1
|
Cousineau JP, Dawe AM, Alpaugh M. Investigating the Interplay between Cardiovascular and Neurodegenerative Disease. BIOLOGY 2024; 13:764. [PMID: 39452073 PMCID: PMC11505144 DOI: 10.3390/biology13100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024]
Abstract
Neurological diseases, including neurodegenerative diseases (NDDs), are the primary cause of disability worldwide and the second leading cause of death. The chronic nature of these conditions and the lack of disease-modifying therapies highlight the urgent need for developing effective therapies. To accomplish this, effective models of NDDs are required to increase our understanding of underlying pathophysiology and for evaluating treatment efficacy. Traditionally, models of NDDs have focused on the central nervous system (CNS). However, evidence points to a relationship between systemic factors and the development of NDDs. Cardiovascular disease and related risk factors have been shown to modify the cerebral vasculature and the risk of developing Alzheimer's disease. These findings, combined with reports of changes to vascular density and blood-brain barrier integrity in other NDDs, such as Huntington's disease and Parkinson's disease, suggest that cardiovascular health may be predictive of brain function. To evaluate this, we explore evidence for disruptions to the circulatory system in murine models of NDDs, evidence of disruptions to the CNS in cardiovascular disease models and summarize models combining cardiovascular disruption with models of NDDs. In this study, we aim to increase our understanding of cardiovascular disease and neurodegeneration interactions across multiple disease states and evaluate the utility of combining model systems.
Collapse
Affiliation(s)
| | | | - Melanie Alpaugh
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.P.C.); (A.M.D.)
| |
Collapse
|
2
|
van Setten A, Uleman JF, Melis RJF, Lawlor B, Riksen NP, Claassen JAHR, de Heus RAA. No association between markers of systemic inflammation and endothelial dysfunction with Alzheimer's disease progression: a longitudinal study. GeroScience 2024:10.1007/s11357-024-01294-x. [PMID: 39085534 DOI: 10.1007/s11357-024-01294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
INTRODUCTION Systemic inflammation and endothelial dysfunction are potentially modifiable factors implicated in Alzheimer's disease (AD), which offer potential therapeutic targets to slow disease progression. METHODS We investigated the relationship between baseline circulating levels of inflammatory (TNF-α, IL-1ß) and endothelial cell markers (VCAM-1, ICAM-1, E-selectin) and 18-month cognitive decline (ADAS-cog12) in 266 mild-to-moderate AD patients from the NILVAD study. We employed individual growth models to examine associations, potential mediation, and interaction effects while adjusting for confounders. RESULTS The average increase in ADAS-cog12 scores over all patients was 8.1 points in 18 months. No significant association was found between the markers and the rate of cognitive decline. Mediation analysis revealed no mediating role for endothelial cell markers, and interaction effects were not observed. DISCUSSION Our results do not support the role of systemic inflammation or endothelial dysfunction in progression in persons with AD.
Collapse
Affiliation(s)
- Arne van Setten
- Department of Geriatric Medicine, Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen F Uleman
- Copenhagen Health Complexity Center, Department of Public Health, University of Copenhagen, Oster Farimagsgade 5, 1353, Copenhagen K, Denmark.
| | - René J F Melis
- Department of Geriatric Medicine, Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Brian Lawlor
- Global Brain Health Institute, Trinity College, Dublin, Ireland
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jurgen A H R Claassen
- Department of Geriatric Medicine, Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Rianne A A de Heus
- Department of Geriatric Medicine, Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Primary and Community Care, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Coelho-Junior HJ, Calvani R, Tosato M, Russo A, Landi F, Picca A, Marzetti E. Associations between hypertension and cognitive, mood, and behavioral parameters in very old adults: results from the IlSIRENTE study. Front Public Health 2024; 11:1268983. [PMID: 38533244 PMCID: PMC10964923 DOI: 10.3389/fpubh.2023.1268983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/11/2023] [Indexed: 03/28/2024] Open
Abstract
Introduction Studies on the associations between hypertension-related parameters and cognitive function, mood, and behavioral symptoms in older adults have produced mixed findings. A possible explanation for these divergent results is that investigations have not adequately adjusted their analyses according to the use of angiotensin-converting enzyme inhibitors (ACEIs). Therefore, the present study examined the cross-sectional associations between hypertension-related parameters, ACEI use, and cognitive function, mood, and behavioral symptoms in very old adults. Methods This study was conducted by analyzing the IlSIRENTE database, a prospective cohort study that collected data on all individuals aged 80 years and older residing in the Sirente geographic area (n = 364). Blood pressure (BP) was assessed after 20 to 40 min of rest, while participants sat in an upright position. Drugs were coded according to the Anatomical Therapeutic and Chemical codes. Cognitive function, mood, and behavioral symptoms were recorded using the Minimum Data Set Home Care instrument. Blood inflammatory markers were measured. Results Hypertension-related parameters were significantly associated with many cognitive, mood, and behavioral parameters after adjustment for covariates. However, only the inverse association between hypertension and lesser problems with short-term memory remained significant. Participants with hypertension had lower blood concentrations of inflammatory markers in comparison to their normotensive peers. Conclusion Findings from the present study indicate that high BP values are associated with fewer complaints about memory problems in very old adults. Furthermore, a lower concentration of inflammatory markers was found in hypertensive participants. ACEI use might affect this scenario.
Collapse
Affiliation(s)
- Helio José Coelho-Junior
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Matteo Tosato
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Andrea Russo
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| |
Collapse
|
4
|
Del Rosario Hernández T, Gore SV, Kreiling JA, Creton R. Drug repurposing for neurodegenerative diseases using Zebrafish behavioral profiles. Biomed Pharmacother 2024; 171:116096. [PMID: 38185043 PMCID: PMC10922774 DOI: 10.1016/j.biopha.2023.116096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024] Open
Abstract
Drug repurposing can accelerate drug development while reducing the cost and risk of toxicity typically associated with de novo drug design. Several disorders lacking pharmacological solutions and exhibiting poor results in clinical trials - such as Alzheimer's disease (AD) - could benefit from a cost-effective approach to finding new therapeutics. We previously developed a neural network model, Z-LaP Tracker, capable of quantifying behaviors in zebrafish larvae relevant to cognitive function, including activity, reactivity, swimming patterns, and optomotor response in the presence of visual and acoustic stimuli. Using this model, we performed a high-throughput screening of FDA-approved drugs to identify compounds that affect zebrafish larval behavior in a manner consistent with the distinct behavior induced by calcineurin inhibitors. Cyclosporine (CsA) and other calcineurin inhibitors have garnered interest for their potential role in the prevention of AD. We generated behavioral profiles suitable for cluster analysis, through which we identified 64 candidate therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
5
|
Chen Y, Fernandez Z, Scheel N, Gifani M, Zhu DC, Counts SE, Dorrance AM, Razansky D, Yu X, Qian W, Qian C. Novel inductively coupled ear-bars (ICEs) to enhance restored fMRI signal from susceptibility compensation in rats. Cereb Cortex 2024; 34:bhad479. [PMID: 38100332 PMCID: PMC10793587 DOI: 10.1093/cercor/bhad479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Functional magnetic resonance imaging faces inherent challenges when applied to deep-brain areas in rodents, e.g. entorhinal cortex, due to the signal loss near the ear cavities induced by susceptibility artifacts and reduced sensitivity induced by the long distance from the surface array coil. Given the pivotal roles of deep brain regions in various diseases, optimized imaging techniques are needed. To mitigate susceptibility-induced signal losses, we introduced baby cream into the middle ear. To enhance the detection sensitivity of deep brain regions, we implemented inductively coupled ear-bars, resulting in approximately a 2-fold increase in sensitivity in entorhinal cortex. Notably, the inductively coupled ear-bar can be seamlessly integrated as an add-on device, without necessitating modifications to the scanner interface. To underscore the versatility of inductively coupled ear-bars, we conducted echo-planner imaging-based task functional magnetic resonance imaging in rats modeling Alzheimer's disease. As a proof of concept, we also demonstrated resting-state-functional magnetic resonance imaging connectivity maps originating from the left entorhinal cortex-a central hub for memory and navigation networks-to amygdala hippocampal area, Insular Cortex, Prelimbic Systems, Cingulate Cortex, Secondary Visual Cortex, and Motor Cortex. This work demonstrates an optimized procedure for acquiring large-scale networks emanating from a previously challenging seed region by conventional magnetic resonance imaging detectors, thereby facilitating improved observation of functional magnetic resonance imaging outcomes.
