1
|
Ma Y, Bos D, Wolters FJ, Niessen W, Hofman A, Ikram MA, Vernooij MW. Changes in Cerebral Hemodynamics and Progression of Subclinical Vascular Brain Disease: A Population-Based Cohort Study. Stroke 2025; 56:95-104. [PMID: 39633567 DOI: 10.1161/strokeaha.124.047593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/01/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Cerebral hypoperfusion is associated with vascular brain injury and neurodegeneration, but their longitudinal relationship is largely unknown, especially in healthy older adults. METHODS We investigated the longitudinal relationship between cerebral hemodynamics and subclinical vascular brain disease in community-dwelling older adults without stroke or dementia at baseline. Participants underwent brain magnetic resonance imaging scans every 3 to 4 years between 2005 and 2016. Cerebral blood flow (CBF) was measured through 2-dimensional phase-contrast magnetic resonance imaging; the cerebrovascular resistance index (CVRi) was defined as the ratio of mean arterial blood pressure to total CBF. Simultaneous progression in subclinical brain disease was evaluated through repeated magnetic resonance imaging assessment of white matter hyperintensities (WMH), cerebral microbleeds, lacune, and brain atrophy. The longitudinal relationship was estimated using generalized estimating equations, with adjustment for age, sex, smoking habits, body mass index, systolic blood pressure (for CBF measures), lipid level, history of diabetes and cardiovascular disease, and the baseline burden of magnetic resonance imaging markers. RESULTS Among 3623 older adults (mean age, 61.4±9.3 years; 54.6% women), large decreases and increases in CBF and increases in CVRi over time were associated with white matter hyperintensity progression. The risk ratios for white matter hyperintensity progression were 1.36 (95% CI, 1.19-1.55) for large decreases in total CBF (lowest quartile), 1.02 (95% CI, 0.91-1.14) for moderate decreases (second quartile), and 1.28 (95% CI, 1.14-1.45) for large increases (highest quartile), compared with stable CBF (third quartile). The corresponding risk ratios for changes in CVRi were 1.13 (95% CI, 1.00-1.30), 1.25 (95% CI, 1.09-1.43), and 1.33 (95% CI, 1.16-1.52) for the second to fourth (versus lowest) quartiles, respectively, showing a dose-response relationship. The changes in CBF also demonstrate a similar U-shaped association with the progression of brain atrophy and incident microbleeds, whereas increases in CVRi were associated with lower microbleed risk. CONCLUSIONS Longitudinal changes in CBF and CVRi may capture distinct pathophysiologies linking cerebral hemodynamics to subclinical brain disease, extending beyond single-time point measurements.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA (Y.M., A.H.)
| | - Daniel Bos
- Department of Epidemiology (D.B., F.J.W., A.H., M.A.I., M.W.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine (D.B., F.J.W., W.N., M.W.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Frank J Wolters
- Department of Epidemiology (D.B., F.J.W., A.H., M.A.I., M.W.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine (D.B., F.J.W., W.N., M.W.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Wiro Niessen
- Department of Radiology and Nuclear Medicine (D.B., F.J.W., W.N., M.W.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Medical Informatics (W.N.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Imaging Science and Technology, Faculty of Applied Sciences, Delft University of Technology, the Netherlands (W.N.)
| | - Albert Hofman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA (Y.M., A.H.)
- Department of Epidemiology (D.B., F.J.W., A.H., M.A.I., M.W.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology (D.B., F.J.W., A.H., M.A.I., M.W.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Meike W Vernooij
- Department of Epidemiology (D.B., F.J.W., A.H., M.A.I., M.W.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine (D.B., F.J.W., W.N., M.W.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
2
|
He Z, Sun J. The role of the neurovascular unit in vascular cognitive impairment: Current evidence and future perspectives. Neurobiol Dis 2024; 204:106772. [PMID: 39710068 DOI: 10.1016/j.nbd.2024.106772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024] Open
Abstract
Vascular cognitive impairment (VCI) is a progressive cognitive impairment caused by cerebrovascular disease or vascular risk factors. It is the second most common type of cognitive impairment after Alzheimer's disease. The pathogenesis of VCI is complex, and neurovascular unit destruction is one of its important mechanisms. The neurovascular unit (NVU) is responsible for combining blood flow with brain activity and includes endothelial cells, pericytes, astrocytes and many regulatory nerve terminals. The concept of an NVU emphasizes that interactions between different types of cells are essential for maintaining brain homeostasis. A stable NVU is the basis of normal brain function. Therefore, understanding the structure and function of the neurovascular unit and its role in VCI development is crucial for gaining insights into its pathogenesis. This article reviews the structure and function of the neurovascular unit and its contribution to VCI, providing valuable information for early diagnosis and prevention.
Collapse
Affiliation(s)
- Zhidong He
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130031, Jilin, China
| | - Jing Sun
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130031, Jilin, China..
| |
Collapse
|
3
|
Hannawi Y. Cerebral Small Vessel Disease: a Review of the Pathophysiological Mechanisms. Transl Stroke Res 2024; 15:1050-1069. [PMID: 37864643 DOI: 10.1007/s12975-023-01195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/02/2023] [Accepted: 09/18/2023] [Indexed: 10/23/2023]
Abstract
Cerebral small vessel disease (cSVD) refers to the age-dependent pathological processes involving the brain small vessels and leading to vascular cognitive impairment, intracerebral hemorrhage, and acute lacunar ischemic stroke. Despite the significant public health burden of cSVD, disease-specific therapeutics remain unavailable due to the incomplete understanding of the underlying pathophysiological mechanisms. Recent advances in neuroimaging acquisition and processing capabilities as well as findings from cSVD animal models have revealed critical roles of several age-dependent processes in cSVD pathogenesis including arterial stiffness, vascular oxidative stress, low-grade systemic inflammation, gut dysbiosis, and increased salt intake. These factors interact to cause a state of endothelial cell dysfunction impairing cerebral blood flow regulation and breaking the blood brain barrier. Neuroinflammation follows resulting in neuronal injury and cSVD clinical manifestations. Impairment of the cerebral waste clearance through the glymphatic system is another potential process that has been recently highlighted contributing to the cognitive decline. This review details these mechanisms and attempts to explain their complex interactions. In addition, the relevant knowledge gaps in cSVD mechanistic understanding are identified and a systematic approach to future translational and early phase clinical research is proposed in order to reveal new cSVD mechanisms and develop disease-specific therapeutics.
Collapse
Affiliation(s)
- Yousef Hannawi
- Division of Cerebrovascular Diseases and Neurocritical Care, Department of Neurology, The Ohio State University, 333 West 10th Ave, Graves Hall 3172C, Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Dijsselhof MBJ, Holtrop J, James SN, Sudre CH, Lu K, Lorenzini L, Collij LE, Scott CJ, Manning EN, Thomas DL, Richards M, Hughes AD, Cash DM, Barkhof F, Schott JM, Petr J, Mutsaerts HJMM. Associations of life-course cardiovascular risk factors with late-life cerebral haemodynamics. J Cereb Blood Flow Metab 2024:271678X241301261. [PMID: 39552078 PMCID: PMC11571377 DOI: 10.1177/0271678x241301261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/07/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
While the associations of mid-life cardiovascular risk factors with late-life white matter lesions (WMH) and cognitive decline have been established, the role of cerebral haemodynamics is unclear. We investigated the relation of late-life (69-71 years) arterial spin labelling (ASL) MRI-derived cerebral blood flow (CBF) with life-course cardiovascular risk factors (36-71 years) and late-life white matter hyperintensity (WMH) load in 282 cognitively healthy participants (52.8% female). Late-life (69-71 years) high systolic (B = -0.15) and diastolic (B = -0.25) blood pressure, and mean arterial pressure (B = -0.25) were associated with low grey matter (GM) CBF (p < 0.03), and white matter CBF (B = -0.25; B = -0.15; B = -0.13, p < 0.03, respectively). The association between systolic blood pressure and GM CBF differed between sexes (male/female B = -0.15/0.02, p = 0.04). No associations were found with early- or mid-life cardiovascular risk factors. Furthermore, WMHs were associated with cerebral haemodynamics but not cardiovascular risk factors. These findings suggest that cerebral blood flow autoregulation is able to maintain stable global cerebral haemodynamics until later in life. Future studies are encouraged to investigate why cardiovascular risk factors have differential effects on haemodynamics and WMH, and their implications for cognitive decline.
Collapse
Affiliation(s)
- Mathijs BJ Dijsselhof
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit, NL
- Amsterdam Neuroscience, Brain Imaging, NL
| | - Jorina Holtrop
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit, NL
- Amsterdam Neuroscience, Brain Imaging, NL
| | - Sarah-Naomi James
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, UK
| | - Carole H Sudre
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, UK
- Department of Biomedical Computing, School of Biomedical Engineering & Imaging Sciences, King’s College London, UK
| | - Kirsty Lu
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Luigi Lorenzini
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit, NL
- Amsterdam Neuroscience, Brain Imaging, NL
| | - Lyduine E Collij
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit, NL
- Amsterdam Neuroscience, Brain Imaging, NL
- Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Catherine J Scott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Institute of Nuclear Medicine, University College London Hospital NHS Foundation Trust, London, UK
| | - Emily N Manning
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - David L Thomas
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, UK
| | - Alun D Hughes
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, UK
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at University College London
| | - Frederik Barkhof
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit, NL
- Amsterdam Neuroscience, Brain Imaging, NL
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, UK
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jan Petr
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit, NL
- Amsterdam Neuroscience, Brain Imaging, NL
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, DE
| | - Henk JMM Mutsaerts
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit, NL
- Amsterdam Neuroscience, Brain Imaging, NL
| |
Collapse
|
5
|
Sozzi C, Brenlla C, Bartolomé I, Girona A, Muñoz-Moreno E, Laredo C, Rodríguez-Vázquez A, Doncel-Moriano A, Rudilosso S, Chamorro Á. Clinical Relevance of Different Loads of Perivascular Spaces According to Their Localization in Patients with a Recent Small Subcortical Infarct. J Cardiovasc Dev Dis 2024; 11:345. [PMID: 39590188 PMCID: PMC11594638 DOI: 10.3390/jcdd11110345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Background and Purpose: Perivascular spaces (PVS) are usually enlarged in small vessel disease (SVD). However, the significance of PVS patterns in different locations is uncertain. Hence, we analyzed the distribution of PVS in patients with a recent small subcortical infarct (RSSI) and their correlation with clinical and imaging factors. Materials and Methods: In a cohort of 71 patients with an RSSI with complete clinical data, including the Pittsburgh Sleep Quality Index (PSQI), we segmented PVS in white matter (WM-PVS), basal ganglia (BG-PVS), and brainstems (BS-PVS) on 3T-MRI T2-weighted sequences, obtaining fractional volumes (%), and calculated the WM/BG-PVS ratio. We analyzed the Pearson's correlation coefficients between PVS regional loads. We used normalized PVS measures to assess the associations with clinical and MRI-SVD features (white matter hyperintensities (WMHs), number of lacunes, and microbleeds) in univariable and multivariable linear regressions adjusted for age, sex, and hypertension. Results: In our cohort (mean age 70 years; 27% female), the Pearson's correlation coefficients between WM-PVS/BG-PVS, WM-PVS/BS-PVS, and BG-PVS/BS-PVS were 0.67, 0.61, and 0.59 (all p < 0.001). In the adjusted models, BG-PVS were associated with lacunes (p = 0.034), WMHs (p = 0.006), and microbleeds (p = 0.017); WM-PVS with lacunes (p = 0.003); while BS-PVS showed no associations. The WM/BG-PVS ratio was associated with lacunes (p = 0.018) and the PSQI (p = 0.046). Conclusions: PVS burdens in different regions are highly correlated in patients with RSSI but with different SVD patterns. Sleep quality impairment might affect waste removal mechanisms differently in the WM and BG regions.
Collapse
Affiliation(s)
- Caterina Sozzi
- Neurology Department, University of Milano Bicocca, 20126 Milan, Italy;
| | - Carla Brenlla
- Neurology Department, Hospital Clínic, 08036 Barcelona, Spain (A.G.)
| | - Inés Bartolomé
- Neurology Department, Hospital Clínic, 08036 Barcelona, Spain (A.G.)
| | - Andrés Girona
- Neurology Department, Hospital Clínic, 08036 Barcelona, Spain (A.G.)
| | - Emma Muñoz-Moreno
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Carlos Laredo
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | | | - Antonio Doncel-Moriano
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clínic, 08036 Barcelona, Spain; (A.R.-V.)
| | - Salvatore Rudilosso
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clínic, 08036 Barcelona, Spain; (A.R.-V.)
| | - Ángel Chamorro
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clínic, 08036 Barcelona, Spain; (A.R.-V.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
6
|
Lee B, Shin NY, Park CH, Nam Y, Lim SM, Ahn KJ. Spatial Similarity of MRI-Visible Perivascular Spaces in Healthy Young Adult Twins. Yonsei Med J 2024; 65:661-668. [PMID: 39439170 PMCID: PMC11519134 DOI: 10.3349/ymj.2023.0581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 10/25/2024] Open
Abstract
PURPOSE This study aimed to determine whether genetic factors affect the location of dilated perivascular spaces (dPVS) by comparing healthy young twins and non-twin (NT) siblings. MATERIALS AND METHODS A total of 700 healthy young adult twins and NT siblings [138 monozygotic (MZ) twin pairs, 79 dizygotic (DZ) twin pairs, and 133 NT sibling pairs] were collected from the Human Connectome Project dataset. dPVS was automatically segmented and normalized to standard space. Then, spatial similarity indices [mean squared error (MSE), structural similarity (SSIM), and dice similarity (DS)] were calculated for dPVS in the basal ganglia (BGdPVS) and white matter (WMdPVS) between paired subjects before and after propensity score matching of dPVS volumes between groups. Within-pair correlations for the regional volumes of dVPS were also assessed using the intraclass correlation coefficient. RESULTS The spatial similarity of dPVS was significantly higher in MZ twins [higher DS (median, 0.382 and 0.310) and SSIM (0.963 and 0.887) and lower MSE (0.005 and 0.005) for BGdPVS and WMdPVS, respectively] than in DZ twins [DS (0.121 and 0.119), SSIM (0.941 and 0.868), and MSE (0.010 and 0.011)] and NT siblings [DS (0.106 and 0.097), SSIM (0.924 and 0.848), and MSE (0.016 and 0.017)]. No significant difference was found between DZ twins and NT siblings. Similar results were found even after the subjects were matched according to dPVS volume. Regional dPVS volumes were also more correlated within pairs in MZ twins than in DZ twins and NT siblings. CONCLUSION Our results suggest that genetic factors affect the location of dPVS.
