1
|
Beacom MJ, Gunn AJ, Bennet L. Preterm Brain Injury: Mechanisms and Challenges. Annu Rev Physiol 2025; 87:79-106. [PMID: 39532110 DOI: 10.1146/annurev-physiol-022724-104754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Preterm fetuses and newborns have a high risk of neural injury and impaired neural maturation, leading to neurodevelopmental disability. Developing effective treatments is rather challenging, as preterm brain injury may occur at any time during pregnancy and postnatally, and many cases involve multiple pathogenic factors. This review examines research on how the preterm fetus responds to hypoxia-ischemia and how brain injury evolves after hypoxia-ischemia, offering windows of opportunity for treatment and insights into the mechanisms of injury during key phases. We highlight research showing that preterm fetuses can survive hypoxia-ischemia and continue development in utero with evolving brain injury. Early detection of fetal brain injury would provide an opportunity for treatments to reduce adverse neurodevelopmental outcomes, including cerebral palsy. However, this requires that we can detect injury using noninvasive methods. We discuss how circadian changes in fetal heart rate variability may offer utility as a biomarker for detecting injury and phases of injury.
Collapse
Affiliation(s)
- Michael J Beacom
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand;
| | - Alistair J Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand;
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand;
| |
Collapse
|
2
|
Prasad J, Van Steenwinckel J, Gunn AJ, Bennet L, Korzeniewski SJ, Gressens P, Dean JM. Chronic Inflammation Offers Hints About Viable Therapeutic Targets for Preeclampsia and Potentially Related Offspring Sequelae. Int J Mol Sci 2024; 25:12999. [PMID: 39684715 PMCID: PMC11640791 DOI: 10.3390/ijms252312999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The combination of hypertension with systemic inflammation during pregnancy is a hallmark of preeclampsia, but both processes also convey dynamic information about its antecedents and correlates (e.g., fetal growth restriction) and potentially related offspring sequelae. Causal inferences are further complicated by the increasingly frequent overlap of preeclampsia, fetal growth restriction, and multiple indicators of acute and chronic inflammation, with decreased gestational length and its correlates (e.g., social vulnerability). This complexity prompted our group to summarize information from mechanistic studies, integrated with key clinical evidence, to discuss the possibility that sustained or intermittent systemic inflammation-related phenomena offer hints about viable therapeutic targets, not only for the prevention of preeclampsia, but also the neurobehavioral and other developmental deficits that appear to be overrepresented in surviving offspring. Importantly, we feel that carefully designed hypothesis-driven observational studies are necessary if we are to translate the mechanistic evidence into child health benefits, namely because multiple pregnancy disorders might contribute to heightened risks of neuroinflammation, arrested brain development, or dysconnectivity in survivors who exhibit developmental problems later in life.
Collapse
Affiliation(s)
- Jaya Prasad
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | | | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | - Steven J. Korzeniewski
- C.S. Mott Center for Human Growth and Development, Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Pierre Gressens
- Inserm, Neurodiderot, Université de Paris, 75019 Paris, France;
- Centre for the Developing Brain, Division of Imaging Sciences and Department of Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London SE1 7EH, UK
| | - Justin M. Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| |
Collapse
|
3
|
Yue Y, Deng B, Zeng Y, Li W, Qiu X, Hu P, Shen L, Ruan T, Zhou R, Li S, Ying J, Xiong T, Qu Y, Luan Z, Mu D. Oligodendrocyte Progenitor Cell Transplantation Reduces White Matter Injury in a Fetal Goat Model. CNS Neurosci Ther 2024; 30:e70178. [PMID: 39690788 DOI: 10.1111/cns.70178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Preterm white matter injury (PWMI) is the most common type of brain injury in preterm infants, in which, oligodendrocyte progenitor cells (OPCs) are predominantly damaged. In this study, human OPCs (hOPCs) were administered to a fetal goat model of PWMI to examine the differentiation potential and therapeutic effects of the cells on PWMI. METHODS Preterm goat fetuses were subjected to hypoxic-ischemia (HI) via intermittent umbilical cord occlusion (5 min × 5). Twenty million hOPCs were administered via a nasal catheter 12 h after an HI insult, and brain tissues were collected 14 or 21 days after the HI insult. Myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) were detected by immunofluorescence and western blotting techniques. The percentage of myelinated nerve fibers and g-ratio were examined using transmission electron microscopy. Inflammatory cells were detected by immunohistochemistry. Inflammatory and neurotrophic factors were measured using enzyme-linked immunosorbent assay. RESULTS Our results showed that intermittent umbilical cord occlusion induced PWMI in fetal goats. Transplanted hOPCs can survive in periventricular and subcortical white matter. Further, transplanted hOPCs expressed markers of mature oligodendrocytes (MBP and MAG) and few cells expressed markers of preoligodendrocytes (NG2 and A2B5), suggesting that these cells can differentiate into mature oligodendrocytes in the brain. In addition, hOPCs administration increased MBP and MAG levels, percentage of myelinated nerve fibers, and thickness of the myelin sheath, indicating a reduction in PWMI. Furthermore, hOPCs did not increase the inflammatory response after HI. Interestingly, hOPC administration decreased tumor necrosis factor-alpha and increased glial-derived neurotrophic factor and brain-derived neurotrophic factor levels after HI, suggesting that additional mechanisms mediate the inflammatory microenvironment and neuroprotective effects. CONCLUSIONS Exogenous hOPCs can differentiate into mature oligodendrocytes in fetal goats and alleviate HI-induced PWMI. Transplantation of hOPCs is a promising strategy for treating PWMI.
Collapse
Affiliation(s)
- Yan Yue
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Bixin Deng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Yan Zeng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Wenxing Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Xia Qiu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Peng Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - LiuHong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tiechao Ruan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Ruixi Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Shiping Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Junjie Ying
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Tao Xiong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Yi Qu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Zuo Luan
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Dezhi Mu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Lear CA, Maeda Y, King VJ, Dhillon SK, Beacom MJ, Gunning MI, Lear BA, Davidson JO, Stone PR, Ikeda T, Gunn AJ, Bennet L. Circadian patterns of heart rate variability in fetal sheep after hypoxia-ischaemia: A biomarker of evolving brain injury. J Physiol 2024; 602:6553-6569. [PMID: 37432936 PMCID: PMC11607889 DOI: 10.1113/jp284560] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
Hypoxia-ischaemia (HI) before birth is a key risk factor for stillbirth and severe neurodevelopmental disability in survivors, including cerebral palsy, although there are no reliable biomarkers to detect at risk fetuses that may have suffered a transient period of severe HI. We investigated time and frequency domain measures of fetal heart rate variability (FHRV) for 3 weeks after HI in preterm fetal sheep at 0.7 gestation (equivalent to preterm humans) until 0.8 gestation (equivalent to term humans). We have previously shown that this is associated with delayed development of severe white and grey matter injury, including cystic white matter injury (WMI) resembling that observed in human preterm infants. HI was associated with suppression of time and frequency domain measures of FHRV and reduced their circadian rhythmicity during the first 3 days of recovery. By contrast, circadian rhythms of multiple measures of FHRV were exaggerated over the final 2 weeks of recovery, mediated by a greater reduction in FHRV during the morning nadir, but no change in the evening peak. These data suggest that the time of day at which FHRV measurements are taken affects their diagnostic utility. We further propose that circadian changes in FHRV may be a low-cost, easily applied biomarker of antenatal HI and evolving brain injury. KEY POINTS: Hypoxia-ischaemia (HI) before birth is a key risk factor for stillbirth and probably for disability in survivors, although there are no reliable biomarkers for antenatal brain injury. In preterm fetal sheep, acute HI that is known to lead to delayed development of severe white and grey matter injury over 3 weeks, was associated with early suppression of multiple time and frequency domain measures of fetal heart rate variability (FHRV) and loss of their circadian rhythms during the first 3 days after HI. Over the final 2 weeks of recovery after HI, exaggerated circadian rhythms of frequency domain FHRV measures were observed. The morning nadirs were lower with no change in the evening peak of FHRV. Circadian changes in FHRV may be a low-cost, easily applied biomarker of antenatal HI and evolving brain injury.
Collapse
Affiliation(s)
- Christopher A. Lear
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Yoshiki Maeda
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
- The Department of Obstetrics and GynaecologyMie UniversityMieJapan
| | - Victoria J. King
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Simerdeep K. Dhillon
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Michael J. Beacom
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Mark I. Gunning
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Benjamin A. Lear
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Joanne O. Davidson
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Peter R. Stone
- The Department of Obstetrics and GynaecologyThe University of AucklandAucklandNew Zealand
| | - Tomoaki Ikeda
- The Department of Obstetrics and GynaecologyMie UniversityMieJapan
| | - Alistair J. Gunn
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Laura Bennet
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| |
Collapse
|
5
|
Lear BA, Zhou KQ, Dhillon SK, Lear CA, Bennet L, Gunn AJ. Preventive, rescue and reparative neuroprotective strategies for the fetus and neonate. Semin Fetal Neonatal Med 2024; 29:101542. [PMID: 39472238 DOI: 10.1016/j.siny.2024.101542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Neonatal encephalopathy remains a major contributor to death and disability around the world. Acute hypoxia-ischaemia before, during or after birth creates a series of events that can lead to neonatal brain injury. Understanding the evolution of injury underpinned the development of therapeutic hypothermia. This review discusses the determinants of injury, including maturity, the pattern of exposure to HI, impaired placental function, often associated with fetal growth restriction and in the long-term, socio-economic deprivation. Chorioamnionitis has been associated with the presence of NE, but it is important to note that experimentally, inflammation can either sensitize to greater neural injury after HI or alleviate injury, depending on its precise timing. As fetal surveillance tools improve it is likely that improved detection of specific pathways will offer future opportunities for preventive and reparative interventions in utero and after birth.
Collapse
Affiliation(s)
- Benjamin A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Kelly Q Zhou
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
6
|
Wassink G, Cho KHT, Mathai S, Lear CA, Dean JM, Gunn AJ, Bennet L. White matter protection with insulin-like growth factor-1 after hypoxia-ischaemia in preterm foetal sheep. Brain Commun 2024; 6:fcae373. [PMID: 39507274 PMCID: PMC11539755 DOI: 10.1093/braincomms/fcae373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/02/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Perinatal hypoxia-ischaemia in extremely preterm infants is associated with long-term neurodevelopmental impairment, for which there is no specific treatment. Insulin-like growth factor-1 can reduce acute brain injury, but its effects on chronic white matter injury after hypoxia-ischaemia are unclear. Preterm-equivalent foetal sheep (0.6 gestation) received either sham-asphyxia or asphyxia induced by umbilical cord occlusion for 30 min, and recovered for either 3 or 35 days after asphyxia. The 35 day recovery groups received either an intracerebroventricular infusion of insulin-like growth factor-1 (1 µg/24 h) or vehicle, from 3 to 14 days after asphyxia. Asphyxia was associated with ventricular enlargement, and loss of frontal and parietal white matter area (P < 0.05 versus sham-asphyxia). This was associated with reduced area fraction of myelin basic protein and numbers of oligodendrocyte transcription factor 2 and mature, anti-adenomatous polyposis coli-positive oligodendrocytes in periventricular white matter (P < 0.05), with persistent inflammation and caspase-3 activation (P < 0.05). Four of eight foetuses developed cystic lesions in temporal white matter. Prolonged infusion with insulin-like growth factor-1 restored frontal white matter area, improved numbers of oligodendrocyte transcription factor 2-positive and mature, anti-adenomatous polyposis coli-positive oligodendrocytes, with reduced astrogliosis and microgliosis after 35 days recovery (P < 0.05 versus asphyxia). One of four foetuses developed temporal cystic lesions. Functionally, insulin-like growth factor-1-treated foetuses had faster recovery of EEG power, but not spectral edge. Encouragingly, these findings show that delayed, prolonged, insulin-like growth factor-1 treatment can improve functional maturation of periventricular white matter after severe asphyxia in the very immature brain, at least in part by suppressing chronic neural inflammation.
