1
|
Piras C, De Fazio R, Di Francesco A, Oppedisano F, Spina AA, Cunsolo V, Roncada P, Cramer R, Britti D. Detection of Antimicrobial Proteins/Peptides and Bacterial Proteins Involved in Antimicrobial Resistance in Raw Cow's Milk from Different Breeds. Antibiotics (Basel) 2024; 13:838. [PMID: 39335011 PMCID: PMC11429332 DOI: 10.3390/antibiotics13090838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Proteins involved in antibiotic resistance (resistome) and with antimicrobial activity are present in biological specimens. This study aims to explore the presence and abundance of antimicrobial peptides (AMPs) and resistome proteins in bovine milk from diverse breeds and from intensive (Pezzata rossa, Bruna alpina, and Frisona) and non-intensive farming (Podolica breeds). Liquid atmospheric pressure matrix-assisted laser desorption/ionization (LAP-MALDI) mass spectrometry (MS) profiling, bottom-up proteomics, and metaproteomics were used to comprehensively analyze milk samples from various bovine breeds in order to identify and characterize AMPs and to investigate resistome proteins. LAP-MALDI MS coupled with linear discriminant analysis (LDA) machine learning was employed as a rapid classification method for Podolica milk recognition against the milk of other bovine species. The results of the LAP-MALDI MS analysis of milk coupled with the linear discriminant analysis (LDA) demonstrate the potential of distinguishing between Podolica and control milk samples based on MS profiles. The classification accuracy achieved in the training set is 86% while it reaches 98.4% in the test set. Bottom-up proteomics revealed approximately 220 quantified bovine proteins (identified using the Bos taurus database), with cathelicidins and annexins exhibiting higher abundance levels in control cows (intensive farming breeds). On the other hand, the metaproteomics analysis highlighted the diversity within the milk's microbial ecosystem with interesting results that may reflect the diverse environmental variables. The bottom-up proteomics data analysis using the Comprehensive Antibiotic Resistance Database (CARD) revealed beta-lactamases and tetracycline resistance proteins in both control and Podolica milk samples, with no relevant breed-specific differences observed.
Collapse
Affiliation(s)
- Cristian Piras
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (F.O.); (A.A.S.); (P.R.); (D.B.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, University “Magna Graecia” of Catanzaro, CISVetSUA, 88100 Catanzaro, Italy
| | - Rosario De Fazio
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (F.O.); (A.A.S.); (P.R.); (D.B.)
| | - Antonella Di Francesco
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, 95125 Catania, Italy; (A.D.F.); (V.C.)
| | - Francesca Oppedisano
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (F.O.); (A.A.S.); (P.R.); (D.B.)
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Anna Antonella Spina
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (F.O.); (A.A.S.); (P.R.); (D.B.)
| | - Vincenzo Cunsolo
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, 95125 Catania, Italy; (A.D.F.); (V.C.)
| | - Paola Roncada
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (F.O.); (A.A.S.); (P.R.); (D.B.)
| | - Rainer Cramer
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6DX, UK;
| | - Domenico Britti
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (F.O.); (A.A.S.); (P.R.); (D.B.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, University “Magna Graecia” of Catanzaro, CISVetSUA, 88100 Catanzaro, Italy
| |
Collapse
|
2
|
Wang Y, Zhang D, Liu Y. Research Progress on the Regulating Factors of Muscle Fiber Heterogeneity in Livestock: A Review. Animals (Basel) 2024; 14:2225. [PMID: 39123750 PMCID: PMC11311112 DOI: 10.3390/ani14152225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The type of muscle fiber plays a crucial role in the growth, development, and dynamic plasticity of animals' skeletal muscle. Additionally, it is a primary determinant of the quality of both fresh and processed meat. Therefore, understanding the regulatory factors that contribute to muscle fibers' heterogeneity is of paramount importance. Recent advances in sequencing and omics technologies have enabled comprehensive cross-verification of research on the factors affecting the types of muscle fiber across multiple levels, including the genome, transcriptome, proteome, and metabolome. These advancements have facilitated deeper exploration into the related biological questions. This review focused on the impact of individual characteristics, feeding patterns, and genetic regulation on the proportion and interconversion of different muscle fibers. The findings indicated that individual characteristics and feeding patterns significantly influence the type of muscle fiber, which can effectively enhance the type and distribution of muscle fibers in livestock. Furthermore, non-coding RNA, genes and signaling pathways between complicated regulatory mechanisms and interactions have a certain degree of impact on muscle fibers' heterogeneity. This, in turn, changes muscle fiber profile in living animals through genetic selection or environmental factors, and has the potential to modulate the quality of fresh meat. Collectively, we briefly reviewed the structure of skeletal muscle tissue and then attempted to review the inevitable connection between the quality of fresh meat and the type of muscle fiber, with particular attention to potential events involved in regulating muscle fibers' heterogeneity.