Collapse
Affiliation(s)
- Boeun Lee
- Department of Radiology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Na-Young Shin
- Department of Radiology, Yonsei University College of Medicine, Seoul, Korea.
| | - Chang-Hyun Park
- Department of Radiology, Yonsei University College of Medicine, Seoul, Korea
- Division of Artificial Intelligence and Software, College of Engineering, Ewha Womans University, Seoul, Korea
| | - Yoonho Nam
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Korea
| | - Soo Mee Lim
- Department of Radiology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Kook Jin Ahn
- Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
7
|
Lim C, Lee H, Moon Y, Han SH, Kim HJ, Chung HW, Moon WJ. Volume and Permeability of White Matter Hyperintensity on Cognition: A DCE Imaging Study of an Older Cohort With and Without Cognitive Impairment. J Magn Reson Imaging 2024. [PMID: 39425583 DOI: 10.1002/jmri.29631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND The impact of blood-brain barrier (BBB) leakage on white matter hyperintensity (WMH) subtypes (location) and its association with clinical factors and cognition remains unclear. PURPOSE To investigate the relationship between WMH volume, permeability, clinical factors, and cognition in older individuals across the cognitive spectrum. STUDY TYPE Prospective, cross-sectional. SUBJECTS A total of 193 older adults with/without cognitive impairment; 128 females; mean age 70.1 years (standard deviation 6.8). FIELD STRENGTH/SEQUENCE 3 T, GE Dynamic contrast-enhanced, three-dimensional (3D) Magnetization-prepared rapid gradient-echo (MPRAGE T1WI), 3D fluid-attenuated inversion recovery (FLAIR). ASSESSMENT Periventricular WMH (PWMH), deep WMH (DWMH), and normal-appearing white matter (NAWM) were segmented using FMRIB automatic segmentation tool algorithms on 3D FLAIR. Hippocampal volume and cortex volume were segmented on 3D T1WI. BBB permeability (Ktrans) and blood plasma volume (Vp) were determined using the Patlak model. Vascular risk factors and cognition were assessed. STATISTICAL TESTS Univariate and multivariate analyses were performed to identify factors associated with WMH permeability. Logistic regression analysis assessed the association between WMH imaging features and cognition, adjusting for age, sex, apolipoprotein E4 status, education, and brain volumes. A P-value <0.05 was considered significant. RESULTS PWMH exhibited higher Ktrans (0.598 ± 0.509 × 10-3 minute-1) compared to DWMH (0.496 ± 0.478 × 10-3 minute-1) and NAWM (0.476 ± 0.398 × 10-3 minute-1). Smaller PWMH volume and cardiovascular disease (CVD) history were significantly associated with higher Ktrans in PWMH. In DWMH, higher Ktrans were associated with CVD history and cortical volume. In NAWM, it was linked to CVD history and dyslipidemia. Larger PWMH volume (odds ratio [OR] 1.106, confidence interval [CI]: 1.021-1.197) and smaller hippocampal volume (OR 0.069; CI: 0.019-0.253) were independently linked to worse global cognition after covariate adjustment. DATA CONCLUSION Elevated BBB leakage in PWMH was associated with lower PWMH volume and prior CVD history. Notably, PWMH volume, rather than permeability, was correlated with cognitive decline, suggesting that BBB leakage in WMH may be a consequence of CVD rather than indicate disease progression. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Changmok Lim
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Hunwoo Lee
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Yeonsil Moon
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University of Medicine, Seoul, Republic of Korea
| | - Seol-Heui Han
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University of Medicine, Seoul, Republic of Korea
| | - Hee Jin Kim
- Department of Neurology, Hanyang University Medical Center, Hanyang University School of Medicine, Seoul, Republic of Korea
| | - Hyun Woo Chung
- Department of Nuclear Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Pradhan A, Mut F, Sosale M, Cebral J. Flow reduction due to arterial catheterization during stroke treatment - A computational study using a distributed compartment model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3853. [PMID: 39090842 DOI: 10.1002/cnm.3853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
The effectiveness of various stroke treatments depends on the anatomical variability of the cerebral vasculature, particularly the collateral blood vessel network. Collaterals at the level of the Circle of Willis and distal collaterals, such as the leptomeningeal arteries, serve as alternative avenues of flow when the primary pathway is obstructed during an ischemic stroke. Stroke treatment typically involves catheterization of the primary pathway, and the potential risk of further flow reduction to the affected brain area during this treatment has not been previously investigated. To address this clinical question, we derived the lumped parameters for catheterized blood vessels and implemented a corresponding distributed compartment (0D) model. This 0D model was validated against an experimental model and benchmark test cases solved using a 1D model. Additionally, we compared various off-center catheter trajectories modeled using a 3D solver to this 0D model. The differences between them were minimal, validating the simplifying assumption of the central catheter placement in the 0D model. The 0D model was then used to simulate blood flows in realistic cerebral arterial networks with different collateralization characteristics. Ischemic strokes were modeled by occlusion of the M1 segment of the middle cerebral artery in these networks. Catheters of different diameters were inserted up to the obstructed segment and flow alterations in the network were calculated. Results showed up to 45% maximum blood flow reduction in the affected brain region. These findings suggest that catheterization during stroke treatment may have a further detrimental effect for some patients with poor collateralization.
Collapse
Affiliation(s)
- Aseem Pradhan
- Bioengineering Department, George Mason University, Fairfax, Virginia, USA
| | - Fernando Mut
- Bioengineering Department, George Mason University, Fairfax, Virginia, USA
| | - Medhini Sosale
- Bioengineering Department, George Mason University, Fairfax, Virginia, USA
| | - Juan Cebral
- Bioengineering Department, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
9
|
Wiersinga JHI, Wolters FJ, Peters MJL, Rhodius-Meester HFM, Trappenburg MC, Muller M. Orthostatic hypotension and cerebral small vessel disease: A systematic review. J Cereb Blood Flow Metab 2024:271678X241283226. [PMID: 39283022 PMCID: PMC11563541 DOI: 10.1177/0271678x241283226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 11/17/2024]
Abstract
Orthostatic hypotension(OH) is highly prevalent in ageing populations and may contribute to cognitive decline through cerebral small vessel disease(CSVD). Research on the association between OH and CSVD is fragmented and inconsistent. We systematically reviewed the literature for studies assessing the association between OH and CSVD, published until December 1st 2023 in MEDLINE, PubMed or Web of Science. We included studies with populations aged ≥60, that assessed OH in relation to CSVD including white matter hyperintensities(WMH), lacunes and cerebral microbleeds. Modified JBI checklist was used to assess risk of bias. A narrative synthesis of the results was presented. Of 3180 identified studies, eighteen were included. Fifteen studies reported on WMH, four on lacunes, seven on microbleeds. Six of fifteen studies on WMH found that OH was related to an increased burden of WMH, neither longitudinal studies found associations with WMH progression. Findings were inconsistent across studies concerning lacunes and microbleeds. Across outcomes, adequate adjustment for systolic blood pressure tended to coincide with smaller effect estimates. Current evidence on the OH-CSVD association originates mostly from cross-sectional studies, providing inconsistent and inconclusive results. Longitudinal studies using standardized and fine-grained assessment of OH and CSVD and adequate adjustment for supine blood pressure are warranted.
Collapse
Affiliation(s)
- Julia HI Wiersinga
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Internal Medicine Section Geriatrics, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, The Netherlands
| | - Frank J Wolters
- Erasmus Medical Center, Department of Epidemiology, Rotterdam, The Netherlands
- Erasmus Medical Center, Departments of Radiology & Nuclear Medicine and Alzheimer Center Erasmus MC, Rotterdam, The Netherlands
| | - Mike JL Peters
- UMC Utrecht, University of Utrecht, Department of Internal Medicine Section Geriatrics, Utrecht, The Netherlands
| | - Hanneke FM Rhodius-Meester
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Internal Medicine Section Geriatrics, Amsterdam, The Netherlands
- Oslo University Hospital, Department of Geriatric Medicine, Ullevål, Oslo, Norway
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marijke C Trappenburg
- Amstelland Hospital, Department of Internal Medicine section Geriatrics, Amstelveen, The Netherlands
| | - Majon Muller
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Internal Medicine Section Geriatrics, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, The Netherlands
| |
Collapse
|
10
|
McNeilly S, Thomson CR, Gonzalez-Trueba L, Sin YY, Granata A, Hamilton G, Lee M, Boland E, McClure JD, Lumbreras-Perales C, Aman A, Kumar AA, Cantini M, Gök C, Graham D, Tomono Y, Anderson CD, Lu Y, Smith C, Markus HS, Abramowicz M, Vilain C, Al-Shahi Salman R, Salmeron-Sanchez M, Hainsworth AH, Fuller W, Kadler KE, Bulleid NJ, Van Agtmael T. Collagen IV deficiency causes hypertrophic remodeling and endothelium-dependent hyperpolarization in small vessel disease with intracerebral hemorrhage. EBioMedicine 2024; 107:105315. [PMID: 39216230 PMCID: PMC11402910 DOI: 10.1016/j.ebiom.2024.105315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Genetic variants in COL4A1 and COL4A2 (encoding collagen IV alpha chain 1/2) occur in genetic and sporadic forms of cerebral small vessel disease (CSVD), a leading cause of stroke, dementia and intracerebral haemorrhage (ICH). However, the molecular mechanisms of CSVD with ICH and COL4A1/COL4A2 variants remain obscure. METHODS Vascular function and molecular investigations in mice with a Col4a1 missense mutation and heterozygous Col4a2 knock-out mice were combined with analysis of human brain endothelial cells harboring COL4A1/COL4A2 mutations, and brain tissue of patients with sporadic CSVD with ICH. FINDINGS Col4a1 missense mutations cause early-onset CSVD independent of hypertension, with enhanced vasodilation of small arteries due to endothelial dysfunction, vascular wall thickening and reduced stiffness. Mechanistically, the early-onset dysregulated endothelium-dependent hyperpolarization (EDH) is due to reduced collagen IV levels with elevated activity and levels of endothelial Ca2+-sensitive K+ channels. This results in vasodilation via the Na/K pump in vascular smooth muscle cells. Our data support this endothelial dysfunction preceding development of CSVD-associated ICH is due to increased cytoplasmic Ca2+ levels in endothelial cells. Moreover, cerebral blood vessels of patients with sporadic CSVD show genotype-dependent mechanisms with wall thickening and lower collagen IV levels in those harboring common non-coding COL4A1/COL4A2 risk alleles. INTERPRETATION COL4A1/COL4A2 variants act in genetic and sporadic CSVD with ICH via dysregulated EDH, and altered vascular wall thickness and biomechanics due to lower collagen IV levels and/or mutant collagen IV secretion. These data highlight EDH and collagen IV levels as potential treatment targets. FUNDING MRC, Wellcome Trust, BHF.
Collapse
Affiliation(s)
- Sarah McNeilly
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Cameron R Thomson
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Laura Gonzalez-Trueba
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Yuan Yan Sin
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Alessandra Granata
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge and Royal Papworth Hospital, Cambridge, UK
| | - Graham Hamilton
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; Glasgow Polyomics, University of Glasgow, Glasgow, UK
| | - Michelle Lee
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Erin Boland
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - John D McClure
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Cristina Lumbreras-Perales
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Alisha Aman
- School of Health and Wellbeing, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Apoorva A Kumar
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK; Princess Royal University Hospital, Kings College Hospital NHS Foundation Trust, London, UK
| | - Marco Cantini
- Centre for the Cellular Microenvironment, School of Science and Engineering, University of Glasgow, Glasgow, UK
| | - Caglar Gök
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Delyth Graham
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Yasuko Tomono
- Division of Molecular & Cell Biology, Shigei Medical Research Institute, Okayama, Japan
| | - Christopher D Anderson
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yinhui Lu
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Colin Smith
- Academic Neuropathology, University of Edinburgh, Edinburgh, UK
| | - Hugh S Markus
- Department of Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Marc Abramowicz
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Bruxelles, Belgium
| | - Catheline Vilain
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Bruxelles, Belgium
| | | | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, School of Science and Engineering, University of Glasgow, Glasgow, UK
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - William Fuller
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Karl E Kadler
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Neil J Bulleid
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tom Van Agtmael
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
11
|
Ölmestig J, Mortensen KN, Fagerlund B, Naveed N, Nordling MM, Christensen H, Iversen HK, Poulsen MB, Siebner HR, Kruuse C. Cerebral blood flow and cognition after 3 months tadalafil treatment in small vessel disease (ETLAS-2): study protocol for a randomized controlled trial. Trials 2024; 25:570. [PMID: 39210472 PMCID: PMC11360322 DOI: 10.1186/s13063-024-08402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Targeted treatment is highly warranted for cerebral small vessel disease, a causal factor of one in four strokes and a major contributor to vascular dementia. Patients with cerebral small vessel disease have impaired cerebral blood flow and vessel reactivity. Tadalafil is a specific phosphodiesterase 5 inhibitor shown to improve vascular reactivity in the brain. METHODS The ETLAS-2 trial is a phase 2 double-blind, randomized placebo-controlled, parallel trial with the feasibility of tadalafil as the primary outcome. The trial aims to include 100 patients with small vessel occlusion stroke or transitory ischemic attacks and signs of cerebral small vessel disease more than 6 months before administration of study medication. Patients are treated for 3 months with tadalafil 20 mg or placebo daily and undergo magnetic resonance imaging (MRI) to evaluate changes in small vessel disease according to the STandards for ReportIng Vascular changes on nEuroimaging (STRIVE) criteria as well as cerebral blood flow, cerebrovascular reactivity, and neurovascular coupling in a functional MRI sub-study. The investigation includes comprehensive cognitive testing using paper-pencil tests and Cambridge Neuropsychological Test Automated Battery (CANTAB) tests in a cognitive sub-study. DISCUSSION The ETLAS-2 trial tests the feasibility of long-term treatment with tadalafil and explores vascular and cognitive effects in cerebral small vessel disease in trial sub-studies. The study aims to propose a new treatment target and improve the understanding of small vessel disease. Currently, 64 patients have been included and the trial is estimated to be completed in the year 2024. TRIAL REGISTRATION Clinicaltrials.gov, NCT05173896. Registered on 30 December 2021.