Collapse
Affiliation(s)
- Guido Wassink
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Kenta H T Cho
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Sam Mathai
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Christopher A Lear
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Justin M Dean
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Laura Bennet
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| |
Collapse
|
7
|
Liu C, Ju R. Potential Role of Endoplasmic Reticulum Stress in Modulating Protein Homeostasis in Oligodendrocytes to Improve White Matter Injury in Preterm Infants. Mol Neurobiol 2024; 61:5295-5307. [PMID: 38180617 DOI: 10.1007/s12035-023-03905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Preterm white matter injury (WMI) is a demyelinating disease with high incidence and mortality in premature infants. Oligodendrocyte cells (OLs) are a specialized glial cell that produces myelin proteins and adheres to the axons providing energy and metabolic support which susceptible to endoplasmic reticulum protein quality control. Disruption of cellular protein homeostasis led to OLs dysfunction and cell death, immediately, the unfolded protein response (UPR) activated to attempt to restore the protein homeostasis via IRE1/XBP1s, PERK/eIF2α and ATF6 pathway that reduced protein translation, strengthen protein-folding capacity, and degraded unfolding/misfolded protein. Moreover, recent works have revealed the conspicuousness function of ER signaling pathways in regulating influenced factors such as calcium homeostasis, mitochondrial reactive oxygen generation, and autophagy activation to regulate protein hemostasis and improve the myelination function of OLs. Each of the regulation modes and their corresponding molecular mechanisms provides unique opportunities and distinct perspectives to obtain a deep understanding of different actions of ER stress in maintaining OLs' health and function. Therefore, our review focuses on summarizing the current understanding of ER stress on OLs' protein homeostasis micro-environment in myelination during white matter development, as well as the pathophysiology of WMI, and discussing the further potential experimental therapeutics targeting these factors that restore the function of the UPR in OLs myelination function.
Collapse
Affiliation(s)
- Chang Liu
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Rong Ju
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
8
|
Molloy EJ, El-Dib M, Soul J, Juul S, Gunn AJ, Bender M, Gonzalez F, Bearer C, Wu Y, Robertson NJ, Cotton M, Branagan A, Hurley T, Tan S, Laptook A, Austin T, Mohammad K, Rogers E, Luyt K, Wintermark P, Bonifacio SL. Neuroprotective therapies in the NICU in preterm infants: present and future (Neonatal Neurocritical Care Series). Pediatr Res 2024; 95:1224-1236. [PMID: 38114609 PMCID: PMC11035150 DOI: 10.1038/s41390-023-02895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 12/21/2023]
Abstract
The survival of preterm infants has steadily improved thanks to advances in perinatal and neonatal intensive clinical care. The focus is now on finding ways to improve morbidities, especially neurological outcomes. Although antenatal steroids and magnesium for preterm infants have become routine therapies, studies have mainly demonstrated short-term benefits for antenatal steroid therapy but limited evidence for impact on long-term neurodevelopmental outcomes. Further advances in neuroprotective and neurorestorative therapies, improved neuromonitoring modalities to optimize recruitment in trials, and improved biomarkers to assess the response to treatment are essential. Among the most promising agents, multipotential stem cells, immunomodulation, and anti-inflammatory therapies can improve neural outcomes in preclinical studies and are the subject of considerable ongoing research. In the meantime, bundles of care protecting and nurturing the brain in the neonatal intensive care unit and beyond should be widely implemented in an effort to limit injury and promote neuroplasticity. IMPACT: With improved survival of preterm infants due to improved antenatal and neonatal care, our focus must now be to improve long-term neurological and neurodevelopmental outcomes. This review details the multifactorial pathogenesis of preterm brain injury and neuroprotective strategies in use at present, including antenatal care, seizure management and non-pharmacological NICU care. We discuss treatment strategies that are being evaluated as potential interventions to improve the neurodevelopmental outcomes of infants born prematurely.
Collapse
Affiliation(s)
- Eleanor J Molloy
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland.
- Children's Hospital Ireland (CHI) at Tallaght, Dublin, Ireland.
- Neonatology, CHI at Crumlin, Dublin, Ireland.
- Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland.
| | - Mohamed El-Dib
- Department of Pediatrics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Janet Soul
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sandra Juul
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Alistair J Gunn
- Departments of Physiology and Paediatrics, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Manon Bender
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Fernando Gonzalez
- Department of Neurology, Division of Child Neurology, University of California, San Francisco, California, USA
| | - Cynthia Bearer
- Division of Neonatology, Department of Pediatrics, Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Yvonne Wu
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mike Cotton
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Aoife Branagan
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland
- Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland
| | - Tim Hurley
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland
| | - Sidhartha Tan
- Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Abbot Laptook
- Department of Pediatrics, Women and Infants Hospital, Brown University, Providence, Rhode Island, USA
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Khorshid Mohammad
- Section of Neonatology, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth Rogers
- Department of Pediatrics, University of California, San Francisco Benioff Children's Hospital, San Francisco, California, USA
| | - Karen Luyt
- Translational Health Sciences, University of Bristol, Bristol, UK
- Neonatology, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Pia Wintermark
- Division of Neonatology, Montreal Children's Hospital, Montreal, Quebec, Canada
- McGill University Health Centre - Research Institute, Montreal, Quebec, Canada
| | - Sonia Lomeli Bonifacio
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
9
|
Abbasi H, Davidson JO, Dhillon SK, Zhou KQ, Wassink G, Gunn AJ, Bennet L. Deep Learning for Generalized EEG Seizure Detection after Hypoxia-Ischemia-Preclinical Validation. Bioengineering (Basel) 2024; 11:217. [PMID: 38534490 DOI: 10.3390/bioengineering11030217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
Brain maturity and many clinical treatments such as therapeutic hypothermia (TH) can significantly influence the morphology of neonatal EEG seizures after hypoxia-ischemia (HI), and so there is a need for generalized automatic seizure identification. This study validates efficacy of advanced deep-learning pattern classifiers based on a convolutional neural network (CNN) for seizure detection after HI in fetal sheep and determines the effects of maturation and brain cooling on their accuracy. The cohorts included HI-normothermia term (n = 7), HI-hypothermia term (n = 14), sham-normothermia term (n = 5), and HI-normothermia preterm (n = 14) groups, with a total of >17,300 h of recordings. Algorithms were trained and tested using leave-one-out cross-validation and k-fold cross-validation approaches. The accuracy of the term-trained seizure detectors was consistently excellent for HI-normothermia preterm data (accuracy = 99.5%, area under curve (AUC) = 99.2%). Conversely, when the HI-normothermia preterm data were used in training, the performance on HI-normothermia term and HI-hypothermia term data fell (accuracy = 98.6%, AUC = 96.5% and accuracy = 96.9%, AUC = 89.6%, respectively). Findings suggest that HI-normothermia preterm seizures do not contain all the spectral features seen at term. Nevertheless, an average 5-fold cross-validated accuracy of 99.7% (AUC = 99.4%) was achieved from all seizure detectors. This significant advancement highlights the reliability of the proposed deep-learning algorithms in identifying clinically translatable post-HI stereotypic seizures in 256Hz recordings, regardless of maturity and with minimal impact from hypothermia.
Collapse
Affiliation(s)
- Hamid Abbasi
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Auckland Bioengineering Institute (ABI), University of Auckland, Auckland 1010, New Zealand
| | - Joanne O Davidson
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Simerdeep K Dhillon
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Kelly Q Zhou
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Guido Wassink
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Alistair J Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
10
|
Malhotra A. Neurotherapeutic potential of intranasal administration of human breast milk. Pediatr Res 2023; 94:1872-1873. [PMID: 37495680 PMCID: PMC10665176 DOI: 10.1038/s41390-023-02759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023]
Affiliation(s)
- Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia.
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Malhotra A, Thebaud B, Paton MCB, Fleiss B, Papagianis P, Baker E, Bennet L, Yawno T, Elwood N, Campbell B, Chand K, Zhou L, Penny T, Nguyen T, Pepe S, Gunn AJ, McDonald CA. Advances in neonatal cell therapies: Proceedings of the First Neonatal Cell Therapies Symposium (2022). Pediatr Res 2023; 94:1631-1638. [PMID: 37380752 PMCID: PMC10624618 DOI: 10.1038/s41390-023-02707-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
Despite considerable advances, there is a need to improve the outcomes of newborn infants, especially related to prematurity, encephalopathy and other conditions. In principle, cell therapies have the potential to protect, repair, or sometimes regenerate vital tissues; and improve or sustain organ function. In this review, we present highlights from the First Neonatal Cell Therapies Symposium (2022). Cells tested in preclinical and clinical studies include mesenchymal stromal cells from various sources, umbilical cord blood and cord tissue derived cells, and placental tissue and membrane derived cells. Overall, most preclinical studies suggest potential for benefit, but many of the cells tested were not adequately defined, and the optimal cell type, timing, frequency, cell dose or the most effective protocols for the targeted conditions is not known. There is as yet no clinical evidence for benefit, but several early phase clinical trials are now assessing safety in newborn babies. We discuss parental perspectives on their involvement in these trials, and lessons learnt from previous translational work of promising neonatal therapies. Finally, we make a call to the many research groups around the world working in this exciting yet complex field, to work together to make substantial and timely progress to address the knowledge gaps and move the field forward. IMPACT: Survival of preterm and sick newborn infants is improving, but they continue to be at high risk of many systemic and organ-specific complications. Cell therapies show promising results in preclinical models of various neonatal conditions and early phase clinical trials have been completed or underway. Progress on the potential utility of cell therapies for neonatal conditions, parental perspectives and translational aspects are discussed in this paper.
Collapse
Affiliation(s)
- Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia.