Collapse
Affiliation(s)
- Yi Chen
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tuebingen 72076, Germany
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
| | - Zachary Fernandez
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Norman Scheel
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
| | - Mahsa Gifani
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI 49503, United States
| | - David C Zhu
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Scott E Counts
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI 49503, United States
- Department of Family Medicine, Michigan State University, Grand Rapids, MI 49503, United States
- Department of Hauenstein Neurosciences Center, Mercy Health Saint Mary’s Hospital, Grand Rapids, MI 49508, United States
- Michigan Alzheimer’s Disease Research Center, Ann Arbor, MI 48105, United States
| | - Anne M Dorrance
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich 8006, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, Institute for Biomedical Engineering, , Zurich 8092, Switzerland
- Zurich Neuroscience Center, Zurich 8057, Switzerland
| | - Xin Yu
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02114, United States
| | - Wei Qian
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, United States
| | - Chunqi Qian
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
6
|
Fleisher-Berkovich S, Battaglia V, Baratta F, Brusa P, Ventura Y, Sharon N, Dahan A, Collino M, Ben-Shabat S. An Emerging Strategy for Neuroinflammation Treatment: Combined Cannabidiol and Angiotensin Receptor Blockers Treatments Effectively Inhibit Glial Nitric Oxide Release. Int J Mol Sci 2023; 24:16254. [PMID: 38003444 PMCID: PMC10671332 DOI: 10.3390/ijms242216254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Cannabidiol (CBD), the major non-psychoactive phytocannabinoid found in cannabis, has anti-neuroinflammatory properties. Despite the increasing use of CBD, little is known about its effect in combination with other substances. Combination therapy has been gaining attention recently, aiming to produce more efficient effects. Angiotensin II activates the angiotensin 1 receptor and regulates neuroinflammation and cognition. Angiotensin receptor 1 blockers (ARBs) were shown to be neuroprotective and prevent cognitive decline. The present study aimed to elucidate the combined role of CBD and ARBs in the modulation of lipopolysaccharide (LPS)-induced glial inflammation. While LPS significantly enhanced nitric oxide synthesis vs. the control, telmisartan and CBD, when administered alone, attenuated this effect by 60% and 36%, respectively. Exposure of LPS-stimulated cells to both compounds resulted in the 95% inhibition of glial nitric oxide release (additive effect). A synergistic inhibitory effect on nitric oxide release was observed when cells were co-treated with losartan (5 μM) and CBD (5 μM) (by 80%) compared to exposure to each compound alone (by 22% and 26%, respectively). Telmisartan and CBD given alone increased TNFα levels by 60% and 40%, respectively. CBD and telmisartan, when given together, attenuated the LPS-induced increase in TNFα levels without statistical significance. LPS-induced IL-17 release was attenuated by CBD with or without telmisartan (by 75%) or telmisartan alone (by 60%). LPS-induced Interferon-γ release was attenuated by 80% when telmisartan was administered in the absence or presence of CBD. Anti-inflammatory effects were recorded when CBD was combined with the known anti-inflammatory agent dimethyl fumarate (DMF)/monomethyl fumarate (MMF). A synergistic inhibitory effect of CBD and MMF on glial release of nitric oxide (by 77%) was observed compared to cells exposed to MMF (by 35%) or CBD (by 12%) alone. Overall, this study highlights the potential of new combinations of CBD (5 μM) with losartan (5 μM) or MMF (1 μM) to synergistically attenuate glial NO synthesis. Additive effects on NO production were observed when telmisartan (5 μM) and CBD (5 μM) were administered together to glial cells.
Collapse
Affiliation(s)
- Sigal Fleisher-Berkovich
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel; (Y.V.); (N.S.); (A.D.)
| | - Veronica Battaglia
- Department of Drug Science and Technology, University of Torino, 10124 Torino, Italy; (V.B.); (F.B.); (P.B.)
| | - Francesca Baratta
- Department of Drug Science and Technology, University of Torino, 10124 Torino, Italy; (V.B.); (F.B.); (P.B.)
| | - Paola Brusa
- Department of Drug Science and Technology, University of Torino, 10124 Torino, Italy; (V.B.); (F.B.); (P.B.)
| | - Yvonne Ventura
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel; (Y.V.); (N.S.); (A.D.)
| | - Nitzan Sharon
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel; (Y.V.); (N.S.); (A.D.)
| | - Arik Dahan
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel; (Y.V.); (N.S.); (A.D.)
| | - Massimo Collino
- Department of Neuroscience “Rita Levi Montalcini”, University of Torino, 10124 Torino, Italy;
| | - Shimon Ben-Shabat
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel; (Y.V.); (N.S.); (A.D.)
| |
Collapse
|
7
|
Hernández TDR, Gore SV, Kreiling JA, Creton R. Finding Drug Repurposing Candidates for Neurodegenerative Diseases using Zebrafish Behavioral Profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557235. [PMID: 37745452 PMCID: PMC10515830 DOI: 10.1101/2023.09.12.557235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Drug repurposing can accelerate drug development while reducing the cost and risk of toxicity typically associated with de novo drug design. Several disorders lacking pharmacological solutions and exhibiting poor results in clinical trials - such as Alzheimer's disease (AD) - could benefit from a cost-effective approach to finding new therapeutics. We previously developed a neural network model, Z-LaP Tracker, capable of quantifying behaviors in zebrafish larvae relevant to cognitive function, including activity, reactivity, swimming patterns, and optomotor response in the presence of visual and acoustic stimuli. Using this model, we performed a high-throughput screening of FDA-approved drugs to identify compounds that affect zebrafish larval behavior in a manner consistent with the distinct behavior induced by calcineurin inhibitors. Cyclosporine (CsA) and other calcineurin inhibitors have garnered interest for their potential role in the prevention of AD. We generated behavioral profiles suitable for cluster analysis, through which we identified 64 candidate therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
- Thaís Del Rosario Hernández
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
8
|
Sabharwal R, Chapleau MW, Gerhold TD, Baumbach GL, Faraci FM. Plasticity of cerebral microvascular structure and mechanics during hypertension and following recovery of arterial pressure. Am J Physiol Heart Circ Physiol 2022; 323:H1108-H1117. [PMID: 36269650 PMCID: PMC9678426 DOI: 10.1152/ajpheart.00292.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022]
Abstract
Changes in vascular structure contribute to vascular events and loss of brain health. We examined changes in cerebral arterioles at the onset of hypertension and the hypothesis that alterations during hypertension would recover with the return of mean arterial pressure (MAP) to normal. MAP was measured with radiotelemetry in awake male C57BL/6J mice at baseline and during infusion of vehicle or angiotensin II (ANG II, 1.4 mg/kg/day using osmotic pumps) for 28 days, followed by a 28-day recovery. With ANG II treatment, MAP increased through day 28. On day 30, MAP began to recover, reaching levels not different from vehicle on day 37. We measured intravascular pressure, diameter, wall thickness (WT), wall:lumen ratio (W:L), cross-sectional area (CSA), and slope of the tangential elastic modulus (ET) in maximally dilated arterioles. Variables were similar in both groups at day 1, with no significant change with vehicle treatment. With ANG II treatment, CSA, WT, and W:L increased on days 7-28. Internal and external diameter was reduced at 14 and 28 days. ET versus wall stress was reduced on days 7-28. During recovery, the diameter remained at days 14 and 28 values, whereas other variables returned partly or completely to normal. Thus, CSA, WT, W:L, and ET versus wall stress changed rapidly during hypertension and recovered with MAP. In contrast, inward remodeling developed slowly and did not recover. This lack of recovery has mechanistic implications for the long-term impact of hypertension on vascular determinants of brain health.NEW & NOTEWORTHY Changes in vascular structure contribute to vascular events and loss of brain health. We examined the inherent structural plasticity of cerebral arterioles during and after a period of hypertension. Arteriolar wall thickness, diameter, wall-to-lumen ratio, and biological stiffness changed rapidly during hypertension and recovered with blood pressure. In contrast, inward remodeling developed slowly and did not recover. This lack of recovery of arteriolar diameter has implications for the long-term impact of hypertension on vascular determinants of brain health.
Collapse
Affiliation(s)
- Rasna Sabharwal
- Department of Internal Medicine, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
- Department of Neuroscience and Pharmacology, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
| | - Mark W Chapleau
- Department of Internal Medicine, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
| | - Thomas D Gerhold
- Department of Internal Medicine, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
| | - Gary L Baumbach
- Department of Pathology, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
| | - Frank M Faraci
- Department of Internal Medicine, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
- Department of Neuroscience and Pharmacology, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
| |
Collapse
|
9
|
Hendrickx JO, Calus E, De Deyn PP, Van Dam D, De Meyer GRY. Short-Term Pharmacological Induction of Arterial Stiffness and Hypertension with Angiotensin II Does Not Affect Learning and Memory and Cerebral Amyloid Load in Two Murine Models of Alzheimer's Disease. Int J Mol Sci 2022; 23:2738. [PMID: 35269879 PMCID: PMC8910756 DOI: 10.3390/ijms23052738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 01/27/2023] Open
Abstract
Given the unprecedented rise in the world's population, the prevalence of prominent age-related disorders, like cardiovascular disease and dementia, will further increase. Recent experimental and epidemiological evidence suggests a mechanistic overlap between cardiovascular disease and dementia with a specific focus on the linkage between arterial stiffness, a strong independent predictor of cardiovascular disease, and/or hypertension with Alzheimer's disease. In the present study, we investigated whether pharmacological induction of arterial stiffness and hypertension with angiotensin II (1 µg·kg-1·min-1 for 28 days via an osmotic minipump) impairs the progression of Alzheimer's disease in two mouse models (hAPP23+/- and hAPPswe/PSEN1dE9 mice). Our results show increased arterial stiffness in vivo and hypertension in addition to cardiac hypertrophy after angiotensin II treatment. However, visuospatial learning and memory and pathological cerebral amyloid load in both Alzheimer's disease mouse models were not further impaired. It is likely that the 28-day treatment period with angiotensin II was too short to observe additional effects on cognition and cerebral pathology.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Antwerp, Belgium;
| | - Elke Calus
- Laboratory of Neurochemistry and Behaviour, University of Antwerp, 2610 Antwerp, Belgium; (E.C.); (P.P.D.D.); (D.V.D.)