Collapse
Affiliation(s)
- Joakim Ölmestig
- Neurovascular Research Unit, Department of Neurology, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
| | - Kristian Nygaard Mortensen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
| | - Birgitte Fagerlund
- Child and Adolescent Mental Health Center, Copenhagen University Hospital, Mental Health Services CPH, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Nadia Naveed
- Department of Radiology, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Mette Maria Nordling
- Department of Radiology, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Hanne Christensen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Helle Klingenberg Iversen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Mai Bang Poulsen
- Department of Neurology, Copenhagen University Hospital-North Zealand, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Christina Kruuse
- Neurovascular Research Unit, Department of Neurology, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
- Department of Brain and Spinal Cord Injury, Neuroscience Centre, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
12
|
Song X, Chen W, Zhao X, Zheng Z, Sang Z, Li R, Wu J. Decreased flow in ischemic stroke with coexisting intracranial artery stenosis and white matter hyperintensities. J Cent Nerv Syst Dis 2024; 16:11795735241266572. [PMID: 39055050 PMCID: PMC11271110 DOI: 10.1177/11795735241266572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
Background Stroke patients with coexisting intracranial artery stenosis (ICAS) and white matter lesions (WML) usually have a poor outcome. However, how WML affects stroke prognosis has not been determined. Objective To investigate the quantitative forward flow at the middle cerebral artery in ICAS patients with different degrees of WML using 4D flow. Design Single-center cross-sectional cohort study. Methods Ischemic stroke patients with symptomatic middle cerebral artery (MCA) atherosclerosis were included, and they were divided into 2 groups based on Fazekas scale on Flair image (mild group = Fazekas 0-2, and severe group = Fazekas >2), TOF-MRA and 4D flow were performed to quantify the stenosis degree and forward flow at the proximal of stenosis. The flow parameters were compared between different white matter hyperintensity (WMH) groups, as well as in different MCA stenosis groups, logistic regression was used to validate the association between forward flow and WMH. Results A total of 66 patients were included in this study (mean age 56 years old, 68.2% male). 77.3% of them presented with WMH (Fazekas 1-5). Comparison of flow index between mild and severe WMH groups found a significantly lower forward flow (2.34 ± 1.09 vs 3.04 ± 1.35), higher PI (0.75 ± 0.43 vs 0.66 ± 0.32), and RI (0.49 ± 0.19 vs 0.46 ± 0.15) at ipsilateral infarction MCA in the severe WMH group, all P-values <0.05. After adjusting for other covariates, forward mean flow at ipsilateral infarction MCA is still associated with severe WMH independently, OR = 0.537, 95% CI (0.294, 0.981), P = 0.043. Conclusion Intracranial artery stenosis patients with coexisting severe WMH suffer from significantly decreased flow, which could explain the poor clinical outcome in this population, and also provide some insight into recanalization therapy in the future.
Collapse
Affiliation(s)
- Xiaowei Song
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Wenwen Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhuozhao Zheng
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhenhua Sang
- Department of Information Technology Service, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Rui Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Jian Wu
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Wang L, Lyu J, Han D, Bian X, Zhang D, Wang H, Hao F, Duan L, Ma L, Lou X. Imaging Assessments and Clinical Significance of Brain Frailty in Moyamoya Disease. AJNR Am J Neuroradiol 2024; 45:855-862. [PMID: 38782594 DOI: 10.3174/ajnr.a8232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/09/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND AND PURPOSE Imaging assessment of brain frailty in ischemic stroke has been extensively studied, while the correlation between brain frailty and Moyamoya disease remains obscure. This study aimed to investigate the imaging characteristics of brain frailty and its clinical applications in Moyamoya disease. MATERIALS AND METHODS This study included 60 patients with Moyamoya disease (107 hemispheres). All patients were divided into stroke and nonstroke groups based on clinical symptoms and imaging findings. The modified brain frailty score was adapted to consider 4 imaging signs: white matter hyperintensity, enlargement of perivascular space, old vascular lesions, and cerebral microbleed. The relative CBF of the MCA territory was quantified using pseudocontinuous arterial-spin labeling. Surgical outcome after revascularization surgery was defined by the Matsushima grade. RESULTS The relative CBF of the MCA territory decreased as the modified brain frailty score and periventricular white matter hyperintensity grades increased (ρ = -0.22, P = .02; ρ = -0.27, P = .005). Clinically, the modified brain frailty score could identify patients with Moyamoya disease with stroke (OR = 2.00, P = .02). Although the modified brain frailty score showed no predictive value for surgical outcome, basal ganglia enlargement of the perivascular space had a significant correlation with the postoperative Matsushima grade (OR = 1.29, P = .03). CONCLUSIONS The modified brain frailty score could reflect a cerebral perfusion deficit and clinical symptoms of Moyamoya disease, and its component basal ganglia enlargement of perivascular space may be a promising marker to predict surgical outcome and thus aid future clinical decision-making.
Collapse
Affiliation(s)
- Liuxian Wang
- From the Department of Radiology (L.X.W., J.H.L., D.S.H., X.B.B., D.K.Z., H.W., L.M., X.L.), Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, China
| | - Jinhao Lyu
- From the Department of Radiology (L.X.W., J.H.L., D.S.H., X.B.B., D.K.Z., H.W., L.M., X.L.), Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, China
| | - Dongshan Han
- From the Department of Radiology (L.X.W., J.H.L., D.S.H., X.B.B., D.K.Z., H.W., L.M., X.L.), Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, China
| | - Xiangbing Bian
- From the Department of Radiology (L.X.W., J.H.L., D.S.H., X.B.B., D.K.Z., H.W., L.M., X.L.), Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, China
| | - Dekang Zhang
- From the Department of Radiology (L.X.W., J.H.L., D.S.H., X.B.B., D.K.Z., H.W., L.M., X.L.), Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, China
| | - Hui Wang
- From the Department of Radiology (L.X.W., J.H.L., D.S.H., X.B.B., D.K.Z., H.W., L.M., X.L.), Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, China
| | - Fangbin Hao
- Department of Neurosurgery (F.B.H., L.D.), Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, China
| | - Lian Duan
- Department of Neurosurgery (F.B.H., L.D.), Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, China
| | - Lin Ma
- From the Department of Radiology (L.X.W., J.H.L., D.S.H., X.B.B., D.K.Z., H.W., L.M., X.L.), Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, China
| | - Xin Lou
- From the Department of Radiology (L.X.W., J.H.L., D.S.H., X.B.B., D.K.Z., H.W., L.M., X.L.), Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, China
| |
Collapse
|
14
|
Zhang XL, Cheng XR, Wang YL, Huang YX, Wang JL. Ophthalmic Artery Morphology and Hemodynamics Associated with White Matter Hyperintensity. Int J Med Sci 2024; 21:1604-1611. [PMID: 39006846 PMCID: PMC11241099 DOI: 10.7150/ijms.94677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose: To investigate morphological and hemodynamic characteristics of the ophthalmic artery (OA) in patients with white matter hyperintensity (WMH), and the association of the presence and severity of WMH with OA characteristics. Methods: This cross-sectional study included 44 eyes of 25 patients with WMH and 38 eyes of 19 controls. The Fazekas scale was adopted as criteria for evaluating the severity of white matter hyperintensities. The morphological characteristics of the OA were measured on the basis of three-dimensional reconstruction. The hemodynamic parameters of the OA were calculated using computational fluid dynamics simulations. Results: Compared with the control group, the diameter (16.0±0.27 mm vs. 1.71±0.18 mm, P=0.029), median blood flow velocity (0.12 m/s vs. 0.22 m/s, P<0.001), mass flow ratio (2.16% vs. 3.94%, P=0.012) and wall shear stress (2.65 Pa vs. 9.31 Pa, P<0.001) of the OA in patients with WMH were significantly decreased. After adjusting for confounding factors, the diameter, blood flow velocity, wall shear stress, and mass flow ratio of the OA were significantly associated with the presence of WMH. Male sex and high low-density protein level were associated with moderate-to-severe total WMH, and smoking was associated with the moderate-to-severe periventricular WMH. Conclusions: The diameter, blood flow velocity, mass flow ratio, and wall shear stress of the OA were independently associated with the presence of WMH. Atherosclerosis might be involved in the common mechanism of the occurrence of WMH and the OA changes.
Collapse
Affiliation(s)
- Xiao-lei Zhang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xue-ru Cheng
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - Yan-ling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - Ying-xiang Huang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jia-lin Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Institute of Ophthalmology, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Tang Y, Wu X, Li J, Li Y, Xu X, Li G, Zhang P, Qin C, Wu LJ, Tang Z, Tian DS. The Emerging Role of Microglial Hv1 as a Target for Immunomodulation in Myelin Repair. Aging Dis 2024; 15:1176-1203. [PMID: 38029392 PMCID: PMC11081154 DOI: 10.14336/ad.2023.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
In the central nervous system (CNS), the myelin sheath ensures efficient interconnection between neurons and contributes to the regulation of the proper function of neuronal networks. The maintenance of myelin and the well-organized subtle process of myelin plasticity requires cooperation among myelin-forming cells, glial cells, and neural networks. The process of cooperation is fragile, and the balance is highly susceptible to disruption by microenvironment influences. Reactive microglia play a critical and complicated role in the demyelination and remyelination process. Recent studies have shown that the voltage-gated proton channel Hv1 is selectively expressed in microglia in CNS, which regulates intracellular pH and is involved in the production of reactive oxygen species, underlying multifaceted roles in maintaining microglia function. This paper begins by examining the molecular mechanisms of demyelination and emphasizes the crucial role of the microenvironment in demyelination. It focuses specifically on the role of Hv1 in myelin repair and its therapeutic potential in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
16
|
Pacholko A, Iadecola C. Hypertension, Neurodegeneration, and Cognitive Decline. Hypertension 2024; 81:991-1007. [PMID: 38426329 PMCID: PMC11023809 DOI: 10.1161/hypertensionaha.123.21356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Elevated blood pressure is a well-established risk factor for age-related cognitive decline. Long linked to cognitive impairment on vascular bases, increasing evidence suggests a potential association of hypertension with the neurodegenerative pathology underlying Alzheimer disease. Hypertension is well known to disrupt the structural and functional integrity of the cerebral vasculature. However, the mechanisms by which these alterations lead to brain damage, enhance Alzheimer pathology, and promote cognitive impairment remain to be established. Furthermore, critical questions concerning whether lowering blood pressure by antihypertensive medications prevents cognitive impairment have not been answered. Recent developments in neurovascular biology, brain imaging, and epidemiology, as well as new clinical trials, have provided insights into these critical issues. In particular, clinical and basic findings on the link between neurovascular dysfunction and the pathobiology of neurodegeneration have shed new light on the overlap between vascular and Alzheimer pathology. In this review, we will examine the progress made in the relationship between hypertension and cognitive impairment and, after a critical evaluation of the evidence, attempt to identify remaining knowledge gaps and future research directions that may advance our understanding of one of the leading health challenges of our time.
Collapse
Affiliation(s)
- Anthony Pacholko
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
17
|
Varrias D, Saralidze T, Borkowski P, Pargaonkar S, Spanos M, Bazoukis G, Kokkinidis D. Atrial Fibrillation and Dementia: Pathophysiological Mechanisms and Clinical Implications. Biomolecules 2024; 14:455. [PMID: 38672471 PMCID: PMC11048426 DOI: 10.3390/biom14040455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Numerous longitudinal studies suggest a strong association between cardiovascular risk factors and cognitive impairment. Individuals with atrial fibrillation are at higher risk of dementia and cognitive dysfunction, as atrial fibrillation increases the risk of cerebral hypoperfusion, inflammation, and stroke. The lack of comprehensive understanding of the observed association and the complex relationship between these two diseases makes it very hard to provide robust guidelines on therapeutic indications. With this review, we attempt to shed some light on how atrial fibrillation is related to dementia, what we know regarding preventive interventions, and how we could move forward in managing those very frequently overlapping conditions.
Collapse
Affiliation(s)
- Dimitrios Varrias
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.B.); (S.P.)
| | - Tinatin Saralidze
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.B.); (S.P.)
| | - Pawel Borkowski
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.B.); (S.P.)
| | - Sumant Pargaonkar
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.B.); (S.P.)
| | - Michail Spanos
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - George Bazoukis
- School of Medicine, European University Cyprus, 2417 Nicosia, Cyprus
| | - Damianos Kokkinidis
- Section of Cardiovascular Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
18
|
Rau A, Reisert M, Taschner CA, Demerath T, Elsheikh S, Frank B, Köhrmann M, Urbach H, Kellner E. Reducing False-Positives in CT Perfusion Infarct Core Segmentation Using Contralateral Local Normalization. AJNR Am J Neuroradiol 2024; 45:277-283. [PMID: 38302197 DOI: 10.3174/ajnr.a8111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/20/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND AND PURPOSE The established global threshold of rCBF <30% for infarct core segmentation can lead to false-positives, as it does not account for the differences in blood flow between GM and WM and patient-individual factors, such as microangiopathy. To mitigate this problem, we suggest normalizing each voxel not only with a global reference value (ie, the median value of normally perfused tissue) but also with its local contralateral counterpart. MATERIALS AND METHODS We retrospectively enrolled 2830 CTP scans with suspected ischemic stroke, of which 335 showed obvious signs of microangiopathy. In addition to the conventional, global normalization, a local normalization was performed by dividing the rCBF maps with their mirrored and smoothed counterpart, which sets each voxel value in relation to the contralateral counterpart, intrinsically accounting for GM and WM differences and symmetric patient individual microangiopathy. Maps were visually assessed and core volumes were calculated for both methods. RESULTS Cases with obvious microangiopathy showed a strong reduction in false-positives by using local normalization (mean 14.7 mL versus mean 3.7 mL in cases with and without microangiopathy). On average, core volumes were slightly smaller, indicating an improved segmentation that was more robust against naturally low blood flow values in the deep WM. CONCLUSIONS The proposed method of local normalization can reduce overestimation of the infarct core, especially in the deep WM and in cases with obvious microangiopathy. False-positives in CTP infarct core segmentation might lead to less-than-optimal therapy decisions when not correctly interpreted. The proposed method might help mitigate this problem.
