-129-5p had a targeted binding relationship with HMGB1 mRNA. CONCLUSION We demonstrated that BMSC-exo can reduce the inflammatory response after ICH with diabetes, thereby improving the neurological function of the brain.
Collapse
Affiliation(s)
- Yue-Ying Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ke Li
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jia-Jun Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Wei Hua
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yu-Lan Sun
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ji-Ping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yue-Jia Song
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
4
|
Wang YY, Li K, Wang JJ, Hua W, Liu Q, Sun YL, Qi JP, Song YJ. Bone marrow-derived mesenchymal stem cell-derived exosome-loaded miR-129-5p targets high-mobility group box 1 attenuates neurological-impairment after diabetic cerebral hemorrhage. World J Diabetes 2024; 15:1978-2000. [DOI: 10.4239/wjd.v15.i9.1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Diabetic intracerebral hemorrhage (ICH) is a serious complication of diabetes. The role and mechanism of bone marrow mesenchymal stem cell (BMSC)-derived exosomes (BMSC-exo) in neuroinflammation post-ICH in patients with diabetes are unknown. In this study, we investigated the regulation of BMSC-exo on hyperglycemia-induced neuroinflammation.
AIM To study the mechanism of BMSC-exo on nerve function damage after diabetes complicated with cerebral hemorrhage.
METHODS BMSC-exo were isolated from mouse BMSC media. This was followed by transfection with microRNA-129-5p (miR-129-5p). BMSC-exo or miR-129-5p-overexpressing BMSC-exo were intravitreally injected into a diabetes mouse model with ICH for in vivo analyses and were cocultured with high glucose-affected BV2 cells for in vitro analyses. The dual luciferase test and RNA immunoprecipitation test verified the targeted binding relationship between miR-129-5p and high-mobility group box 1 (HMGB1). Quantitative polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay were conducted to assess the levels of some inflammation factors, such as HMGB1, interleukin 6, interleukin 1β, toll-like receptor 4, and tumor necrosis factor α. Brain water content, neural function deficit score, and Evans blue were used to measure the neural function of mice.
RESULTS Our findings indicated that BMSC-exo can promote neuroinflammation and functional recovery. MicroRNA chip analysis of BMSC-exo identified miR-129-5p as the specific microRNA with a protective role in neuroinflammation. Overexpression of miR-129-5p in BMSC-exo reduced the inflammatory response and neurological impairment in comorbid diabetes and ICH cases. Furthermore, we found that miR-129-5p had a targeted binding relationship with HMGB1 mRNA.
CONCLUSION We demonstrated that BMSC-exo can reduce the inflammatory response after ICH with diabetes, thereby improving the neurological function of the brain.
Collapse
Affiliation(s)
- Yue-Ying Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ke Li
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jia-Jun Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Wei Hua
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yu-Lan Sun
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ji-Ping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yue-Jia Song
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
5
|
Pan S, Hale AT, Lemieux ME, Raval DK, Garton TP, Sadler B, Mahaney KB, Strahle JM. Iron homeostasis and post-hemorrhagic hydrocephalus: a review. Front Neurol 2024; 14:1287559. [PMID: 38283681 PMCID: PMC10811254 DOI: 10.3389/fneur.2023.1287559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024] Open
Abstract
Iron physiology is regulated by a complex interplay of extracellular transport systems, coordinated transcriptional responses, and iron efflux mechanisms. Dysregulation of iron metabolism can result in defects in myelination, neurotransmitter synthesis, and neuronal maturation. In neonates, germinal matrix-intraventricular hemorrhage (GMH-IVH) causes iron overload as a result of blood breakdown in the ventricles and brain parenchyma which can lead to post-hemorrhagic hydrocephalus (PHH). However, the precise mechanisms by which GMH-IVH results in PHH remain elusive. Understanding the molecular determinants of iron homeostasis in the developing brain may lead to improved therapies. This manuscript reviews the various roles iron has in brain development, characterizes our understanding of iron transport in the developing brain, and describes potential mechanisms by which iron overload may cause PHH and brain injury. We also review novel preclinical treatments for IVH that specifically target iron. Understanding iron handling within the brain and central nervous system may provide a basis for preventative, targeted treatments for iron-mediated pathogenesis of GMH-IVH and PHH.
Collapse
Affiliation(s)
- Shelei Pan
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Andrew T. Hale
- Department of Neurosurgery, University of Alabama at Birmingham School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mackenzie E. Lemieux
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Dhvanii K. Raval
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Thomas P. Garton
- Department of Neurology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Brooke Sadler
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Hematology and Oncology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Kelly B. Mahaney
- Department of Neurosurgery, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Jennifer M. Strahle
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Orthopedic Surgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
6
|
Chen B, Di B. Endogenous Ligands of TLR4 in Microglia: Potential Targets for Related Neurological Diseases. Curr Drug Targets 2024; 25:953-970. [PMID: 39234911 DOI: 10.2174/0113894501316051240821060249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Chronic inflammation mediated by microglia is a cause of some neuroinflammatory diseases. TLR4, a natural immune receptor on microglia, plays an important role in the occurrence of inflammation and the process of diseases. TLR4 can be activated by a variety of ligands to trigger inflammatory responses, including endogenous ligands HMGB1, S100A8/9, Heme, and Fetuin-A. As ligands derived from the body itself, they have the ability to bind directly to TLR4 and can be used as inducers of aseptic inflammation. In the past 20 years, targeting ligands rather than receptors has become an emerging therapeutic strategy for the treatment of diseases, so understanding the relationship between microglia, TLR4, TLR4 ligands, and corresponding diseases may have new implications for the treatment of diseases. In the article, we will discuss the TLR4 and the endogenous substances that can activate the TLR4 signaling pathway and present literature support for their role in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Bo Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P.R. China
- Office of China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, P.R. China
| | - Bin Di
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P.R. China
- Office of China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, P.R. China
| |
Collapse
|
7
|
Hua W, Ma S, Pang Y, Liu Q, Wang Y, Liu Z, Zhao N, Ren N, Jin S, Wang B, Song Y, Qi J. Intracerebral Hemorrhage-Induced Brain Injury: the Role of Lysosomal-Associated Transmembrane Protein 5. Mol Neurobiol 2023; 60:7060-7079. [PMID: 37525083 DOI: 10.1007/s12035-023-03484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Intracerebral hemorrhage (ICH) is a lethal stroke with high mortality or disability. However, effective therapy for ICH damage is generally lacking. Previous investigations have suggested that lysosomal protein transmembrane 5 (LAPTM5) is involved in various pathological processes, including autophagy, apoptosis, and inflammation. In this study, we aimed to identify the expression and functions of LAPTM5 in collagenase-induced ICH mouse models and hemoglobin-induced cell models. We found that LAPTM5 was highly expressed in brain tissues around the hematoma, and double immunostaining studies showed that LAPTM5 was co-expressed with microglia cells, neurons, and astrocytes. Following ICH, the mice presented increased brain edema, blood-brain barrier permeability, and neurological deficits, while pathological symptoms were alleviated after the LAPTM5 knockdown. Adeno-associated virus 9-mediated downregulation of LAPTM5 also improves ICH-induced secondary cerebral damage, including neuronal degeneration, the polarization of M1-like microglia, and inflammatory cascades. Furthermore, LAPTM5 promoted activation of the nuclear factor kappa-B (NF-κB) pathway in response to neuroinflammation. Further investigations indicated that brain injury improved by LAPTM5 knockdown was further exacerbated after the overexpression of receptor-interacting protein kinase 1 (RIP1), which is revealed to trigger the NF-κB pathway. In vitro experiments demonstrated that LAPTM5 silencing inhibited hemoglobin-induced cell function and confirmed regulation between RIP1 and LAPTM5. In conclusion, the present study indicates that LAPTM5 may act as a positive regulator in the context of ICH by modulating the RIP1/NF-κB pathway. Thus, it may be a candidate gene for further study of molecular or therapeutic targets.