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behaviour, University of Antwerp, 2610 Antwerp, Belgium; (E.C.); (P.P.D.D.); (D.V.D.)
- Department of Neurology and Alzheimer Center, University of Groningen, 9713 GZ Groningen, The Netherlands
- University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behaviour, University of Antwerp, 2610 Antwerp, Belgium; (E.C.); (P.P.D.D.); (D.V.D.)
- Department of Neurology and Alzheimer Center, University of Groningen, 9713 GZ Groningen, The Netherlands
- University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | | |
Collapse
|
10
|
Wan T, Fu M, Jiang Y, Jiang W, Li P, Zhou S. Research Progress on Mechanism of Neuroprotective Roles of Apelin-13 in Prevention and Treatment of Alzheimer's Disease. Neurochem Res 2022; 47:205-217. [PMID: 34518975 PMCID: PMC8436866 DOI: 10.1007/s11064-021-03448-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Currently, more than 50 million people live with dementia worldwide, and this number is expected to increase. Some of the typical pathological changes of AD include amyloid plaque, hyperphosphorylation of tau protein, secretion of inflammatory mediators, and neuronal apoptosis. Apelin is a neuroprotective peptide that is widely expressed in the body. Among members of apelin family, apelin-13 is the most abundant with a high neuroprotective function. Apelin-13/angiotensin domain type 1 receptor-associated proteins (APJ) system regulates several physiological and pathophysiological cell activities, such as apoptosis, autophagy, synaptic plasticity, and neuroinflammation. It has also been shown to prevent AD development. This article reviews the research progress on the relationship between apelin-13 and AD to provide new ideas for prevention and treatment of AD.
Collapse
Affiliation(s)
- Teng Wan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, Guangxi, China
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Mingyuan Fu
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Yan Jiang
- Department of Epidemiology and Health Statistics, School of Public Health, Xiangnan University, Chenzhou, 423043, China
| | - Weiwei Jiang
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Peiling Li
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Shouhong Zhou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, Guangxi, China.
- Department of Physiology, Basic Medical College, Guilin, 541199, Guangxi, China.
| |
Collapse
|
11
|
Recent Advances in the Endogenous Brain Renin-Angiotensin System and Drugs Acting on It. J Renin Angiotensin Aldosterone Syst 2021; 2021:9293553. [PMID: 34925551 PMCID: PMC8651430 DOI: 10.1155/2021/9293553] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/14/2021] [Accepted: 10/23/2021] [Indexed: 12/22/2022] Open
Abstract
The RAS (renin-angiotensin system) is the part of the endocrine system that plays a prime role in the control of essential hypertension. Since the discovery of brain RAS in the seventies, continuous efforts have been put by the scientific committee to explore it more. The brain has shown the presence of various components of brain RAS such as angiotensinogen (AGT), converting enzymes, angiotensin (Ang), and specific receptors (ATR). AGT acts as the precursor molecule for Ang peptides—I, II, III, and IV—while the enzymes such as prorenin, ACE, and aminopeptidases A and N synthesize it. AT1, AT2, AT4, and mitochondrial assembly receptor (MasR) are found to be plentiful in the brain. The brain RAS system exhibits pleiotropic properties such as neuroprotection and cognition along with regulation of blood pressure, CVS homeostasis, thirst and salt appetite, stress, depression, alcohol addiction, and pain modulation. The molecules acting through RAS predominantly ARBs and ACEI are found to be effective in various ongoing and completed clinical trials related to cognition, memory, Alzheimer's disease (AD), and pain. The review summarizes the recent advances in the brain RAS system highlighting its significance in pathophysiology and treatment of the central nervous system-related disorders.
Collapse
|
12
|
Effect of genetic depletion of MMP-9 on neurological manifestations of hypertension-induced intracerebral hemorrhages in aged mice. GeroScience 2021; 43:2611-2619. [PMID: 34415518 PMCID: PMC8599521 DOI: 10.1007/s11357-021-00402-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/07/2021] [Indexed: 10/20/2022] Open
Abstract
Clinical and experimental studies show that hypertension induces intracerebral hemorrhages (ICH), including cerebral microhemorrhages in the aged brain, which contribute to the pathogenesis of vascular cognitive impairment (VCI). Previous studies showed that aging increased oxidative stress-mediated activation of matrix metalloproteinases (MMPs) that importantly contributes to the pathogenesis of ICHs. In particular, oxidative stress has been implicated in activation of MMP-9, which is known to be involved in the degradation of the extracellular matrix and cleavage of collagen IV, a key constituent of the basal membrane of cerebral vessels. To determine the role of MMP-9 activation in the genesis of ICHs, we induced hypertension in 20-month-old MMP-9 null and age-matched control mice by angiotensin II and L-NAME treatment. Contrary to our hypothesis, MMP-9 deficiency did not delay the onset or incidence of neurological consequences of hypertension-induced ICHs. Our results indicate that MMP-9 activation does not play a role in the age-related exacerbation of hypertension-induced ICH.
Collapse
|
13
|
He JT, Zhao X, Xu L, Mao CY. Vascular Risk Factors and Alzheimer's Disease: Blood-Brain Barrier Disruption, Metabolic Syndromes, and Molecular Links. J Alzheimers Dis 2021; 73:39-58. [PMID: 31815697 DOI: 10.3233/jad-190764] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, marked by cortical and hippocampal deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles and cognitive impairment. Studies indicate a prominent link between cerebrovascular abnormalities and the onset and progression of AD, where blood-brain barrier (BBB) dysfunction and metabolic disorders play key risk factors. Pericyte degeneration, endothelial cell damage, astrocyte depolarization, diminished tight junction integrity, and basement membrane disarray trigger BBB damage. Subsequently, the altered expression of low-density lipoprotein receptor-related protein 1 and receptor for advanced glycation end products at the microvascular endothelial cells dysregulate Aβ transport across the BBB. White matter lesions and microhemorrhages, dyslipidemia, altered brain insulin signaling, and insulin resistance contribute to tau and Aβ pathogenesis, and oxidative stress, mitochondrial damage, inflammation, and hypoperfusion serve as mechanistic links between pathophysiological features of AD and ischemia. Deregulated calcium homeostasis, voltage gated calcium channel functioning, and protein kinase C signaling are also common mechanisms for both AD pathogenesis and cerebrovascular abnormalities. Additionally, APOE polymorphic alleles that characterize impaired cerebrovascular integrity function as primary genetic determinants of AD. Overall, the current review enlightens key vascular risk factors for AD and underscores pathophysiologic relationship between AD and vascular dysfunction.
Collapse
Affiliation(s)
- Jin-Ting He
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Xin Zhao
- Department of Paediatrics, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lei Xu
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Cui-Ying Mao
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
14
|
Ouk M, Wu CY, Rabin JS, Jackson A, Edwards JD, Ramirez J, Masellis M, Swartz RH, Herrmann N, Lanctôt KL, Black SE, Swardfager W. The use of angiotensin-converting enzyme inhibitors vs. angiotensin receptor blockers and cognitive decline in Alzheimer's disease: the importance of blood-brain barrier penetration and APOE ε4 carrier status. ALZHEIMERS RESEARCH & THERAPY 2021; 13:43. [PMID: 33573702 PMCID: PMC7876820 DOI: 10.1186/s13195-021-00778-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022]
Abstract
Background The antihypertensive angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACE-Is) have similar indications and mechanisms of action, but prior work suggests divergence in their effects on cognition. Methods Participants in the National Alzheimer’s Coordinating Center database with a clinical diagnosis of dementia due to Alzheimer’s disease (AD) using an ACE-I or an ARB at any visit were selected. The primary outcome was delayed recall memory on the Wechsler Memory Scale Revised – Logical Memory IIA. Other cognitive domains were explored, including attention and psychomotor processing speed (Trail Making Test [TMT]-A and Digit Symbol Substitution Test [DSST]), executive function (TMT-B), and language and semantic verbal fluency (Animal Naming, Vegetable Naming, and Boston Naming Tests). Random slopes mixed-effects models with inverse probability of treatment weighting were used, yielding rate ratios (RR) or regression coefficients (B), as appropriate to the distribution of the data. Apolipoprotein (APOE) ε4 status and blood-brain barrier (BBB) penetrance were investigated as effect modifiers. Results Among 1689 participants with AD, ARB use (n = 578) was associated with 9.4% slower decline in delayed recall performance over a mean follow-up of 2.28 years compared with ACE-I use (n = 1111) [RR = 1.094, p = 0.0327]; specifically, users of BBB-crossing ARBs (RR = 1.25, p = 0.002), BBB-crossing ACE-Is (RR = 1.16, p = 0.010), and non-BBB-crossing ARBs (RR = 1.20, p = 0.005) had better delayed recall performance over time compared with non-BBB-crossing ACE-I users. An interaction with APOE ε4 status (drug × APOE × time RR = 1.196, p = 0.033) emerged; ARBs were associated with better delayed recall scores over time than ACE-Is in non-carriers (RR = 1.200, p = 0.003), but not in carriers (RR = 1.003, p = 0.957). ARB use was also associated with better performance over time on the TMT-A (B = 2.023 s, p = 0.0004) and the DSST (B = 0.573 symbols, p = 0.0485), and these differences were significant among APOE ε4 non-carriers (B = 4.066 s, p = 0.0004; and B = 0.982 symbols, p = 0.0230; respectively). Some differences were seen also in language and verbal fluency among APOE ε4 non-carriers. Conclusions Among APOE ε4 non-carriers with AD, ARB use was associated with greater preservation of memory and attention/psychomotor processing speed, particularly compared to ACE-Is that do not cross the blood-brain-barrier. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00778-8.