Collapse
Affiliation(s)
- Alexander Rau
- From the Department of Neuroradiology (A.R., C.A.T., T.D., S.E., H.U.), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Diagnostic and Interventional Radiology (A.R.), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Medical Physics, Department of Diagnostic and Interventional Radiology (M.R., E.K.), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Stereotactic and Functional Neurosurgery (M.R.), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian A Taschner
- From the Department of Neuroradiology (A.R., C.A.T., T.D., S.E., H.U.), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Theo Demerath
- From the Department of Neuroradiology (A.R., C.A.T., T.D., S.E., H.U.), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Samer Elsheikh
- From the Department of Neuroradiology (A.R., C.A.T., T.D., S.E., H.U.), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Benedikt Frank
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (B.F., M.K.), University Hospital Essen, Essen, Germany
| | - Martin Köhrmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (B.F., M.K.), University Hospital Essen, Essen, Germany
| | - Horst Urbach
- From the Department of Neuroradiology (A.R., C.A.T., T.D., S.E., H.U.), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elias Kellner
- Medical Physics, Department of Diagnostic and Interventional Radiology (M.R., E.K.), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Smith EE. Advances in Cerebral Small Vessel Disease: Sandra E. Black Lecture to the Canadian Neurological Sciences Federation. Can J Neurol Sci 2024:1-8. [PMID: 38410042 DOI: 10.1017/cjn.2024.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Cerebral small vessel diseases (CSVDs) are among the most common age-related pathologies of the brain. Arteriolosclerosis and cerebral amyloid angiopathy (CAA) are the most common CSVDs. In addition to causing stroke and dementia, CSVDs can have diverse covert radiological manifestations on computed tomography and magnetic resonance imaging including lacunes, T2-weighted white matter hyperintensities, increased density of visible perivascular spaces, microbleeds and cortical superficial siderosis. Because they cannot be visualized directly, research on the pathophysiology of CSVD has been difficult. However, advances in quantitative imaging methods, including physiological imaging such as measurement of cerebrovascular reactivity and increased vascular permeability, are beginning to allow investigation of the early effects of CSVD in living people. Furthermore, genomics, metabolomics and proteomics have the potential to illuminate previously unrecognized pathways to CSVD that could be important targets for new clinical trials.
Collapse
Affiliation(s)
- Eric E Smith
- Department of Clinical Neurosciences, Radiology and Community Health Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
Fan H, Xu Z, Yao K, Zheng B, Zhang Y, Wang X, Zhang T, Li X, Hu H, Yue B, Hu Z, Zheng H. Osteoclast Cancer Cell Metabolic Cross-talk Confers PARP Inhibitor Resistance in Bone Metastatic Breast Cancer. Cancer Res 2024; 84:449-467. [PMID: 38038966 DOI: 10.1158/0008-5472.can-23-1443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
The majority of patients with late-stage breast cancer develop distal bone metastases. The bone microenvironment can affect response to therapy, and uncovering the underlying mechanisms could help identify improved strategies for treating bone metastatic breast cancer. Here, we observed that osteoclasts reduced the sensitivity of breast cancer cells to DNA damaging agents, including cisplatin and the PARP inhibitor (PARPi) olaparib. Metabolic profiling identified elevated glutamine production by osteoclasts. Glutamine supplementation enhanced the survival of breast cancer cells treated with DNA damaging agents, while blocking glutamine uptake increased sensitivity and suppressed bone metastasis. GPX4, the critical enzyme responsible for glutathione oxidation, was upregulated in cancer cells following PARPi treatment through stress-induced ATF4-dependent transcriptional programming. Increased glutamine uptake and GPX4 upregulation concertedly enhanced glutathione metabolism in cancer cells to help neutralize oxidative stress and generate PARPi resistance. Analysis of paired patient samples of primary breast tumors and bone metastases revealed significant induction of GPX4 in bone metastases. Combination therapy utilizing PARPi and zoledronate, which blocks osteoclast activity and thereby reduces the microenvironmental glutamine supply, generated a synergistic effect in reducing bone metastasis. These results identify a role for glutamine production by bone-resident cells in supporting metastatic cancer cells to overcome oxidative stress and develop resistance to DNA-damaging therapies. SIGNIFICANCE Metabolic interaction between osteoclasts and tumor cells contributes to resistance to DNA-damaging agents, which can be blocked by combination treatment with PARP and osteoclast inhibitors to reduce bone metastatic burden.
Collapse
Affiliation(s)
- Huijuan Fan
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Zhanao Xu
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Ke Yao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Bingxin Zheng
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yuan Zhang
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xuxiang Wang
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Tengjiang Zhang
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xuan Li
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Haitian Hu
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Bin Yue
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Hanqiu Zheng
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
21
|
Guo W, Wang X, Chen Y, Wang F, Qiu J, Lu W. Effect of Menopause Status on Brain Perfusion Hemodynamics. Stroke 2024; 55:260-268. [PMID: 37850361 DOI: 10.1161/strokeaha.123.044841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND The menopause transition is associated with an increasing risk of cerebrovascular disorders. However, the direct effect of menopause status on brain perfusion hemodynamics remains unclear. This study aimed to explore the influence of menopause status on cerebral blood flow (CBF) using arterial spin labeling magnetic resonance imaging. METHODS In this cross-sectional study, 185 subjects underwent arterial spin labeling magnetic resonance imaging at a hospital in China between September 2020 and December 2022, including 38 premenopausal women (mean age, 47.74±2.02 years), 42 perimenopausal women (mean age, 50.62±3.15 years), 42 postmenopausal women (mean age, 54.02±4.09 years), and 63 men (mean age, 52.70±4.33 years) of a similar age range. Mean CBF values in the whole brain, gray matter, white matter, cortical gray matter, subcortical gray matter, juxtacortical white matter, deep white matter, and periventricular white matter were extracted. ANCOVA was used to compare mean CBF among the 4 groups, controlling for confounding factors. Student t test was applied to compare mean CBF between the 3 female groups and age-matched males, respectively. Multivariable regression analysis was used to analysis the effect of age, sex, and menopause status on the CBF of the whole brain, gray matter, white matter, and subregions. RESULTS Perimenopausal and postmenopausal women showed a higher proportion of white matter hyperintensities compared with the other 2 groups (P<0.001). Premenopausal women exhibited higher CBF in the whole brain, gray matter, white matter, and subregions, compared with perimenopausal, postmenopausal women and men (P≤0.001). Multivariable regression analysis demonstrated significant effect of age and insignificant effect of sex on CBF for all participants. In addition, menopause status and the interaction between age and menopause status on CBF of whole brain, gray matter, white matter, and the subregions were observed in female participants, except for the deep and periventricular white matter regions, with premenopausal women exhibited a slight increase in CBF with age, while perimenopausal and postmenopausal women exhibited declines in CBF with age. CONCLUSIONS The current findings suggest that alterations of brain perfusion hemodynamics begin during the perimenopause period, which may be due to the increased burden of white matter hyperintensities.
Collapse
Affiliation(s)
- Wei Guo
- Department of Radiology, the Second Affiliated Hospital of Shandong First Medical University, Taian, China (W.G., Y.C., F.W., W.L.)
| | - Xiuzhu Wang
- Department of Obstetrics, Taian City Central Hospital, China (X.W.)
| | - Yinzhong Chen
- Department of Radiology, the Second Affiliated Hospital of Shandong First Medical University, Taian, China (W.G., Y.C., F.W., W.L.)
| | - Feng Wang
- Department of Radiology, the Second Affiliated Hospital of Shandong First Medical University, Taian, China (W.G., Y.C., F.W., W.L.)
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China (J.Q.)
| | - Weizhao Lu
- Department of Radiology, the Second Affiliated Hospital of Shandong First Medical University, Taian, China (W.G., Y.C., F.W., W.L.)
| |
Collapse
|
22
|
Chen W, Wang M, Yang L, Wang X, Jin Q, Zhao Z, Hu W. White matter hyperintensity burden and collateral circulation in acute ischemic stroke with large artery occlusion. BMC Neurol 2024; 24:6. [PMID: 38166675 PMCID: PMC10759595 DOI: 10.1186/s12883-023-03517-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the association between white matter hyperintensity (WMH) burden and pial collaterals in acute strokes caused by intracranial large artery occlusion treated with mechanical thrombectomy in the anterior circulation, focusing on stroke subtypes. METHODS Consecutive patients undergoing mechanical thrombectomy between December 2019 and June 2022 were retrospectively screened. The Fazekas scale assessed WMH burden. Pial collaterals were categorized as either poor (0-2) or good (3-4) based on the Higashida score. A multivariable analysis was used to determine the relationship between WMH burden and pial collaterals. Subgroup analyses delved into associations stratified by stroke subtypes, namely cardioembolism (CE), tandem lesions (TLs), and intracranial atherosclerosis (ICAS). RESULTS Of the 573 patients included, 274 (47.8%) demonstrated poor pial collaterals. Multivariable regression indicated a strong association between extensive WMH burden (Fazekas score of 3-6) and poor collaterals [adjusted OR 3.04, 95% CI 1.70-5.46, P < 0.001]. Additional independent predictors of poor collaterals encompassed ICAS-related occlusion (aOR 0.26, 95% CI 0.09-0.76, P = 0.014), female sex (aOR 0.63, 95% CI 0.41-0.96, P = 0.031), and baseline Alberta Stroke Program Early Computed Tomography scores (aOR 0.80, 95% CI 0.74-0.88, P < 0.001). Notably, an interaction between extensive WMH burden and stroke subtypes was observed in predicting poor collaterals (P = 0.001), being pronounced for CE (adjusted OR 2.30, 95% CI 1.21-4.37) and TLs (adjusted OR 5.09, 95% CI 2.32-11.16), but was absent in ICAS (adjusted OR 1.24, 95% CI 0.65-2.36). CONCLUSIONS Among patients treated with mechanical thrombectomy for anterior circulation large artery occlusion, extensive WMH burden correlates with poor pial collaterals in embolic occlusion cases (CE and TLs), but not in ICAS-related occlusion.
Collapse
Affiliation(s)
- Wang Chen
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Chaoyang, Beijing, 100020, China
| | - Meihong Wang
- Department of Neurology, Yishui People's Hospital, Linyi, Shandong, China
| | - Lei Yang
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Chaoyang, Beijing, 100020, China
| | - Xianjun Wang
- Department of Neurology, Linyi People's Hospital, No. 27, Crossroads with Wuhan and Wohushan St, Linyi, 276000, Shandong, China
| | - Qianxiu Jin
- Department of Imaging, Linyi People's Hospital, Linyi, Shandong, China
| | - Zhenyu Zhao
- Department of Neurology, Linyi People's Hospital, No. 27, Crossroads with Wuhan and Wohushan St, Linyi, 276000, Shandong, China.
| | - Wenli Hu
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Chaoyang, Beijing, 100020, China.
| |
Collapse
|
23
|
van Dinther M, Hooghiemstra AM, Bron EE, Versteeg A, Leeuwis AE, Kalay T, Moonen JE, Kuipers S, Backes WH, Jansen JFA, van Osch MJP, Biessels G, Staals J, van Oostenbrugge RJ. Lower cerebral blood flow predicts cognitive decline in patients with vascular cognitive impairment. Alzheimers Dement 2024; 20:136-144. [PMID: 37491840 PMCID: PMC10917014 DOI: 10.1002/alz.13408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Chronic cerebral hypoperfusion is one of the assumed pathophysiological mechanisms underlying vascular cognitive impairment (VCI). We investigated the association between baseline cerebral blood flow (CBF) and cognitive decline after 2 years in patients with VCI and reference participants. METHODS One hundred eighty-one participants (mean age 66.3 ± 7.4 years, 43.6% women) underwent arterial spin labeling (ASL) magnetic resonance imaging (MRI) and neuropsychological assessment at baseline and at 2-year follow-up. We determined the association between baseline global and lobar CBF and cognitive decline with multivariable regression analysis. RESULTS Lower global CBF at baseline was associated with more global cognitive decline in VCI and reference participants. This association was most profound in the domain of attention/psychomotor speed. Lower temporal and frontal CBF at baseline were associated with more cognitive decline in memory. DISCUSSION Our study supports the role of hypoperfusion in the pathophysiological and clinical progression of VCI. HIGHLIGHTS Impaired cerebral blood flow (CBF) at baseline is associated with faster cognitive decline in VCI and normal aging. Our results suggest that low CBF precedes and contributes to the development of vascular cognitive impairment. CBF determined by ASL might be used as a biomarker to monitor disease progression or treatment responses in VCI.
Collapse
Affiliation(s)
- Maud van Dinther
- Department of NeurologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Astrid M. Hooghiemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Esther E. Bron
- Department of Radiology & Nuclear MedicineErasmus MC—University Medical Center RotterdamRotterdamThe Netherlands
| | - Adriaan Versteeg
- Department of Radiology & Nuclear MedicineErasmus MC—University Medical Center RotterdamRotterdamThe Netherlands
| | - Anna E. Leeuwis
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of Old Age PsychiatryGGZ inGeestAmsterdamThe Netherlands
| | - Tugba Kalay
- Department of NeurologySt. Antonius ZiekenhuisNieuwegeinThe Netherlands
| | - Justine E. Moonen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Sanne Kuipers
- Department of NeurologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Walter H. Backes
- Department of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Jacobus F. A. Jansen
- Department of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Mathias J. P. van Osch
- C.J. Gorter MRI Center, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Geert‐Jan Biessels
- Department of NeurologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Julie Staals
- Department of NeurologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | | | | |
Collapse
|
24
|
Hainsworth AH, Markus HS, Schneider JA. Cerebral Small Vessel Disease, Hypertension, and Vascular Contributions to Cognitive Impairment and Dementia. Hypertension 2024; 81:75-86. [PMID: 38044814 PMCID: PMC10734789 DOI: 10.1161/hypertensionaha.123.19943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Hypertension-associated cerebral small vessel disease is a common finding in older people. Strongly associated with age and hypertension, small vessel disease is found at autopsy in over 50% of people aged ≥65 years, with a spectrum of clinical manifestations. It is the main cause of lacunar stroke and a major source of vascular contributions to cognitive impairment and dementia. The brain areas affected are subcortical and periventricular white matter and deep gray nuclei. Neuropathological sequelae are diffuse white matter lesions (seen as white matter hyperintensities on T2-weighted magnetic resonance imaging), small ischemic foci (lacunes or microinfarcts), and less commonly, subcortical microhemorrhages. The most common form of cerebral small vessel disease is concentric, fibrotic thickening of small penetrating arteries (up to 300 microns outer diameter) termed arteriolosclerosis. Less common forms are small artery atheroma and lipohyalinosis (the lesions described by C. Miller Fisher adjacent to lacunes). Other microvascular lesions that are not reviewed here include cerebral amyloid angiopathy and venous collagenosis. Here, we review the epidemiology, neuropathology, clinical management, genetics, preclinical models, and pathogenesis of hypertensive small vessel disease. Knowledge gaps include initiating factors, molecular pathogenesis, relationships between arterial pathology and tissue damage, possible reversibility, pharmacological targets, and molecular biomarkers. Progress is anticipated from multicell transcriptomic and proteomic profiling, novel experimental models and further target-finding and interventional clinical studies.