Collapse
Affiliation(s)
- Wei Hua
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shuainan Ma
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuxin Pang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yueying Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhiyi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Nan Zhao
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Naixin Ren
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Sinan Jin
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Benshuai Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuejia Song
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Jiping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
8
|
Xie Y, He W, Ma L, Ren R, Yang S, Lu Q. Endothelial TREM-1 receptor regulates the blood-brain barrier integrity after intracerebral hemorrhage in mice via SYK/β-catenin signaling. CNS Neurosci Ther 2023; 29:3228-3238. [PMID: 37170484 PMCID: PMC10580358 DOI: 10.1111/cns.14255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a high mortality and disability stroke subtype. Destruction of the blood-brain barrier (BBB) is a crucial contributor to brain edema and neurological deficit after ICH. Triggering receptor expressed on myeloid cells 1 (TREM-1) has been reported to be expressed in endothelial cells, but its role in ICH remains unclear. This study aims to evaluate the role of TREM-1 on BBB permeability after ICH in mice. METHODS Two hundred and forty-two CD1 mice were used in this study. The ICH model was established by collagenase injection. LP17 was administered intranasally at 2 or 8 h after ICH to inhibit TREM-1. To explore the underlying mechanism, SYK activation CRISPR was administered intracerebroventricularly with LP17, and Anti-mouse TREM-1 rat IgG2a (a specific TREM-1 agonist) was injected intracerebroventricularly with R406 (a specific SYK inhibitor) intraperitoneally. Neurobehavioral outcome, brain water content, BBB permeability, and protein expression were evaluated. RESULTS The expression level of the TREM-1 receptor increased rapidly as early as 6 h after ICH, and it was mainly expressed on the endotheliocytes in the neurovascular unit. Early and delayed administration of LP17 significantly decreased brain edema and improved neurobehavioral outcomes at 24 h after ICH. LP17 reduced the BBB permeability by increasing β-catenin, claudin-5 and ZO-1 expression. Furthermore, SYK activation CRISPR abolished the beneficial effect of LP17 on the expression of the above junction molecules. Meanwhile, R406 reversed the impact of the TREM-1 activator on the downregulation of β-catenin, claudin-5 and ZO-1 expression. CONCLUSIONS This study demonstrated that TREM-1 deteriorated BBB permeability via modulating the expression of interendothelial junction molecules after ICH, and this regulation is partly mediated by the SYK/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yonglin Xie
- Department of Emergency, Sir Run Run Shaw HospitalZhejiang University, School of MedicineHangzhouChina
| | - Wei He
- Department of Pharmacy, Second Affiliated HospitalZhejiang University, School of MedicineHangzhouChina
| | - Li Ma
- Department of Neurosurgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Reng Ren
- Department of Neurointensive Care Unit, The Second Affiliated HospitalZhejiang University, School of MedicineHangzhouChina
| | - Shuxu Yang
- Department of Neurosurgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Qin Lu
- Department of Neurosurgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
9
|
Alabdulaali B, Al-rashed F, Al-Onaizi M, Kandari A, Razafiarison J, Tonui D, Williams MR, Blériot C, Ahmad R, Alzaid F. Macrophages and the development and progression of non-alcoholic fatty liver disease. Front Immunol 2023; 14:1195699. [PMID: 37377968 PMCID: PMC10291618 DOI: 10.3389/fimmu.2023.1195699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The liver is the site of first pass metabolism, detoxifying and metabolizing blood arriving from the hepatic portal vein and hepatic artery. It is made up of multiple cell types, including macrophages. These are either bona fide tissue-resident Kupffer cells (KC) of embryonic origin, or differentiated from circulating monocytes. KCs are the primary immune cells populating the liver under steady state. Liver macrophages interact with hepatocytes, hepatic stellate cells, and liver sinusoidal endothelial cells to maintain homeostasis, however they are also key contributors to disease progression. Generally tolerogenic, they physiologically phagocytose foreign particles and debris from portal circulation and participate in red blood cell clearance. However as immune cells, they retain the capacity to raise an alarm to recruit other immune cells. Their aberrant function leads to the development of non-alcoholic fatty liver disease (NAFLD). NAFLD refers to a spectrum of conditions ranging from benign steatosis of the liver to steatohepatitis and cirrhosis. In NAFLD, the multiple hit hypothesis proposes that simultaneous influences from the gut and adipose tissue (AT) generate hepatic fat deposition and that inflammation plays a key role in disease progression. KCs initiate the inflammatory response as resident immune effectors, they signal to neighbouring cells and recruit monocytes that differentiated into recruited macrophages in situ. Recruited macrophages are central to amplifying the inflammatory response and causing progression of NAFLD to its fibro-inflammatory stages. Given their phagocytic capacity and their being instrumental in maintaining tissue homeostasis, KCs and recruited macrophages are fast-becoming target cell types for therapeutic intervention. We review the literature in the field on the roles of these cells in the development and progression of NAFLD, the characteristics of patients with NAFLD, animal models used in research, as well as the emerging questions. These include the gut-liver-brain axis, which when disrupted can contribute to decline in function, and a discussion on therapeutic strategies that act on the macrophage-inflammatory axis.
Collapse
Affiliation(s)
- Bader Alabdulaali
- Dasman Diabetes Institute, Kuwait City, Kuwait
- Ministry of Health, Kuwait City, Kuwait
| | | | - Mohammed Al-Onaizi
- Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Anwar Kandari
- Dasman Diabetes Institute, Kuwait City, Kuwait
- Ministry of Health, Kuwait City, Kuwait
| | - Joanna Razafiarison
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
| | - Dorothy Tonui
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
| | | | - Camille Blériot
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
- Inserm U1015, Gustave Roussy, Villejuif, France
| | | | - Fawaz Alzaid
- Dasman Diabetes Institute, Kuwait City, Kuwait
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
| |
Collapse
|
10
|
Fu P, Zhang M, Wu M, Zhou W, Yin X, Chen Z, Dan C. Research progress of endogenous hematoma absorption after intracerebral hemorrhage. Front Neurol 2023; 14:1115726. [PMID: 36970539 PMCID: PMC10036389 DOI: 10.3389/fneur.2023.1115726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/16/2023] [Indexed: 03/12/2023] Open
Abstract
Non-traumatic intraparenchymal brain hemorrhage is referred to as intracerebral hemorrhage (ICH). Although ICH is associated with a high rate of disability and case fatality, active intervention can significantly lower the rate of severe disability. Studies have shown that the speed of hematoma clearance after ICH determines the patient's prognosis. Following ICH, depending on the hematoma volume and mass effect, either surgical- or medication-only conservative treatment is chosen. The goal of promoting endogenous hematoma absorption is more relevant because surgery is only appropriate for a small percentage of patients, and open surgery can cause additional trauma to patients. The primary method of removing hematoma after ICH in the future will involve understanding how to produce and manage macrophage/microglial endogenous phagocytic hematomas. Therefore, it is necessary to elucidate the regulatory mechanisms and key targets for clinical purposes.
Collapse
Affiliation(s)
- Peijie Fu
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Manqing Zhang
- Medical College of Jiujiang University, Jiujiang, Jiangxi, China
| | - Moxin Wu
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Weixin Zhou
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Xiaoping Yin
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Zhiying Chen
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Chuanjun Dan
- Emergency Department, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
11
|
Liang C, Liu L, Bao S, Yao Z, Bai Q, Fu P, Liu X, Zhang JH, Wang G. Neuroprotection by Nrf2 via modulating microglial phenotype and phagocytosis after intracerebral hemorrhage. Heliyon 2023; 9:e13777. [PMID: 36852060 PMCID: PMC9957781 DOI: 10.1016/j.heliyon.2023.e13777] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/02/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Activated microglia are divided into pro-inflammatory and anti-inflammatory functional states. In anti-inflammatory state, activated microglia contribute to phagocytosis, neural repair and anti-inflammation. Nrf2 as a major endogenous regulator in hematoma clearance after intracerebral hemorrhage (ICH) has received much attention. This study aims to investigate the mechanism underlying Nrf2-mediated regulation of microglial phenotype and phagocytosis in hematoma clearance after ICH. In vitro experiments, BV-2 cells were assigned to normal group and administration group (Nrf2-siRNA, Nrf2 agonists Monascin and Xuezhikang). In vivo experiments, mice were divided into 5 groups: sham, ICH + vehicle, ICH + Nrf2-/-, ICH + Monascin and ICH + Xuezhikang. In vitro and in vivo, 72 h after administration of Monascin and Xuezhikang, the expression of Nrf2, inflammatory-associated factors such as Trem1, TNF-α and CD80, anti-inflammatory, neural repair and phagocytic associated factors such as Trem2, CD206 and BDNF were analyzed by the Western blot method. In vitro, fluorescent latex beads or erythrocytes were uptaken by BV-2 cells in order to study microglial phagocytic ability. In vivo, hemoglobin levels reflect the hematoma volume. In this study, Nrf2 agonists (Monascin and Xuezhikang) upregulated the expression of Trem2, CD206 and BDNF while decreased the expression of Trem1, TNF-α and CD80 both in vivo and in vitro. At the same time, after Monascin and Xuezhikang treatment, the phagocytic capacity of microglia increased in vitro, neurological deficits improved and hematoma volume lessened in vivo. These results were reversed in the Nrf2-siRNA or the Nrf2-/- mice. All these results indicated that Nrf2 enhanced hematoma clearance and neural repair, improved neurological outcomes through enhancing microglial phagocytosis and alleviating neuroinflammation.