Collapse
Affiliation(s)
- Michael Ouk
- Department of Pharmacology & Toxicology Room 4207, University of Toronto, Medical Sciences Building 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Che-Yuan Wu
- Department of Pharmacology & Toxicology Room 4207, University of Toronto, Medical Sciences Building 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jennifer S Rabin
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, M4N 3M5, Canada.,Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Aaron Jackson
- Department of Pharmacology & Toxicology Room 4207, University of Toronto, Medical Sciences Building 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Jodi D Edwards
- University of Ottawa Heart Institute, University of Ottawa, Ottawa, ON, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada.,ICES, Ottawa, ON, Canada
| | - Joel Ramirez
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Canadian Partnership for Stroke Recovery, Toronto, ON, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Richard H Swartz
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada.,Canadian Partnership for Stroke Recovery, Toronto, ON, Canada
| | - Nathan Herrmann
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Krista L Lanctôt
- Department of Pharmacology & Toxicology Room 4207, University of Toronto, Medical Sciences Building 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada.,KITE UHN Toronto Rehabilitation Institute, Toronto, ON, Canada
| | - Sandra E Black
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Toronto, ON, Canada.,KITE UHN Toronto Rehabilitation Institute, Toronto, ON, Canada
| | - Walter Swardfager
- Department of Pharmacology & Toxicology Room 4207, University of Toronto, Medical Sciences Building 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada. .,Canadian Partnership for Stroke Recovery, Toronto, ON, Canada. .,KITE UHN Toronto Rehabilitation Institute, Toronto, ON, Canada.
| |
Collapse
|
15
|
Scheinman SB, Zaldua S, Dada A, Krochmaliuk K, Dye K, Marottoli FM, Thatcher GRJ, Tai LM. Systemic Candesartan Treatment Modulates Behavior, Synaptic Protein Levels, and Neuroinflammation in Female Mice That Express Human APOE4. Front Neurosci 2021; 15:628403. [PMID: 33642985 PMCID: PMC7902885 DOI: 10.3389/fnins.2021.628403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/20/2021] [Indexed: 11/26/2022] Open
Abstract
Evidence suggests that angiotensin receptor blockers (ARBs) could be beneficial for Alzheimer’s disease (AD) patients independent of any effects on hypertension. However, studies in rodent models directly testing the activity of ARB treatment on behavior and AD-relevent pathology including neuroinflammation, Aβ levels, and cerebrovascular function, have produced mixed results. APOE4 is a major genetic risk factor for AD and has been linked to many of the same functions as those purported to be modulated by ARB treatment. Therefore, evaluating the effects of ARB treatment on behavior and AD-relevant pathology in mice that express human APOE4 could provide important information on whether to further develop ARBs for AD therapy. In this study, we treated female and male mice that express the human APOE4 gene in the absence (E4FAD−) or presence (E4FAD+) of high Aβ levels with the ARB prodrug candesartan cilexetil for a duration of 4 months. Compared to vehicle, candesartan treatment resulted in greater memory-relevant behavior and higher hippocampal presynaptic protein levels in female, but not male, E4FAD− and E4FAD+ mice. The beneficial effects of candesartan in female E4FAD− and E4FAD+ mice occurred in tandem with lower GFAP and Iba1 levels in the hippocampus, whereas there were no effects on markers of cerebrovascular function and Aβ levels. Collectively, these data imply that the effects of ARBs on AD-relevant pathology may be modulated in part by the interaction between APOE genotype and biological sex. Thus, the further development of ARBs could provide therapeutic options for targeting neuroinflammation in female APOE4 carriers.
Collapse
Affiliation(s)
- Sarah B Scheinman
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Steve Zaldua
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Adedoyin Dada
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Kateryna Krochmaliuk
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Katherine Dye
- UICentre, University of Illinois at Chicago, Chicago, IL, United States
| | - Felecia M Marottoli
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Gregory R J Thatcher
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
16
|
Ribeiro VT, de Souza LC, Simões E Silva AC. Renin-Angiotensin System and Alzheimer's Disease Pathophysiology: From the Potential Interactions to Therapeutic Perspectives. Protein Pept Lett 2020; 27:484-511. [PMID: 31886744 DOI: 10.2174/0929866527666191230103739] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/27/2019] [Accepted: 11/16/2019] [Indexed: 12/21/2022]
Abstract
New roles of the Renin-Angiotensin System (RAS), apart from fluid homeostasis and Blood Pressure (BP) regulation, are being progressively unveiled, since the discoveries of RAS alternative axes and local RAS in different tissues, including the brain. Brain RAS is reported to interact with pathophysiological mechanisms of many neurological and psychiatric diseases, including Alzheimer's Disease (AD). Even though AD is the most common cause of dementia worldwide, its pathophysiology is far from elucidated. Currently, no treatment can halt the disease course. Successive failures of amyloid-targeting drugs have challenged the amyloid hypothesis and increased the interest in the inflammatory and vascular aspects of AD. RAS compounds, both centrally and peripherally, potentially interact with neuroinflammation and cerebrovascular regulation. This narrative review discusses the AD pathophysiology and its possible interaction with RAS, looking forward to potential therapeutic approaches. RAS molecules affect BP, cerebral blood flow, neuroinflammation, and oxidative stress. Angiotensin (Ang) II, via angiotensin type 1 receptors may promote brain tissue damage, while Ang-(1-7) seems to elicit neuroprotection. Several studies dosed RAS molecules in AD patients' biological material, with heterogeneous results. The link between AD and clinical conditions related to classical RAS axis overactivation (hypertension, heart failure, and chronic kidney disease) supports the hypothesized role of this system in AD. Additionally, RAStargeting drugs as Angiotensin Converting Enzyme inhibitors (ACEis) and Angiotensin Receptor Blockers (ARBs) seem to exert beneficial effects on AD. Results of randomized controlled trials testing ACEi or ARBs in AD are awaited to elucidate whether AD-RAS interaction has implications on AD therapeutics.
Collapse
Affiliation(s)
- Victor Teatini Ribeiro
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Leonardo Cruz de Souza
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.,Department of Internal Medicine, Service of Neurology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
17
|
Nyúl-Tóth Á, Tarantini S, Kiss T, Toth P, Galvan V, Tarantini A, Yabluchanskiy A, Csiszar A, Ungvari Z. Increases in hypertension-induced cerebral microhemorrhages exacerbate gait dysfunction in a mouse model of Alzheimer's disease. GeroScience 2020; 42:1685-1698. [PMID: 32844283 PMCID: PMC7732885 DOI: 10.1007/s11357-020-00256-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Clinical studies show that cerebral amyloid angiopathy (CAA) associated with Alzheimer's disease (AD) and arterial hypertension are independent risk factors for cerebral microhemorrhages (CMHs). To test the hypothesis that amyloid pathology and hypertension interact to promote the development of CMHs, we induced hypertension in the Tg2576 mouse model of AD and respective controls by treatment with angiotensin II (Ang II) and the NO synthesis inhibitor L-NAME. The number, size, localization, and neurological consequences (gait alterations) of CMHs were compared. We found that compared to control mice, in TG2576 mice, the same level of hypertension led to significantly increased CMH burden and exacerbation of CMH-related gait alterations. In hypertensive TG2576 mice, CMHs were predominantly located in the cerebral cortex at the cortical-subcortical boundary, mimicking the clinical picture seen in patients with CAA. Collectively, amyloid pathologies exacerbate the effects of hypertension, promoting the genesis of CMHs, which likely contribute to their deleterious effects on cognitive function. Therapeutic strategies for prevention of CMHs that reduce blood pressure and preserve microvascular integrity are expected to exert neuroprotective effects in high-risk elderly AD patients.
Collapse
Affiliation(s)
- Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Peter Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Doctoral School of Clinical Medicine, Department of Neurosurgery and Szentagothai Research Center, Medical School, University of Pecs, Pecs, Hungary
| | - Veronica Galvan
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- South Texas Veterans Health Care System, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Amber Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary.
- Department of Biochemistry and Molecular Biology, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
18
|
Zlokovic BV, Gottesman RF, Bernstein KE, Seshadri S, McKee A, Snyder H, Greenberg SM, Yaffe K, Schaffer CB, Yuan C, Hughes TM, Daemen MJ, Williamson JD, González HM, Schneider J, Wellington CL, Katusic ZS, Stoeckel L, Koenig JI, Corriveau RA, Fine L, Galis ZS, Reis J, Wright JD, Chen J. Vascular contributions to cognitive impairment and dementia (VCID): A report from the 2018 National Heart, Lung, and Blood Institute and National Institute of Neurological Disorders and Stroke Workshop. Alzheimers Dement 2020; 16:1714-1733. [PMID: 33030307 DOI: 10.1002/alz.12157] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) are characterized by the aging neurovascular unit being confronted with and failing to cope with biological insults due to systemic and cerebral vascular disease, proteinopathy including Alzheimer's biology, metabolic disease, or immune response, resulting in cognitive decline. This report summarizes the discussion and recommendations from a working group convened by the National Heart, Lung, and Blood Institute and the National Institute of Neurological Disorders and Stroke to evaluate the state of the field in VCID research, identify research priorities, and foster collaborations. As discussed in this report, advances in understanding the biological mechanisms of VCID across the wide spectrum of pathologies, chronic systemic comorbidities, and other risk factors may lead to potential prevention and new treatment strategies to decrease the burden of dementia. Better understanding of the social determinants of health that affect risks for both vascular disease and VCID could provide insight into strategies to reduce racial and ethnic disparities in VCID.