Collapse
Affiliation(s)
| | | | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China; (Y.W.); (D.Z.)
| |
Collapse
|
3
|
Spina AA, Ceniti C, De Fazio R, Oppedisano F, Palma E, Gugliandolo E, Crupi R, Raza SHA, Britti D, Piras C, Morittu VM. Spectral Profiling (Fourier Transform Infrared Spectroscopy) and Machine Learning for the Recognition of Milk from Different Bovine Breeds. Animals (Basel) 2024; 14:1271. [PMID: 38731274 PMCID: PMC11083570 DOI: 10.3390/ani14091271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
The Podolica cattle breed is widespread in southern Italy, and its productivity is characterized by low yields and an extraordinary quality of milk and meats. Most of the milk produced is transformed into "Caciocavallo Podolico" cheese, which is made with 100% Podolica milk. Fourier Transform Infrared Spectroscopy (FTIR) is the technique that, in this research work, was applied together with machine learning to discriminate 100% Podolica milk from contamination of other Calabrian cattle breeds. The analysis on the test set produced a misclassification percentage of 6.7%. Among the 15 non-Podolica samples in the test set, 2 were misclassified and recognized as Podolica milk even though the milk was from other species. The correct classification rate improved to 100% when the same method was applied to the recognition of Podolica and Pezzata Rossa milk produced by the same farm. Furthermore, this technique was tested for the recognition of Podolica milk mixed with milk from other bovine species. The multivariate model and the respective confusion matrices obtained showed that all the 14 Podolica samples (test set) mixed with 40% non-Podolica milk were correctly classified. In addition, Pezzata Rossa milk produced by the same farm was detected as a contaminant in Podolica milk from the same farm down to concentrations as little as 5% with a 100% correct classification rate in the test set. The method described yielded higher accuracy values when applied to the discrimination of milks from different breeds belonging to the same farm. One of the reasons for this phenomenon could be linked to the elimination of the environmental variable. However, the results obtained in this work demonstrate the possibility of using FTIR to discriminate between milks from different breeds.
Collapse
Affiliation(s)
- Anna Antonella Spina
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (A.A.S.); (C.C.); (R.D.F.); (E.P.); (D.B.)
| | - Carlotta Ceniti
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (A.A.S.); (C.C.); (R.D.F.); (E.P.); (D.B.)
| | - Rosario De Fazio
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (A.A.S.); (C.C.); (R.D.F.); (E.P.); (D.B.)
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy;
| | - Ernesto Palma
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (A.A.S.); (C.C.); (R.D.F.); (E.P.); (D.B.)
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy;
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy;
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China;
| | - Domenico Britti
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (A.A.S.); (C.C.); (R.D.F.); (E.P.); (D.B.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy;
| | - Cristian Piras
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (A.A.S.); (C.C.); (R.D.F.); (E.P.); (D.B.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy;
| | - Valeria Maria Morittu
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy;
- Department of Medical and Surgical Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Buonaiuto G, Lopez-Villalobos N, Costa A, Niero G, Degano L, Mammi LME, Cavallini D, Palmonari A, Formigoni A, Visentin G. Stayability in Simmental cattle as affected by muscularity and body condition score between calvings. Front Vet Sci 2023; 10:1141286. [PMID: 37065221 PMCID: PMC10094164 DOI: 10.3389/fvets.2023.1141286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
The present study aimed to investigate the association between stayability (STAY) traits, muscularity, and body condition score (BCS) in the Italian Simmental dual-purpose cows. Data were collected from 2,656 cows linearly scored in their first lactation from 2002 to 2020 and reared in 324 herds. The binary trait STAY, which is the ability of a cow to stay in the herd, was obtained for each cow-lactation available up to parity 5 (from STAY1-2 to STAY4-5). Analysis of STAY was carried out using logistic regression, considering the fixed effect of energy corrected milk, conception rate, somatic cell score, and muscularity or BCS predicted at different time points. The herd of linear classification and residual error were the random effects. Primiparous cows with a medium BCS and muscularity in early lactation presented a more favorable STAY across life compared to thinner ones (P < 0.05). In fact, cows with an intermediate BCS/muscularity were more likely to stay in the herd after the third lactation (STAY3-4), compared to those presenting a lower BCS/muscularity (P < 0.01). However, cows whose muscularity was high were generally less likely to start the third lactation compared to the others. A potential explanation for this could be the willing to market cows with good conformation for meat purpose. Simmental is in fact a dual-purpose breed known for the good carcass yield and meat quality. This study demonstrates how muscularity and BCS available early in life can be associated with the ability of Simmental cows to stay in the herd.