Collapse
Key Words
- BDNF, Brain-derived neurotrophic factor
- CNS, Central nervous system
- DAMPs, Danger-associated molecular patterns
- HO-1,Heme oxygenase-1, Hp,Haptoglobin
- Hematoma clearance
- ICH, Intracerebral hemorrhage
- IFNγ,Interferon-gamma, IL-1β,Interleukin 1β
- Intracerebral hemorrhage
- MMP, Matrix metalloproteasesNF-κB,Nuclear factor-kappa light chain enhancer of activated B cells
- Microglial phenotype
- NO, Nitric oxide
- Nrf2
- Nrf2, Nuclear factor erythroid 2-related factor 2
- PPAR-ɤ, Peroxidase proliferator-activated receptor gamma
- Phagocytosis
- TLR4, Toll-like receptor 4
- TNFα, Tumor necrosis factor-α
- Trem1, Triggering receptors I expressed on myeloid cells
- Trem2, Triggering receptors II expressed on myeloid cells
Collapse
Affiliation(s)
- Chuntian Liang
- Department of Neurology, Shanxi Medical University, Taiyuan 030000, China
| | - Lirong Liu
- Department of Neurology, Shanxi Medical University, Taiyuan 030000, China.,People's Hospital of Yaodu District, Linfen 041000, China
| | - Shuangjin Bao
- Department of Pathology and Pathophysiology, Basic Medical College, Shanxi Medical University, Taiyuan 030000, China
| | - Zhenjia Yao
- Department of Neurology, Shanxi Medical University, Taiyuan 030000, China
| | - Qinqin Bai
- Department of Neurology, Shanxi Medical University, Taiyuan 030000, China
| | - Pengcheng Fu
- Department of Neurology, Shenzhen Longhua District Central Hospital, Shenzhen 518000, China
| | - Xiangyu Liu
- Department of Neurology, Shenzhen Longhua District Central Hospital, Shenzhen 518000, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Gaiqing Wang
- Department of Neurology, Shanxi Medical University, Taiyuan 030000, China.,Department of Neurology, Sanya Central Hospital (Haian Third People's Hospital), Hainan Medical University, Sanya 572000, China
| |
Collapse
|
12
|
Zheng Y, Tan X, Cao S. The Critical Role of Erythrolysis and Microglia/Macrophages in Clot Resolution After Intracerebral Hemorrhage: A Review of the Mechanisms and Potential Therapeutic Targets. Cell Mol Neurobiol 2023; 43:59-67. [PMID: 34981286 DOI: 10.1007/s10571-021-01175-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 11/27/2021] [Indexed: 01/07/2023]
Abstract
Intracerebral hemorrhage (ICH) is a common cerebrovascular disorder with high morbidity and mortality. Secondary brain injury after ICH, which is initiated by multiple hemolytic products during erythrolysis, has been identified as a critical factor accounting for the poor prognosis of ICH patients. Clot resolution and hematoma clearance occur immediately after ICH via erythrolysis and erythrophagocytosis. During this process, erythrolysis after ICH results in the release of hemoglobin and products of degradation along with rapid morphological changes in red blood cells (RBCs). Phagocytosis of deformed erythrocytes and products of degradation by microglia/macrophages accelerates hematoma clearance, which turns out to be neuroprotective. Thus, a better understanding of the mechanism of erythrolysis and the role of microglia/macrophages after ICH is urgently needed. In this review, the current research progresses on the underlying mechanism of erythrolysis and erythrophagocytosis, as well as several useful tools for the quantification of erythrolysis-induced brain injury, are summarized, providing potential intervention targets and possible treatment strategies for ICH patients.
Collapse
Affiliation(s)
- Yonghe Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Tan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shenglong Cao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
13
|
Yang CJ, Li X, Feng XQ, Chen Y, Feng JG, Jia J, Wei JC, Zhou J. Activation of LRP1 Ameliorates Cerebral Ischemia/Reperfusion Injury and Cognitive Decline by Suppressing Neuroinflammation and Oxidative Stress through TXNIP/NLRP3 Signaling Pathway in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8729398. [PMID: 36035210 PMCID: PMC9410841 DOI: 10.1155/2022/8729398] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Cerebral ischemia/reperfusion (I/R) injury is a clinical event associated with high morbidity and mortality. Neuroinflammation plays a crucial role in the pathogenesis of I/R-induced brain injury and cognitive decline. Low-density lipoprotein receptor-related protein-1 (LRP1) can exert strong neuroprotection in experimental intracerebral hemorrhage. However, whether LRP1 can confer neuroprotective effects after cerebral I/R is yet to be elucidated. The present study is aimed at investigating the effects of LRP1 activation on cerebral I/R injury and deducing the underlying mechanism involving TXNIP/NLRP3 signaling pathway. Cerebral I/R injury was induced in mice by bilateral common carotid artery occlusion. LPR1 ligand, apoE-mimic peptide COG1410, was administered intraperitoneally. To elucidate the underlying mechanism, overexpression of TXNIP was achieved via the hippocampal injection of AAV-TXNIP before COG1410 treatment. Neurobehavioral tests, brain water content, immunofluorescence, Western blot, enzyme-linked immunosorbent assay, HE, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining were performed. Our results showed that the expressions of endogenous LRP1, TXNIP, NLRP3, procaspase-1, and cleaved caspase-1 were increased after cerebral I/R. COG1410 significantly ameliorated cerebral I/R-induced neurobehavioral deficits, brain edema, histopathological damage, and poor survival rate. Interestingly, COG1410 inhibited microglia proinflammatory polarization and promoted anti-inflammatory polarization, decreased oxidative stress, attenuated apoptosis, and inhibited the expression of the TXNIP/NLRP3 signaling pathway. However, the benefits of COG1410 were abolished by TXNIP overexpression. Thus, our study suggested that LRP1 activation with COG1410 attenuated cerebral I/R injury at least partially related to modulating microglial polarization through TXNIP/NLRP3 signaling pathway in mice. Thus, COG1410 treatment might serve as a promising therapeutic approach in the management of cerebral I/R patients.
Collapse
Affiliation(s)
- Cheng-Jie Yang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Xin Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Xiao-Qing Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Ye Chen
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian-Guo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Ji-Cheng Wei
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| |
Collapse
|
14
|
Chen S, Li L, Peng C, Bian C, Ocak PE, Zhang JH, Yang Y, Zhou D, Chen G, Luo Y. Targeting Oxidative Stress and Inflammatory Response for Blood-Brain Barrier Protection in Intracerebral Hemorrhage. Antioxid Redox Signal 2022; 37:115-134. [PMID: 35383484 DOI: 10.1089/ars.2021.0072] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Blood-brain barrier (BBB) disruption is a major pathological change after intracerebral hemorrhage (ICH) and is both the cause and result of oxidative stress and of the immune response post-ICH. These processes contribute to ICH-induced brain injury. Recent Advances: After the breakdown of cerebral vessels, blood components, including erythrocytes and their metabolites, thrombin, and fibrinogen, can access the cerebral parenchyma through the compromised BBB, triggering oxidative stress and inflammatory cascades. These aggravate BBB disruption and contribute to further infiltration of blood components, resulting in a vicious cycle that exacerbates brain edema and neurological injury after ICH. Experimental and clinical studies have highlighted the role of BBB disruption in ICH-induced brain injury. Critical Issues: In this review, we focus on the strategies to protect the BBB in ICH. Specifically, we summarize the evidence and the underlying mechanisms, including the ICH-induced process of oxidative stress and inflammatory response, and we highlight the potential therapeutic targets to protect BBB integrity after ICH. Future Directions: Future studies should probe the mechanism of ferroptosis as well as oxidative stress-inflammation coupling in BBB disruption after ICH and investigate the effects of antioxidants and immunomodulatory agents in more ICH clinical trials. Antioxid. Redox Signal. 37, 115-134.