Collapse
Affiliation(s)
| | | | | | - Sudha Seshadri
- University of Texas Health Science Center, San Antonio and Boston University, San Antonio, Texas, USA
| | - Ann McKee
- VA Boston Healthcare System and Boston University, Boston, Massachusetts, USA
| | | | - Steven M Greenberg
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kristine Yaffe
- University of California, San Francisco, San Francisco, California, USA
| | | | - Chun Yuan
- University of Washington, Seattle, Washington, USA
| | - Timothy M Hughes
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Mat J Daemen
- Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | - Luke Stoeckel
- National Institute on Aging, Bethesda, Maryland, USA
| | - James I Koenig
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Roderick A Corriveau
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Lawrence Fine
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Zorina S Galis
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Jared Reis
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | | | - Jue Chen
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Cao C, Hasegawa Y, Hayashi K, Takemoto Y, Kim-Mitsuyama S. Chronic Angiotensin 1-7 Infusion Prevents Angiotensin-II-Induced Cognitive Dysfunction and Skeletal Muscle Injury in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2020; 69:297-309. [PMID: 30958350 DOI: 10.3233/jad-181000] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is increasingly viewed as a neurological disease accompanied by a systemic disorder. Accumulating evidence supports that angiotensin II and angiotensin 1-7 exert opposite effects on various organs including the brain. However, the interaction between angiotensin II and angiotensin 1-7 in AD remains to be defined. The present study was undertaken to examine the interaction between these peptides in AD. 5XFAD mice, a useful model of AD, were separated into three groups: 1) saline-infused, 2) angiotensin II-infused, and 3) angiotensin II-infused and angiotensin 1-7-co-infused. These peptides were systemically given to 5XFAD mice via osmotic minipump for 4 weeks. Systemic angiotensin II infusion for 4 weeks induced significant hypertension in both wild-type and 5XFAD mice. Angiotensin II induced cognitive abnormality in 5XFAD mice as estimated by the Morris water maze test and the nest building test, and this effect was associated with cerebral blood flow reduction, cortical arterial amyloid-β deposition, hippocampal inflammation, and neuron loss in 5XFAD mice. In addition, angiotensin II infusion led to gastrocnemius muscle atrophy in 5XFAD mice. Co-infusion of angiotensin 1-7 prevented the above mentioned detrimental effects of angiotensin II in the brain and gastrocnemius muscle in 5XFAD mice, without significant influence on blood pressure. The left ventricular hypertrophic response to angiotensin II was attenuated in 5XFAD mice compared with wild-type mice, which was not significantly altered by co-administration of angiotensin 1-7. Our results show that angiotensin 1-7 counteracts angiotensin II-induced cognitive impairment, brain injury, and skeletal muscle injury in AD mice.
Collapse
Affiliation(s)
- Cheng Cao
- Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Chuo-ku, Kumamoto, Japan.,Program for Leading Graduate Schools "HIGO (Health life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Yu Hasegawa
- Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Chuo-ku, Kumamoto, Japan
| | - Kenyu Hayashi
- Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Chuo-ku, Kumamoto, Japan
| | - Yushin Takemoto
- Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Chuo-ku, Kumamoto, Japan
| | - Shokei Kim-Mitsuyama
- Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Chuo-ku, Kumamoto, Japan
| |
Collapse
|
20
|
Kerkhofs D, van Hagen BT, Milanova IV, Schell KJ, van Essen H, Wijnands E, Goossens P, Blankesteijn WM, Unger T, Prickaerts J, Biessen EA, van Oostenbrugge RJ, Foulquier S. Pharmacological depletion of microglia and perivascular macrophages prevents Vascular Cognitive Impairment in Ang II-induced hypertension. Am J Cancer Res 2020; 10:9512-9527. [PMID: 32863942 PMCID: PMC7449902 DOI: 10.7150/thno.44394] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
Rationale: Hypertension is a major risk factor for cerebral small vessel disease, the most prevalent cause of vascular cognitive impairment. As we have shown, hypertension induced by a prolonged Angiotensin II infusion is associated with increased permeability of the blood-brain barrier (BBB), chronic activation of microglia and myelin loss. In this study we therefore aim to determine the contribution of microglia to hypertension-induced cognitive impairment in an experimental hypertension model by a pharmacological depletion approach. Methods: For this study, adult Cx3Cr1gfp/wtxThy1yfp/0 reporter mice were infused for 12 weeks with Angiotensin II or saline and subgroups were treated with PLX5622, a highly selective CSF1R tyrosine kinase inhibitor. Systolic blood pressure (SBP) was measured via tail-cuff. Short- and long-term spatial memory was assessed during an Object Location task and a Morris Water Maze task (MWM). Microglia depletion efficacy was assessed by flow cytometry and immunohistochemistry. BBB leakages, microglia phenotype and myelin integrity were assessed by immunohistochemistry. Results: SBP, heart weight and carotid pulsatility were increased by Ang II and were not affected by PLX5622. Short-term memory was significantly impaired in Ang II hypertensive mice, and partly prevented in Ang II mice treated with PLX5622. Histological and flow cytometry analysis revealed almost complete ablation of microglia and a 60% depletion of brain resident perivascular macrophages upon CSF1R inhibition. Number and size of BBB leakages were increased in Ang II hypertensive mice, but not altered by PLX5622 treatment. Microglia acquired a pro-inflammatory phenotype at the site of BBB leakages in both Saline and Ang II mice and were successfully depleted by PLX5622. There was however no significant change in myelin integrity at the site of leakages. Conclusion: Our results show that depletion of microglia and PVMs, by CSF1R inhibition prevents short-term memory impairment in Ang II induced hypertensive mice. We suggest this beneficial effect is mediated by the major decrease of pro-inflammatory microglia within BBB leakages. This novel finding supports the critical role of brain immune cells in the pathogenesis of hypertension-related cognitive impairment. An adequate modulation of microglia /PVM density and phenotype may constitute a relevant approach to prevent and/or limit the progression of vascular cognitive impairment.
Collapse
|
21
|
Tengeler AC, Gart E, Wiesmann M, Arnoldussen IAC, van Duyvenvoorde W, Hoogstad M, Dederen PJ, Verweij V, Geenen B, Kozicz T, Kleemann R, Morrison MC, Kiliaan AJ. Propionic acid and not caproic acid, attenuates nonalcoholic steatohepatitis and improves (cerebro) vascular functions in obese Ldlr -/- .Leiden mice. FASEB J 2020; 34:9575-9593. [PMID: 32472598 DOI: 10.1096/fj.202000455r] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
The obesity epidemic increases the interest to elucidate impact of short-chain fatty acids on metabolism, obesity, and the brain. We investigated the effects of propionic acid (PA) and caproic acid (CA) on metabolic risk factors, liver and adipose tissue pathology, brain function, structure (by MRI), and gene expression, during obesity development in Ldlr-/- .Leiden mice. Ldlr-/- .Leiden mice received 16 weeks either a high-fat diet (HFD) to induce obesity, or chow as reference group. Next, obese HFD-fed mice were treated 12 weeks with (a) HFD + CA (CA), (b) HFD + PA (PA), or (c) a HFD-control group. PA reduced the body weight and systolic blood pressure, lowered fasting insulin levels, and reduced HFD-induced liver macrovesicular steatosis, hypertrophy, inflammation, and collagen content. PA increased the amount of glucose transporter type 1-positive cerebral blood vessels, reverted cerebral vasoreactivity, and HFD-induced effects in microstructural gray and white matter integrity of optic tract, and somatosensory and visual cortex. PA and CA also reverted HFD-induced effects in functional connectivity between visual and auditory cortex. However, PA mice were more anxious in open field, and showed reduced activity of synaptogenesis and glutamate regulators in hippocampus. Therefore, PA treatment should be used with caution even though positive metabolic, (cerebro) vascular, and brain structural and functional effects were observed.
Collapse
Affiliation(s)
- Anouk C Tengeler
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eveline Gart
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands.,Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Maximilian Wiesmann
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ilse A C Arnoldussen
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Wim van Duyvenvoorde
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Marloes Hoogstad
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Pieter J Dederen
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vivienne Verweij
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bram Geenen
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tamas Kozicz
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Robert Kleemann
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Martine C Morrison
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands.,Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Amanda J Kiliaan
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
22
|
Wu W, Zhang Z, Li F, Deng Y, Lei M, Long H, Hou J, Wu W. A Network-Based Approach to Explore the Mechanisms of Uncaria Alkaloids in Treating Hypertension and Alleviating Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21051766. [PMID: 32143538 PMCID: PMC7084279 DOI: 10.3390/ijms21051766] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Uncaria alkaloids are the major bioactive chemicals found in the Uncaria genus, which have a long history of clinical application in treating cardiovascular and mental diseases in traditional Chinese medicine (TCM). However, there are gaps in understanding the multiple targets, pathways, and biological activities of Uncaria alkaloids. By constructing the interactions among drug-targets-diseases, network pharmacology provides a systemic methodology and a novel perspective to present the intricate connections among drugs, potential targets, and related pathways. It is a valuable tool for studying TCM drugs with multiple indications, and how these multi-indication drugs are affected by complex interactions in the biological system. To better understand the mechanisms and targets of Uncaria alkaloids, we built an integrated analytical platform based on network pharmacology, including target prediction, protein-protein interaction (PPI) network, topology analysis, gene enrichment analysis, and molecular docking. Using this platform, we revealed the underlying mechanisms of Uncaria alkaloids' anti-hypertensive effects and explored the possible application of Uncaria alkaloids in preventing Alzheimer's disease. These results were further evaluated and refined using biological experiments. Our study provides a novel strategy for understanding the holistic pharmacology of TCM, as well as for exploring the multi-indication properties of TCM beyond its traditional applications.