Collapse
Affiliation(s)
- Atticus H. Hainsworth
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.H.H.)
- Department of Neurology, St George’s University Hospitals NHS Foundation Trust, London, United Kingdom (A.H.H.)
| | - Hugh S. Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom (H.S.M.)
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Departments of Pathology and Neurological Sciences, Rush University Medical Center, Chicago, IL (J.A.S.)
| |
Collapse
|
25
|
Zakharov VV, Chernousov PA, Vekhova KA, Bogolepova AN. [Cognitive impairment in patients with arterial hypertension]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:41-48. [PMID: 38696150 DOI: 10.17116/jnevro202412404241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Arterial hypertension (AH) is a leading risk factor for cardiovascular diseases including cerebrovascular complications. Strokes and/or vascular cognitive impairment (VCI) are considered as a clinical sign of brain damage as a target organ in hypertension. To identify and assess the severity of VCI, patients with hypertension should undergo a neuropsychological assessment. Neuroimaging confirm the vascular origin of cognitive impairment. Patient management should include antihypertensive therapy along with neuroprotection. Among different neuroprotective therapy, ethylmethylhydroxypyridine succinate (mexidol) is one of medication with serious evidence of clinical efficacy.
Collapse
Affiliation(s)
- V V Zakharov
- Sechenov First Moscow Medical University (Sechenov University), Moscow, Russia
| | - P A Chernousov
- Sechenov First Moscow Medical University (Sechenov University), Moscow, Russia
| | - K A Vekhova
- Sechenov First Moscow Medical University (Sechenov University), Moscow, Russia
| | - A N Bogolepova
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| |
Collapse
|
26
|
Byun JY, Lee MK, Jung SL. Diagnostic Performance Using a Combination of MRI Findings for Evaluating Cognitive Decline. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2024; 85:184-196. [PMID: 38362402 PMCID: PMC10864162 DOI: 10.3348/jksr.2023.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 02/17/2024]
Abstract
Purpose We investigated potentially promising imaging findings and their combinations in the evaluation of cognitive decline. Materials and Methods This retrospective study included 138 patients with subjective cognitive impairments, who underwent brain MRI. We classified the same group of patients into Alzheimer's disease (AD) and non-AD groups, based on the neuropsychiatric evaluation. We analyzed imaging findings, including white matter hyperintensity (WMH) and cerebral microbleeds (CMBs), using the Kruskal-Wallis test for group comparison, and receiver operating characteristic (ROC) curve analysis for assessing the diagnostic performance of imaging findings. Results CMBs in the lobar or deep locations demonstrated higher prevalence in the patients with AD compared to those in the non-AD group. The presence of lobar CMBs combined with periventricular WMH (area under the ROC curve [AUC] = 0.702 [95% confidence interval: 0.599-0.806], p < 0.001) showed the highest performance in differentiation of AD from non-AD group. Conclusion Combinations of imaging findings can serve as useful additive diagnostic tools in the assessment of cognitive decline.
Collapse
|
27
|
Gunkel S, Schötzau A, Fluri F. Burden of cerebral small vessel disease and changes of diastolic blood pressure affect clinical outcome after acute ischemic stroke. Sci Rep 2023; 13:22070. [PMID: 38086878 PMCID: PMC10716411 DOI: 10.1038/s41598-023-49502-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023] Open
Abstract
Elevated and low blood pressure (BP) may lead to poor functional outcome after ischemic stroke, which is conflicting. Hence, there must be another factor-such as cerebral small vessel disease (cSVD) -interacting with BP and thus, affecting outcome. Here, we investigate the relationship between BP and cSVD regarding outcome after stroke. Data of 423/503 stroke patients were prospectively analyzed. Diastolic (DBP) and systolic BP (SBP) were collected on hospital admission (BPad) and over the first 72 h (BP72h). cSVD-burden was determined on MR-scans. Good functional outcome was defined as a modified Rankin Scale score ≤ 2 at hospital discharge and 12 months thereafter. cSVD was a predictor of poor outcome (OR 2.8; p < 0.001). SBPad, DBPad and SBP72h were not significantly associated with outcome at any time. A significant relationship was found between DBP72h, (p < 0.01), cSVD (p = 0.013) and outcome at discharge. At 12 months, we found a relationship between outcome and DBP72h (p = 0.018) and a statistical tendency regarding cSVD (p = 0.08). Changes in DBP72h were significantly related with outcome. There was a U-shaped relationship between DBP72h and outcome at discharge. Our results suggest an individualized stroke care by either lowering or elevating DBP depending on cSVD-burden in order to influence functional outcome.
Collapse
Affiliation(s)
- Sarah Gunkel
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080, Würzburg, Germany
| | - Andreas Schötzau
- Eudox Statistics, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Felix Fluri
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080, Würzburg, Germany.
| |
Collapse
|
28
|
Steiner L, Muri R, Wijesinghe D, Jann K, Maissen-Abgottspon S, Radojewski P, Pospieszny K, Kreis R, Kiefer C, Hochuli M, Trepp R, Everts R. Cerebral blood flow and white matter alterations in adults with phenylketonuria. Neuroimage Clin 2023; 41:103550. [PMID: 38091797 PMCID: PMC10716784 DOI: 10.1016/j.nicl.2023.103550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/15/2023] [Accepted: 12/08/2023] [Indexed: 03/16/2024]
Abstract
BACKGROUND Phenylketonuria (PKU) represents a congenital metabolic defect that disrupts the process of converting phenylalanine (Phe) into tyrosine. Earlier investigations have revealed diminished cognitive performance and changes in brain structure and function (including the presence of white matter lesions) among individuals affected by PKU. However, there exists limited understanding regarding cerebral blood flow (CBF) and its potential associations with cognition, white matter lesions, and metabolic parameters in patients with PKU, which we therefore aimed to investigate in this study. METHOD Arterial spin labeling perfusion MRI was performed to measure CBF in 30 adults with early-treated classical PKU (median age 35.5 years) and 59 healthy controls (median age 30.0 years). For all participants, brain Phe levels were measured with 1H spectroscopy, and white matter lesions were rated by two neuroradiologists on T2 weighted images. White matter integrity was examined with diffusion tensor imaging (DTI). For patients only, concurrent plasma Phe levels were assessed after an overnight fasting period. Furthermore, past Phe levels were collected to estimate historical metabolic control. On the day of the MRI, each participant underwent a cognitive assessment measuring IQ and performance in executive functions, attention, and processing speed. RESULTS No significant group difference was observed in global CBF between patients and controls (F (1, 87) = 3.81, p = 0.054). Investigating CBF on the level of cerebral arterial territories, reduced CBF was observed in the left middle and posterior cerebral artery (MCA and PCA), with the most prominent reduction of CBF in the anterior subdivision of the MCA (F (1, 87) = 6.15, p = 0.015, surviving FDR correction). White matter lesions in patients were associated with cerebral blood flow reduction in the affected structure. Particularly, patients with lesions in the occipital lobe showed significant CBF reductions in the left PCA (U = 352, p = 0.013, surviving FDR correction). Additionally, axial diffusivity measured with DTI was positively associated with CBF in the ACA and PCA (surviving FDR correction). Cerebral blood flow did not correlate with cognitive performance or metabolic parameters. CONCLUSION The relationship between cerebral blood flow and white matter indicates a complex interplay between vascular health and white matter alterations in patients with PKU. It highlights the importance of considering a multifactorial model when investigating the impact of PKU on the brain.
Collapse
Affiliation(s)
- Leonie Steiner
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Switzerland; Division of Neuropaediatrics, Development and Rehabilitation, Department of Paediatrics, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | - Raphaela Muri
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Switzerland; Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital and University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Dilmini Wijesinghe
- Laboratory of Functional MRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, USA
| | - Kay Jann
- Laboratory of Functional MRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, USA
| | - Stephanie Maissen-Abgottspon
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Piotr Radojewski
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | - Katarzyna Pospieszny
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | - Roland Kreis
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | - Claus Kiefer
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital and University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Michel Hochuli
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | - Roman Trepp
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | - Regula Everts
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Switzerland; Division of Neuropaediatrics, Development and Rehabilitation, Department of Paediatrics, Inselspital, Bern University Hospital and University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| |
Collapse
|
29
|
Marcolini S, Mondragón JD, Bron EE, Biessels GJ, Claassen JA, Papma JM, Middelkoop H, Dierckx RA, Borra RJ, Ramakers IH, van der Flier WM, Maurits NM, De Deyn PP. Small vessel disease burden and functional brain connectivity in mild cognitive impairment. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 6:100192. [PMID: 38174052 PMCID: PMC10758699 DOI: 10.1016/j.cccb.2023.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Background The role of small vessel disease in the development of dementia is not yet completely understood. Functional brain connectivity has been shown to differ between individuals with and without cerebral small vessel disease. However, a comprehensive measure of small vessel disease quantifying the overall damage on the brain is not consistently used and studies using such measure in mild cognitive impairment individuals are missing. Method Functional brain connectivity differences were analyzed between mild cognitive impairment individuals with absent or low (n = 34) and high (n = 34) small vessel disease burden using data from the Parelsnoer Institute, a Dutch multicenter study. Small vessel disease was characterized using an ordinal scale considering: lacunes, microbleeds, perivascular spaces in the basal ganglia, and white matter hyperintensities. Resting state functional MRI data using 3 Tesla scanners was analyzed with group-independent component analysis using the CONN toolbox. Results Functional connectivity between areas of the cerebellum and between the cerebellum and the thalamus and caudate nucleus was higher in the absent or low small vessel disease group compared to the high small vessel disease group. Conclusion These findings might suggest that functional connectivity of mild cognitive impairment individuals with low or absent small vessel disease burden is more intact than in mild cognitive impairment individuals with high small vessel disease. These brain areas are mainly responsible for motor, attentional and executive functions, domains which in previous studies were found to be mostly associated with small vessel disease markers. Our results support findings on the involvement of the cerebellum in cognitive functioning.
Collapse
Affiliation(s)
- Sofia Marcolini
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, the Netherlands
| | - Jaime D. Mondragón
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, the Netherlands
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Departamento de Neurobiología Conductual y Cognitiva, Laboratorio de Psicofisiología, Querétaro 76230, Mexico
- San Diego State University, Department of Psychology, Life-Span Human Senses Lab, San Diego, California 92182, USA
| | - Esther E. Bron
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam 3015 GD, the Netherlands
| | - Geert J. Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht 3584 CX, the Netherlands
| | - Jurgen A.H.R. Claassen
- Department of Geriatrics, Radboud University Medical Center and Donders Institute, Nijmegen 6525 GD, the Netherlands
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Janne M. Papma
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam 3015 GD, the Netherlands
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Huub Middelkoop
- Institute of Psychology, Health, Medical and Neuropsychology Unit, Leiden University, Leiden 2316 XC, the Netherlands
- Department of Neurology, Leiden University Medical Centre, Leiden 2333 ZA, the Netherlands
| | - Rudi A.J.O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Ronald J.H. Borra
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Inez H.G.B. Ramakers
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229 ER, the Netherlands
| | - Wiesje M. van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam 1081 HZ, the Netherlands
- Department of Epidemiology & Data Sciences, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam 1117, the Netherlands
| | - Natasha M. Maurits
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, the Netherlands
| | - Peter P. De Deyn
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, the Netherlands
- Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp 2610, Belgium
| |
Collapse
|
30
|
Yan W, Hou D, Li Z, Tang W, Han X, Tang Y. Reduced left hippocampal perfusion is associated with insomnia in patients with cerebral small vessel disease. CNS Spectr 2023; 28:702-709. [PMID: 37095715 DOI: 10.1017/s1092852923002250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
OBJECTIVES Insomnia was associated with cerebral structural changes and Alzheimer's disease. However, associations among cerebral perfusion, insomnia with cerebral small vessel disease (CSVD), and cognitive performance were little investigated. METHODS This cross-sectional study included 89 patients with CSVDs and white matter hyperintensities (WMHs). They were dichotomized into the normal sleep and poor sleep group, according to Pittsburgh sleep quality index (PSQI). Baseline characteristics, cognitive performance, and cerebral blood flow (CBF) were measured and compared between the two groups. The association or correlation between cerebral perfusion, cognition, and insomnia was analyzed using binary logistic regression. RESULTS Our study found that declined MoCA score (P = .0317) was more prevalent in those with poor sleep. There was a statistical difference in the recall (P = .0342) of MMSE, the delayed recall (P = .0289) of MoCA between the two groups. Logistic regression analysis showed educational background (P < .001) and insomnia severity index (ISI) score (P = .039) were independently correlated with MoCA scores. Arterial spin labeling demonstrated that left hippocampal gray matter perfusion was significantly reduced (P = .0384) in the group with poor sleep. And, negative correlation was found between left hippocampal perfusion and PSQI scores. CONCLUSIONS In the patients with CSVDs, insomnia severity was associated with cognitive decline. Left hippocampal gray matter perfusion was correlated with PSQI scores in CSVDs.
Collapse
Affiliation(s)
- Wei Yan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Duanlu Hou
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Zhixin Li
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiang Han
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuping Tang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Sohn JH, Kim Y, Kim C, Sung JH, Han SW, Kim Y, Park SH, Lee M, Yu KH, Lee JJ, Lee SH. Effect of Cerebral Small Vessel Disease Burden on Infarct Growth Rate and Stroke Outcomes in Large Vessel Occlusion Stroke Receiving Endovascular Treatment. Biomedicines 2023; 11:3102. [PMID: 38002102 PMCID: PMC10669066 DOI: 10.3390/biomedicines11113102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
This study aimed to investigate the association between cerebral small vessel disease (CSVD) burden and infarct growth rate (IGR) in patients with large vessel occlusion (LVO) stroke who underwent endovascular treatment (EVT). A retrospective analysis was conducted on a cohort of 495 patients with anterior circulation stroke who received EVT. CSVD burden was assessed using a CSVD score based on neuroimaging features. IGR was calculated from diffusion-weighted imaging (DWI) lesion volumes divided by the time from stroke onset to imaging. Clinical outcomes included stroke progression and functional outcomes at 3 months. Multivariate analyses were performed to assess the relationship between CSVD burden, IGR, and clinical outcomes. The fast IGR group had a higher proportion of high CSVD scores than the slow IGR group (24.4% vs. 0.8%, p < 0.001). High CSVD burden was significantly associated with a faster IGR (odds ratio [95% confidence interval], 26.26 [6.26-110.14], p < 0.001) after adjusting for confounding factors. High CSVD burden also independently predicted stroke progression and poor functional outcomes. This study highlights a significant relationship between CSVD burden and IGR in LVO stroke patients undergoing EVT. High CSVD burden was associated with faster infarct growth and worse clinical outcomes.