Collapse
Affiliation(s)
- Giovanni Buonaiuto
- Department of Veterinary Medical Science, Alma Mater Studiorum – University of Bologna, Bologna, Italy
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | | | - Angela Costa
- Department of Veterinary Medical Science, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Giovanni Niero
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| | - Lorenzo Degano
- National Association of Italian Simmental Cattle Breeders (ANAPRI), Udine, Italy
| | - Ludovica Maria Eugenia Mammi
- Department of Veterinary Medical Science, Alma Mater Studiorum – University of Bologna, Bologna, Italy
- *Correspondence: Ludovica Maria Eugenia Mammi
| | - Damiano Cavallini
- Department of Veterinary Medical Science, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Alberto Palmonari
- Department of Veterinary Medical Science, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Andrea Formigoni
- Department of Veterinary Medical Science, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Giulio Visentin
- Department of Veterinary Medical Science, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Williams M, Sleator RD, Murphy CP, McCarthy J, Berry DP. Re-assessing the importance of linear type traits in predicting genetic merit for survival in an aging Holstein-Friesian dairy cow population. J Dairy Sci 2022; 105:7550-7563. [PMID: 35879159 DOI: 10.3168/jds.2022-22026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/01/2022] [Indexed: 01/11/2023]
Abstract
The cumulative improvement achieved in the genetic merit for reproductive performance in dairy populations will likely improve dairy cow longevity; therefore, it is time to reassess whether linear type traits are still suitable predictors of survival in an aging dairy cow population. The objective of the present study was therefore to estimate the genetic correlations between linear type traits and survival from one parity to the next and, in doing so, evaluate if those genetic correlations change with advancing parity. After edits, 152,894 lactation survival records (first to ninth parity) were available from 52,447 Holstein-Friesian cows, along with linear type trait records from 52,121 Holstein-Friesian cows. A series of bivariate random regression models were used to estimate the genetic covariances between survival in different parities and each linear type trait. Heritability estimates for survival per parity ranged from 0.02 (SE = 0.004; first parity) to 0.05 (SE = 0.01; ninth parity). Pairwise genetic correlations between survival among different parities varied from 0.42 (first and ninth parity) to 1.00 (eighth to ninth parity), with the strength of these genetic correlations being inversely related to the interval between the compared parities. The genetic correlations between survival and the individual linear type traits varied across parities for 9 of the 20 linear type traits examined, but the correlations with only 3 of these linear type traits strengthened as the cows aged; these 3 traits were rear udder height, teat length, and udder depth. Given that linear type traits are frequently scored in first parity and are genetically correlated with survival in older parities, they may be suitable early predictors of survival, especially for later parity cows. Additionally, the direction of the genetic correlations between survival and rear udder height, teat length, and udder depth did not change between parities; hence, selection for survival in older parities using these linear type traits should not hinder genetic improvement for survival in younger parities.