Collapse
Affiliation(s)
- Shengpan Chen
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lingzhi Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Chao Peng
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chunjing Bian
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Pinar Eser Ocak
- Department of Neurosurgery, Uludag University School of Medicine, Bursa, Turkey
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California, USA
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
| | - Yong Yang
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dong Zhou
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guangzhong Chen
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
15
|
Aronowski J, Sansing LH, Xi G, Zhang JH. Mechanisms of Damage After Cerebral Hemorrhage. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Activation of AdipoR1 with rCTRP9 Preserves BBB Integrity through the APPL1/AMPK/Nrf2 Signaling Pathway in ICH Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2801263. [PMID: 34925690 PMCID: PMC8674037 DOI: 10.1155/2021/2801263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/06/2021] [Indexed: 12/26/2022]
Abstract
Background The disruption of the blood brain barrier (BBB) is the key factor leading to neurological impairment after intracerebral hemorrhage (ICH) injury. Adiponectin receptor 1 (AdipoR1) has an important effect contributing to the integrity of BBB. As a homologue of adiponectin, recombinant C1q/TNF-related protein 9 (rCTRP9) has neuroprotective effect in cerebrovascular diseases. The aim of this study was to investigate the protective effect of AdipoR1 activation with rCTRP9 on BBB integrity after ICH injury and the potential mechanisms. Methods 177 male mice were subjected in this study. ICH was induced by injecting collagenase into the right basal ganglia. rCTRP9 was treated intranasally at 1 hour after ICH. Selective siRNA was administered prior to ICH. Western blot, immunofluorescence staining, neurobehavioral tests, and BBB permeability were evaluated. Results ICH increased the expression of endogenous AdipoR1 and CTRP9. Administration of rCTRP9 ameliorated neurological deficits and reduced the BBB permeability at 24 hours in ICH mice. Furthermore, rCTRP9 promoted the expression of AdipoR1, APPL1, p-AMPK, Nrf2, and tight junctional proteins. The intervention of specific siRNA of AdipoR1, APPL1, and p-AMPK reversed the protective effects of rCTRP9. Conclusions Activation of AdipoR1 with rCTRP9 improved neurological functions and preserved BBB integrity through the APPL1/AMPK/Nrf2 signaling pathway in ICH mice. Therefore, CTRP9 could serve as a promising therapeutic method to alleviate BBB injury following ICH in patients.
Collapse
|
17
|
Lu Q, Liu R, Sherchan P, Ren R, He W, Fang Y, Huang Y, Shi H, Tang L, Yang S, Zhang JH, Tang J. TREM (Triggering Receptor Expressed on Myeloid Cells)-1 Inhibition Attenuates Neuroinflammation via PKC (Protein Kinase C) δ/CARD9 (Caspase Recruitment Domain Family Member 9) Signaling Pathway After Intracerebral Hemorrhage in Mice. Stroke 2021; 52:2162-2173. [PMID: 33947214 DOI: 10.1161/strokeaha.120.032736] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Qin Lu
- Department of Neurosurgery, Sir Run Run Shaw Hospital (Q.L., S.Y.), School of Medicine, Zhejiang University, Hangzhou, China.,Department of Physiology and Pharmacology (Q.L., R.L., P.S., R.R., W.H., Y.F., Y.H., H.S., L.T., J.H.Z., J.T.), Loma Linda University, CA
| | - Rui Liu
- Department of Neurosurgery, The Second Affiliated Hospital (R.R., Y.F., Y.H., L.T.), School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China (R.L.).,Department of Physiology and Pharmacology (Q.L., R.L., P.S., R.R., W.H., Y.F., Y.H., H.S., L.T., J.H.Z., J.T.), Loma Linda University, CA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology (Q.L., R.L., P.S., R.R., W.H., Y.F., Y.H., H.S., L.T., J.H.Z., J.T.), Loma Linda University, CA
| | - Reng Ren
- Department of Physiology and Pharmacology (Q.L., R.L., P.S., R.R., W.H., Y.F., Y.H., H.S., L.T., J.H.Z., J.T.), Loma Linda University, CA
| | - Wei He
- Department of Physiology and Pharmacology (Q.L., R.L., P.S., R.R., W.H., Y.F., Y.H., H.S., L.T., J.H.Z., J.T.), Loma Linda University, CA.,Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (W.H.)
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital (R.R., Y.F., Y.H., L.T.), School of Medicine, Zhejiang University, Hangzhou, China.,Department of Physiology and Pharmacology (Q.L., R.L., P.S., R.R., W.H., Y.F., Y.H., H.S., L.T., J.H.Z., J.T.), Loma Linda University, CA
| | - Yi Huang
- Department of Neurosurgery, The Second Affiliated Hospital (R.R., Y.F., Y.H., L.T.), School of Medicine, Zhejiang University, Hangzhou, China.,Department of Physiology and Pharmacology (Q.L., R.L., P.S., R.R., W.H., Y.F., Y.H., H.S., L.T., J.H.Z., J.T.), Loma Linda University, CA
| | - Hui Shi
- Department of Physiology and Pharmacology (Q.L., R.L., P.S., R.R., W.H., Y.F., Y.H., H.S., L.T., J.H.Z., J.T.), Loma Linda University, CA.,Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, China (H.S.)
| | - Lihui Tang
- Department of Neurosurgery, The Second Affiliated Hospital (R.R., Y.F., Y.H., L.T.), School of Medicine, Zhejiang University, Hangzhou, China.,Department of Physiology and Pharmacology (Q.L., R.L., P.S., R.R., W.H., Y.F., Y.H., H.S., L.T., J.H.Z., J.T.), Loma Linda University, CA
| | - Shuxu Yang
- Department of Neurosurgery, Sir Run Run Shaw Hospital (Q.L., S.Y.), School of Medicine, Zhejiang University, Hangzhou, China
| | - John H Zhang
- Department of Physiology and Pharmacology (Q.L., R.L., P.S., R.R., W.H., Y.F., Y.H., H.S., L.T., J.H.Z., J.T.), Loma Linda University, CA.,Department of Neurosurgery (J.H.Z.), Loma Linda University, CA.,Department of Anesthesiology (J.H.Z.), Loma Linda University, CA
| | - Jiping Tang
- Department of Physiology and Pharmacology (Q.L., R.L., P.S., R.R., W.H., Y.F., Y.H., H.S., L.T., J.H.Z., J.T.), Loma Linda University, CA
| |
Collapse
|
18
|
Soluble Receptors Affecting Stroke Outcomes: Potential Biomarkers and Therapeutic Tools. Int J Mol Sci 2021; 22:ijms22031108. [PMID: 33498620 PMCID: PMC7865279 DOI: 10.3390/ijms22031108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Soluble receptors are widely understood to be freestanding moieties formed via cleavage from their membrane-bound counterparts. They have unique structures, are found among various receptor families, and have intriguing mechanisms of generation and release. Soluble receptors’ ability to exhibit pleiotropic action by receptor modulation or by exhibiting a dual role in cytoprotection and neuroinflammation is concentration dependent and has continually mystified researchers. Here, we have compiled findings from preclinical and clinical studies to provide insights into the role of soluble/decoy receptors, focusing on the soluble cluster of differentiation 36, the soluble cluster of differentiation 163, and soluble lipoprotein-related protein 1 (sCD36, sCD163, and sLRP1, respectively) and the functions they could likely serve in the management of stroke, as they would notably regulate the bioavailability of the hemoglobin and heme after red blood cell lysis. The key roles that these soluble receptors play in inflammation, oxidative stress, and the related pharmacotherapeutic potential in improving stroke outcomes are described. The precise pleiotropic physiological functions of soluble receptors remain unclear, and further scientific investigation/validation is required to establish their respective role in diagnosis and therapy.