Collapse
Affiliation(s)
- Jong-Hee Sohn
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, 77 Sakju-ro, Chuncheon 24253, Republic of Korea; (J.-H.S.); (C.K.); (J.H.S.); (S.-W.H.)
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (Y.K.); (J.J.L.)
| | - Yejin Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (Y.K.); (J.J.L.)
| | - Chulho Kim
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, 77 Sakju-ro, Chuncheon 24253, Republic of Korea; (J.-H.S.); (C.K.); (J.H.S.); (S.-W.H.)
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (Y.K.); (J.J.L.)
| | - Joo Hye Sung
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, 77 Sakju-ro, Chuncheon 24253, Republic of Korea; (J.-H.S.); (C.K.); (J.H.S.); (S.-W.H.)
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (Y.K.); (J.J.L.)
| | - Sang-Won Han
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, 77 Sakju-ro, Chuncheon 24253, Republic of Korea; (J.-H.S.); (C.K.); (J.H.S.); (S.-W.H.)
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (Y.K.); (J.J.L.)
| | - Yerim Kim
- Department of Neurology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 05355, Republic of Korea; (Y.K.); (S.-H.P.)
| | - Soo-Hyun Park
- Department of Neurology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 05355, Republic of Korea; (Y.K.); (S.-H.P.)
| | - Minwoo Lee
- Department of Neurology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea; (M.L.); (K.-H.Y.)
| | - Kyung-Ho Yu
- Department of Neurology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea; (M.L.); (K.-H.Y.)
| | - Jae Jun Lee
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (Y.K.); (J.J.L.)
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Sang-Hwa Lee
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, 77 Sakju-ro, Chuncheon 24253, Republic of Korea; (J.-H.S.); (C.K.); (J.H.S.); (S.-W.H.)
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (Y.K.); (J.J.L.)
| |
Collapse
|
32
|
Ishikawa H, Shindo A, Mizutani A, Tomimoto H, Lo EH, Arai K. A brief overview of a mouse model of cerebral hypoperfusion by bilateral carotid artery stenosis. J Cereb Blood Flow Metab 2023; 43:18-36. [PMID: 36883344 PMCID: PMC10638994 DOI: 10.1177/0271678x231154597] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 03/09/2023]
Abstract
Vascular cognitive impairment (VCI) refers to all forms of cognitive disorder related to cerebrovascular diseases, including vascular mild cognitive impairment, post-stroke dementia, multi-infarct dementia, subcortical ischemic vascular dementia (SIVD), and mixed dementia. Among the causes of VCI, more attention has been paid to SIVD because the causative cerebral small vessel pathologies are frequently observed in elderly people and because the gradual progression of cognitive decline often mimics Alzheimer's disease. In most cases, small vessel diseases are accompanied by cerebral hypoperfusion. In mice, prolonged cerebral hypoperfusion is induced by bilateral carotid artery stenosis (BCAS) with surgically implanted metal micro-coils. This cerebral hypoperfusion BCAS model was proposed as a SIVD mouse model in 2004, and the spreading use of this mouse SIVD model has provided novel data regarding cognitive dysfunction and histological/genetic changes by cerebral hypoperfusion. Oxidative stress, microvascular injury, excitotoxicity, blood-brain barrier dysfunction, and secondary inflammation may be the main mechanisms of brain damage due to prolonged cerebral hypoperfusion, and some potential therapeutic targets for SIVD have been proposed by using transgenic mice or clinically used drugs in BCAS studies. This review article overviews findings from the studies that used this hypoperfused-SIVD mouse model, which were published between 2004 and 2021.
Collapse
Affiliation(s)
- Hidehiro Ishikawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akane Mizutani
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
33
|
Wiersinga JHI, Rhodius-Meester HFM, Wolters FJ, Trappenburg MC, Lemstra AW, Barkhof F, Peters MJL, van der Flier WM, Muller M. Orthostatic hypotension and its association with cerebral small vessel disease in a memory clinic population. J Hypertens 2023; 41:1738-1744. [PMID: 37589676 DOI: 10.1097/hjh.0000000000003525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
BACKGROUND Orthostatic hypotension (OH), an impaired blood pressure (BP) response to postural change, has been associated with cognitive decline and dementia, possibly through cerebral small vessel disease (CSVD). We hypothesized that longer duration of BP drop and a larger BP drop is associated with increased risk of CSVD. METHODS This cross-sectional study included 3971 memory clinic patients (mean age 68 years, 45% female, 42% subjective cognitive complaints, 17% mild cognitive impairment, 41% dementia) from the Amsterdam Ageing Cohort and Amsterdam Dementia Cohort. Early OH (EOH) was defined as a drop in BP of ±20 mmHg systolic and/or 10 mmHg diastolic only at 1 min after standing, and delayed/prolonged OH (DPOH) at 1 and/or 3 min after standing. Presence of CSVD [white matter hyperintensities (WMH), lacunes, microbleeds] was assessed with MRI ( n = 3584) or CT brain (n = 389). RESULTS The prevalence of early OH was 9% and of delayed/prolonged OH 18%. Age- and sex-adjusted logistic regression analyses showed that delayed/prolonged OH, but not early OH, was significantly associated with a higher burden of WMH (OR, 95%CI: 1.21, 1.00-1.46) and lacunes (OR, 95%CI 1.34, 1.06-1.69), but not microbleeds (OR, 95%CI 1.22, 0.89-1.67). When adjusting for supine SBP, these associations attenuated (ORs, 95%CI for WMH 1.04, 0.85-1.27; for lacunes 1.21, 0.91-1.62; for microbleeds 0.95, 0.68-1.31). A larger drop in SBP was associated with increased risk of WMH and microbleeds, however, when adjusted for supine SBP, this effect diminished. CONCLUSIONS Among memory clinic patients, DPOH is more common than EOH. While longer duration and larger magnitude of BP drop coincided with a higher burden of CSVD, these associations were largely explained by high supine BP.
Collapse
Affiliation(s)
- Julia H I Wiersinga
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Internal Medicine section Geriatrics
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes
| | - Hanneke F M Rhodius-Meester
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Internal Medicine section Geriatrics
- Amsterdam UMC location Vrije Universiteit Amsterdam, Alzheimer Center Amsterdam & Department of Neurology, Amsterdam, The Netherlands
- Oslo University Hospital, Department of Geriatric Medicine, Ullevål, Oslo, Norway
| | - Frank J Wolters
- Erasmus Medical Center, Department of Epidemiology, Rotterdam
- Erasmus Medical Center, Departments of Radiology & Nuclear Medicine and Alzheimer Center Erasmus MC, Rotterdam, The Netherlands
| | - Marijke C Trappenburg
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Internal Medicine section Geriatrics
- Amstelland Hospital, Department of Internal Medicine section Geriatrics, Amstelveen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology, Amsterdam, The Netherlands
| | - Afina W Lemstra
- Amsterdam UMC location Vrije Universiteit Amsterdam, Alzheimer Center Amsterdam & Department of Neurology, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Amsterdam UMC location Vrije Universiteit Amsterdam, Alzheimer Center Amsterdam & Department of Neurology, Amsterdam, The Netherlands
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Amsterdam Neuroscience, Neurodegeneration, Brain Imaging, Amsterdam
| | - Mike J L Peters
- UMC Utrecht, University of Utrecht, Department of Internal Medicine section Geriatrics, Utrecht
| | - Wiesje M van der Flier
- Amsterdam UMC location Vrije Universiteit Amsterdam, Alzheimer Center Amsterdam & Department of Neurology, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Brain Imaging, Amsterdam
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Epidemiology and Biostatistics, Amsterdam
| | - Majon Muller
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Internal Medicine section Geriatrics
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes
| |
Collapse
|
34
|
Bennett J, van Dinther M, Voorter P, Backes W, Barnes J, Barkhof F, Captur G, Hughes AD, Sudre C, Treibel TA. Assessment of Microvascular Disease in Heart and Brain by MRI: Application in Heart Failure with Preserved Ejection Fraction and Cerebral Small Vessel Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1596. [PMID: 37763715 PMCID: PMC10534635 DOI: 10.3390/medicina59091596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
The objective of this review is to investigate the commonalities of microvascular (small vessel) disease in heart failure with preserved ejection fraction (HFpEF) and cerebral small vessel disease (CSVD). Furthermore, the review aims to evaluate the current magnetic resonance imaging (MRI) diagnostic techniques for both conditions. By comparing the two conditions, this review seeks to identify potential opportunities to improve the understanding of both HFpEF and CSVD.
Collapse
Affiliation(s)
- Jonathan Bennett
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
- Department of Cardiology, Barts Heart Centre, London EC1A 7BE, UK
| | - Maud van Dinther
- Department of Neurology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 LX Maastricht, The Netherlands
| | - Paulien Voorter
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Mental Health & Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Walter Backes
- School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 LX Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Mental Health & Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Josephine Barnes
- Dementia Research Centre, UCL Queens Square Institute of Neurology, University College London, London WC1E 6BT, UK
| | - Frederick Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije University, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
- Queen Square Institute of Neurology, University College London, London WC1E 6BT, UK
- Centre for Medical Image Computing, University College London, London WC1E 6BT, UK
| | - Gabriella Captur
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
- Medical Research Council Unit for Lifelong Health and Ageing, Department of Population Science and Experimental Medicine, University College London, London WC1E 6BT, UK
- Centre for Inherited Heart Muscle Conditions, Cardiology Department, The Royal Free Hospital, London NW3 2QG, UK
| | - Alun D. Hughes
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
- Medical Research Council Unit for Lifelong Health and Ageing, Department of Population Science and Experimental Medicine, University College London, London WC1E 6BT, UK
| | - Carole Sudre
- Dementia Research Centre, UCL Queens Square Institute of Neurology, University College London, London WC1E 6BT, UK
- Centre for Medical Image Computing, University College London, London WC1E 6BT, UK
- Medical Research Council Unit for Lifelong Health and Ageing, Department of Population Science and Experimental Medicine, University College London, London WC1E 6BT, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London WC2R 2LS, UK
| | - Thomas A. Treibel
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
- Department of Cardiology, Barts Heart Centre, London EC1A 7BE, UK
| |
Collapse
|
35
|
Inoue Y, Shue F, Bu G, Kanekiyo T. Pathophysiology and probable etiology of cerebral small vessel disease in vascular dementia and Alzheimer's disease. Mol Neurodegener 2023; 18:46. [PMID: 37434208 PMCID: PMC10334598 DOI: 10.1186/s13024-023-00640-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Vascular cognitive impairment and dementia (VCID) is commonly caused by vascular injuries in cerebral large and small vessels and is a key driver of age-related cognitive decline. Severe VCID includes post-stroke dementia, subcortical ischemic vascular dementia, multi-infarct dementia, and mixed dementia. While VCID is acknowledged as the second most common form of dementia after Alzheimer's disease (AD) accounting for 20% of dementia cases, VCID and AD frequently coexist. In VCID, cerebral small vessel disease (cSVD) often affects arterioles, capillaries, and venules, where arteriolosclerosis and cerebral amyloid angiopathy (CAA) are major pathologies. White matter hyperintensities, recent small subcortical infarcts, lacunes of presumed vascular origin, enlarged perivascular space, microbleeds, and brain atrophy are neuroimaging hallmarks of cSVD. The current primary approach to cSVD treatment is to control vascular risk factors such as hypertension, dyslipidemia, diabetes, and smoking. However, causal therapeutic strategies have not been established partly due to the heterogeneous pathogenesis of cSVD. In this review, we summarize the pathophysiology of cSVD and discuss the probable etiological pathways by focusing on hypoperfusion/hypoxia, blood-brain barriers (BBB) dysregulation, brain fluid drainage disturbances, and vascular inflammation to define potential diagnostic and therapeutic targets for cSVD.
Collapse
Affiliation(s)
- Yasuteru Inoue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Guojun Bu
- SciNeuro Pharmaceuticals, Rockville, MD 20850 USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
36
|
Yang R, Li J, Qin Y, Zhao L, Liu R, Yang F, Jiang G. A bibliometric analysis of cerebral microbleeds and cognitive impairment. Brain Cogn 2023; 169:105999. [PMID: 37262941 DOI: 10.1016/j.bandc.2023.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND AND OBJECTIVES Cerebral microbleeds (CMBs) are imaging markers for small cerebral vascular diseases, which can accumulate and impact the corresponding brain networks. CMBs can affect cognitive function, including executive function, information processing speed, and visuospatial memory. Bibliometrics is a scientific and innovative method that can analyze and visualize the scientific field quantitatively. In this study, we aimed to use bibliometric analysis to demonstrate the relationship and mechanisms between CMBs and cognitive impairment. Furthermore, we reviewed the relationship between CMBs and different cognitive disorders. The use of bibliometrics can help further clarify this relationship. METHODS We retrieved articles on CMBs and cognitive impairment from the Web of Science Core Collection. The keywords (such as stroke, dementia, and cerebral amyloid angiopathy), authors, countries, institutions and journals, in the field were visually analyzed using VOSviewer software and bibliometric websites. RESULTS This bibliometric analysis reveals the related trends of CMBs in the field of cognitive impairment. CMBs, along with other small vascular lesions, constitute the basis of cognitive impairment, and studying CMBs is essential to understand the mechanisms underlying cognitive impairment. CONCLUSION This bibliometric analysis reveals a strong link between CMBs and cognitive impairment-related diseases and that specific brain networks were affected by CMBs. This provides further insights into the possible mechanisms and causes of CMBs and cognitive impairment. The direct and indirect damage (such as oxidative stress and neuroinflammation) to the brain caused by CMBs, destruction of the frontal-subcortical circuits, elevated Cystatin C levels, and iron deposition are involved in the occurrence and development of cognitive impairment. CMBs may be a potential marker for detecting, quantifying, and predicting cognitive impairment.