Collapse
Affiliation(s)
- M Williams
- Department of Animal Bioscience, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland P61 C996; Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Co. Cork, Ireland T12 P928
| | - R D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Co. Cork, Ireland T12 P928
| | - C P Murphy
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Co. Cork, Ireland T12 P928
| | - J McCarthy
- Irish Cattle Breeding Federation, Link Rd, Ballincollig, Co. Cork, Ireland P31 D452
| | - D P Berry
- Department of Animal Bioscience, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland P61 C996.
| |
Collapse
|
6
|
Implication of the NLRP3 Inflammasome in Bovine Age-Related Sarcopenia. Int J Mol Sci 2021; 22:ijms22073609. [PMID: 33808510 PMCID: PMC8036417 DOI: 10.3390/ijms22073609] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
Sarcopenia is defined as the age-related loss of skeletal muscle mass, quality, and strength. The pathophysiological mechanisms underlying sarcopenia are still not completely understood. The aim of this work was to evaluate, for the first time, the expression of NLRP3 inflammasome in bovine skeletal muscle in order to investigate the hypothesis that inflammasome activation may trigger and sustain a pro-inflammatory environment leading to sarcopenia. Samples of skeletal muscle were collected from 60 cattle belonging to three age-based groups. Morphologic, immunohistochemical and molecular analysis were performed to assess the presence of age-related pathologic changes and chronic inflammation, the expression of NLRP3 inflammasome and to determine the levels of interleukin-1β, interleukin-18 and tumor necrosis factor alpha in muscle tissue. Our results revealed the presence of morphologic sarcopenia hallmark, chronic lymphocytic inflammation and a type II fibers-selective NLRP3 expression associated to a significant decreased number of immunolabeled-fibers in aged animals. Moreover, we found a statistically significant age-related increase of pro-inflammatory cytokines such as interleukin-1β and interleukin-18 suggesting the activation of NLRP3 inflammasome. Taken together, our data suggest that NLRP3 inflammasome components may be normally expressed in skeletal muscle, but its priming and activation during aging may contribute to enhance a pro-inflammatory environment altering normal muscular anabolism and metabolism.
Collapse
|
7
|
Prisco F, De Biase D, Piegari G, d'Aquino I, Lama A, Comella F, Mercogliano R, Dipineto L, Papparella S, Paciello O. Pathologic characterization of white striping myopathy in broiler chickens. Poult Sci 2021; 100:101150. [PMID: 34049215 PMCID: PMC8167160 DOI: 10.1016/j.psj.2021.101150] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/10/2023] Open
Abstract
White striping (WS) is an emerging myopathy of broiler chickens characterized by white striation of muscle. Despite the recent advances, the pathomechanism underlying the WS remains elusive. The aim of this study was to characterize morphological and molecular features of WS in broiler chickens. 50 pectoralis muscles were collected from 55 days old ROSS 308 broiler chickens with a mean weight of 3.5 kg. Samples were snap frozen and analyzed by histopathology, immunohistochemistry, and immunofluorescence. Real-time-PCR was used to evaluate the expression of different cytokines. Histological lesions were observed in all examined animals, both with and without macroscopic evidence of WS. WS muscles showed endomysial and perivascular inflammatory infiltrates of macrophages and cluster of differentiation (CD)8-positive T lymphocytes with severe myofiber atrophy, necrosis, fibrosis and replacement by adipose tissue. There was diffuse sarcoplasmic and sarcolemmal overexpression of the major histocompatibility complex class I (MHC I). The severity of the histologic lesions was positively correlated with the macroscopic degree of white striations. IL-6, IL-17 and lipopolysaccharide-induced TNF-α factor (LITAF) were overexpressed in severe lesions of WS. The presence of the CD8/MHC I complexes, together with the higher expression of IL-6, IL-17 and LITAF in severe degree of WS, suggest that the immune response may be involved in the progression of this myopathy and can be consistent with a hypoxia-induced inflammatory myopathy. These results help to understand the pathomechanism of WS contributing to the reduction of economic losses and improving poultry welfare.