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.
| | - Bernard Thebaud
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada
| | - Madison C B Paton
- Cerebral Palsy Alliance Research Institute; Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | | | - Paris Papagianis
- Department of Pharmacology, Monash University, Melbourne, VIC, Australia
| | - Elizabeth Baker
- Royal Women's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Laura Bennet
- Departments of Physiology and Paediatrics, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Tamara Yawno
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Ngaire Elwood
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Belinda Campbell
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Kirat Chand
- Perinatal Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Lindsay Zhou
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Tayla Penny
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Timothy Nguyen
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Salvatore Pepe
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Alistair J Gunn
- Departments of Physiology and Paediatrics, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Courtney A McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Galinsky R, Dhillon SK, Kelly SB, Wassink G, Davidson JO, Lear CA, van den Heuij LG, Bennet L, Gunn AJ. Magnesium sulphate reduces tertiary gliosis but does not improve EEG recovery or white or grey matter cell survival after asphyxia in preterm fetal sheep. J Physiol 2023; 601:1999-2016. [PMID: 36999348 PMCID: PMC10952359 DOI: 10.1113/jp284381] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/09/2023] [Indexed: 04/01/2023] Open
Abstract
Maternal magnesium sulphate (MgSO4 ) treatment is widely recommended before preterm birth for neuroprotection. However, this is controversial because there is limited evidence that MgSO4 provides long-term neuroprotection. Preterm fetal sheep (104 days gestation; term is 147 days) were assigned randomly to receive sham occlusion with saline infusion (n = 6) or i.v. infusion with MgSO4 (n = 7) or vehicle (saline, n = 6) from 24 h before hypoxia-ischaemia induced by umbilical cord occlusion until 24 h after occlusion. Sheep were killed after 21 days of recovery, for fetal brain histology. Functionally, MgSO4 did not improve long-term EEG recovery. Histologically, in the premotor cortex and striatum, MgSO4 infusion attenuated post-occlusion astrocytosis (GFAP+ ) and microgliosis but did not affect numbers of amoeboid microglia or improve neuronal survival. In the periventricular and intragyral white matter, MgSO4 was associated with fewer total (Olig-2+ ) oligodendrocytes compared with vehicle + occlusion. Numbers of mature (CC1+ ) oligodendrocytes were reduced to a similar extent in both occlusion groups compared with sham occlusion. In contrast, MgSO4 was associated with an intermediate improvement in myelin density in the intragyral and periventricular white matter tracts. In conclusion, a clinically comparable dose of MgSO4 was associated with moderate improvements in white and grey matter gliosis and myelin density but did not improve EEG maturation or neuronal or oligodendrocyte survival. KEY POINTS: Magnesium sulphate is widely recommended before preterm birth for neuroprotection; however, there is limited evidence that magnesium sulphate provides long-term neuroprotection. In preterm fetal sheep exposed to hypoxia-ischaemia (HI), MgSO4 was associated with attenuated astrocytosis and microgliosis in the premotor cortex and striatum but did not improve neuronal survival after recovery to term-equivalent age, 21 days after HI. Magnesium sulphate was associated with loss of total oligodendrocytes in the periventricular and intragyral white matter tracts, whereas mature, myelinating oligodendrocytes were reduced to a similar extent in both occlusion groups. In the same regions, MgSO4 was associated with an intermediate improvement in myelin density. Functionally, MgSO4 did not improve long-term recovery of EEG power, frequency or sleep stage cycling. A clinically comparable dose of MgSO4 was associated with moderate improvements in white and grey matter gliosis and myelin density but did not improve EEG maturation or neuronal or oligodendrocyte survival.
Collapse
Affiliation(s)
- Robert Galinsky
- Department of PhysiologyUniversity of AucklandAucklandNew Zealand
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityVictoriaAustralia
| | | | - Sharmony B. Kelly
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityVictoriaAustralia
| | - Guido Wassink
- Department of PhysiologyUniversity of AucklandAucklandNew Zealand
| | | | | | | | - Laura Bennet
- Department of PhysiologyUniversity of AucklandAucklandNew Zealand
| | - Alistair J. Gunn
- Department of PhysiologyUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
13
|
Labusek N, Mouloud Y, Köster C, Diesterbeck E, Tertel T, Wiek C, Hanenberg H, Horn PA, Felderhoff-Müser U, Bendix I, Giebel B, Herz J. Extracellular vesicles from immortalized mesenchymal stromal cells protect against neonatal hypoxic-ischemic brain injury. Inflamm Regen 2023; 43:24. [PMID: 37069694 PMCID: PMC10108458 DOI: 10.1186/s41232-023-00274-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/26/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Human mesenchymal stromal cell (MSC)-derived extracellular vesicles (EV) revealed neuroprotective potentials in various brain injury models, including neonatal encephalopathy caused by hypoxia-ischemia (HI). However, for clinical translation of an MSC-EV therapy, scaled manufacturing strategies are required, which is challenging with primary MSCs due to inter- and intra-donor heterogeneities. Therefore, we established a clonally expanded and immortalized human MSC line (ciMSC) and compared the neuroprotective potential of their EVs with EVs from primary MSCs in a murine model of HI-induced brain injury. In vivo activities of ciMSC-EVs were comprehensively characterized according to their proposed multimodal mechanisms of action. METHODS Nine-day-old C57BL/6 mice were exposed to HI followed by repetitive intranasal delivery of primary MSC-EVs or ciMSC-EVs 1, 3, and 5 days after HI. Sham-operated animals served as healthy controls. To compare neuroprotective effects of both EV preparations, total and regional brain atrophy was assessed by cresyl-violet-staining 7 days after HI. Immunohistochemistry, western blot, and real-time PCR were performed to investigate neuroinflammatory and regenerative processes. The amount of peripheral inflammatory mediators was evaluated by multiplex analyses in serum samples. RESULTS Intranasal delivery of ciMSC-EVs and primary MSC-EVs comparably protected neonatal mice from HI-induced brain tissue atrophy. Mechanistically, ciMSC-EV application reduced microglia activation and astrogliosis, endothelial activation, and leukocyte infiltration. These effects were associated with a downregulation of the pro-inflammatory cytokine IL-1 beta and an elevated expression of the anti-inflammatory cytokines IL-4 and TGF-beta in the brain, while concentrations of cytokines in the peripheral blood were not affected. ciMSC-EV-mediated anti-inflammatory effects in the brain were accompanied by an increased neural progenitor and endothelial cell proliferation, oligodendrocyte maturation, and neurotrophic growth factor expression. CONCLUSION Our data demonstrate that ciMSC-EVs conserve neuroprotective effects of primary MSC-EVs via inhibition of neuroinflammation and promotion of neuroregeneration. Since ciMSCs can overcome challenges associated with MSC heterogeneity, they appear as an ideal cell source for the scaled manufacturing of EV-based therapeutics to treat neonatal and possibly also adult brain injury.
Collapse
Affiliation(s)
- Nicole Labusek
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, Centre for Translational and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Yanis Mouloud
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christian Köster
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, Centre for Translational and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Eva Diesterbeck
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, Centre for Translational and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Pediatrics III, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ursula Felderhoff-Müser
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, Centre for Translational and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, Centre for Translational and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Josephine Herz
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, Centre for Translational and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
14
|
Bell A, Watt AP, Dudink I, Pham Y, Sutherland AE, Allison BJ, McDonald CA, Castillo-Melendez M, Jenkin G, Malhotra A, Miller SL, Yawno T. Endothelial colony forming cell administration promotes neurovascular unit development in growth restricted and appropriately grown fetal lambs. Stem Cell Res Ther 2023; 14:29. [PMID: 36788590 PMCID: PMC9930266 DOI: 10.1186/s13287-023-03249-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Fetal growth restriction (FGR) is associated with deficits in the developing brain, including neurovascular unit (NVU) dysfunction. Endothelial colony forming cells (ECFC) can mediate improved vascular stability, and have demonstrated potential to enhance vascular development and protection. This investigation examined whether ECFCs from human umbilical cord blood (UCB) enhanced NVU development in FGR and appropriate for gestational age (AGA) fetal sheep. METHODS Twin-bearing ewes had surgery performed at 88-90 days' gestation, inducing FGR in one fetus. At 113 days, ECFCs (1 × 107 cells) cultured from human UCB were administered intravenously to fetal sheep in utero. At 127 days, ewes and their fetuses were euthanised, fetal brains collected, and NVU components analysed by immunohistochemistry. RESULTS Twenty-four fetal lambs, arranged in four groups: AGA (n = 7), FGR (n = 5), AGA + ECFC (n = 6), and FGR + ECFC (n = 6), were included in analyses. FGR resulted in lower body weight than AGA (P = 0.002) with higher brain/body weight ratio (P = 0.003). ECFC treatment was associated with increased vascular density throughout the brain in both AGA + ECFC and FGR + ECFC groups, as well as increased vascular-astrocyte coverage and VEGF expression in the cortex (P = 0.003, P = 0.0006, respectively) and in the subcortical white matter (P = 0.01, P = 0.0002, respectively) when compared with the untreated groups. CONCLUSIONS ECFC administration enhanced development of NVU components in both the AGA and FGR fetal brain. Further investigation is required to assess how to optimise the enhanced angiogenic capabilities of ECFCs to provide a therapeutic strategy to protect the developing NVU against vulnerabilities associated with FGR.
Collapse
Affiliation(s)
- Alexander Bell
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Ashalyn P. Watt
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Ingrid Dudink
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Yen Pham
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Amy E. Sutherland
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Beth J. Allison
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Courtney A. McDonald
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | | | - Graham Jenkin
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Atul Malhotra
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia. .,Department of Paediatrics, Monash University, 246 Clayton Road, Clayton, Melbourne, VIC, 3168, Australia. .,Monash Newborn, Monash Children's Hospital, Melbourne, Australia.
| | - Suzanne L. Miller
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Tamara Yawno
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Paediatrics, Monash University, 246 Clayton Road, Clayton, Melbourne, VIC 3168 Australia
| |
Collapse
|
15
|
García-Alix A, Arca G. Stem cells in the horizon of the treatment of the neonatal arterial ischemic infraction. An Pediatr (Barc) 2022; 97:373-374. [PMID: 36270945 DOI: 10.1016/j.anpede.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Gemma Arca
- Fundación NeNe, Spain; Departamento de Neonatología, Hospital Clínic, IDIBAPS, Barcelona, Spain
| |
Collapse
|
16
|
Targeting Persistent Neuroinflammation after Hypoxic-Ischemic Encephalopathy-Is Exendin-4 the Answer? Int J Mol Sci 2022; 23:ijms231710191. [PMID: 36077587 PMCID: PMC9456443 DOI: 10.3390/ijms231710191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Hypoxic-ischemic encephalopathy is brain injury resulting from the loss of oxygen and blood supply around the time of birth. It is associated with a high risk of death or disability. The only approved treatment is therapeutic hypothermia. Therapeutic hypothermia has consistently been shown to significantly reduce the risk of death and disability in infants with hypoxic-ischemic encephalopathy. However, approximately 29% of infants treated with therapeutic hypothermia still develop disability. Recent preclinical and clinical studies have shown that there is still persistent neuroinflammation even after treating with therapeutic hypothermia, which may contribute to the deficits seen in infants despite treatment. This suggests that potentially targeting this persistent neuroinflammation would have an additive benefit in addition to therapeutic hypothermia. A potential additive treatment is Exendin-4, which is a glucagon-like peptide 1 receptor agonist. Preclinical data from various in vitro and in vivo disease models have shown that Exendin-4 has anti-inflammatory, mitochondrial protective, anti-apoptotic, anti-oxidative and neurotrophic effects. Although preclinical studies of the effect of Exendin-4 in perinatal hypoxic-ischemic brain injury are limited, a seminal study in neonatal mice showed that Exendin-4 had promising neuroprotective effects. Further studies on Exendin-4 neuroprotection for perinatal hypoxic-ischemic brain injury, including in large animal translational models are warranted to better understand its safety, window of opportunity and effectiveness as an adjunct with therapeutic hypothermia.
Collapse
|
17
|
Davidson JO, van den Heuij LG, Dhillon SK, Miller SL, Lim R, Jenkin G, Gunn AJ, Bennet L. Lack of Neuroprotection with a Single Intravenous Infusion of Human Amnion Epithelial Cells after Severe Hypoxia–Ischemia in Near-Term Fetal Sheep. Int J Mol Sci 2022; 23:ijms23158393. [PMID: 35955531 PMCID: PMC9369428 DOI: 10.3390/ijms23158393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Hypoxic–ischemic encephalopathy (HIE) around the time of birth results from loss of oxygen (hypoxia) and blood supply (ischemia). Exogenous infusion of multi-potential cells, including human amnion epithelial cells (hAECs), can reduce hypoxic–ischemic (HI) brain injury. However, there are few data on treatment of severe HI in large animal paradigms at term. The aim of the current study was to determine whether infusion of hAECs early after injury may reduce brain damage after ischemia in near-term fetal sheep. Methods: Chronically instrumented fetal sheep (0.85 gestation) received 30 min of global cerebral ischemia followed by intravenous infusion of hAECs from 2 h after the end of ischemia (ischemia-hAEC, n = 6) or saline (ischemia-vehicle, n = 7). Sham control animals received sham ischemia with vehicle infusion (sham control, n = 8). Results: Ischemia was associated with significant suppression of EEG power and spectral edge frequency until the end of the experiment and a secondary rise in cortical impedance from 24 to 72 h, which were not attenuated by hAEC administration. Ischemia was associated with loss of neurons in the cortex, thalamus, striatum and hippocampus, loss of white matter oligodendrocytes and increased microglial numbers in the white matter, which were not affected by hAEC infusion. Conclusions: A single intravenous administration of hAECs did not reduce electrographic or histological brain damage after 30 min of global cerebral ischemia in near-term fetal sheep.