Collapse
Affiliation(s)
- Rui Yang
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jia Li
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yaya Qin
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Li Zhao
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Rong Liu
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Fanhui Yang
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College North Sichuan Medical College, Nanchong, Sichuan, China.
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China.
| |
Collapse
|
37
|
Dietrich O, Cai M, Tuladhar AM, Jacob MA, Drenthen GS, Jansen JFA, Marques JP, Topalis J, Ingrisch M, Ricke J, de Leeuw FE, Duering M, Backes WH. Integrated intravoxel incoherent motion tensor and diffusion tensor brain MRI in a single fast acquisition. NMR IN BIOMEDICINE 2023; 36:e4905. [PMID: 36637237 DOI: 10.1002/nbm.4905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 06/15/2023]
Abstract
The acquisition of intravoxel incoherent motion (IVIM) data and diffusion tensor imaging (DTI) data from the brain can be integrated into a single measurement, which offers the possibility to determine orientation-dependent (tensorial) perfusion parameters in addition to established IVIM and DTI parameters. The purpose of this study was to evaluate the feasibility of such a protocol with a clinically feasible scan time below 6 min and to use a model-selection approach to find a set of DTI and IVIM tensor parameters that most adequately describes the acquired data. Diffusion-weighted images of the brain were acquired at 3 T in 20 elderly participants with cerebral small vessel disease using a multiband echoplanar imaging sequence with 15 b-values between 0 and 1000 s/mm2 and six non-collinear diffusion gradient directions for each b-value. Seven different IVIM-diffusion models with 4 to 14 parameters were implemented, which modeled diffusion and pseudo-diffusion as scalar or tensor quantities. The models were compared with respect to their fitting performance based on the goodness of fit (sum of squared fit residuals, chi2 ) and their Akaike weights (calculated from the corrected Akaike information criterion). Lowest chi2 values were found using the model with the largest number of model parameters. However, significantly highest Akaike weights indicating the most appropriate models for the acquired data were found with a nine-parameter IVIM-DTI model (with isotropic perfusion modeling) in normal-appearing white matter (NAWM), and with an 11-parameter model (IVIM-DTI with additional pseudo-diffusion anisotropy) in white matter with hyperintensities (WMH) and in gray matter (GM). The latter model allowed for the additional calculation of the fractional anisotropy of the pseudo-diffusion tensor (with a median value of 0.45 in NAWM, 0.23 in WMH, and 0.36 in GM), which is not accessible with the usually performed IVIM acquisitions based on three orthogonal diffusion-gradient directions.
Collapse
Affiliation(s)
- Olaf Dietrich
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Mengfei Cai
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anil Man Tuladhar
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mina A Jacob
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerald S Drenthen
- Schools for Mental Health and Neuroscience (MHeNs) and Cardiovascular Diseases (CARIM), Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jacobus F A Jansen
- Schools for Mental Health and Neuroscience (MHeNs) and Cardiovascular Diseases (CARIM), Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - José P Marques
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johanna Topalis
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Michael Ingrisch
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marco Duering
- Medical Image Analysis Center (MIAC AG) and qbig, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Walter H Backes
- Schools for Mental Health and Neuroscience (MHeNs) and Cardiovascular Diseases (CARIM), Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
38
|
Wu L, Huang H, Yu Z, Luo X, Xu S. Asymmetry of Lacunae between Brain Hemispheres Is Associated with Atherosclerotic Occlusions of Middle Cerebral Artery. Brain Sci 2023; 13:1016. [PMID: 37508948 PMCID: PMC10377170 DOI: 10.3390/brainsci13071016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Cerebral small vessel disease (CSVD) commonly coexists with intracranial atherosclerotic stenosis (ICAS). Previous studies have tried to evaluate the relationship between ICAS and CSVD; however, they have yielded varied conclusions. Furthermore, the methodology of these studies is not very rigorous, as they have evaluated the association between ICAS and CSVD of bilateral hemispheres rather than the affected hemisphere. Unilateral middle cerebral artery atherosclerotic occlusion (uni-MCAO) is a favorable model to solve this problem. MATERIAL AND METHODS Patients with uni-MCAO were retrospectively observed. Imaging characteristics, including lacunae, white matter hyperintensities (WMH), enlarged perivascular spaces (EPVS), and cerebral microbleeds (CMBs), were compared between the hemisphere ipsilateral to the MCAO and the contralateral hemisphere. RESULTS A total of 219 patients (median age 57 years; 156 males) were enrolled. Compared with the contralateral side, increased quality of lacunae (median, IQR, 0, 2 vs. 0, 1; p < 0.001) and elevated CSVD score (median, IQR, 0, 1 vs. 0, 1; p = 0.004) were found in the occluded hemisphere. No significant differences were shown for WMH, EPVS, and CMBs. CONCLUSIONS Uni-MCAO has a higher prevalence of lacunae in the ipsilateral hemisphere. However, no interhemispheric differences in WMH, EPVS, or CMBs were found.
Collapse
Affiliation(s)
- Lingshan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shabei Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
39
|
Pansieri J, Hadley G, Lockhart A, Pisa M, DeLuca GC. Regional contribution of vascular dysfunction in white matter dementia: clinical and neuropathological insights. Front Neurol 2023; 14:1199491. [PMID: 37396778 PMCID: PMC10313211 DOI: 10.3389/fneur.2023.1199491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
The maintenance of adequate blood supply and vascular integrity is fundamental to ensure cerebral function. A wide range of studies report vascular dysfunction in white matter dementias, a group of cerebral disorders characterized by substantial white matter damage in the brain leading to cognitive impairment. Despite recent advances in imaging, the contribution of vascular-specific regional alterations in white matter dementia has been not extensively reviewed. First, we present an overview of the main components of the vascular system involved in the maintenance of brain function, modulation of cerebral blood flow and integrity of the blood-brain barrier in the healthy brain and during aging. Second, we review the regional contribution of cerebral blood flow and blood-brain barrier disturbances in the pathogenesis of three distinct conditions: the archetypal white matter predominant neurocognitive dementia that is vascular dementia, a neuroinflammatory predominant disease (multiple sclerosis) and a neurodegenerative predominant disease (Alzheimer's). Finally, we then examine the shared landscape of vascular dysfunction in white matter dementia. By emphasizing the involvement of vascular dysfunction in the white matter, we put forward a hypothetical map of vascular dysfunction during disease-specific progression to guide future research aimed to improve diagnostics and facilitate the development of tailored therapies.
Collapse
|
40
|
Zedde M, Napoli M, Grisendi I, Assenza F, Moratti C, Valzania F, Pascarella R. Perfusion Status in Lacunar Stroke: A Pathophysiological Issue. Diagnostics (Basel) 2023; 13:2003. [PMID: 37370898 DOI: 10.3390/diagnostics13122003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The pathophysiology of lacunar infarction is an evolving and debated field, where relevant information comes from histopathology, old anatomical studies and animal models. Only in the last years, have neuroimaging techniques allowed a sufficient resolution to directly or indirectly assess the dynamic evolution of small vessel occlusion and to formulate hypotheses about the tissue status and the mechanisms of damage. The core-penumbra concept was extensively explored in large vessel occlusions (LVOs) both from the experimental and clinical point of view. Then, the perfusion thresholds on one side and the neuroimaging techniques studying the perfusion of brain tissue were focused and optimized for LVOs. The presence of a perfusion deficit in the territory of a single small perforating artery was negated for years until the recent proposal of the existence of a perfusion defect in a subgroup of lacunar infarcts by using magnetic resonance imaging (MRI). This last finding opens pathophysiological hypotheses and triggers a neurovascular multidisciplinary reasoning about how to image this perfusion deficit in the acute phase in particular. The aim of this review is to summarize the pathophysiological issues and the application of the core-penumbra hypothesis to lacunar stroke.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Manuela Napoli
- Neuroradiology Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Ilaria Grisendi
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Federica Assenza
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Claudio Moratti
- Neuroradiology Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Franco Valzania
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| |
Collapse
|
41
|
Iadecola C, Smith EE, Anrather J, Gu C, Mishra A, Misra S, Perez-Pinzon MA, Shih AY, Sorond FA, van Veluw SJ, Wellington CL. The Neurovasculome: Key Roles in Brain Health and Cognitive Impairment: A Scientific Statement From the American Heart Association/American Stroke Association. Stroke 2023; 54:e251-e271. [PMID: 37009740 PMCID: PMC10228567 DOI: 10.1161/str.0000000000000431] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
BACKGROUND Preservation of brain health has emerged as a leading public health priority for the aging world population. Advances in neurovascular biology have revealed an intricate relationship among brain cells, meninges, and the hematic and lymphatic vasculature (the neurovasculome) that is highly relevant to the maintenance of cognitive function. In this scientific statement, a multidisciplinary team of experts examines these advances, assesses their relevance to brain health and disease, identifies knowledge gaps, and provides future directions. METHODS Authors with relevant expertise were selected in accordance with the American Heart Association conflict-of-interest management policy. They were assigned topics pertaining to their areas of expertise, reviewed the literature, and summarized the available data. RESULTS The neurovasculome, composed of extracranial, intracranial, and meningeal vessels, as well as lymphatics and associated cells, subserves critical homeostatic functions vital for brain health. These include delivering O2 and nutrients through blood flow and regulating immune trafficking, as well as clearing pathogenic proteins through perivascular spaces and dural lymphatics. Single-cell omics technologies have unveiled an unprecedented molecular heterogeneity in the cellular components of the neurovasculome and have identified novel reciprocal interactions with brain cells. The evidence suggests a previously unappreciated diversity of the pathogenic mechanisms by which disruption of the neurovasculome contributes to cognitive dysfunction in neurovascular and neurodegenerative diseases, providing new opportunities for the prevention, recognition, and treatment of these conditions. CONCLUSIONS These advances shed new light on the symbiotic relationship between the brain and its vessels and promise to provide new diagnostic and therapeutic approaches for brain disorders associated with cognitive dysfunction.
Collapse
|
42
|
Yu K, Sun Y, Guo K, Peng J, Jiang Y. Early blood pressure management in hemorrhagic stroke: a meta-analysis. J Neurol 2023:10.1007/s00415-023-11654-w. [PMID: 36884070 DOI: 10.1007/s00415-023-11654-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
The aim of the present meta-analysis was to evaluate the outcomes and effects of different systolic blood pressure (SBP) lowering in patients with hemorrhagic stroke using data from randomized controlled trials. A total of 2592 records were identified for this meta-analysis. We finally included 8 studies (6119 patients; mean age 62.8 ± 13.0, 62.7% men). No evidence of heterogeneity between estimates (I2 = 0% < 50%, P = 0.26), or publication bias in the funnel plots (P = 0.065, Egger statistical test) was detected. Death or major disability rates were similar between patients with intensive BP-lowering treatment (SBP < 140 mmHg) and those receiving guideline BP-lowering treatment (SBP < 180 mmHg). Intensive BP-lowering treatment may have a better functional outcome, but the results were not significantly different (log RR = - 0.03, 95% CI: - 0.09 to 0.02; P = 0.55). Intensive BP-lowering treatment tended to be associated with lower early hematoma growth compared with guideline treatment (log RR = - 0.24, 95% CI - 0.38, - 0.11; P < 0.001). Intensive BP-lowering helps reduce hematoma enlargement in the early stage of acute hemorrhagic stroke. However, this observation did not translate into functional outcomes. Further research is needed to clarify the specific scope and time of blood pressure reduction.
Collapse
Affiliation(s)
- Kuangyang Yu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China
| | - Yuxuan Sun
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China
| | - Kecheng Guo
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China. .,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China. .,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China. .,Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China. .,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China. .,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China. .,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
43
|
Singh A, Bonnell G, De Prey J, Buchwald N, Eskander K, Kincaid KJ, Wilson CA. Small-vessel disease in the brain. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2023; 27:100277. [PMID: 38511094 PMCID: PMC10945899 DOI: 10.1016/j.ahjo.2023.100277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/22/2024]
Abstract
Cerebral small-vessels are generally located in the brain at branch points from major cerebral blood vessels and perfuse subcortical structures such as the white matter tracts, basal ganglia, thalamus, and pons. Cerebral small-vessel disease (CSVD) can lead to several different clinical manifestations including ischemic lacunar stroke, intracerebral hemorrhage, and vascular dementia. Risk factors for CSVD overlap with conventional vascular risk factors including hypertension, diabetes mellitus, and hypercholesterolemia, as well as genetic causes. As in cardiovascular disease, treatment of CSVD involves both primary and secondary prevention. Aspirin has not been established as a primary prevention strategy for CSVD among the general population; however, long-term antiplatelet therapy with aspirin alone continues to be the mainstay of secondary stroke prevention for non-cardioembolic ischemic stroke and high-risk TIA.
Collapse
Affiliation(s)
- Amita Singh
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| | - Gabriel Bonnell
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| | - Justin De Prey
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| | - Natalie Buchwald
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| | - Kyrillos Eskander
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| | - Keith J. Kincaid
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| | - Christina A. Wilson
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
44
|
Abstract
Cerebral small vessel disease (CSVD) has emerged as a common factor driving age-dependent diseases, including stroke and dementia. CSVD-related dementia will affect a growing fraction of the aging population, requiring improved recognition, understanding, and treatments. This review describes evolving criteria and imaging biomarkers for the diagnosis of CSVD-related dementia. We describe diagnostic challenges, particularly in the context of mixed pathologies and the absence of highly effective biomarkers for CSVD-related dementia. We review evidence regarding CSVD as a risk factor for developing neurodegenerative disease and potential mechanisms by which CSVD leads to progressive brain injury. Finally, we summarize recent studies on the effects of major classes of cardiovascular medicines relevant to CSVD-related cognitive impairment. Although many key questions remain, the increased attention to CSVD has resulted in a sharper vision for what will be needed to meet the upcoming challenges imposed by this disease.