Collapse
|
19
|
Xiao M, Xiao ZJ, Yang B, Lan Z, Fang F. Blood-Brain Barrier: More Contributor to Disruption of Central Nervous System Homeostasis Than Victim in Neurological Disorders. Front Neurosci 2020; 14:764. [PMID: 32903669 PMCID: PMC7438939 DOI: 10.3389/fnins.2020.00764] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022] Open
Abstract
The blood-brain barrier (BBB) is a dynamic but solid shield in the cerebral microvascular system. It plays a pivotal role in maintaining central nervous system (CNS) homeostasis by regulating the exchange of materials between the circulation and the brain and protects the neural tissue from neurotoxic components as well as pathogens. Here, we discuss the development of the BBB in physiological conditions and then focus on the role of the BBB in cerebrovascular disease, including acute ischemic stroke and intracerebral hemorrhage, and neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Finally, we summarize recent advancements in the development of therapies targeting the BBB and outline future directions and outstanding questions in the field. We propose that BBB dysfunction not only results from, but is causal in the pathogenesis of neurological disorders; the BBB is more a contributor to the disruption of CNS homeostasis than a victim in neurological disorders.
Collapse
Affiliation(s)
- Minjia Xiao
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- Department of Critical Care Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi Jie Xiao
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Binbin Yang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ziwei Lan
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Fang Fang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Suttorp CM, van Rheden REM, van Dijk NWM, Helmich MPAC, Kuijpers-Jagtman AM, Wagener FADTG. Heme Oxygenase Protects against Placental Vascular Inflammation and Abortion by the Alarmin Heme in Mice. Int J Mol Sci 2020; 21:ijms21155385. [PMID: 32751152 PMCID: PMC7432719 DOI: 10.3390/ijms21155385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
Both infectious as non-infectious inflammation can cause placental dysfunction and pregnancy complications. During the first trimester of human gestation, when palatogenesis takes place, intrauterine hematoma and hemorrhage are common phenomena, causing the release of large amounts of heme, a well-known alarmin. We postulated that exposure of pregnant mice to heme during palatogenesis would initiate oxidative and inflammatory stress, leading to pathological pregnancy, increasing the incidence of palatal clefting and abortion. Both heme oxygenase isoforms (HO-1 and HO-2) break down heme, thereby generating anti-oxidative and -inflammatory products. HO may thus counteract these heme-induced injurious stresses. To test this hypothesis, we administered heme to pregnant CD1 outbred mice at Day E12 by intraperitoneal injection in increasing doses: 30, 75 or 150 μmol/kg body weight (30H, 75H or 150H) in the presence or absence of HO-activity inhibitor SnMP from Day E11. Exposure to heme resulted in a dose-dependent increase in abortion. At 75H half of the fetuses where resorbed, while at 150H all fetuses were aborted. HO-activity protected against heme-induced abortion since inhibition of HO-activity aggravated heme-induced detrimental effects. The fetuses surviving heme administration demonstrated normal palatal fusion. Immunostainings at Day E16 demonstrated higher numbers of ICAM-1 positive blood vessels, macrophages and HO-1 positive cells in placenta after administration of 75H or SnMP + 30H. Summarizing, heme acts as an endogenous “alarmin” during pregnancy in a dose-dependent fashion, while HO-activity protects against heme-induced placental vascular inflammation and abortion.
Collapse
Affiliation(s)
- Christiaan M. Suttorp
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (C.M.S.); (R.E.M.v.R.); (N.W.M.v.D.); (M.P.A.C.H.)
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - René E. M. van Rheden
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (C.M.S.); (R.E.M.v.R.); (N.W.M.v.D.); (M.P.A.C.H.)
| | - Natasja W. M. van Dijk
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (C.M.S.); (R.E.M.v.R.); (N.W.M.v.D.); (M.P.A.C.H.)
| | - Maria P. A. C. Helmich
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (C.M.S.); (R.E.M.v.R.); (N.W.M.v.D.); (M.P.A.C.H.)
| | - Anne Marie Kuijpers-Jagtman
- Department of Orthodontics, University of Groningen and University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
- Department of Orthodontics and Dentofacial Orthopedics, University of Bern, CH-3010 Bern, Switzerland
- Faculty of Dentistry, Universitas Indonesia, Jakarta ID-10430, Indonesia
| | - Frank A. D. T. G. Wagener
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (C.M.S.); (R.E.M.v.R.); (N.W.M.v.D.); (M.P.A.C.H.)
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Correspondence: ; Tel.: +31-24-36-18824
| |
Collapse
|
21
|
Li T, Xu W, Ouyang J, Lu X, Sherchan P, Lenahan C, Irio G, Zhang JH, Zhao J, Zhang Y, Tang J. Orexin A alleviates neuroinflammation via OXR2/CaMKKβ/AMPK signaling pathway after ICH in mice. J Neuroinflammation 2020; 17:187. [PMID: 32539736 PMCID: PMC7294616 DOI: 10.1186/s12974-020-01841-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Background Orexins are two neuropeptides (orexin A, OXA; orexin B, OXB) secreted mainly from the lateral hypothalamus, which exert a wide range of physiological effects by activating two types of receptors (orexin receptor 1, OXR1; orexin receptor 2, OXR2). OXA has equal affinity for OXR1 and OXR2, whereas OXB binds preferentially to OXR2. OXA rapidly crosses the blood-brain barrier by simple diffusion. Many studies have reported OXA’s protective effect on neurological diseases via regulating inflammatory response which is also a fundamental pathological process in intracerebral hemorrhage (ICH). However, neuroprotective mechanisms of OXA have not been explored in ICH. Methods ICH models were established using stereotactic injection of autologous arterial blood into the right basal ganglia of male CD-1 mice. Exogenous OXA was administered intranasally; CaMKKβ inhibitor (STO-609), OXR1 antagonist (SB-334867), and OXR2 antagonist (JNJ-10397049) were administered intraperitoneally. Neurobehavioral tests, hematoma volume, and brain water content were evaluated after ICH. Western blot and ELISA were utilized to evaluate downstream mechanisms. Results OXA, OXR1, and OXR2 were expressed moderately in microglia and astrocytes and abundantly in neurons. Expression of OXA decreased whereas OXR1 and OXR2 increased after ICH. OXA treatment significantly improved not only short-term but also long-term neurofunctional outcomes and reduced brain edema in ipsilateral hemisphere. OXA administration upregulated p-CaMKKβ, p-AMPK, and anti-inflammatory cytokines while downregulated p-NFκB and pro-inflammatory cytokines after ICH; this effect was reversed by STO-609 or JNJ-10397049 but not SB-334867. Conclusions OXA improved neurofunctional outcomes and mitigated brain edema after ICH, possibly through alleviating neuroinflammation via OXR2/CaMKKβ/AMPK pathway.
Collapse
Affiliation(s)
- Tao Li
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Yunnan, 650032, China.,Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA.,Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
| | - Weilin Xu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA.,Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
| | - Jinsong Ouyang
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Yunnan, 650032, China
| | - Xiaoyang Lu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA.,Burrell College of Osteopathic Medicine, 3501 Arrowhead Dr, Las Cruces, NM, 88001, USA
| | - Giselle Irio
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA.,Burrell College of Osteopathic Medicine, 3501 Arrowhead Dr, Las Cruces, NM, 88001, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Jianhua Zhao
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Yunnan, 650032, China
| | - Yongfa Zhang
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Yunnan, 650032, China.
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA.
| |
Collapse
|
22
|
Wang G, Guo Z, Tong L, Xue F, Krafft PR, Budbazar E, Zhang JH, Tang J. TLR7 (Toll-Like Receptor 7) Facilitates Heme Scavenging Through the BTK (Bruton Tyrosine Kinase)-CRT (Calreticulin)-LRP1 (Low-Density Lipoprotein Receptor-Related Protein-1)-Hx (Hemopexin) Pathway in Murine Intracerebral Hemorrhage. Stroke 2019; 49:3020-3029. [PMID: 30571407 DOI: 10.1161/strokeaha.118.022155] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background and Purpose- Heme and iron are considered to be key factors responsible for secondary insults after intracerebral hemorrhage (ICH). Our previous study showed that LRP1 (low-density lipoprotein receptor-related protein-1)-Hx (hemopexin) facilitates removal of heme. The TLR7 (Toll-like receptor 7)-BTK (Bruton tyrosine kinase)-CRT (calreticulin) pathway regulates the expression of LRP1-Hx. This study is designed to clarify whether TLR7 activation facilitates heme scavenging and to establish the potential role of the BTK-CRT-LRP1-Hx signaling pathway in the pathophysiology of ICH. Methods- ICH was induced by stereotactic, intrastriatal injection of type VII collagenase. Mice received TLR7 agonist (imiquimod) via intraperitoneal injection after ICH induction. TLR7 inhibitor (ODN2088), BTK inhibitor (LFM-A13), and CRT agonist (thapsigargin) were given in different groups to further evaluate the underlying pathway. Mice were randomly divided into sham, ICH+vehicle (normal saline), ICH+Imiquimod (2.5, 5, and 10 μg/g), ICH+ODN2088, ICH+LFM-A13, ICH+thapsigargin, and ICH+ODN2088+thapsigargin. Imiquimod was administered twice daily starting at 6 hours after ICH; ODN2088 was administered by intracerebroventricular injection at 30 minutes, and LFM-A13 or thapsigargin was administered by intraperitoneal injection at 3 hours after ICH induction. Neurological scores, cognitive abilities, as well as brain edema, blood-brain barrier permeability, hemoglobin level, brain expression of TLR7/BTK/CRT/LRP1/Hx were analyzed. Results- Low dosage imiquimod significantly attenuated hematoma volume, brain edema, BBB permeability, and neurological deficits after ICH. Imiquimod also increased protein expressions of TLR7, BTK, CRT, LRP1, and Hx; ODN2088 reduced TLR7, BTK, CRT, LRP1, and Hx expressions. Conclusions- TLR7 plays an important role in heme scavenging after ICH by modulating the BTK-CRT-LRP1-Hx pathway. TLR7 may offer protective effects by promoting heme resolution and reduction of brain edema after ICH.