Collapse
Affiliation(s)
- Joanne O. Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1010, New Zealand; (L.G.v.d.H.); (S.K.D.); (A.J.G.); (L.B.)
- Correspondence:
| | - Lotte G. van den Heuij
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1010, New Zealand; (L.G.v.d.H.); (S.K.D.); (A.J.G.); (L.B.)
| | - Simerdeep K. Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1010, New Zealand; (L.G.v.d.H.); (S.K.D.); (A.J.G.); (L.B.)
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.L.M.); (R.L.); (G.J.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3800, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.L.M.); (R.L.); (G.J.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3800, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.L.M.); (R.L.); (G.J.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3800, Australia
| | - Alistair J. Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1010, New Zealand; (L.G.v.d.H.); (S.K.D.); (A.J.G.); (L.B.)
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1010, New Zealand; (L.G.v.d.H.); (S.K.D.); (A.J.G.); (L.B.)
| |
Collapse
|
18
|
Dhillon SK, Gunn ER, Lear BA, King VJ, Lear CA, Wassink G, Davidson JO, Bennet L, Gunn AJ. Cerebral Oxygenation and Metabolism After Hypoxia-Ischemia. Front Pediatr 2022; 10:925951. [PMID: 35903161 PMCID: PMC9314655 DOI: 10.3389/fped.2022.925951] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Perinatal hypoxia-ischemia (HI) is still a significant contributor to mortality and adverse neurodevelopmental outcomes in term and preterm infants. HI brain injury evolves over hours to days, and involves complex interactions between the endogenous protective and pathological processes. Understanding the timing of evolution of injury is vital to guide treatment. Post-HI recovery is associated with a typical neurophysiological profile, with stereotypic changes in cerebral perfusion and oxygenation. After the initial recovery, there is a delayed, prolonged reduction in cerebral perfusion related to metabolic suppression, followed by secondary deterioration with hyperperfusion and increased cerebral oxygenation, associated with altered neurovascular coupling and impaired cerebral autoregulation. These changes in cerebral perfusion are associated with the stages of evolution of injury and injury severity. Further, iatrogenic factors can also affect cerebral oxygenation during the early period of deranged metabolism, and improving clinical management may improve neuroprotection. We will review recent evidence that changes in cerebral oxygenation and metabolism after HI may be useful biomarkers of prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alistair J. Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
García-Alix A, Arca G. Las células madre en el horizonte del tratamiento del infarto arterial cerebral del neonato. An Pediatr (Barc) 2022. [DOI: 10.1016/j.anpedi.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
20
|
Babajani A, Moeinabadi-Bidgoli K, Niknejad F, Rismanchi H, Shafiee S, Shariatzadeh S, Jamshidi E, Farjoo MH, Niknejad H. Human placenta-derived amniotic epithelial cells as a new therapeutic hope for COVID-19-associated acute respiratory distress syndrome (ARDS) and systemic inflammation. Stem Cell Res Ther 2022; 13:126. [PMID: 35337387 PMCID: PMC8949831 DOI: 10.1186/s13287-022-02794-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has become in the spotlight regarding the serious early and late complications, including acute respiratory distress syndrome (ARDS), systemic inflammation, multi-organ failure and death. Although many preventive and therapeutic approaches have been suggested for ameliorating complications of COVID-19, emerging new resistant viral variants has called the efficacy of current therapeutic approaches into question. Besides, recent reports on the late and chronic complications of COVID-19, including organ fibrosis, emphasize a need for a multi-aspect therapeutic method that could control various COVID-19 consequences. Human amniotic epithelial cells (hAECs), a group of placenta-derived amniotic membrane resident stem cells, possess considerable therapeutic features that bring them up as a proposed therapeutic option for COVID-19. These cells display immunomodulatory effects in different organs that could reduce the adverse consequences of immune system hyper-reaction against SARS-CoV-2. Besides, hAECs would participate in alveolar fluid clearance, renin–angiotensin–aldosterone system regulation, and regeneration of damaged organs. hAECs could also prevent thrombotic events, which is a serious complication of COVID-19. This review focuses on the proposed early and late therapeutic mechanisms of hAECs and their exosomes to the injured organs. It also discusses the possible application of preconditioned and genetically modified hAECs as well as their promising role as a drug delivery system in COVID-19. Moreover, the recent advances in the pre-clinical and clinical application of hAECs and their exosomes as an optimistic therapeutic hope in COVID-19 have been reviewed.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Moeinabadi-Bidgoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farnaz Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Rismanchi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Shafiee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Davidson JO, Dhillon SK, Bennet L. Preterm neonatal brain injury: are human amnion epithelial stem cells a pan-treatment for neuroprotection and neurorepair? Neural Regen Res 2021; 17:1261-1262. [PMID: 34782564 PMCID: PMC8643031 DOI: 10.4103/1673-5374.327339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Joanne O Davidson
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | | | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Davidson JO, Gonzalez F, Gressens P, Gunn AJ. Update on mechanisms of the pathophysiology of neonatal encephalopathy. Semin Fetal Neonatal Med 2021; 26:101267. [PMID: 34274259 DOI: 10.1016/j.siny.2021.101267] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Therapeutic hypothermia is now well established to significantly improve survival without disability after neonatal encephalopathy (NE). To further improve outcomes, we need to better understand the mechanisms of brain injury. The central finding, which offers the potential for neuroprotective and neurorestorative interventions, is that brain damage after perinatal hypoxia-ischemia evolves slowly over time. Although brain cells may die during profound hypoxia-ischemia, even after surprisingly severe insults many cells show transient recovery of oxidative metabolism during a "latent" phase characterized by actively suppressed neural metabolism and activity. Critically, after moderate to severe hypoxia-ischemia, this transient recovery is followed after ~6 h by a phase of secondary deterioration, with delayed seizures, failure of mitochondrial function, cytotoxic edema, and cell death over ~72 h. This is followed by a tertiary phase of remodeling and recovery. This review discusses the mechanisms of injury that occur during the primary, latent, secondary and tertiary phases of injury and potential treatments that target one or more of these phases. By analogy with therapeutic hypothermia, treatment as early as possible in the latent phase is likely to have the greatest potential to prevent injury ("neuroprotection"). In the secondary phase of injury, anticonvulsants can attenuate seizures, but show limited neuroprotection. Encouragingly, there is now increasing preclinical evidence that late, neurorestorative interventions have potential to improve long-term outcomes.
Collapse
Affiliation(s)
- Joanne O Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| | - Fernando Gonzalez
- Department of Pediatrics, University of California, San Francisco, CA, USA.
| | | | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
23
|
Sabir H, Bonifacio SL, Gunn AJ, Thoresen M, Chalak LF. Unanswered questions regarding therapeutic hypothermia for neonates with neonatal encephalopathy. Semin Fetal Neonatal Med 2021; 26:101257. [PMID: 34144931 DOI: 10.1016/j.siny.2021.101257] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Therapeutic hypothermia (TH) is now well established to improve intact survival after neonatal encephalopathy (NE). However, many questions could not be addressed by the randomized controlled trials. Should late preterm newborns with NE be cooled? Is cooling beneficial for mild NE? Is the current therapeutic time window optimal, or could it be shortened or prolonged? Will either milder or deeper hypothermia be effective? Does infection/inflammation exposure in the perinatal period in combination with NE offer potentially beneficial preconditioning or might it obviate hypothermic neuroprotection? In the present review, we dissect the evidence, for whom, when and how can TH best be delivered, and highlight areas that need further research.
Collapse
Affiliation(s)
- Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital University of Bonn, Bonn, Germany; German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | | | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| | - Marianne Thoresen
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Neonatal Neuroscience, Translational Medicine, University of Bristol, Bristol, United Kingdom.
| | - Lina F Chalak
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical School, Dallas, TX, USA.
| |
Collapse
|
24
|
A New Predictive Technology for Perinatal Stem Cell Isolation Suited for Cell Therapy Approaches. MICROMACHINES 2021; 12:mi12070782. [PMID: 34209410 PMCID: PMC8305015 DOI: 10.3390/mi12070782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/02/2022]
Abstract
The use of stem cells for regenerative applications and immunomodulatory effect is increasing. Amniotic epithelial cells (AECs) possess embryonic-like proliferation ability and multipotent differentiation potential. Despite the simple isolation procedure, inter-individual variability and different isolation steps can cause differences in isolation yield and cell proliferation ability, compromising reproducibility observations among centers and further applications. We investigated the use of a new technology as a diagnostic tool for quality control on stem cell isolation. The instrument label-free separates cells based on their physical characteristics and, thanks to a micro-camera, generates a live fractogram, the fingerprint of the sample. Eight amniotic membranes were processed by trypsin enzymatic treatment and immediately analysed. Two types of profile were generated: a monomodal and a bimodal curve. The first one represented the unsuccessful isolation with all recovered cell not attaching to the plate; while for the second type, the isolation process was successful, but we discovered that only cells in the second peak were alive and resulted adherent. We optimized a Quality Control (QC) method to define the success of AEC isolation using the fractogram generated. This predictive outcome is an interesting tool for laboratories and cell banks that isolate and cryopreserve fetal annex stem cells for research and future clinical applications.
Collapse
|
25
|
Cho KH, Fraser M, Xu B, Dean JM, Gunn AJ, Bennet L. Induction of Tertiary Phase Epileptiform Discharges after Postasphyxial Infusion of a Toll-Like Receptor 7 Agonist in Preterm Fetal Sheep. Int J Mol Sci 2021; 22:ijms22126593. [PMID: 34205464 PMCID: PMC8234830 DOI: 10.3390/ijms22126593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/30/2023] Open
Abstract
Background: Toll-like receptor (TLR) agonists are key immunomodulatory factors that can markedly ameliorate or exacerbate hypoxic–ischemic brain injury. We recently demonstrated that central infusion of the TLR7 agonist Gardiquimod (GDQ) following asphyxia was highly neuroprotective after 3 days but not 7 days of recovery. We hypothesize that this apparent transient neuroprotection is associated with modulation of seizure-genic processes and hemodynamic control. Methods: Fetuses received sham asphyxia or asphyxia induced by umbilical cord occlusion (20.9 ± 0.5 min) and were monitored continuously for 7 days. GDQ 3.34 mg or vehicle were infused intracerebroventricularly from 1 to 4 h after asphyxia. Results: GDQ infusion was associated with sustained moderate hypertension that resolved after 72 h recovery. Electrophysiologically, GDQ infusion was associated with reduced number and burden of postasphyxial seizures in the first 18 h of recovery (p < 0.05). Subsequently, GDQ was associated with induction of slow rhythmic epileptiform discharges (EDs) from 72 to 96 h of recovery (p < 0.05 vs asphyxia + vehicle). The total burden of EDs was associated with reduced numbers of neurons in the caudate nucleus (r2 = 0.61, p < 0.05) and CA1/2 hippocampal region (r2 = 0.66, p < 0.05). Conclusion: These data demonstrate that TLR7 activation by GDQ modulated blood pressure and suppressed seizures in the early phase of postasphyxial recovery, with subsequent prolonged induction of epileptiform activity. Speculatively, this may reflect delayed loss of early protection or contribute to differential neuronal survival in subcortical regions.