Collapse
Affiliation(s)
- Fanny M. Elahi
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
- Neurology Service, VA Bronx Healthcare System, Bronx, NY
| | - Michael M. Wang
- Departments of Neurology and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI
| | | |
Collapse
|
45
|
Yilmaz P, Alferink LJM, Cremers LGM, Murad SD, Niessen WJ, Ikram MA, Vernooij MW. Subclinical liver traits are associated with structural and hemodynamic brain imaging markers. Liver Int 2023; 43:1256-1268. [PMID: 36801835 DOI: 10.1111/liv.15549] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND & AIMS Impaired liver function affects brain health and therefore understanding potential mechanisms for subclinical liver disease is essential. We assessed the liver-brain associations using liver measures with brain imaging markers, and cognitive measures in the general population. METHODS Within the population-based Rotterdam Study, liver serum and imaging measures (ultrasound and transient elastography), metabolic dysfunction-associated fatty liver disease (MAFLD), non-alcoholic fatty liver disease (NAFLD) and fibrosis phenotypes, and brain structure were determined in 3493 non-demented and stroke-free participants in 2009-2014. This resulted in subgroups of n = 3493 for MAFLD (mean age 69 ± 9 years, 56% ♀), n = 2938 for NAFLD (mean age 70 ± 9 years, 56% ♀) and n = 2252 for fibrosis (mean age 65 ± 7 years, 54% ♀). Imaging markers of small vessel disease and neurodegeneration, cerebral blood flow (CBF) and brain perfusion (BP) were acquired from brain MRI (1.5-tesla). General cognitive function was assessed by Mini-Mental State Examination and the g-factor. Multiple linear and logistic regression models were used for liver-brain associations and adjusted for age, sex, intracranial volume, cardiovascular risk factors and alcohol use. RESULTS Higher gamma-glutamyltransferase (GGT) levels were significantly associated with smaller total brain volume (TBV, standardized mean difference (SMD), -0.02, 95% confidence interval (CI) (-0.03 to -0.01); p = 8.4·10-4 ), grey matter volumes, and lower CBF and BP. Liver serum measures were not related to small vessel disease markers, nor to white matter microstructural integrity or general cognition. Participants with ultrasound-based liver steatosis had a higher fractional anisotropy (FA, SMD 0.11, 95% CI (0.04 to 0.17), p = 1.5·10-3 ) and lower CBF and BP. MAFLD and NAFLD phenotypes were associated with alterations in white matter microstructural integrity (NAFLD ~ FA, SMD 0.14, 95% CI (0.07 to 0.22), p = 1.6·10-4 ; NAFLD ~ mean diffusivity, SMD -0.12, 95% CI (-0.18 to -0.05), p = 4.7·10-4 ) and also with lower CBF and BP (MAFLD ~ CBF, SMD -0.13, 95% CI (-0.20 to -0.06), p = 3.1·10-4 ; MAFLD ~ BP, SMD -0.12, 95% CI (-0.20 to -0.05), p = 1.6·10-3 ). Furthermore, fibrosis phenotypes were related to TBV, grey and white matter volumes. CONCLUSIONS Presence of liver steatosis, fibrosis and elevated serum GGT are associated with structural and hemodynamic brain markers in a population-based cross-sectional setting. Understanding the hepatic role in brain changes can target modifiable factors and prevent brain dysfunction.
Collapse
Affiliation(s)
- Pinar Yilmaz
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Louise J M Alferink
- Departments of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Lotte G M Cremers
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Sarwa D Murad
- Departments of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Wiro J Niessen
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
- Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
46
|
Reiländer A, Pilatus U, Schüre JR, Shrestha M, Deichmann R, Nöth U, Hattingen E, Gracien RM, Wagner M, Seiler A. Impaired oxygen extraction and adaptation of intracellular energy metabolism in cerebral small vessel disease. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 4:100162. [PMID: 36851996 PMCID: PMC9957754 DOI: 10.1016/j.cccb.2023.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND We aimed to investigate whether combined phosphorous (31P) magnetic resonance spectroscopic imaging (MRSI) and quantitative T 2 ' mapping are able to detect alterations of the cerebral oxygen extraction fraction (OEF) and intracellular pH (pHi) as markers the of cellular energy metabolism in cerebral small vessel disease (SVD). MATERIALS AND METHODS 32 patients with SVD and 17 age-matched healthy control subjects were examined with 3-dimensional 31P MRSI and oxygenation-sensitive quantitative T 2 ' mapping (1/ T 2 ' = 1/T2* - 1/T2) at 3 Tesla (T). PHi was measured within the white matter hyperintensities (WMH) in SVD patients. Quantitative T 2 ' values were averaged across the entire white matter (WM). Furthermore, T 2 ' values were extracted from normal-appearing WM (NAWM) and the WMH and compared between patients and controls. RESULTS Quantitative T 2 ' values were significantly increased across the entire WM and in the NAWM in patients compared to control subjects (149.51 ± 16.94 vs. 138.19 ± 12.66 ms and 147.45 ± 18.14 vs. 137.99 ± 12.19 ms, p < 0.05). WM T 2 ' values correlated significantly with the WMH load (ρ=0.441, p = 0.006). Increased T 2 ' was significantly associated with more alkaline pHi (ρ=0.299, p < 0.05). Both T 2 ' and pHi were significantly positively correlated with vascular pulsatility in the distal carotid arteries (ρ=0.596, p = 0.001 and ρ=0.452, p = 0.016). CONCLUSIONS This exploratory study found evidence of impaired cerebral OEF in SVD, which is associated with intracellular alkalosis as an adaptive mechanism. The employed techniques provide new insights into the pathophysiology of SVD with regard to disease-related consequences on the cellular metabolic state.
Collapse
Key Words
- BBB, blood-brain barrier
- CBF, cerebral blood flow
- CBV, cerebral blood volume
- CMRO2, Cerebral metabolic rate of oxygen
- Cellular energy metabolism
- DTI, diffusion tensor imaging
- GE, gradient echo
- Hb, hemoglobin
- ICA, internal carotid artery
- MR spectroscopy
- MRI, magnetic resonance imaging
- MRS, magnetic resonance spectroscopy
- MRSI, magnetic resonance spectroscopic imaging
- Microstructural impairment
- NAWM, normal-appearing white matter
- OEF, oxygen extraction fraction
- Oxygen extraction fraction
- PI, Pulsatility index
- RF, radio frequency
- SVD, cerebral small vessel disease
- Small vessel disease
- TR, repetition time
- WM, white matter
- WMH, white matter hyperintensities
- pHi, intracellular pH
- quantitative MRI
Collapse
Affiliation(s)
- Annemarie Reiländer
- Department of Neurology, Goethe University Hospital Frankfurt, Schleusenweg 2-16, Frankfurt 60528, Germany
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Ulrich Pilatus
- Institute of Neuroradiology, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Jan-Rüdiger Schüre
- Institute of Neuroradiology, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Manoj Shrestha
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Ulrike Nöth
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Elke Hattingen
- Institute of Neuroradiology, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - René-Maxime Gracien
- Department of Neurology, Goethe University Hospital Frankfurt, Schleusenweg 2-16, Frankfurt 60528, Germany
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Marlies Wagner
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
- Institute of Neuroradiology, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Alexander Seiler
- Department of Neurology, Goethe University Hospital Frankfurt, Schleusenweg 2-16, Frankfurt 60528, Germany
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| |
Collapse
|
47
|
Li X, Hui Y, Shi H, Li M, Zhao X, Li R, Zhang W, Lv H, Wu Y, Li J, Cui L, Zhao P, Wu S, Wang Z. Altered cerebral blood flow and white matter during wakeful rest in patients with obstructive sleep apnea: a population-based retrospective study. Br J Radiol 2023; 96:20220867. [PMID: 36715135 PMCID: PMC9975376 DOI: 10.1259/bjr.20220867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES To explore changes in cerebral blood flow (CBF) and white matter during wakeful rest in patients with obstructive sleep apnea (OSA). METHODS The subjects comprised OSA patients and age- and sex-matched non-sleep apnea (NSA) subjects from December 2020 to December 2021. All subjects underwent structural and arterial spin labeling MRI examinations using a 3.0 T MRI scanner. Intergroup differences in regional and global CBF and white matter hyperintensities (WMHs) were analyzed. RESULTS In this study, 100 (74 males) of 750 (439 males) subjects were diagnosed with OSA, so the prevalence of OSA in the general population was 13.3% (100/750), with 16.9% (74/439) in males and 8.4% (26/311) in females. Excluding four patients with incomplete imaging data, 96 OSA patients and 103 age- and sex-matched NSA subjects were included. At global level, OSA patients showed significantly decreased CBF values in gray matter and whole brain compared to NSA subjects (gray matter: p = 0.010; whole brain: p = 0.021). No significant difference in CBF values was found in WM between the two groups (p = 0.250). At regional level, compared with NSA subjects, patients with OSA exhibited significantly decreased regional CBF values mainly in right parietal lobe and right temporal lobe. Moreover, OSA patients had significantly higher WMHs burden than NSA subjects (p = 0.017). CONCLUSIONS OSA patients exhibit decreased global and regional CBF values and increased WMHs burden. ADVANCES IN KNOWLEDGE These findings provide a basis for exploring neuropathological changes of OSA and for early and appropriate treatment.
Collapse
Affiliation(s)
- Xiaoshuai Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ying Hui
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huijing Shi
- Department of Rheumatology and Immunology, Kailuan General Hospital, Tangshan, Hebei Province, China
| | - Mengning Li
- Department of MRI Room, Kailuan General Hospital, Tangshan, Hebei Province, China
| | - Xinyu Zhao
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Rui Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenfei Zhang
- Department of MRI Room, Kailuan General Hospital, Tangshan, Hebei Province, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuntao Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, Hebei Province, China
| | - Jing Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Liufu Cui
- Department of Rheumatology and Immunology, Kailuan General Hospital, Tangshan, Hebei Province, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, Hebei Province, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
Zhao J, Wang X, Li Q, Lu C, Li S. The relevance of serum macrophage migratory inhibitory factor and cognitive dysfunction in patients with cerebral small vascular disease. Front Aging Neurosci 2023; 15:1083818. [PMID: 36824264 PMCID: PMC9941340 DOI: 10.3389/fnagi.2023.1083818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Cerebral small vascular disease (CSVD) is a common type of cerebrovascular disease, and an important cause of vascular cognitive impairment (VCI) and stroke. The disease burden is expected to increase further as a result of population aging, an ongoing high prevalence of risk factors (e.g., hypertension), and inadequate management. Due to the poor understanding of pathophysiology in CSVD, there is no effective preventive or therapeutic approach for CSVD. Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine that is related to the occurrence and development of vascular dysfunction diseases. Therefore, MIF may contribute to the pathogenesis of CSVD and VCI. Here, reviewed MIF participation in chronic cerebral ischemia-hypoperfusion and neurodegeneration pathology, including new evidence for CSVD, and its potential role in protection against VCI.
Collapse
Affiliation(s)
- Jianhua Zhao
- Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia, Henan Key Laboratory of Neurorestoratology, Department of Neurology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China,*Correspondence: Jianhua Zhao,
| | - Xiaoting Wang
- Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia, Henan Key Laboratory of Neurorestoratology, Department of Neurology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Qiong Li
- Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia, Henan Key Laboratory of Neurorestoratology, Department of Neurology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Chengbiao Lu
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
49
|
Wang JL, Cheng XR, Meng ZY, Wang YL. Impact of total cerebral small vessel disease score on ophthalmic artery morphologies and hemodynamics. J Transl Med 2023; 21:65. [PMID: 36726156 PMCID: PMC9890861 DOI: 10.1186/s12967-023-03908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/21/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) is a systemic disease, affecting not only the brain, but also eyes and other organs. The total CSVD score is a tool for comprehensive evaluation of brain lesions in patients with CSVD. The ophthalmic artery (OA) is a direct response to ocular blood flow. However, little is known about the correlation between CSVD and characteristics of OA. We investigated the OA morphologies and hemodynamics in patients with CSVD and the correlation between these changes and the total CSVD score. METHODS This cross-sectional observational study included 34 eyes from 22 patients with CSVD and 10 eyes from 5 healthy controls. The total CSVD score was rated according to the CSVD signs on magnetic resonance imaging. OA morphological characteristics were measured on the basis of 3D OA model reconstruction. OA hemodynamic information was calculated using computational fluid dynamics simulations. RESULTS The total CSVD score negatively correlated with the OA diameter, blood flow velocity, and mass flow ratio (all P < 0.05). After adjusting for potential confounding factors, the total CSVD score was still independently correlated with the OA blood velocity (β = - 0.202, P = 0.005). The total CSVD score was not correlated with OA angle (P > 0.05). The presence of cerebral microbleeds and enlarged perivascular spaces was correlated with the OA diameter (both P < 0.01), while the lacunar infarcts and white matter hyperintensities were correlated with the OA blood velocity (both P < 0.001). CONCLUSIONS The decrease of the blood velocity in the OA was associated with the increase in the total CSVD score. The changes of the OA diameter and velocity were associated with the presence of various CSVD signs. The findings suggest that more studies are needed in the future to evaluate CSVD by observing the morphologies and hemodynamics of OA.
Collapse
Affiliation(s)
- Jia-Lin Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing, 100050, China.
| | - Xue-Ru Cheng
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Zhao-Yang Meng
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing, 100050, China.
| | - Yan-Ling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
50
|
Lin Z, Lim C, Jiang D, Soldan A, Pettigrew C, Oishi K, Zhu Y, Moghekar A, Liu P, Albert M, Lu H. Longitudinal changes in brain oxygen extraction fraction (OEF) in older adults: Relationship to markers of vascular and Alzheimer's pathology. Alzheimers Dement 2023; 19:569-577. [PMID: 35791732 PMCID: PMC10838398 DOI: 10.1002/alz.12727] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Oxygen extraction fraction (OEF) reflects the balance between oxygen delivery and consumption. We longitudinally measured OEF in older adults to examine the relationship with markers of Alzheimer's disease (AD) and vascular pathology. METHODS One hundred thirty-seven participants were studied at two time-points at an interval of 2.16 years. OEF was measured using T2 -relaxation-under-spin-tagging (TRUST) magnetic resonance imaging (MRI). The association between OEF and vascular risks, white matter hyperintensities (WMH), cerebrospinal fluid (CSF) measures of amyloid beta (Aβ), total tau (t-tau), and phosphorylated tau 181 (p-tau181) was examined. RESULTS OEF increased from baseline to follow-up. The increase in OEF was more prominent in individuals with high vascular risks compared to those with low vascular risks, and was associated with progression of vascular risks and the growth in WMH volume. OEF change was not related to CSF markers of AD pathology or their progression. DISCUSSION Longitudinal OEF change in older adults is primarily related to vascular pathology.
Collapse
Affiliation(s)
- Zixuan Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chantelle Lim
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anja Soldan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Corinne Pettigrew
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kumiko Oishi
- Center for Imaging Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuxin Zhu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|