Collapse
Affiliation(s)
- Gaiqing Wang
- From the Department of Neurology, the Second Hospital, Shanxi Medical University, Taiyuan, China (G.W., F.X.).,Department of Physiology (G.W., Z.G., L.T., P.R.K., E.B., J.H.Z., J.T.), Loma Linda University, CA
| | - Zhenni Guo
- Department of Physiology (G.W., Z.G., L.T., P.R.K., E.B., J.H.Z., J.T.), Loma Linda University, CA.,Department of Neurology, the First Hospital of Jilin University, Changchun, China (Z.G.)
| | - Lusha Tong
- Department of Physiology (G.W., Z.G., L.T., P.R.K., E.B., J.H.Z., J.T.), Loma Linda University, CA.,Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (L.T.)
| | - Fang Xue
- From the Department of Neurology, the Second Hospital, Shanxi Medical University, Taiyuan, China (G.W., F.X.)
| | - Paul R Krafft
- Department of Physiology (G.W., Z.G., L.T., P.R.K., E.B., J.H.Z., J.T.), Loma Linda University, CA.,Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa (P.R.K.)
| | - Enkhjargal Budbazar
- Department of Physiology (G.W., Z.G., L.T., P.R.K., E.B., J.H.Z., J.T.), Loma Linda University, CA
| | - John H Zhang
- Department of Physiology (G.W., Z.G., L.T., P.R.K., E.B., J.H.Z., J.T.), Loma Linda University, CA.,Department of Anesthesiology (J.H.Z.), Loma Linda University, CA
| | - Jiping Tang
- Department of Physiology (G.W., Z.G., L.T., P.R.K., E.B., J.H.Z., J.T.), Loma Linda University, CA
| |
Collapse
|
23
|
Abstract
Haemoglobin is released into the CNS during the breakdown of red blood cells after intracranial bleeding. Extracellular free haemoglobin is directly neurotoxic. Haemoglobin scavenging mechanisms clear haemoglobin and reduce toxicity; these mechanisms include erythrophagocytosis, haptoglobin binding of haemoglobin, haemopexin binding of haem and haem oxygenase breakdown of haem. However, the capacity of these mechanisms is limited in the CNS, and they easily become overwhelmed. Targeting of haemoglobin toxicity and scavenging is, therefore, a rational therapeutic strategy. In this Review, we summarize the neurotoxic mechanisms of extracellular haemoglobin and the peculiarities of haemoglobin scavenging pathways in the brain. Evidence for a role of haemoglobin toxicity in neurological disorders is discussed, with a focus on subarachnoid haemorrhage and intracerebral haemorrhage, and emerging treatment strategies based on the molecular pathways involved are considered. By focusing on a fundamental biological commonality between diverse neurological conditions, we aim to encourage the application of knowledge of haemoglobin toxicity and scavenging across various conditions. We also hope that the principles highlighted will stimulate research to explore the potential of the pathways discussed. Finally, we present a consensus opinion on the research priorities that will help to bring about clinical benefits.
Collapse
|
24
|
Crocin attenuation of neurological deficits in a mouse model of intracerebral hemorrhage. Brain Res Bull 2019; 150:186-195. [PMID: 31173858 DOI: 10.1016/j.brainresbull.2019.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 02/05/2023]
Abstract
Intracerebral hemorrhage (ICH) is a devastating subtype of stroke that is associated with high morbidity and mortality. However, up to now, there are no effective prevention methods or specific therapies to improve its clinical outcomes. Herein, we explore preliminarily the efficacy of crocin, a carotenoid extracted from the stigma of saffron known for its anti-oxidation and free radical scavenging activities, in a mouse ICH model induced with collagenase infusion. Crocin or saline was administrated 6 h after ICH and then every 12 h for up to 7 days. Neurological scores were examined on days 1, 3, and 7 after ICH. Mice were sacrificed after1, 3, and 7 days of crocin treatment for examination of histology and immunohistochemistry. The results showed that oral administration of crocin attenuated the neurological deficits and reduced the myelin loss, neuron degeneration, iron deposition, reactive oxygen species (ROS) production and heme oxygenase-1 (HO-1) expression in the early stage of ICH, making it potential to be an ideal candidate for medical therapy of ICH in clinic.
Collapse
|
25
|
Deferoxamine therapy reduces brain hemin accumulation after intracerebral hemorrhage in piglets. Exp Neurol 2019; 318:244-250. [PMID: 31078524 DOI: 10.1016/j.expneurol.2019.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/09/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
Hemopexin (Hpx) is critical for hemin scavenging after the erythrocyte lysis that occurs following intracerebral hemorrhage (ICH). Low-density lipoprotein receptor-related protein-1 (LRP1, also called CD91) is an important receptor through which the hemin-Hpx complex can undergo endocytosis. This study investigated changes in the hemin-Hpx-CD91 axis in both hematoma and perihematomal tissue in a large animal ICH model. The effect of deferoxamine (DFX) on hemin-Hpx-CD91 was also examined. The study consisted of two parts. First, piglets had an injection of autologous blood into the right frontal lobe of brain and were euthanized from day 1 to day 7. Hematoma and perihematomal tissue of brains were used for hemin assay, immunohistochemistry, and immunofluorescence. Second, piglets with ICH were treated with deferoxamine or vehicle, and were euthanized for hemin measurement and Hpx and CD91 immunohistochemistry. We found that there was an increase of hemin levels within the hematoma and perihematomal brain tissue after ICH. Hpx and CD91-positive cells were present in the clot and perihematomal tissue from day 1. Hpx and CD91 positive cells were Iba1 positive. After DFX therapy, hemin dropped markedly in the hematoma and perihematomal brain tissue. Furthermore, DFX treatment decreased the number of Hpx and CD91 positive cells in and around the hematoma. In conclusion, hemin accumulation occurs in and around the hematoma. Increases in Hpx and CD91 may be important in scavenging that hemin. DFX treatment decreased hemin release from the hematoma and reduced the expression of Hpx and CD91.