Collapse
Affiliation(s)
- Kenta H.T. Cho
- The Department of Physiology, The University of Auckland, Auckland 1023, New Zealand; (K.H.T.C.); (M.F.); (J.M.D.); (L.B.)
| | - Mhoyra Fraser
- The Department of Physiology, The University of Auckland, Auckland 1023, New Zealand; (K.H.T.C.); (M.F.); (J.M.D.); (L.B.)
| | - Bing Xu
- Shenzhen Bay Laboratory, Shenzhen 518118, China;
| | - Justin M. Dean
- The Department of Physiology, The University of Auckland, Auckland 1023, New Zealand; (K.H.T.C.); (M.F.); (J.M.D.); (L.B.)
| | - Alistair J. Gunn
- The Department of Physiology, The University of Auckland, Auckland 1023, New Zealand; (K.H.T.C.); (M.F.); (J.M.D.); (L.B.)
- Correspondence: ; Tel.: +64-9-373-7499
| | - Laura Bennet
- The Department of Physiology, The University of Auckland, Auckland 1023, New Zealand; (K.H.T.C.); (M.F.); (J.M.D.); (L.B.)
| |
Collapse
|
26
|
Lear BA, Lear CA, Davidson JO, Sae-Jiw J, Lloyd JM, Gunn AJ, Bennet L. Tertiary cystic white matter injury as a potential phenomenon after hypoxia-ischaemia in preterm f sheep. Brain Commun 2021; 3:fcab024. [PMID: 33937767 PMCID: PMC8072523 DOI: 10.1093/braincomms/fcab024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/14/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
White matter injury, including both diffuse and cystic elements, remains highly associated with neurodevelopmental disability and cerebral palsy in preterm infants, yet its pathogenesis and evolution are still poorly understood and there is no established treatment. We examined the long-term evolution of white matter injury in chronically instrumented preterm fetal sheep (0.7 gestation) after 25 min of complete umbilical cord occlusion or sham occlusion. Fetal brains were processed for histology after 3 days (n = 9, sham n = 9), 7 days (n = 8, sham n = 8), 14 days (n = 9, sham n = 8) and 21 days (n = 9, sham n = 9) of recovery. At 3 and 7 days recovery, umbilical cord occlusion was associated with diffuse white matter injury, with loss of total and mature oligodendrocytes and reduced myelination in both the parietal and temporal lobes. At 14 days after umbilical cord occlusion, extensive microglial and astrocytic activation were observed in the temporal lobe. At 21 days recovery a spectrum of severe white matter degeneration was observed, including white matter atrophy, ventriculomegaly and overt cystic white matter lesions. The most severe injury was observed in the temporal lobe after 21 days recovery, including the majority of cystic lesions, persistent oligodendrocyte maturational arrest and impaired myelination. The spatial distribution of delayed white matter degeneration at 21 days recovery was closely related to the location of dense microglial aggregates at earlier time-points, implicating a role for exuberant inflammation originating from microglial aggregates in the pathogenesis of cystic white matter injury. The delayed appearance of cystic injury is consistent with continuing tertiary evolution of necrotic cell death. This slow evolution raises the tantalizing possibility that there may a relatively long therapeutic window to mitigate the development of cystic white matter injury. Delayed anti-inflammatory treatments may therefore represent a promising strategy to reduce neurodevelopmental disability in the preterm infants.
Collapse
Affiliation(s)
- Benjamin A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Joanne O Davidson
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Jialin Sae-Jiw
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Johanna M Lloyd
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
27
|
Schwab RHM, Goonetilleke M, Zhu D, Kusuma GD, Wallace EM, Sievert W, Lim R. Amnion Epithelial Cells — a Therapeutic Source. CURRENT STEM CELL REPORTS 2021. [DOI: 10.1007/s40778-021-00187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Therapeutic potential of stem cells for preterm infant brain damage: Can we move from the heterogeneity of preclinical and clinical studies to established therapeutics? Biochem Pharmacol 2021; 186:114461. [PMID: 33571501 DOI: 10.1016/j.bcp.2021.114461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
Abstract
Acquired perinatal brain injuries are a set of conditions that remains a key challenge for neonatologists and that have significant social, emotional and financial implications for our communities. In our perspective article, we will introduce perinatal brain injury focusing specifically on the events leading to brain damage in preterm born infants and outcomes for these infants. Then we will summarize and discuss the preclinical and clinical studies testing the efficacy of stem cells as neuroprotectants in the last ten years in perinatal brain injury. There are no therapies to treat brain damage in preterm born infants and a primary finding from this review is that there is a scarcity of stem cell trials focused on overcoming brain injuries in these infants. Overall, across all forms of perinatal brain injury there is a remarkable heterogeneity in previous and on-going preclinical and clinical studies in terms of the stem cell type, animal models/patient selection, route and time of administration. Despite the quality of many of the studies this variation makes it difficult to reach a valid consensus for future developments. However, it is clear that stem cells (and stem cell derived exosomes) can reduce perinatal brain injury and our field needs to work collectively to refine an effective protocol for each type of injury. The use of standardized stem cell products and testing these products across multiple models of injury will provide a stronger framework for clinical trials development.
Collapse
|
29
|
Yates N, Gunn AJ, Bennet L, Dhillon SK, Davidson JO. Preventing Brain Injury in the Preterm Infant-Current Controversies and Potential Therapies. Int J Mol Sci 2021; 22:1671. [PMID: 33562339 PMCID: PMC7915709 DOI: 10.3390/ijms22041671] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Preterm birth is associated with a high risk of morbidity and mortality including brain damage and cerebral palsy. The development of brain injury in the preterm infant may be influenced by many factors including perinatal asphyxia, infection/inflammation, chronic hypoxia and exposure to treatments such as mechanical ventilation and corticosteroids. There are currently very limited treatment options available. In clinical trials, magnesium sulfate has been associated with a small, significant reduction in the risk of cerebral palsy and gross motor dysfunction in early childhood but no effect on the combined outcome of death or disability, and longer-term follow up to date has not shown improved neurological outcomes in school-age children. Recombinant erythropoietin has shown neuroprotective potential in preclinical studies but two large randomized trials, in extremely preterm infants, of treatment started within 24 or 48 h of birth showed no effect on the risk of severe neurodevelopmental impairment or death at 2 years of age. Preclinical studies have highlighted a number of promising neuroprotective treatments, such as therapeutic hypothermia, melatonin, human amnion epithelial cells, umbilical cord blood and vitamin D supplementation, which may be useful at reducing brain damage in preterm infants. Moreover, refinements of clinical care of preterm infants have the potential to influence later neurological outcomes, including the administration of antenatal and postnatal corticosteroids and more accurate identification and targeted treatment of seizures.
Collapse
Affiliation(s)
- Nathanael Yates
- The Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia;
- School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Alistair J. Gunn
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| | - Laura Bennet
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| | - Simerdeep K. Dhillon
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| | - Joanne O. Davidson
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| |
Collapse
|
30
|
Liu QW, Huang QM, Wu HY, Zuo GSL, Gu HC, Deng KY, Xin HB. Characteristics and Therapeutic Potential of Human Amnion-Derived Stem Cells. Int J Mol Sci 2021; 22:ijms22020970. [PMID: 33478081 PMCID: PMC7835733 DOI: 10.3390/ijms22020970] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
Stem cells including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells (ASCs) are able to repair/replace damaged or degenerative tissues and improve functional recovery in experimental model and clinical trials. However, there are still many limitations and unresolved problems regarding stem cell therapy in terms of ethical barriers, immune rejection, tumorigenicity, and cell sources. By reviewing recent literatures and our related works, human amnion-derived stem cells (hADSCs) including human amniotic mesenchymal stem cells (hAMSCs) and human amniotic epithelial stem cells (hAESCs) have shown considerable advantages over other stem cells. In this review, we first described the biological characteristics and advantages of hADSCs, especially for their high pluripotency and immunomodulatory effects. Then, we summarized the therapeutic applications and recent progresses of hADSCs in treating various diseases for preclinical research and clinical trials. In addition, the possible mechanisms and the challenges of hADSCs applications have been also discussed. Finally, we highlighted the properties of hADSCs as a promising source of stem cells for cell therapy and regenerative medicine and pointed out the perspectives for the directions of hADSCs applications clinically.
Collapse
Affiliation(s)
- Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Qi-Ming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Han-You Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Guo-Si-Lang Zuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Hao-Cheng Gu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
- Correspondence: ; Tel.: +86-791-8396-9015
| |
Collapse
|
31
|
Shao R, Sun D, Hu Y, Cui D. White matter injury in the neonatal hypoxic-ischemic brain and potential therapies targeting microglia. J Neurosci Res 2021; 99:991-1008. [PMID: 33416205 DOI: 10.1002/jnr.24761] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022]
Abstract
Neonatal hypoxic-ischemic (H-I) injury, which mainly causes neuronal damage and white matter injury (WMI), is among the predominant causes of infant morbidity (cerebral palsy, cognitive and persistent motor disabilities) and mortality. Disruptions to the oxygen and blood supply in the perinatal brain affect the cerebral microenvironment and may affect microglial activation, excitotoxicity, and oxidative stress. Microglia are significantly associated with axonal damage and myelinating oligodendrocytes, which are major pathological components of WMI. However, the effects of H-I injury on microglial functions and underlying transformation mechanisms remain poorly understood. The historical perception that these cells are major risk factors for ischemic stroke has been questioned due to our improved understanding of the diversity of microglial phenotypes and their alterable functions, which exacerbate or attenuate injuries in different regions in response to environmental instability. Unfortunately, although therapeutic hypothermia is an efficient treatment, death and disability remain the prognosis for a large proportion of neonates with H-I injury. Hence, novel neuroprotective therapies to treat WMI following H-I injury are urgently needed. Here, we review microglial mechanisms that might occur in the developing brain due to neonatal H-I injury and discuss whether microglia function as a double-edged sword in WMI. Then, we emphasize microglial heterogeneity, notably at the single-cell level, and sex-specific effects on the etiology of neurological diseases. Finally, we discuss current knowledge of strategies aiming to improve microglia modulation and remyelination following neonatal H-I injury. Overall, microglia-targeted therapy might provide novel and valuable insights into the treatment of neonatal H-I insult.
Collapse
Affiliation(s)
- Rongjiao Shao
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dawei Sun
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yue Hu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Derong Cui
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
32
|
Baker EK, Wallace EM, Davis PG, Malhotra A, Jacobs SE, Hooper SB, Lim R. A protocol for cell therapy infusion in neonates. Stem Cells Transl Med 2021; 10:773-780. [PMID: 33405397 PMCID: PMC8046110 DOI: 10.1002/sctm.20-0281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/05/2020] [Accepted: 11/29/2020] [Indexed: 01/22/2023] Open
Abstract
Cell therapies for neonatal morbidities are progressing to early phase clinical trials. However, protocols for intravenous (IV) delivery of cell therapies to infants have not been evaluated. It has been assumed the cell dose prescribed is the dose delivered. Early in our clinical trial of human amnion epithelial cells (hAECs), we observed cells settling in the syringe and IV tubing used to deliver the suspension. The effect on dose delivery was unknown. We aimed to quantify this observation and determine an optimal protocol for IV delivery of hAECs to extremely preterm infants. A standard pediatric infusion protocol was modeled in the laboratory. A syringe pump delivered the hAEC suspension over 60 minutes via a pediatric blood transfusion set (200‐μm filter and 2.2 mL IV line). The infusion protocol was varied by agitation methods, IV‐line volumes (0.2‐2.2 mL), albumin concentrations (2% vs 4%), and syringe orientations (horizontal vs vertical) to assess whether these variables influenced the dose delivered. The influence of flow rate (3‐15 mL/h) was assessed after other variables were optimized. The standard infusion protocol delivered 17.6% ± 9% of the intended hAEC dose. Increasing albumin concentration to 4%, positioning the syringe and IV line vertically, and decreasing IV‐line volume to 0.6 mL delivered 99.7% ± 13% of the intended hAEC dose. Flow rate did not affect dose delivery. Cell therapy infusion protocols must be considered. We describe the refinement of a cell infusion protocol that delivers intended cell doses and could form the basis of future neonatal cell delivery protocols.