Collapse
Affiliation(s)
- Francesco Prisco
- Department of Veterinary Medicine and Animal Production, Unit of Pathology, University of Naples Federico II, Via F. Delpino 1, 80137 Napoli, Italia
| | - Davide De Biase
- Department of Veterinary Medicine and Animal Production, Unit of Pathology, University of Naples Federico II, Via F. Delpino 1, 80137 Napoli, Italia
| | - Giuseppe Piegari
- Department of Veterinary Medicine and Animal Production, Unit of Pathology, University of Naples Federico II, Via F. Delpino 1, 80137 Napoli, Italia
| | - Ilaria d'Aquino
- Department of Veterinary Medicine and Animal Production, Unit of Pathology, University of Naples Federico II, Via F. Delpino 1, 80137 Napoli, Italia
| | - Adriano Lama
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italia
| | - Federica Comella
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italia
| | - Raffaelina Mercogliano
- Department of Veterinary Medicine and Animal Production, Unit of Food Inspection, University of Naples Federico II, Via F. Delpino 1, 80137 Napoli, Italia
| | - Ludovico Dipineto
- Department of Veterinary Medicine and Animal Production, Unit of Avian Diseases, University of Naples Federico II, Via F. Delpino 1, 80137 Napoli, Italia
| | - Serenella Papparella
- Department of Veterinary Medicine and Animal Production, Unit of Pathology, University of Naples Federico II, Via F. Delpino 1, 80137 Napoli, Italia
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, Unit of Pathology, University of Naples Federico II, Via F. Delpino 1, 80137 Napoli, Italia.
| |
Collapse
|
8
|
Picard B, Gagaoua M. Muscle Fiber Properties in Cattle and Their Relationships with Meat Qualities: An Overview. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6021-6039. [PMID: 32374594 DOI: 10.1021/acs.jafc.0c02086] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The control of meat quality traits constitutes an important target for any farm animal production, including cattle. Therefore, better understanding of the biochemical properties that drive muscle development and final outcomes constitutes one of the main challenging topics of animal production and meat science. Accordingly, this review has focused on skeletal muscle fibers in cattle and their relationships with beef qualities. It aimed to describe the chemical and structural properties of muscle fibers as well as a comprehensive review of their contractile and metabolic characteristics during the life of the animal. The existing methods for the classification of muscle fibers were reviewed, compared, and discussed. Then, the different stages of myogenesis in cattle were defined. The main factors regulating fetal and postnatal growth and the plasticity of muscle fibers were evidenced, especially the role of myostatin growth factor and the impact of nutritional factors. This review highlights that the knowledge about muscle fibers is paramount for a better understanding of how to control the muscle properties throughout the life of the animal for better management of the final eating qualities of beef. Accordingly, the associations between bovine muscle fibers and different meat eating qualities such as tenderness, pH decline, and color traits were further presented.
Collapse
Affiliation(s)
- Brigitte Picard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - Mohammed Gagaoua
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
9
|
Siard-Altman MH, Harris PA, Moffett-Krotky AD, Ireland JL, Betancourt A, Barker VD, McMurry KE, Reedy SE, Adams AA. Relationships of inflamm-aging with circulating nutrient levels, body composition, age, and pituitary pars intermedia dysfunction in a senior horse population. Vet Immunol Immunopathol 2020; 221:110013. [PMID: 32058159 DOI: 10.1016/j.vetimm.2020.110013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 12/27/2022]
Abstract
Similarly to aged humans, senior horses (≥20 years) exhibit chronic low-grade inflammation systemically, known as inflamm-aging. Inflamm-aging in the senior horse has been characterized by increased circulating inflammatory cytokines as well as increased inflammatory cytokine production by lymphocytes and monocytes in response to a mitogen. Little is currently known regarding underlying causes of inflamm-aging. However, senior horses are also known to present with muscle wasting and often the endocrinopathy pituitary pars intermedia dysfunction (PPID). Despite the concurrence of these phenomena, the relationships inflamm-aging may have with measures of body composition and pituitary function in the horse remain unknown. Furthermore, nutrition has been a focus of research in an attempt to promote health span as well as life span in senior horses, with some nutrients, such as omega-3 fatty acids, having known anti-inflammatory effects. Thus, an exploratory study of a population of n = 42 similarly-managed senior horses was conducted to determine relationships between inflamm-aging and measures of circulating nutrients, body composition, age, and PPID. Serum was collected to determine vitamin, mineral, and fatty acid content. Peripheral blood mononuclear cells were also isolated to determine inflammatory cytokine production of interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) following stimulation with a mitogen, as well as to determine gene expression of interleukin(IL)-1β, IL-6, IL-10, IFN-γ, and TNF-α. Serum IL-6 and C-reactive protein were determined by enzyme-linked immunosorbent assay. Whole blood was collected for hematological and biochemical analysis. Body composition was evaluated via ultrasound and muscle scoring for all 42 horses as well as by deuterium oxide dilution for a subset of n = 10 horses. Pituitary function was evaluated by measuring basal adrenocorticotropin hormone concentrations as well as by thyrotropin releasing hormone stimulation testing (to determine PPID status). Results showed various relationships between inflammatory markers and the other variables measured. Most notably, docosadienoic acid (C22:2n6c), docosapentaenoic acid (C22:5n3c), and folate were positively associated with numerous inflammatory parameters (P ≤ 0.05). Although no relationships were found between inflamm-aging and PPID, being positive for PPID was negatively associated with vitamin B12 (P ≤ 0.01). No relationships between inflammation and body composition were found. Even within this senior horse population, age was associated with multiple parameters, particularly with numerous inflammatory cytokines and fatty acids. In summary, inflamm-aging exhibited relationships with various other parameters examined, particularly with certain fatty acids. This exploratory study provides insights into physiological changes associated with inflamm-aging in the senior horse.