Collapse
|
26
|
Peng J, Pang J, Huang L, Enkhjargal B, Zhang T, Mo J, Wu P, Xu W, Zuo Y, Peng J, Zuo G, Chen L, Tang J, Zhang JH, Jiang Y. LRP1 activation attenuates white matter injury by modulating microglial polarization through Shc1/PI3K/Akt pathway after subarachnoid hemorrhage in rats. Redox Biol 2019; 21:101121. [PMID: 30703614 PMCID: PMC6351270 DOI: 10.1016/j.redox.2019.101121] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/21/2022] Open
Abstract
White matter injury (WMI) is associated with motor deficits and cognitive dysfunctions in subarachnoid hemorrhage (SAH) patients. Therapeutic strategy targeting WMI would likely improve the neurological outcomes after SAH. Low-density lipoprotein receptor-related protein-1 (LRP1), a scavenger receptor of apolipoprotein E (apoE), is able to modulate microglia polarization towards anti-inflammatory M2 phenotypes during inflammatory and oxidative insult. In the present study, we investigated the effects of LRP1 activation on WMI and underlying mechanisms of M2 microglial polarization in a rat model of SAH. Two hundred and seventeen male Sprague Dawley rats (weight 280-330 g) were used. SAH was induced by endovascular perforation. LPR1 ligand, apoE-mimic peptide COG1410 was administered intraperitoneally. Microglial depletion kit liposomal clodronate (CLP), LPR1 siRNA or PI3K inhibitor were administered intracerebroventricularly. Post-SAH assessments included neurobehavioral tests, brain water content, immunohistochemistry, Golgi staining, western blot and co-immunoprecipitation. SAH induced WMI shown as the accumulation of amyloid precursor protein and neurofilament heavy polypeptide as well as myelin loss. Microglial depletion by CLP significantly suppressed WMI after SAH. COG1410 reduced brain water content, increased the anti-inflammatory M2 microglial phenotypes, attenuated WMI and improved neurological function after SAH. LRP1 was bound with endogenous apoE and intracellular adaptor protein Shc1. The benefits of COG1410 were reversed by LPR1 siRNA or PI3K inhibitor. LRP1 activation attenuated WMI and improved neurological function by modulating M2 microglial polarization at least in part through Shc1/PI3K/Akt signaling in a rat model of SAH. The apoE-mimic peptide COG1410 may serve as a promising treatment in the management of SAH patients.
Collapse
Affiliation(s)
- Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Tongyu Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jun Mo
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Pei Wu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Weilin Xu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yuchun Zuo
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jun Peng
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Gang Zuo
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA 92350, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China.
| |
Collapse
|
27
|
Leclerc JL, Santiago-Moreno J, Dang A, Lampert AS, Cruz PE, Rosario AM, Golde TE, Doré S. Increased brain hemopexin levels improve outcomes after intracerebral hemorrhage. J Cereb Blood Flow Metab 2018; 38:1032-1046. [PMID: 27864463 PMCID: PMC5999006 DOI: 10.1177/0271678x16679170] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Following intracerebral hemorrhage (ICH), extracellular heme precipitates secondary brain injury, which results in irreversible brain damage and enduring neurological deficits. Hemopexin (Hpx) is an endogenous protein responsible for scavenging heme, thereby modulating its intrinsic proxidant/proinflammatory properties. Although Hpx is present in the brain, the endogenous levels are insufficient to combat the massive heme overload following ICH. We hypothesized that increasing brain Hpx levels would improve ICH outcomes. Unique recombinant adeno-associated viral vectors were designed to specifically overexpress Hpx within the mouse brain. Western blotting, ELISA, and immunohistochemistry of brain homogenates/sections, CSF, and serum were performed. As compared to controls, Hpx mice have increased Hpx protein levels in all three types of biospecimens evaluated, which results in 45.6 ± 6.9% smaller lesions and improved functional recovery after ICH (n=14-19/group, p < 0.05). Local mechanistic analyses show significantly less tissue injury, trends toward smaller hematoma volumes, unchanged heme oxygenase 1 and iron levels, and significantly increased microgliosis and decreased astrogliosis and lipid peroxidation. Peripheral levels of heme-related markers indicate a positive modulation of iron-binding capacity. These findings reveal that high local Hpx levels improve ICH outcomes, likely through both central and peripheral clearance mechanisms, and establish the potential for therapeutically administering clinical-grade Hpx for ICH.
Collapse
Affiliation(s)
- Jenna L Leclerc
- 1 Department of Anesthesiology, University of Florida, Gainesville, FL, USA.,2 Department of Neuroscience, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | | | - Alex Dang
- 1 Department of Anesthesiology, University of Florida, Gainesville, FL, USA
| | - Andrew S Lampert
- 1 Department of Anesthesiology, University of Florida, Gainesville, FL, USA
| | - Pedro E Cruz
- 2 Department of Neuroscience, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Awilda M Rosario
- 2 Department of Neuroscience, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Todd E Golde
- 2 Department of Neuroscience, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- 1 Department of Anesthesiology, University of Florida, Gainesville, FL, USA.,2 Department of Neuroscience, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,3 Departments of Neurology, Psychology, Psychiatry, and Pharmaceutics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
28
|
Chen-Roetling J, Ma SK, Cao Y, Shah A, Regan RF. Hemopexin increases the neurotoxicity of hemoglobin when haptoglobin is absent. J Neurochem 2018; 145:464-473. [PMID: 29500821 DOI: 10.1111/jnc.14328] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 12/24/2022]
Abstract
Hemopexin (Hpx) binds heme with extraordinary affinity, and after haptoglobin may provide a second line of defense against the toxicity of extracellular hemoglobin (Hb). In this series of experiments, the hypothesis that Hpx protects neurons from Hb neurotoxicity was evaluated in murine primary cultures containing neurons and glial cells. Contrary to hypothesis, Hpx increased neuronal loss due to micromolar concentrations of Hb by 4- to 12-fold, as measured by LDH release assay; conversely, the neurotoxicity of hemin was completely prevented. The endogenous fluorescence of Hpx was quenched by Hb, consistent with transfer of Hb-bound heme to Hpx. This was associated with precipitation of globin chains, as detected by immunostaining and fluorescent Hb labeling. A portion of this precipitate attached firmly to cells and could not be removed by multiple washes. Concomitant treatment with haptoglobin (Hp) prevented globin precipitation and most of the increase in neuronal loss. Hpx weakly attenuated the increase in culture non-heme iron produced by Hb treatment, quantified by ferrozine assay. However, Hb-Hpx toxicity was iron-dependent, and was blocked by deferoxamine and ferrostatin-1. Up-regulation of cell ferritin expression, a primary cell defense against Hb toxicity, was not observed on western blots of culture lysates that had been concomitantly treated with Hpx. These results suggest that Hpx destabilizes Hb in the absence of haptoglobin, leading to globin precipitation and exacerbation of iron-dependent oxidative cell injury. Combined therapy with hemopexin plus haptoglobin may be preferable to hemopexin alone after CNS hemorrhage.
Collapse
Affiliation(s)
- Jing Chen-Roetling
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sheng-Kai Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yang Cao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aishwarya Shah
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Raymond F Regan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
29
|
Wilkinson DA, Keep RF, Hua Y, Xi G. Hematoma clearance as a therapeutic target in intracerebral hemorrhage: From macro to micro. J Cereb Blood Flow Metab 2018; 38:741-745. [PMID: 29350086 PMCID: PMC5888862 DOI: 10.1177/0271678x17753590] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite the absence of an intervention shown to improve outcomes in intracerebral hemorrhage, preclinical work has led to a greater understanding of the pathologic pathways of brain injury. Methods targeting hematoma clearance through both macroscopic (surgical) and microscopic (endogenous phagocytosis) means are currently under investigation, with multiple clinical trials ongoing. Macroscopic methods for removal involve both catheter- and endoscope-based therapies to remove the hematoma through minimally invasive surgery. Microscopic methods targeting hematoma clearance involve augmenting endogenous clearance pathways for red blood cells and altering the balance between phagocytosis and red blood cell lysis with the release of potentially harmful constituents (e.g. hemoglobin and iron) into the extracellular space.