Collapse
Affiliation(s)
- Elizabeth K Baker
- Newborn Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Euan M Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Victoria, Australia
| | - Peter G Davis
- Newborn Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Atul Malhotra
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia.,Department of Paediatrics, Monash University, Victoria, Australia
| | - Susan E Jacobs
- Newborn Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Victoria, Australia
| |
Collapse
|
33
|
Davidson JO, van den Heuij LG, Fraser M, Wassink G, Miller SL, Lim R, Wallace EM, Jenkin G, Gunn AJ, Bennet L. Window of opportunity for human amnion epithelial stem cells to attenuate astrogliosis after umbilical cord occlusion in preterm fetal sheep. Stem Cells Transl Med 2020; 10:427-440. [PMID: 33103374 PMCID: PMC7900589 DOI: 10.1002/sctm.20-0314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/22/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022] Open
Abstract
There is increasing evidence that administration of many types of stem cells, including human amnion epithelial cells (hAECs), can reduce hypoxic-ischemic injury, including in the perinatal brain. However, the therapeutic window for single dose treatment is not known. We compared the effects of early and delayed intracerebroventricular administration of hAECs in fetal sheep at 0.7 gestation on brain injury induced by 25 minutes of complete umbilical cord occlusion (UCO) or sham occlusion. Fetuses received either 1 × 106 hAECs or vehicle alone, as an infusion over 1 hour, either 2 or 24 hours after UCO. Fetuses were killed for brain histology at 7 days post-UCO. hAEC infusion at both 2 and 24 hours had dramatic anti-inflammatory and anti-gliotic effects, including significantly attenuating the increase in microglia after UCO in the white and gray matter and the number of astrocytes in the white matter. Both protocols partially improved myelination, but had no effect on total or immature/mature numbers of oligodendrocytes. Neuronal survival in the hippocampus was increased by hAEC infusion at either 2 or 24 hours, whereas only hAECs at 24 hours were associated with improved neuronal survival in the striatum and thalamus. Neither protocol improved recovery of electroencephalographic (EEG) power. These data suggest that a single infusion of hAECs is anti-inflammatory, anti-gliotic, and neuroprotective in preterm fetal sheep when given up to 24 hours after hypoxia-ischemia, but was associated with limited white matter protection after 7 days recovery and no improvement in the recovery of EEG power.
Collapse
Affiliation(s)
- Joanne O Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Lotte G van den Heuij
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Mhoyra Fraser
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Guido Wassink
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Euan M Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
34
|
Zhang Q, Lai D. Application of human amniotic epithelial cells in regenerative medicine: a systematic review. Stem Cell Res Ther 2020; 11:439. [PMID: 33059766 PMCID: PMC7559178 DOI: 10.1186/s13287-020-01951-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
Human amniotic epithelial cells (hAECs) derived from placental tissues have gained considerable attention in the field of regenerative medicine. hAECs possess embryonic stem cell-like proliferation and differentiation capabilities, and adult stem cell-like immunomodulatory properties. Compared with other types of stem cell, hAECs have special advantages, including easy isolation, plentiful numbers, the obviation of ethical debates, and non-immunogenic and non-tumorigenic properties. During the past two decades, the therapeutic potential of hAECs for treatment of various diseases has been extensively investigated. Accumulating evidence has demonstrated that hAEC transplantation helps to repair and rebuild the function of damaged tissues and organs by different molecular mechanisms. This systematic review focused on summarizing the biological characteristics of hAECs, therapeutic applications, and recent advances in treating various tissue injuries and disorders. Relevant studies published in English from 2000 to 2020 describing the role of hAECs in diseases and phenotypes were comprehensively sought out using PubMed, MEDLINE, and Google Scholar. According to the research content, we described the major hAEC characteristics, including induced differentiation plasticity, homing and differentiation, paracrine function, and immunomodulatory properties. We also summarized the current status of clinical research and discussed the prospects of hAEC-based transplantation therapies. In this review, we provide a comprehensive understanding of the therapeutic potential of hAECs, including their use for cell replacement therapy as well as secreted cytokine and exosome biotherapy. Moreover, we showed that the powerful immune-regulatory function of hAECs reveals even more possibilities for their application in the treatment of immune-related diseases. In the future, establishing the optimal culture procedure, achieving precise and accurate treatment, and enhancing the therapeutic potential by utilizing appropriate preconditioning and/or biomaterials would be new challenges for further investigation.
Collapse
Affiliation(s)
- Qiuwan Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Key Laboratory of Embryo Original Diseases; Shanghai Municipal Key Clinical Speciality, 145, Guang-Yuan Road, Shanghai, 200030, People's Republic of China
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Key Laboratory of Embryo Original Diseases; Shanghai Municipal Key Clinical Speciality, 145, Guang-Yuan Road, Shanghai, 200030, People's Republic of China.
| |
Collapse
|
35
|
Gussenhoven R, Ophelders DRMG, Dudink J, Pieterman K, Lammens M, Mays RW, Zimmermann LJ, Kramer BW, Wolfs TGAM, Jellema RK. Systemic multipotent adult progenitor cells protect the cerebellum after asphyxia in fetal sheep. Stem Cells Transl Med 2020; 10:57-67. [PMID: 32985793 PMCID: PMC7780812 DOI: 10.1002/sctm.19-0157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/29/2020] [Accepted: 08/09/2020] [Indexed: 12/30/2022] Open
Abstract
Involvement of the cerebellum in the pathophysiology of hypoxic‐ischemic encephalopathy (HIE) in preterm infants is increasingly recognized. We aimed to assess the neuroprotective potential of intravenously administered multipotent adult progenitor cells (MAPCs) in the preterm cerebellum. Instrumented preterm ovine fetuses were subjected to transient global hypoxia‐ischemia (HI) by 25 minutes of umbilical cord occlusion at 0.7 of gestation. After reperfusion, two doses of MAPCs were administered intravenously. MAPCs are a plastic adherent bone‐marrow‐derived population of adult progenitor cells with neuroprotective potency in experimental and clinical studies. Global HI caused marked cortical injury in the cerebellum, histologically indicated by disruption of cortical strata, impeded Purkinje cell development, and decreased dendritic arborization. Furthermore, global HI induced histopathological microgliosis, hypomyelination, and disruption of white matter organization. MAPC treatment significantly prevented cortical injury and region‐specifically attenuated white matter injury in the cerebellum following global HI. Diffusion tensor imaging (DTI) detected HI‐induced injury and MAPC neuroprotection in the preterm cerebellum. This study has demonstrated in a preclinical large animal model that early systemic MAPC therapy improved structural injury of the preterm cerebellum following global HI. Microstructural improvement was detectable with DTI. These findings support the potential of MAPC therapy for the treatment of HIE and the added clinical value of DTI for the detection of cerebellar injury and the evaluation of cell‐based therapy.
Collapse
Affiliation(s)
- Ruth Gussenhoven
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, The Netherlands.,School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Daan R M G Ophelders
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, The Netherlands.,School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital and Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Kay Pieterman
- Biomedical Imaging Group Rotterdam, Department of Radiology and Medical Informatics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Martin Lammens
- Department of Pathology, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Robert W Mays
- Regenerative Medicine, Athersys, Inc., Cleveland, Ohio, USA
| | - Luc J Zimmermann
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, The Netherlands.,School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, The Netherlands.,School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Tim G A M Wolfs
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, The Netherlands.,School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Reint K Jellema
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
36
|
Baker EK, Jacobs SE, Lim R, Wallace EM, Davis PG. Cell therapy for the preterm infant: promise and practicalities. Arch Dis Child Fetal Neonatal Ed 2020; 105:563-568. [PMID: 32253200 DOI: 10.1136/archdischild-2019-317896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
Recent decades have seen the rapid progress of neonatal intensive care, and the survival rates of the most preterm infants are improving. This improvement is associated with changing patterns of morbidity and new phenotypes of bronchopulmonary dysplasia and preterm brain injury are recognised. Inflammation and immaturity are known contributors to their pathogenesis. However, a new phenomenon, the exhaustion of progenitor cells is emerging as an important factor. Current therapeutic approaches do not adequately address these new mechanisms of injury. Cell therapy, that is the use of stem and stem-like cells, with its potential to both repair and prevent injury, offers a new approach to these challenging conditions. This review will examine the rationale for cell therapy in the extremely preterm infant, the preclinical and early clinical evidence to support its use in bronchopulmonary dysplasia and preterm brain injury. Finally, it will address the challenges in translating cell therapy from the laboratory to early clinical trials.
Collapse
Affiliation(s)
- Elizabeth K Baker
- Newborn Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia .,Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Susan E Jacobs
- Newborn Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Lim
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Euan M Wallace
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Peter G Davis
- Newborn Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Ophelders DR, Gussenhoven R, Klein L, Jellema RK, Westerlaken RJ, Hütten MC, Vermeulen J, Wassink G, Gunn AJ, Wolfs TG. Preterm Brain Injury, Antenatal Triggers, and Therapeutics: Timing Is Key. Cells 2020; 9:E1871. [PMID: 32785181 PMCID: PMC7464163 DOI: 10.3390/cells9081871] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
With a worldwide incidence of 15 million cases, preterm birth is a major contributor to neonatal mortality and morbidity, and concomitant social and economic burden Preterm infants are predisposed to life-long neurological disorders due to the immaturity of the brain. The risks are inversely proportional to maturity at birth. In the majority of extremely preterm infants (<28 weeks' gestation), perinatal brain injury is associated with exposure to multiple inflammatory perinatal triggers that include antenatal infection (i.e., chorioamnionitis), hypoxia-ischemia, and various postnatal injurious triggers (i.e., oxidative stress, sepsis, mechanical ventilation, hemodynamic instability). These perinatal insults cause a self-perpetuating cascade of peripheral and cerebral inflammation that plays a critical role in the etiology of diffuse white and grey matter injuries that underlies a spectrum of connectivity deficits in survivors from extremely preterm birth. This review focuses on chorioamnionitis and hypoxia-ischemia, which are two important antenatal risk factors for preterm brain injury, and highlights the latest insights on its pathophysiology, potential treatment, and future perspectives to narrow the translational gap between preclinical research and clinical applications.