Collapse
Affiliation(s)
- Wenyong Wu
- Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Pudong New District, Shanghai 201203, China; (W.W.); (Z.Z.); (F.L.); (Y.D.); (M.L.); (H.L.)
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zijia Zhang
- Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Pudong New District, Shanghai 201203, China; (W.W.); (Z.Z.); (F.L.); (Y.D.); (M.L.); (H.L.)
| | - Feifei Li
- Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Pudong New District, Shanghai 201203, China; (W.W.); (Z.Z.); (F.L.); (Y.D.); (M.L.); (H.L.)
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yanping Deng
- Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Pudong New District, Shanghai 201203, China; (W.W.); (Z.Z.); (F.L.); (Y.D.); (M.L.); (H.L.)
| | - Min Lei
- Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Pudong New District, Shanghai 201203, China; (W.W.); (Z.Z.); (F.L.); (Y.D.); (M.L.); (H.L.)
| | - Huali Long
- Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Pudong New District, Shanghai 201203, China; (W.W.); (Z.Z.); (F.L.); (Y.D.); (M.L.); (H.L.)
| | - Jinjun Hou
- Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Pudong New District, Shanghai 201203, China; (W.W.); (Z.Z.); (F.L.); (Y.D.); (M.L.); (H.L.)
- Correspondence: (J.H.); (W.W.); Tel.: +86-021-5080-2351 (J.H.)
| | - Wanying Wu
- Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Pudong New District, Shanghai 201203, China; (W.W.); (Z.Z.); (F.L.); (Y.D.); (M.L.); (H.L.)
- Correspondence: (J.H.); (W.W.); Tel.: +86-021-5080-2351 (J.H.)
| |
Collapse
|
23
|
Solis E, Hascup KN, Hascup ER. Alzheimer's Disease: The Link Between Amyloid-β and Neurovascular Dysfunction. J Alzheimers Dis 2020; 76:1179-1198. [PMID: 32597813 PMCID: PMC7483596 DOI: 10.3233/jad-200473] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While prevailing evidence supports that the amyloid cascade hypothesis is a key component of Alzheimer's disease (AD) pathology, many recent studies indicate that the vascular system is also a major contributor to disease progression. Vascular dysfunction and reduced cerebral blood flow (CBF) occur prior to the accumulation and aggregation of amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles. Although research has predominantly focused on the cellular processes involved with Aβ-mediated neurodegeneration, effects of Aβ on CBF and neurovascular coupling are becoming more evident. This review will describe AD vascular disturbances as they relate to Aβ, including chronic cerebral hypoperfusion, hypertension, altered neurovascular coupling, and deterioration of the blood-brain barrier. In addition, we will describe recent findings about the relationship between these vascular defects and Aβ accumulation with emphasis on in vivo studies utilizing rodent AD models.
Collapse
Affiliation(s)
- Ernesto Solis
- Department of Neurology, Neuroscience Institute, Center for Alzheimer’s Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin N. Hascup
- Department of Neurology, Neuroscience Institute, Center for Alzheimer’s Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Erin R. Hascup
- Department of Neurology, Neuroscience Institute, Center for Alzheimer’s Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
24
|
Guo S, Som AT, Arai K, Lo EH. Effects of angiotensin-II on brain endothelial cell permeability via PPARalpha regulation of para- and trans-cellular pathways. Brain Res 2019; 1722:146353. [PMID: 31356784 PMCID: PMC6755037 DOI: 10.1016/j.brainres.2019.146353] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022]
Abstract
Angiotensin-II (Ang-II) is a key factor in hypertension, diabetes and aging, which are all primary risk factors for CNS disease. Furthermore, Ang-II may play under-appreciated roles in neurogenesis, angiogenesis and CNS remodeling. Therefore, any contemplated attempts for neurorestorative therapies in the CNS should consider the context of Ang-II signaling. Here, we investigate how Ang-II may regulate cerebral endothelial permeability, a key functional feature of the neurovascular unit. Exposure of human brain endothelial cell cultures to Ang-II increased its permeability to BSA-Alexa488 tracer. Immunocytochemistry and pulse-chase experiments suggested that both para-cellular as well as trans-cellular pathways were involved. Candesartan but not PD123319 blocked Ang-II permeability effects, suggesting that Ang-II effects may be mediated via type 1 receptor. Immunocytochemistry and western blots showed that Ang-II disrupted the membrane distributions of ZO-1 and VE-Cad, decreased total levels of JAM-A and Mfsd2a, and increased Cav1. These effects of Ang-II were accompanied by dephosphorylation of PPARalpha. Finally, Ang-II-induced increases in endothelial permeability were ameliorated by PPARalpha agonists. Taken together, these studies suggest that Ang-II may disrupt both para- and trans-cellular permeability in cerebral endothelium, and PPARalpha-related pathways may offer potential therapeutic targets for ameliorating these effects in cell-based regenerative medicine.
Collapse
Affiliation(s)
- Shuzhen Guo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, United States.
| | | | | | | |
Collapse
|
25
|
Marongiu R. Accelerated Ovarian Failure as a Unique Model to Study Peri-Menopause Influence on Alzheimer's Disease. Front Aging Neurosci 2019; 11:242. [PMID: 31551757 PMCID: PMC6743419 DOI: 10.3389/fnagi.2019.00242] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Despite decades of extensive research efforts, efficacious therapies for Alzheimer's disease (AD) are lacking. The multi-factorial nature of AD neuropathology and symptomatology has taught us that a single therapeutic approach will most likely not fit all. Women constitute ~70% of the affected AD population, and pathology and rate of symptoms progression are 2-3 times higher in women than men. Epidemiological data suggest that menopausal estrogen loss may be causative of the more severe symptoms observed in AD women, however, results from clinical trials employing estrogen replacement therapy are inconsistent. AD pathological hallmarks-amyloid β (Aβ), neurofibrillary tangles (NFTs), and chronic gliosis-are laid down during a 20-year prodromal period before clinical symptoms appear, which coincides with the menopause transition (peri-menopause) in women (~45-54-years-old). Peri-menopause is marked by widely fluctuating estrogen levels resulting in periods of irregular hormone-receptor interactions. Recent studies showed that peri-menopausal women have increased indicators of AD phenotype (brain Aβ deposition and hypometabolism), and peri-menopausal women who used hormone replacement therapy (HRT) had a reduced AD risk. This suggests that neuroendocrine changes during peri-menopause may be a trigger that increases risk of AD in women. Studies on sex differences have been performed in several AD rodent models over the years. However, it has been challenging to study the menopause influence on AD due to lack of optimal models that mimic the human process. Recently, the rodent model of accelerated ovarian failure (AOF) was developed, which uniquely recapitulates human menopause, including a transitional peri-AOF period with irregular estrogen fluctuations and a post-AOF stage with low estrogen levels. This model has proven useful in hypertension and cognition studies with wild type animals. This review article will highlight the molecular mechanisms by which peri-menopause may influence the female brain vulnerability to AD and AD risk factors, such as hypertension and apolipoprotein E (APOE) genotype. Studies on these biological mechanisms together with the use of the AOF model have the potential to shed light on key molecular pathways underlying AD pathogenesis for the development of precision medicine approaches that take sex and hormonal status into account.
Collapse
Affiliation(s)
- Roberta Marongiu
- Laboratory of Molecular Neurosurgery, Weill Cornell Medicine, Department of Neurosurgery, Cornell University, New York, NY, United States
| |
Collapse
|
26
|
Wanleenuwat P, Iwanowski P, Kozubski W. Alzheimer's dementia: pathogenesis and impact of cardiovascular risk factors on cognitive decline. Postgrad Med 2019; 131:415-422. [PMID: 31424301 DOI: 10.1080/00325481.2019.1657776] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia manifesting as alterations in cognitive abilities, behavior, and deterioration in memory which is progressive, leading to gradual worsening of symptoms. Major pathological features of AD are accumulations of neuronal amyloid plaques and neurofibrillary tangles, with early lesions appearing primarily in the hippocampus, the area of the brain involved in memory and learning. Cardiovascular-related risk factors are believed to play a crucial role in disease development and the acceleration of cognitive deterioration by worsening cerebral perfusion, promoting disturbances in amyloid clearance. Current evidence supports hypertension, hypotension, heart failure, stroke and coronary artery diseases as potential factors playing a role in cognitive decline in patients with Alzheimer's dementia. Although dementia due to cardiovascular deficits is more strongly linked to the development of vascular dementia, a stepwise decline in cognition, recent researches have also discovered its deleterious influence on AD development.