Collapse
Affiliation(s)
| | - Patricia A Harris
- Equine Studies Group, WALTHAM Petcare Science Institute, Waltham-on-the-Wolds, Melton Mowbray, LE14 4RT, UK
| | | | - Joanne L Ireland
- Equine Clinical Sciences, Department of Health and Life Sciences, University of Liverpool, Neston, Wirral, CH64 7TE, UK
| | - Alejandra Betancourt
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Virginia D Barker
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Kellie E McMurry
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Stephanie E Reedy
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Amanda A Adams
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| |
Collapse
|
10
|
Zaghini A, Sarli G, Barboni C, Sanapo M, Pellegrino V, Diana A, Linta N, Rambaldi J, D'Apice MR, Murdocca M, Baleani M, Baruffaldi F, Fognani R, Mecca R, Festa A, Papparella S, Paciello O, Prisco F, Capanni C, Loi M, Schena E, Lattanzi G, Squarzoni S. Long term breeding of the Lmna G609G progeric mouse: Characterization of homozygous and heterozygous models. Exp Gerontol 2019; 130:110784. [PMID: 31794853 DOI: 10.1016/j.exger.2019.110784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/26/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022]
Abstract
The transgenic LmnaG609G progeric mouse represents an outstanding animal model for studying the human Hutchinson-Gilford Progeria Syndrome (HGPS) caused by a mutation in the LMNA gene, coding for the nuclear envelope protein Lamin A/C, and, as an important, more general scope, for studying the complex process governing physiological aging in humans. Here we give a comprehensive description of the peculiarities related to the breeding of LmnaG609G mice over a prolonged period of time, and of many features observed in a large colony for a 2-years period. We describe the breeding and housing conditions underlining the possible interference of the genetic background on the phenotype expression. This information represents a useful tool when planning and interpreting studies on the LmnaG609G mouse model, complementing any specific data already reported in the literature about this model since its production. It is also particularly relevant for the heterozygous mouse, which mirrors the genotype of the human pathology however requires an extended time to manifest symptoms and to be carefully studied.