Collapse
Affiliation(s)
- Daan R.M.G. Ophelders
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ruth Gussenhoven
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
| | - Luise Klein
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Reint K. Jellema
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
| | - Rob J.J. Westerlaken
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Matthias C. Hütten
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jeroen Vermeulen
- Department of Pediatric Neurology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands;
| | - Guido Wassink
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland 1023, New Zealand; (G.W.); (A.J.G.)
| | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland 1023, New Zealand; (G.W.); (A.J.G.)
| | - Tim G.A.M. Wolfs
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
38
|
Fleiss B, Gressens P, Stolp HB. Cortical Gray Matter Injury in Encephalopathy of Prematurity: Link to Neurodevelopmental Disorders. Front Neurol 2020; 11:575. [PMID: 32765390 PMCID: PMC7381224 DOI: 10.3389/fneur.2020.00575] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Preterm-born infants frequently suffer from an array of neurological damage, collectively termed encephalopathy of prematurity (EoP). They also have an increased risk of presenting with a neurodevelopmental disorder (e.g., autism spectrum disorder; attention deficit hyperactivity disorder) later in life. It is hypothesized that it is the gray matter injury to the cortex, in addition to white matter injury, in EoP that is responsible for the altered behavior and cognition in these individuals. However, although it is established that gray matter injury occurs in infants following preterm birth, the exact nature of these changes is not fully elucidated. Here we will review the current state of knowledge in this field, amalgamating data from both clinical and preclinical studies. This will be placed in the context of normal processes of developmental biology and the known pathophysiology of neurodevelopmental disorders. Novel diagnostic and therapeutic tactics required integration of this information so that in the future we can combine mechanism-based approaches with patient stratification to ensure the most efficacious and cost-effective clinical practice.
Collapse
Affiliation(s)
- Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Université de Paris, NeuroDiderot, Inserm, Paris, France
- PremUP, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, Paris, France
- PremUP, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Helen B. Stolp
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
39
|
Brain inflammation and injury at 48 h is not altered by human amnion epithelial cells in ventilated preterm lambs. Pediatr Res 2020; 88:27-37. [PMID: 32120374 DOI: 10.1038/s41390-020-0815-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/18/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mechanical ventilation of preterm neonates is associated with neuroinflammation and an increased risk of adverse neurological outcomes. Human amnion epithelial cells (hAECs) have anti-inflammatory and regenerative properties. We aimed to determine if intravenous administration of hAECs to preterm lambs would reduce neuroinflammation and injury at 2 days of age. METHODS Preterm lambs were delivered by cesarean section at 128-130 days' gestation (term is ~147 days) and either ventilated for 48 h or humanely killed at birth. Lambs received 3 mL surfactant (Curosurf) via endotracheal tube prior to delivery (either with or without 90 × 106 hAECs) and 3 mL intravenous phosphate-buffered saline (with or without 90 × 106 hAECs, consistent with intratracheal treatment) after birth. RESULTS Ventilation increased microglial activation, total oligodendrocyte cell number, cell proliferation and blood-brain barrier permeability (P < 0.05, PBS + ventilation and hAEC + ventilation vs. control), but did not affect numbers of immature and mature oligodendrocytes. Ventilation reduced astrocyte and neuron survival (P < 0.05, PBS + ventilation and hAEC + ventilation vs. control). hAEC administration did not alter markers of neuroinflammation or injury within the white or gray matter. CONCLUSIONS Mechanical ventilation for 48 h upregulated markers of neuroinflammation and injury in preterm lambs. Administration of hAECs did not affect markers of neuroinflammation or injury. IMPACT Mechanical ventilation of preterm lambs for 48 h, in a manner consistent with contemporary neonatal intensive care, causes neuroinflammation, neuronal loss and pathological changes in oligodendrocyte and astrocyte survival consistent with evolving neonatal brain injury.Intravenous administration of hAECs immediately after birth did not affect neonatal cardiorespiratory function and markers of neuroinflammation or injury.Reassuringly, our findings in a translational large animal model demonstrate that intravenous hAEC administration to the preterm neonate is safe.Considering that hAECs are being used in phase 1 trials for the treatment of BPD in preterm infants, with future trials planned for neonatal neuroprotection, we believe these observations are highly relevant.
Collapse
|
40
|
Cho KH, Davidson JO, Dean JM, Bennet L, Gunn AJ. Cooling and immunomodulation for treating hypoxic-ischemic brain injury. Pediatr Int 2020; 62:770-778. [PMID: 32119180 DOI: 10.1111/ped.14215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
Abstract
Therapeutic hypothermia is now well established to partially reduce disability in term and near-term infants with moderate-severe hypoxic-ischemic encephalopathy. Preclinical and clinical studies have confirmed that current protocols for therapeutic hypothermia are near optimal. The challenge is now to identify complementary therapies that can further improve outcomes, in combination with therapeutic hypothermia. Overall, anti-excitatory and anti-apoptotic agents have shown variable or even no benefit in combination with hypothermia, suggesting overlapping mechanisms of neuroprotection. Inflammation appears to play a critical role in the pathogenesis of injury in the neonatal brain, and thus, there is potential for drugs with immunomodulatory properties that target inflammation to be used as a therapy in neonates. In this review, we examine the evidence for neuroprotection with immunomodulation after hypoxia-ischemia. For example, stem cell therapy can reduce inflammation, increase cell survival, and promote cell maturation and repair. There are also encouraging preclinical data from small animals suggesting that stem cell therapy can augment hypothermic neuroprotection. However, there is conflicting evidence, and rigorous testing in translational animal models is now needed.
Collapse
Affiliation(s)
- Kenta Ht Cho
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
41
|
Volpe JJ. Commentary - Exosomes: Realization of the great therapeutic potential of stem cells. J Neonatal Perinatal Med 2020; 13:287-291. [PMID: 32444568 PMCID: PMC7592649 DOI: 10.3233/npm-200477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- J J Volpe
- Department of Neurology, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Newborn Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Cho KHT, Zeng N, Anekal PV, Xu B, Fraser M. Effects of delayed intraventricular TLR7 agonist administration on long-term neurological outcome following asphyxia in the preterm fetal sheep. Sci Rep 2020; 10:6904. [PMID: 32327682 PMCID: PMC7181613 DOI: 10.1038/s41598-020-63770-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
In the preterm brain, accumulating evidence suggests toll-like receptors (TLRs) are key mediators of the downstream inflammatory pathways triggered by hypoxia-ischemia (HI), which have the potential to exacerbate or ameliorate injury. Recently we demonstrated that central acute administration of the TLR7 agonist Gardiquimod (GDQ) confers neuroprotection in the preterm fetal sheep at 3 days post-asphyxial recovery. However, it is unknown whether GDQ can afford long-term protection. To address this, we examined the long-term effects of GDQ. Briefly, fetal sheep (0.7 gestation) received sham asphyxia or asphyxia induced by umbilical cord occlusion, and were studied for 7 days recovery. Intracerebroventricular (ICV) infusion of GDQ (total dose 3.34 mg) or vehicle was performed from 1-4 hours after asphyxia. GDQ was associated with a robust increase in concentration of tumor necrosis factor-(TNF)-α in the fetal plasma, and interleukin-(IL)-10 in both the fetal plasma and cerebrospinal fluid. GDQ did not significantly change the number of total and immature/mature oligodendrocytes within the periventricular and intragyral white matter. No changes were observed in astroglial and microglial numbers and proliferating cells in both white matter regions. GDQ increased neuronal survival in the CA4 region of the hippocampus, but was associated with exacerbated neuronal injury within the caudate nucleus. In conclusion, our data suggest delayed acute ICV administration of GDQ after severe HI in the developing brain may not support long-term neuroprotection.
Collapse
Affiliation(s)
- Kenta H T Cho
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Nina Zeng
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Praju V Anekal
- Biomedical Imaging Research Unit, The University of Auckland, Auckland, New Zealand
| | - Bing Xu
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- The Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518000, People's Republic of China
| | - Mhoyra Fraser
- Department of Physiology, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
43
|
Protective effects of delayed intraventricular TLR7 agonist administration on cerebral white and gray matter following asphyxia in the preterm fetal sheep. Sci Rep 2019; 9:9562. [PMID: 31267031 PMCID: PMC6606639 DOI: 10.1038/s41598-019-45872-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023] Open
Abstract
Preterm brain injury is highly associated with inflammation, which is likely related in part to sterile responses to hypoxia-ischemia. We have recently shown that neuroprotection with inflammatory pre-conditioning in the immature brain is associated with induction of toll-like receptor 7 (TLR7). We therefore tested the hypothesis that central administration of a synthetic TLR7 agonist, gardiquimod (GDQ), after severe hypoxia-ischemia in preterm-equivalent fetal sheep would improve white and gray matter recovery. Fetal sheep at 0.7 of gestation received sham asphyxia or asphyxia induced by umbilical cord occlusion for 25 minutes, followed by a continuous intracerebroventricular infusion of GDQ or vehicle from 1 to 4 hours (total dose 1.8 mg/kg). Sheep were killed 72 hours after asphyxia for histology. GDQ significantly improved survival of immature and mature oligodendrocytes (2′,3′-cyclic-nucleotide 3′-phosphodiesterase, CNPase) and total oligodendrocytes (oligodendrocyte transcription factor 2, Olig-2) within the periventricular and intragyral white matter. There were reduced numbers of cells showing cleaved caspase-3 positive apoptosis and astrogliosis (glial fibrillary acidic protein, GFAP) in both white matter regions. Neuronal survival was increased in the dentate gyrus, caudate and medial thalamic nucleus. Central infusion of GDQ was associated with a robust increase in fetal plasma concentrations of the anti-inflammatory cytokines, interferon-β (IFN-β) and interleukin-10 (IL-10), with no significant change in the concentration of the pro-inflammatory cytokine, tumor necrosis factor-α (TNF-α). In conclusion, delayed administration of the TLR7 agonist, GDQ, after severe hypoxia-ischemia in the developing brain markedly ameliorated white and gray matter damage, in association with upregulation of anti-inflammatory cytokines. These data strongly support the hypothesis that modulation of secondary inflammation may be a viable therapeutic target for injury of the preterm brain.
Collapse
|
44
|
Ardalan M, Svedin P, Baburamani AA, Supramaniam VG, Ek J, Hagberg H, Mallard C. Dysmaturation of Somatostatin Interneurons Following Umbilical Cord Occlusion in Preterm Fetal Sheep. Front Physiol 2019; 10:563. [PMID: 31178744 PMCID: PMC6538799 DOI: 10.3389/fphys.2019.00563] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Cerebral white matter injury is the most common neuropathology observed in preterm infants. However, there is increasing evidence that gray matter development also contributes to neurodevelopmental abnormalities. Fetal cerebral ischemia can lead to both neuronal and non-neuronal structural-functional abnormalities, but less is known about the specific effects on interneurons. OBJECTIVE In this study we used a well-established animal model of fetal asphyxia in preterm fetal sheep to study neuropathological outcome. We used comprehensive stereological methods to investigate the total number of oligodendrocytes, neurons and somatostatin (STT) positive interneurons as well as 3D morphological analysis of STT cells 14 days following umbilical cord occlusion (UCO) in fetal sheep. MATERIALS AND METHODS Induction of asphyxia was performed by 25 min of complete UCO in five preterm fetal sheep (98-100 days gestational age). Seven, non-occluded twins served as controls. Quantification of the number of neurons (NeuN), STT interneurons and oligodendrocytes (Olig2, CNPase) was performed on fetal brain regions by applying optical fractionator method. A 3D morphological analysis of STT interneurons was performed using IMARIS software. RESULTS The number of Olig2, NeuN, and STT positive cells were reduced in IGWM, caudate and putamen in UCO animals compared to controls. There were also fewer STT interneurons in the ventral part of the hippocampus, the subiculum and the entorhinal cortex in UCO group, while other parts of cortex were virtually unaffected (p > 0.05). Morphologically, STT positive interneurons showed a markedly immature structure, with shorter dendritic length and fewer dendritic branches in cortex, caudate, putamen, and subiculum in the UCO group compared with control group (p < 0.05). CONCLUSION The significant reduction in the total number of neurons and oligodendrocytes in several brain regions confirm previous studies showing susceptibility of both neuronal and non-neuronal cells following fetal asphyxia. However, in the cerebral cortex significant dysmaturation of STT positive neurons occurred in the absence of cell loss. This suggests an abnormal maturation pattern of GABAergic interneurons in the cerebral cortex, which might contribute to neurodevelopmental impairment in preterm infants and could implicate a novel target for neuroprotective therapies.