Collapse
Affiliation(s)
- Pitchaya Wanleenuwat
- Department of Neurology, Poznan University of Medical Sciences , Poznan , Poland
| | - Piotr Iwanowski
- Department of Neurology, Poznan University of Medical Sciences , Poznan , Poland
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences , Poznan , Poland
| |
Collapse
|
27
|
de Jong DLK, de Heus RAA, Rijpma A, Donders R, Olde Rikkert MGM, Günther M, Lawlor BA, van Osch MJP, Claassen JAHR. Effects of Nilvadipine on Cerebral Blood Flow in Patients With Alzheimer Disease. Hypertension 2019; 74:413-420. [PMID: 31203725 DOI: 10.1161/hypertensionaha.119.12892] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cerebrovascular changes, including reduced cerebral blood flow (CBF), occur early in the development of Alzheimer disease and may accelerate disease progression. This randomized, double-blind, placebo-controlled study investigated how 6 months of treatment with the calcium antagonist nilvadipine would affect CBF in patients with mild-to-moderate Alzheimer disease. CBF was measured with magnetic resonance arterial spin labeling in whole-brain gray matter and in a priori defined regions of interest including the hippocampus. Fifty-eight patients were randomly assigned (29 in each group), of whom 22 in both groups had no magnetic resonance exclusion criteria and were medication compliant over 6 months. Mean age was 72.8±6.2 years, mean mini-mental state examination was 20.4±3.4. Nilvadipine treatment lowered systolic blood pressure (Δ=-11.5 [95% CI, -19.7 to -3.2] mm Hg; P<0.01), while whole-brain gray-matter CBF remained stable (Δ=5.4 [95% CI, -6.4 to 17.2] mL/100 g per minute; P=0.36). CBF in the hippocampus increased (left: Δ=24.4 [95% CI, 4.3-44.5] mL/100 g per minute; P=0.02; right: Δ=20.1 [95% CI, -0.6 to 40.8] mL/100 g per minute; P=0.06). There was no significant change in CBF in the posterior cingulate cortex (Δ=5.2 [95% CI, -16.5 to 27.0] mL/100 g per minute; P=0.63) or other regions of interest. In conclusion, nilvadipine reduced blood pressure and increased CBF in the hippocampus, whereas other regions showed stable or small nonsignificant increases in CBF. These findings not only indicate preserved cerebral autoregulation in Alzheimer disease but also point toward beneficial cerebrovascular effects of antihypertensive treatment. Clinical Trial Registration- URL: http://www.clinicaltrials.gov . Unique identifier: NCT02017340.
Collapse
Affiliation(s)
- Daan L K de Jong
- From the Department of Geriatric Medicine, Donders Institute for Brain Cognition and Behaviour (D.L.K.d.J., R.A.A.d.H., A.R., M.G.M.O.R., J.A.H.R.C.), Radboud University Medical Center, Nijmegen, the Netherlands.,Radboudumc Alzheimer Center, Nijmegen, the Netherlands (D.L.K.d.J., R.A.A.d.H., A.R., M.G.M.O.R., J.A.H.R.C.)
| | - Rianne A A de Heus
- From the Department of Geriatric Medicine, Donders Institute for Brain Cognition and Behaviour (D.L.K.d.J., R.A.A.d.H., A.R., M.G.M.O.R., J.A.H.R.C.), Radboud University Medical Center, Nijmegen, the Netherlands.,Radboudumc Alzheimer Center, Nijmegen, the Netherlands (D.L.K.d.J., R.A.A.d.H., A.R., M.G.M.O.R., J.A.H.R.C.)
| | - Anne Rijpma
- From the Department of Geriatric Medicine, Donders Institute for Brain Cognition and Behaviour (D.L.K.d.J., R.A.A.d.H., A.R., M.G.M.O.R., J.A.H.R.C.), Radboud University Medical Center, Nijmegen, the Netherlands.,Radboudumc Alzheimer Center, Nijmegen, the Netherlands (D.L.K.d.J., R.A.A.d.H., A.R., M.G.M.O.R., J.A.H.R.C.)
| | - Rogier Donders
- Department of Health Evidence (R.D.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marcel G M Olde Rikkert
- From the Department of Geriatric Medicine, Donders Institute for Brain Cognition and Behaviour (D.L.K.d.J., R.A.A.d.H., A.R., M.G.M.O.R., J.A.H.R.C.), Radboud University Medical Center, Nijmegen, the Netherlands.,Radboudumc Alzheimer Center, Nijmegen, the Netherlands (D.L.K.d.J., R.A.A.d.H., A.R., M.G.M.O.R., J.A.H.R.C.)
| | - Matthias Günther
- Frauenhofer Institute for Medical Imaging Computing MEVIS, Bremen, Germany (M.G.)
| | - Brian A Lawlor
- Trinity College Institute of Neuroscience, Dublin, Ireland (B.A.L.)
| | - Matthias J P van Osch
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, the Netherlands (M.J.P.v.O.)
| | - Jurgen A H R Claassen
- From the Department of Geriatric Medicine, Donders Institute for Brain Cognition and Behaviour (D.L.K.d.J., R.A.A.d.H., A.R., M.G.M.O.R., J.A.H.R.C.), Radboud University Medical Center, Nijmegen, the Netherlands.,Radboudumc Alzheimer Center, Nijmegen, the Netherlands (D.L.K.d.J., R.A.A.d.H., A.R., M.G.M.O.R., J.A.H.R.C.)
| |
Collapse
|
28
|
Nazarian A, Arbeev KG, Yashkin AP, Kulminski AM. Genetic heterogeneity of Alzheimer's disease in subjects with and without hypertension. GeroScience 2019; 41:137-154. [PMID: 31055733 PMCID: PMC6544706 DOI: 10.1007/s11357-019-00071-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/25/2019] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder caused by the interplay of multiple genetic and non-genetic factors. Hypertension is one of the AD risk factors that has been linked to underlying pathological changes like senile plaques and neurofibrillary tangles formation as well as hippocampal atrophy. In this study, we investigated the differences in the genetic architecture of AD between hypertensive and non-hypertensive subjects in four independent cohorts. Our genome-wide association analyses revealed significant associations of 15 novel potentially AD-associated polymorphisms (P < 5E-06) that were located outside the chromosome 19q13 region and were significant either in hypertensive or non-hypertensive groups. The closest genes to 14 polymorphisms were not associated with AD at P < 5E-06 in previous genome-wide association studies (GWAS). Also, four of them were located within two chromosomal regions (i.e., 3q13.11 and 17q21.2) that were not associated with AD at P < 5E-06 before. In addition, 30 genes demonstrated evidence of group-specific associations with AD at the false discovery rates (FDR) < 0.05 in our gene-based and transcriptome-wide association analyses. The chromosomal regions corresponding to four genes (i.e., 2p13.1, 9p13.3, 17q12, and 18q21.1) were not associated with AD at P < 5E-06 in previous GWAS. These genes may serve as a list of prioritized candidates for future functional studies. Our pathway-enrichment analyses revealed the associations of 11 non-group-specific and four group-specific pathways with AD at FDR < 0.05. These findings provided novel insights into the potential genetic heterogeneity of AD among subjects with and without hypertension.
Collapse
Affiliation(s)
- Alireza Nazarian
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St., Durham, NC, 27705, USA.
| | - Konstantin G Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St., Durham, NC, 27705, USA
| | - Arseniy P Yashkin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St., Durham, NC, 27705, USA
| | - Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St., Durham, NC, 27705, USA.
| |
Collapse
|
29
|
Lee W, Gray SL, Barthold D, Crane PK, Larson EB, Marcum ZA. Do Patient Concerns About Antihypertensive Use For Dementia Prevention Vary By Current Use Of Antihypertensive? Patient Prefer Adherence 2019; 13:1809-1815. [PMID: 31695342 PMCID: PMC6815749 DOI: 10.2147/ppa.s216088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/05/2019] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Antihypertensives may have effects on the brain beyond blood pressure lowering. Ongoing clinical trials aim to evaluate the effectiveness of approved antihypertensives in preventing dementia, including patients with and without hypertension. In order for a dementia prevention strategy using antihypertensives to be effective, it is critical to understand patient concerns about this strategy in both users and non-users of antihypertensives. Thus, this study examined the association between current use of antihypertensive and having concerns about using an antihypertensive as a dementia prevention strategy, as well as sociodemographic factors associated with concerns. PATIENTS AND METHODS Cross-sectional, self-administered, web-based survey was conducted among 1661 patients in a large health system in January 2018. Participants reported whether they were currently taking an antihypertensive (yes/no), and what types of hypothetical concerns they have about the idea of taking an antihypertensive to prevent dementia (yes/no, for each of 7 concerns). Associations between the two variables were assessed via logistic regression, and odds ratios with 95% confidence intervals were calculated. RESULTS Most respondents were female (77%), 51-70 years of age (64%), and white (89%), with 30% reporting current antihypertensive use. Compared to current users, non-users were more likely to report the five following concerns: side effects from the medication, hassle to take medications, lack of evidence, not wanting to use medications, and already having normal/low blood pressure. Non-users were also less likely to report having no concerns (adjusted OR = 0.3; 95% CI = 0.2-0.4) compared to current users. Younger age and lower income were associated with having more concerns. CONCLUSION Patients not currently using an antihypertensive are more likely to have concerns about using an antihypertensive for dementia prevention, compared to current antihypertensive users. Patient perspectives are important to consider for the implementation of dementia prevention strategies.