Collapse
Affiliation(s)
- Anna Zaghini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Catia Barboni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Mara Sanapo
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Valeria Pellegrino
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Alessia Diana
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Nikolina Linta
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Julie Rambaldi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| | | | - Michela Murdocca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Massimiliano Baleani
- IRCCS Istituto Ortopedico Rizzoli, Medical Technology Laboratory, Bologna, Italy
| | - Fabio Baruffaldi
- IRCCS Istituto Ortopedico Rizzoli, Medical Technology Laboratory, Bologna, Italy
| | - Roberta Fognani
- IRCCS Istituto Ortopedico Rizzoli, Medical Technology Laboratory, Bologna, Italy
| | - Rosaria Mecca
- IRCCS Istituto Ortopedico Rizzoli, Medical Technology Laboratory, Bologna, Italy
| | - Anna Festa
- IRCCS Istituto Ortopedico Rizzoli, Medical Technology Laboratory, Bologna, Italy
| | - Serenella Papparella
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Cristina Capanni
- CNR - Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"- Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Loi
- CNR - Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"- Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisa Schena
- CNR - Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"- Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giovanna Lattanzi
- CNR - Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"- Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Squarzoni
- CNR - Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"- Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
11
|
Developmental Transformation and Reduction of Connective Cavities within the Subchondral Bone. Int J Mol Sci 2019; 20:ijms20030770. [PMID: 30759738 PMCID: PMC6387253 DOI: 10.3390/ijms20030770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/04/2019] [Accepted: 02/09/2019] [Indexed: 11/16/2022] Open
Abstract
It is widely accepted that the subchondral bone (SCB) plays a crucial role in the physiopathology of osteoarthritis (OA), although its contribution is still debated. Much of the pre-clinical research on the role of SCB is concentrated on comparative evaluations of healthy vs. early OA or early OA vs. advanced OA cases, while neglecting how pure maturation could change the SCB’s microstructure. To assess the transformations of the healthy SCB from young age to early adulthood, we examined the microstructure and material composition of the medial condyle of the femur in calves (three months) and cattle (18 months) for the calcified cartilage (CC) and the subchondral bone plate (SCBP). The entire subchondral zone (SCZ) was significantly thicker in cattle compared to calves, although the proportion of the CC and SCBP thicknesses were relatively constant. The trabecular number (Tb.N.) and the connectivity density (Conn.D) were significantly higher in the deeper region of the SCZ, while the bone volume fraction (BV/TV), and the degree of anisotropy (DA) were more affected by age rather than the region. The mineralization increased within the first 250 µm of the SCZ irrespective of sample type, and became stable thereafter. Cattle exhibited higher mineralization than calves at all depths, with a mean Ca/P ratio of 1.59 and 1.64 for calves and cattle, respectively. Collectively, these results indicate that the SCZ is highly dynamic at early age, and CC is the most dynamic layer of the SCZ.
Collapse
|
12
|
Yates DT, Petersen JL, Schmidt TB, Cadaret CN, Barnes TL, Posont RJ, Beede KA. ASAS-SSR Triennnial Reproduction Symposium: Looking Back and Moving Forward-How Reproductive Physiology has Evolved: Fetal origins of impaired muscle growth and metabolic dysfunction: Lessons from the heat-stressed pregnant ewe. J Anim Sci 2018; 96:2987-3002. [PMID: 29701769 PMCID: PMC6095381 DOI: 10.1093/jas/sky164] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is the second leading cause of perinatal mortality and predisposes offspring to metabolic disorders at all stages of life. Muscle-centric fetal adaptations reduce growth and yield metabolic parsimony, beneficial for IUGR fetal survival but detrimental to metabolic health after birth. Epidemiological studies have reported that IUGR-born children experience greater prevalence of insulin resistance and obesity, which progresses to diabetes, hypertension, and other metabolic disorders in adulthood that reduce quality of life. Similar adaptive programming in livestock results in decreased birth weights, reduced and inefficient growth, decreased carcass merit, and substantially greater mortality rates prior to maturation. High rates of glucose consumption and metabolic plasticity make skeletal muscle a primary target for nutrient-sparing adaptations in the IUGR fetus, but at the cost of its contribution to proper glucose homeostasis after birth. Identifying the mechanisms underlying IUGR pathophysiology is a fundamental step in developing treatments and interventions to improve outcomes in IUGR-born humans and livestock. In this review, we outline the current knowledge regarding the adaptive restriction of muscle growth and alteration of glucose metabolism that develops in response to progressively exacerbating intrauterine conditions. In addition, we discuss the evidence implicating developmental changes in β adrenergic and inflammatory systems as key mechanisms for dysregulation of these processes. Lastly, we highlight the utility and importance of sheep models in developing this knowledge.