Collapse
Affiliation(s)
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
30
|
Wang T, Nowrangi D, Yu L, Lu T, Tang J, Han B, Ding Y, Fu F, Zhang JH. Activation of dopamine D1 receptor decreased NLRP3-mediated inflammation in intracerebral hemorrhage mice. J Neuroinflammation 2018; 15:2. [PMID: 29301581 PMCID: PMC5753458 DOI: 10.1186/s12974-017-1039-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
Background Inflammasomes are involved in diverse inflammatory diseases. Previous study reported that the neurotransmitter dopamine inhibited NLRP3 inflammasome activation via dopamine D1 receptor (DRD1). The present study aims to investigate the role of DRD1 on neuroinflammation in intracerebral hemorrhage (ICH) mice and the potential mechanism mediated by NLRP3 inhibition. Methods One hundred and six male CD-1 mice were subjected to intrastriatal injection of bacterial collagenase or PBS. A68930 (DRD1 specific agonist) was administered by subcutaneous injection at 1 h after collagenase injection. Behavioral deficits and brain water content were assayed. The expression of Iba 1 and MPO levels were measured by immunofluorescence staining. The expressions of proteins in the DRD1/interferon-beta (IFN-beta)/NLRP3 signaling pathway were evaluated by western blotting. Results Activation of the DRD1 by A68930 decreased brain edema and improved behavior at 24 and 72 h of ICH. A68930 inhibited partly the activation of microglia and the neutrophil infiltration after 24 h of ICH. IFN-beta, p-STAT1 increased while NLRP3, caspase 1, and IL-1beta decreased after A68930 administration in ICH mice. DRD1 antagonist and IFN-beta siRNA reversed effects of A68930 on neurological outcome and brain edema. DRD1 antagonist and IFN-beta siRNA blocked not only A68930-mediated increases of IFN-beta, p-STAT1 but also A68930-mediated decreases of NLRP3, caspase 1, and IL-1beta. Conclusions DRD1 activation by A68930 improves neurological outcome through inhibition of NLRP3-mediated inflammation in ICH mice. Electronic supplementary material The online version of this article (10.1186/s12974-017-1039-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tian Wang
- Department of Anesthesiology and Physiology, School of Medicine, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92354, USA.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, Shandong, People's Republic of China
| | - Derek Nowrangi
- Department of Anesthesiology and Physiology, School of Medicine, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92354, USA
| | - Lingyan Yu
- Department of Anesthesiology and Physiology, School of Medicine, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92354, USA
| | - Tai Lu
- Department of Anesthesiology and Physiology, School of Medicine, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Anesthesiology and Physiology, School of Medicine, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92354, USA
| | - Bing Han
- School of Life Science, Yantai University, Yantai, 264005, Shandong, People's Republic of China
| | - Yuxin Ding
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, Shandong, People's Republic of China
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, Shandong, People's Republic of China.
| | - John H Zhang
- Department of Anesthesiology and Physiology, School of Medicine, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92354, USA.
| |
Collapse
|
31
|
Wang G, Wang L, Sun XG, Tang J. Haematoma scavenging in intracerebral haemorrhage: from mechanisms to the clinic. J Cell Mol Med 2017; 22:768-777. [PMID: 29278306 PMCID: PMC5783832 DOI: 10.1111/jcmm.13441] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 09/14/2017] [Indexed: 01/22/2023] Open
Abstract
The products of erythrocyte lyses, haemoglobin (Hb) and haem, are recognized as neurotoxins and the main contributors to delayed cerebral oedema and tissue damage after intracerebral haemorrhage (ICH). Finding a means to efficiently promote absorption of the haemolytic products (Hb and haem) around the bleeding area in the brain through stimulating the function of the body's own garbage cleaning system is a novel clinical challenge and critical for functional recovery after ICH. In this review, available information of the brain injury mechanisms underlying ICH and endogenous haematoma scavenging system is provided. Meanwhile, potential intervention strategies are discussed. Intracerebral blood itself has ‘toxic’ effects beyond its volume effect after ICH. Haptoglobin–Hb–CD163 as well as haemopexin–haem–LRP1 is believed to be the most important endogenous scavenging pathway which participates in blood components resolution following ICH. PPARγ–Nrf2 activates the aforementioned clearance pathway and then accelerates haematoma clearance. Meanwhile, the scavenger receptors as novel targets for therapeutic interventions to treat ICH are also highlighted.
Collapse
Affiliation(s)
- Gaiqing Wang
- The second Hospital of Shanxi Medical University, Tai Yuan, China
| | - Li Wang
- The second Hospital of Shanxi Medical University, Tai Yuan, China
| | - Xin-Gang Sun
- The second Hospital of Shanxi Medical University, Tai Yuan, China
| | - Jiping Tang
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
32
|
Wang J, Wang G, Yi J, Xu Y, Duan S, Li T, Sun XG, Dong L. The effect of monascin on hematoma clearance and edema after intracerebral hemorrhage in rats. Brain Res Bull 2017; 134:24-29. [PMID: 28655601 DOI: 10.1016/j.brainresbull.2017.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/24/2017] [Accepted: 06/21/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND PURPOSE Intracerebral hemorrhage (ICH) is a particularly devastating form of stroke with high mortality and morbidity. Hematomas are the primary cause of neurologic deficits associated with ICH. The products of hematoma are recognized as neurotoxins and the main contributors to edema formation and tissue damage after ICH. Finding a means to efficiently promote absorption of hematoma is a novel clinical challenge for ICH. Peroxisome proliferator-activated receptor gamma (PPARγ) and nuclear factor erythroid 2-related factor 2 (Nrf2), had been shown that, can take potential roles in the endogenous hematoma clearance. However, monascin, a novel natural Nrf2 activator with PPARγ agonist, has not been reported to play a role in ICH. This study was designed to evaluate the effect of monascin on neurological deficits, hematoma clearance and edema extinction in a model of ICH in rats. METHODS 164 adult male Sprague-Dawley (SD) rats were randomly divided into sham; vehicle; monascin groups with low dosages (1mg/kg/day), middle dosages (5mg/kg/day) and high dosages (10mg/kg/day) respectively. Animals were euthanized at 1, 3 and 7days following neurological evaluation after surgery. We examined the effect of monascin on the brain water contents, blood brain barrier (BBB) permeability and hemoglobin levels, meanwhile reassessed the volume of hematoma and edema around the hematoma by Magnetic Resonance Imaging (MRI) in each group. RESULTS The high dosage of monascin significantly improved neurological deficits, reduced the volume of hematoma in 1-7days after ICH, decreased BBB permeability and edema formation in 1-3days following ICH. CONCLUSION Our study demonstrated that the high dosage of monascin played a neuroprotective role in ICH through reducing BBB permeability, edema and hematoma volume.
Collapse
Affiliation(s)
- Juan Wang
- Department of Neurology, Shanxi Medical University, 56 Xinjian S Rd, Yingze, Taiyuan, Shanxi, 030001, China
| | - Gaiqing Wang
- Department of Neurology, Shanxi Medical University, 56 Xinjian S Rd, Yingze, Taiyuan, Shanxi, 030001, China; Department of Neurology, The Second Hospital, Shanxi Medical University, 382 WuYi Avenue, Taiyuan, Shanxi, 030001, China.
| | - Jinying Yi
- Department of Neurology, Shanxi Medical University, 56 Xinjian S Rd, Yingze, Taiyuan, Shanxi, 030001, China
| | - Yi Xu
- Department of Radiology, The Second Hospital, Shanxi Medical University, 382 WuYi Avenue, Taiyuan, Shanxi, 030001, China
| | - Shuna Duan
- Department of Neurology, Shanxi Medical University, 56 Xinjian S Rd, Yingze, Taiyuan, Shanxi, 030001, China
| | - Tong Li
- Department of Neurology, Shanxi Medical University, 56 Xinjian S Rd, Yingze, Taiyuan, Shanxi, 030001, China
| | - Xin-Gang Sun
- Department of Neurology, The Second Hospital, Shanxi Medical University, 382 WuYi Avenue, Taiyuan, Shanxi, 030001, China
| | - Liang Dong
- Department of Neurology, Shanxi Medical University, 56 Xinjian S Rd, Yingze, Taiyuan, Shanxi, 030001, China
| |
Collapse
|
33
|
Garton T, Keep RF, Hua Y, Xi G. Brain iron overload following intracranial haemorrhage. Stroke Vasc Neurol 2016; 1:172-184. [PMID: 28959481 PMCID: PMC5435218 DOI: 10.1136/svn-2016-000042] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/15/2022] Open
Abstract
Intracranial haemorrhages, including intracerebral haemorrhage (ICH), intraventricular haemorrhage (IVH) and subarachnoid haemorrhage (SAH), are leading causes of morbidity and mortality worldwide. In addition, haemorrhage contributes to tissue damage in traumatic brain injury (TBI). To date, efforts to treat the long-term consequences of cerebral haemorrhage have been unsatisfactory. Incident rates and mortality have not showed significant improvement in recent years. In terms of secondary damage following haemorrhage, it is becoming increasingly apparent that blood components are of integral importance, with haemoglobin-derived iron playing a major role. However, the damage caused by iron is complex and varied, and therefore, increased investigation into the mechanisms by which iron causes brain injury is required. As ICH, IVH, SAH and TBI are related, this review will discuss the role of iron in each, so that similarities in injury pathologies can be more easily identified. It summarises important components of normal brain iron homeostasis and analyses the existing evidence on iron-related brain injury mechanisms. It further discusses treatment options of particular promise.
Collapse
Affiliation(s)
- Thomas Garton
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|