Collapse
Affiliation(s)
- Woojung Lee
- School of Pharmacy, University of Washington, Seattle, WA98195, USA
| | - Shelly L Gray
- School of Pharmacy, University of Washington, Seattle, WA98195, USA
| | - Douglas Barthold
- School of Pharmacy, University of Washington, Seattle, WA98195, USA
| | - Paul K Crane
- School of Medicine, University of Washington, Seattle, WA98104, USA
| | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA98101, USA
| | - Zachary A Marcum
- School of Pharmacy, University of Washington, Seattle, WA98195, USA
- Correspondence: Zachary A Marcum Department of Pharmacy, School of Pharmacy, University of Washington, 1959 NE Pacific St, Box 357630, Seattle, WA98102, USATel +1 206-685-2559Fax +1 206-543-3835 Email @zacharyamarcum
| |
Collapse
|
30
|
Ménard B, Chazalviel L, Roussel S, Bernaudin M, Touzani O. Two-kidney one-clip is a pertinent approach to integrate arterial hypertension in animal models of stroke: Serial magnetic resonance imaging studies of brain lesions before and during cerebral ischemia. J Cereb Blood Flow Metab 2018; 38:1769-1780. [PMID: 28617154 PMCID: PMC6168912 DOI: 10.1177/0271678x17715813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although chronic arterial hypertension (CAH) represents the major comorbid factor in stroke, it is rarely integrated in preclinical studies of stroke. The majority of those investigations employ spontaneously hypertensive rats (SHR) which display a susceptibility to ischemic damage independent of hypertension. Here, we used a renovascular model of hypertension (RH) to examine, with magnetic resonance imaging (MRI), brain alterations during the development of hypertension and after brain ischemia. We also examined whether MRI-derived parameters predict the extent of ischemia-induced brain damage. RH was induced according to the two-kidney one-clip model and multiparametric MRI was performed at 3, 6, 9, and 12 weeks after hypertension and also at 10, 50, and 60 min following stroke. Blood pressure values increased progressively and reached a plateau at 6 weeks after RH induction. At 12 weeks, all hypertensive animals displayed spontaneous brain lesions (hemorrhages, deep and cortical lesions, ventricular dilatation), increased apparent diffusion coefficient (ADC) values in the corpus callosum and higher fractional anisotropy in the cortex. Following ischemia, these animals showed larger brain lesions (406 ± 82 vs. 179 ± 36 mm3, p < 0.002) which correlated with ADC values at chronic stage of hypertension. This model of hypertension displays many characteristics of the neuropathology of human CAH. The use of this model in stroke studies is relevant and desirable.
Collapse
Affiliation(s)
- Benjamin Ménard
- Normandie Univ, UNICAEN, CNRS, CEA, ISTCT/CERVOxy group, Caen, France
| | | | - Simon Roussel
- Normandie Univ, UNICAEN, CNRS, CEA, ISTCT/CERVOxy group, Caen, France
| | - Myriam Bernaudin
- Normandie Univ, UNICAEN, CNRS, CEA, ISTCT/CERVOxy group, Caen, France
| | - Omar Touzani
- Normandie Univ, UNICAEN, CNRS, CEA, ISTCT/CERVOxy group, Caen, France
| |
Collapse
|
31
|
Nagai M, Dote K, Kato M, Sasaki S, Oda N, Kagawa E, Nakano Y, Yamane A, Higashihara T, Miyauchi S, Tsuchiya A. Visit-to-Visit Blood Pressure Variability and Alzheimer's Disease: Links and Risks. J Alzheimers Dis 2018; 59:515-526. [PMID: 28598842 DOI: 10.3233/jad-161172] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While hypertension has been shown to be a risk factor for vascular dementia, several studies have also demonstrated that hypertension also increases the risk of Alzheimer's disease (AD). Although the relationship between visit-to-visit blood pressure variability (VVV) and cognitive impairment, including AD, have been provided, the mechanisms remain poorly understood. This review paper focuses on the relationship of VVV with AD and summarizes the pathophysiology underlying that relationship, which appears to be mediated by arterial stiffness.
Collapse
Affiliation(s)
- Michiaki Nagai
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Keigo Dote
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Masaya Kato
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Shota Sasaki
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Noboru Oda
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Eisuke Kagawa
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Yoshinori Nakano
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Aya Yamane
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | | | - Shunsuke Miyauchi
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Akane Tsuchiya
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| |
Collapse
|
32
|
Csiszar A, Tarantini S, Fülöp GA, Kiss T, Valcarcel-Ares MN, Galvan V, Ungvari Z, Yabluchanskiy A. Hypertension impairs neurovascular coupling and promotes microvascular injury: role in exacerbation of Alzheimer's disease. GeroScience 2017; 39:359-372. [PMID: 28853030 PMCID: PMC5636770 DOI: 10.1007/s11357-017-9991-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022] Open
Abstract
Hypertension in the elderly substantially increases both the risk of vascular cognitive impairment (VCI) and Alzheimer's disease (AD); however, the underlying mechanisms are not completely understood. This review discusses the effects of hypertension on structural and functional integrity of cerebral microcirculation, including hypertension-induced alterations in neurovascular coupling responses, cellular and molecular mechanisms involved in microvascular damage (capillary rarefaction, blood-brain barrier disruption), and the genesis of cerebral microhemorrhages and their potential role in exacerbation of cognitive decline associated with AD. Understanding and targeting the hypertension-induced cerebromicrovascular alterations that are involved in the onset and progression of AD and contribute to cognitive impairment are expected to have a major role in preserving brain health in high-risk older individuals.
Collapse
Affiliation(s)
- Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gábor A Fülöp
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Kiss
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - M Noa Valcarcel-Ares
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Veronica Galvan
- Department of Cellular and Integrative Physiology, Barshop Institute for Longevity and Aging Studies University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
33
|
Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 2017; 18:419-434. [PMID: 28515434 PMCID: PMC5759779 DOI: 10.1038/nrn.2017.48] [Citation(s) in RCA: 774] [Impact Index Per Article: 110.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cerebral blood flow (CBF) regulation is essential for normal brain function. The mammalian brain has evolved a unique mechanism for CBF control known as neurovascular coupling. This mechanism ensures a rapid increase in the rate of CBF and oxygen delivery to activated brain structures. The neurovascular unit is composed of astrocytes, mural vascular smooth muscle cells and pericytes, and endothelia, and regulates neurovascular coupling. This Review article examines the cellular and molecular mechanisms within the neurovascular unit that contribute to CBF control, and neurovascular dysfunction in neurodegenerative disorders such as Alzheimer disease.
Collapse
Affiliation(s)
- Kassandra Kisler
- Zilkha Neurogenetic Institute, 1501 San Pablo Street, Los Angeles, California 90089, USA
| | - Amy R Nelson
- Zilkha Neurogenetic Institute, 1501 San Pablo Street, Los Angeles, California 90089, USA
| | - Axel Montagne
- Zilkha Neurogenetic Institute, 1501 San Pablo Street, Los Angeles, California 90089, USA
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, 1501 San Pablo Street, Los Angeles, California 90089, USA
| |
Collapse
|
34
|
Bedussi B, Naessens DMP, de Vos J, Olde Engberink R, Wilhelmus MMM, Richard E, Ten Hove M, vanBavel E, Bakker ENTP. Enhanced interstitial fluid drainage in the hippocampus of spontaneously hypertensive rats. Sci Rep 2017; 7:744. [PMID: 28389645 PMCID: PMC5429689 DOI: 10.1038/s41598-017-00861-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/15/2017] [Indexed: 11/13/2022] Open
Abstract
Hypertension is associated with cognitive decline and various forms of dementia, including Alzheimer’s disease. In animal models of hypertension, many of Alzheimer’s disease characteristics are recapitulated, including brain atrophy, cognitive decline, amyloid β accumulation and blood brain barrier dysfunction. Removal of amyloid β and other waste products depends in part on clearance via the brain interstitial fluid (ISF). Here we studied the impact of hypertension on ISF drainage, using spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). At 8 months, high (500 kD) and low (3 kD) fluorescent molecular weight tracers released passively into the hippocampus showed a drastically enhanced spreading in SHR. Tracer spreading was inhomogeneous, with accumulation at ISF-CSF borders, around arteries, and towards the stratum lacunosum moleculare. These locations stained positively for the astrocyte marker GFAP, and aquaporin 4. Despite enhanced dispersion, clearance of tracers was not affected in SHR. In conclusion, these data indicate enhanced bulk flow of ISF in the hippocampus of hypertensive rats. ISF drains along astrocytes towards the cerebrospinal fluid compartment, which leads to sieving of high molecular weight solutes. Sieving may lead to a local increase in the concentration of waste products and potentially promotes the aggregation of amyloid β.
Collapse
Affiliation(s)
- Beatrice Bedussi
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | - Daphne M P Naessens
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | - Judith de Vos
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | - Rik Olde Engberink
- Division of Nephrology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Micha M M Wilhelmus
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU medical center, Amsterdam, The Netherlands
| | - Edo Richard
- Department of Neurology, Academic Medical Centre, Amsterdam, Netherlands.,Department of Neurology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Malyssa Ten Hove
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | - Ed vanBavel
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | - Erik N T P Bakker
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|