Collapse
Affiliation(s)
- Maryam Ardalan
- Centre for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Svedin
- Centre for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ana A. Baburamani
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Veena G. Supramaniam
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Joakim Ek
- Centre for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Centre for Perinatal Medicine and Health, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Centre for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
45
|
Zhou KQ, Green CR, Bennet L, Gunn AJ, Davidson JO. The Role of Connexin and Pannexin Channels in Perinatal Brain Injury and Inflammation. Front Physiol 2019; 10:141. [PMID: 30873043 PMCID: PMC6400979 DOI: 10.3389/fphys.2019.00141] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
Perinatal brain injury remains a major cause of death and life-long disability. Perinatal brain injury is typically associated with hypoxia-ischemia and/or infection/inflammation. Both hypoxia-ischemia and infection trigger an inflammatory response in the brain. The inflammatory response can contribute to brain cell loss and chronic neuroinflammation leading to neurological impairments. It is now well-established that brain injury evolves over time, and shows a striking spread from injured to previously uninjured regions of the brain. There is increasing evidence that this spread is related to opening of connexin hemichannels and pannexin channels, both of which are large conductance membrane channels found in almost all cell types in the brain. Blocking connexin hemichannels within the first 3 h after hypoxia-ischemia has been shown to improve outcomes in term equivalent fetal sheep but it is important to also understand the downstream pathways linking membrane channel opening with the development of injury in order to identify new therapeutic targets. Open membrane channels release adenosine triphosphate (ATP), and other neuroactive molecules, into the extracellular space. ATP has an important physiological role, but has also been reported to act as a damage-associated molecular pattern (DAMP) signal mediated through specific purinergic receptors and so act as a primary signal 1 in the innate immune system inflammasome pathway. More crucially, extracellular ATP is a key inflammasome signal 2 activator, with purinergic receptor binding triggering the assembly of the multi-protein inflammasome complex. The inflammasome pathway and complex formation contribute to activation of inflammatory caspases, and the release of inflammatory cytokines, including interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-18, and vascular endothelial growth factor (VEGF). We propose that the NOD-like receptor protein-3 (NLRP3) inflammasome, which has been linked to inflammatory responses in models of ischemic stroke and various inflammatory diseases, may be one mechanism by which connexin hemichannel opening especially mediates perinatal brain injury.
Collapse
Affiliation(s)
- Kelly Q Zhou
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
46
|
Xu MY, Wang YF, Wei PJ, Gao YQ, Zhang WT. Hypoxic preconditioning improves long-term functional outcomes after neonatal hypoxia-ischemic injury by restoring white matter integrity and brain development. CNS Neurosci Ther 2019; 25:734-747. [PMID: 30689302 PMCID: PMC6515700 DOI: 10.1111/cns.13102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/16/2022] Open
Abstract
Aims Neonatal hypoxia–ischemia (H/I) results in gray and white matter injury, characterized by neuronal loss, failure of neural network formation, retarded myelin formation, and abnormal accumulation of oligodendrocyte progenitor cells (OPCs). These changes lead to severe neurological deficits and mortality. Sublethal hypoxic preconditioning (HPC) can protect the developing brain against H/I. However, limited evidence is available concerning its effect on white matter injury. Methods In this study, P6 neonatal Sprague‐Dawley rats were subjected to normoxic (21% O2) or HPC (7.8% O2) for 3 hours followed 24 hours later by H/I brain injury. Neurological deficits were assessed by gait, righting reflex, foot fault, and Morris water maze tests. Compound action potential of the corpus callosum was recorded 35 days after surgery, and the correlation between axon myelination and neurological function was determined. Results Hypoxic preconditioning significantly attenuated H/I brain injury at 7 days and remarkably improved both sensorimotor and cognitive functional performances up to 35 days after H/I. HPC‐afforded improvement in long‐term neurological outcomes was attributable, at least in part, to restoration of the differentiation and maturation capacity in oligodendrocyte progenitor cells, amelioration of microglia/macrophage activation and neuroinflammation, and continuation of brain development after H/I. Conclusions Hypoxic preconditioning restores white matter repair, development, and functional integrity in developing brain after H/I brain injury.
Collapse
Affiliation(s)
- Ming-Yue Xu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yang-Fan Wang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Peng-Ju Wei
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yan-Qin Gao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Wen-Ting Zhang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Gunn AJ, Thoresen M. Neonatal encephalopathy and hypoxic-ischemic encephalopathy. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:217-237. [PMID: 31324312 DOI: 10.1016/b978-0-444-64029-1.00010-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acute hypoxic-ischemic encephalopathy around the time of birth remains a major cause of death and life-long disability. The key insight that led to the modern revival of studies of neuroprotection was that, after profound asphyxia, many brain cells show initial recovery from the insult during a short "latent" phase, typically lasting approximately 6h, only to die hours to days later after a "secondary" deterioration characterized by seizures, cytotoxic edema, and progressive failure of cerebral oxidative metabolism. Studies designed around this framework showed that mild hypothermia initiated as early as possible before the onset of secondary deterioration and continued for a sufficient duration to allow the secondary deterioration to resolve is associated with potent, long-lasting neuroprotection. There is now compelling evidence from randomized controlled trials that mild to moderate induced hypothermia significantly improves survival and neurodevelopmental outcomes in infancy and mid-childhood.
Collapse
Affiliation(s)
- Alistair J Gunn
- Departments of Physiology and Paediatrics, University of Auckland, Auckland, New Zealand.
| | - Marianne Thoresen
- Department of Physiology University of Oslo, Oslo, Norway; Neonatal Neuroscience, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
48
|
Morrison JL, Berry MJ, Botting KJ, Darby JRT, Frasch MG, Gatford KL, Giussani DA, Gray CL, Harding R, Herrera EA, Kemp MW, Lock MC, McMillen IC, Moss TJ, Musk GC, Oliver MH, Regnault TRH, Roberts CT, Soo JY, Tellam RL. Improving pregnancy outcomes in humans through studies in sheep. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1123-R1153. [PMID: 30325659 DOI: 10.1152/ajpregu.00391.2017] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Experimental studies that are relevant to human pregnancy rely on the selection of appropriate animal models as an important element in experimental design. Consideration of the strengths and weaknesses of any animal model of human disease is fundamental to effective and meaningful translation of preclinical research. Studies in sheep have made significant contributions to our understanding of the normal and abnormal development of the fetus. As a model of human pregnancy, studies in sheep have enabled scientists and clinicians to answer questions about the etiology and treatment of poor maternal, placental, and fetal health and to provide an evidence base for translation of interventions to the clinic. The aim of this review is to highlight the advances in perinatal human medicine that have been achieved following translation of research using the pregnant sheep and fetus.
Collapse
Affiliation(s)
- Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mary J Berry
- Department of Paediatrics and Child Health, University of Otago , Wellington , New Zealand
| | - Kimberley J Botting
- Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington , Seattle, Washington
| | - Kathryn L Gatford
- Robinson Research Institute and Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Dino A Giussani
- Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom
| | - Clint L Gray
- Department of Paediatrics and Child Health, University of Otago , Wellington , New Zealand
| | - Richard Harding
- Department of Anatomy and Developmental Biology, Monash University , Clayton, Victoria , Australia
| | - Emilio A Herrera
- Pathophysiology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile , Santiago , Chile
| | - Matthew W Kemp
- Division of Obstetrics and Gynecology, University of Western Australia , Perth, Western Australia , Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Timothy J Moss
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University , Clayton, Victoria , Australia
| | - Gabrielle C Musk
- Animal Care Services, University of Western Australia , Perth, Western Australia , Australia
| | - Mark H Oliver
- Liggins Institute, University of Auckland , Auckland , New Zealand
| | - Timothy R H Regnault
- Department of Obstetrics and Gynecology and Department of Physiology and Pharmacology, Western University, and Children's Health Research Institute , London, Ontario , Canada
| | - Claire T Roberts
- Robinson Research Institute and Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ross L Tellam
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
49
|
Abbasi H, Drury PP, Lear CA, Gunn AJ, Davidson JO, Bennet L, Unsworth CP. EEG sharp waves are a biomarker of striatal neuronal survival after hypoxia-ischemia in preterm fetal sheep. Sci Rep 2018; 8:16312. [PMID: 30397231 PMCID: PMC6218488 DOI: 10.1038/s41598-018-34654-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 10/16/2018] [Indexed: 01/12/2023] Open
Abstract
The timing of hypoxia-ischemia (HI) in preterm infants is often uncertain and there are few biomarkers to determine whether infants are in a treatable stage of injury. We evaluated whether epileptiform sharp waves recorded from the parietal cortex could provide early prediction of neuronal loss after HI. Preterm fetal sheep (0.7 gestation) underwent acute HI induced by complete umbilical cord occlusion for 25 minutes (n = 6) or sham occlusion (control, n = 6). Neuronal survival was assessed 7 days after HI by immunohistochemistry. Sharp waves were quantified manually and using a wavelet-type-2-fuzzy-logic-system during the first 4 hours of recovery. HI resulted in significant subcortical neuronal loss. Sharp waves counted by the automated classifier in the first 30 minutes after HI were associated with greater neuronal survival in the caudate nucleus (r = 0.80), whereas sharp waves between 2–4 hours after HI were associated with reduced neuronal survival (r = −0.83). Manual and automated counts were closely correlated. This study suggests that automated quantification of sharp waves may be useful for early assessment of HI injury in preterm infants. However, the pattern of evolution of sharp waves after HI was markedly affected by the severity of neuronal loss, and therefore early, continuous monitoring is essential.
Collapse
Affiliation(s)
- Hamid Abbasi
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Paul P Drury
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Charles P Unsworth
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
50
|
Dhillon SK, Lear CA, Galinsky R, Wassink G, Davidson JO, Juul S, Robertson NJ, Gunn AJ, Bennet L. The fetus at the tipping point: modifying the outcome of fetal asphyxia. J Physiol 2018; 596:5571-5592. [PMID: 29774532 DOI: 10.1113/jp274949] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
Abstract
Brain injury around birth is associated with nearly half of all cases of cerebral palsy. Although brain injury is multifactorial, particularly after preterm birth, acute hypoxia-ischaemia is a major contributor to injury. It is now well established that the severity of injury after hypoxia-ischaemia is determined by a dynamic balance between injurious and protective processes. In addition, mothers who are at risk of premature delivery have high rates of diabetes and antepartum infection/inflammation and are almost universally given treatments such as antenatal glucocorticoids and magnesium sulphate to reduce the risk of death and complications after preterm birth. We review evidence that these common factors affect responses to fetal asphyxia, often in unexpected ways. For example, glucocorticoid exposure dramatically increases delayed cell loss after acute hypoxia-ischaemia, largely through secondary hyperglycaemia. This critical new information is important to understand the effects of clinical treatments of women whose fetuses are at risk of perinatal asphyxia.
Collapse
Affiliation(s)
| | - Christopher A Lear
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Department of Physiology, University of Auckland, Auckland, New Zealand.,The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Guido Wassink
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Sandra Juul
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Alistair J Gunn
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|