Collapse
Affiliation(s)
- Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Ty B Schmidt
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Caitlin N Cadaret
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Taylor L Barnes
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
13
|
Endoplasmic Reticulum Stress Induces Myostatin High Molecular Weight Aggregates and Impairs Mature Myostatin Secretion. Mol Neurobiol 2018; 55:8355-8373. [PMID: 29546591 PMCID: PMC6153721 DOI: 10.1007/s12035-018-0997-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/07/2018] [Indexed: 01/08/2023]
Abstract
Sporadic inclusion body myositis (sIBM) is the most prevalent acquired muscle disorder in the elderly with no defined etiology or effective therapy. Endoplasmic reticulum stress and deposition of myostatin, a secreted negative regulator of muscle growth, have been implicated in disease pathology. The myostatin signaling pathway has emerged as a major target for symptomatic treatment of muscle atrophy. Here, we systematically analyzed the maturation and secretion of myostatin precursor MstnPP and its metabolites in a human muscle cell line. We find that increased MsntPP protein levels induce ER stress. MstnPP metabolites were predominantly retained within the endoplasmic reticulum (ER), also evident in sIBM histology. MstnPP cleavage products formed insoluble high molecular weight aggregates, a process that was aggravated by experimental ER stress. Importantly, ER stress also impaired secretion of mature myostatin. Reduced secretion and aggregation of MstnPP metabolites were not simply caused by overexpression, as both events were also observed in wildtype cells under ER stress. It is tempting to speculate that reduced circulating myostatin growth factor could be one explanation for the poor clinical efficacy of drugs targeting the myostatin pathway in sIBM.
Collapse
|
14
|
Ward JM, Youssef SA, Treuting PM. Why Animals Die: An Introduction to the Pathology of Aging. Vet Pathol 2017; 53:229-32. [PMID: 26936750 DOI: 10.1177/0300985815612151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- J M Ward
- Global VetPathology, Montgomery Village, MD, USA
| | - S A Youssef
- Dutch Molecular Pathology Center, Faculty of Veterinary Medicine, Department of Pathobiology, Utrecht University, Utrecht, The Netherlands
| | - P M Treuting
- School of Medicine, Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
De Biase D, Costagliola A, Pagano TB, Piegari G, Wojcik S, Dziewiątkowski J, Grieco E, Mattace Raso G, Russo V, Papparella S, Paciello O. Amyloid precursor protein, lipofuscin accumulation and expression of autophagy markers in aged bovine brain. BMC Vet Res 2017; 13:102. [PMID: 28407771 PMCID: PMC5390414 DOI: 10.1186/s12917-017-1028-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 04/10/2017] [Indexed: 01/07/2023] Open
Abstract
Background Autophagy is a highly regulated process involving the bulk degradation of cytoplasmic macromolecules and organelles in mammalian cells via the lysosomal system. Dysregulation of autophagy is implicated in the pathogenesis of many neurodegenerative diseases and integrity of the autophagosomal - lysosomal network appears to be critical in the progression of aging. Our aim was to survey the expression of autophagy markers and Amyloid precursor protein (APP) in aged bovine brains. For our study, we collected samples from the brain of old (aged 11–20 years) and young (aged 1–5 years) Podolic dairy cows. Formalin-fixed and paraffin embedded sections were stained with routine and special staining techniques. Primary antibodies for APP and autophagy markers such as Beclin-1 and LC3 were used to perform immunofluorescence and Western blot analysis. Results Histologically, the most consistent morphological finding was the age-related accumulation of intraneuronal lipofuscin. Furthermore, in aged bovine brains, immunofluorescence detected a strongly positive immunoreaction to APP and LC3. Beclin-1 immunoreaction was weak or absent. In young controls, the immunoreaction for Beclin-1 and LC3 was mild while the immunoreaction for APP was absent. Western blot analysis confirmed an increased APP expression and LC3-II/LC3-I ratio and a decreased expression of Beclin-1 in aged cows. Conclusions These data suggest that, in aged bovine, autophagy is significantly impaired if compared to young animals and they confirm that intraneuronal APP deposition increases with age.
Collapse
Affiliation(s)
- D De Biase
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II via Delpino, 1, 80137, Naples, Italy
| | - A Costagliola
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II via Delpino, 1, 80137, Naples, Italy.
| | - T B Pagano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II via Delpino, 1, 80137, Naples, Italy
| | - G Piegari
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II via Delpino, 1, 80137, Naples, Italy
| | - S Wojcik
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Debinki 1 80-11, Gdansk, Poland
| | - J Dziewiątkowski
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Debinki 1 80-11, Gdansk, Poland
| | - E Grieco
- Azienda Sanitaria Locale, Salerno, Italy
| | - G Mattace Raso
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131, Naples, Italy
| | - V Russo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II via Delpino, 1, 80137, Naples, Italy
| | - S Papparella
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II via Delpino, 1, 80137, Naples, Italy
| | - O Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II via Delpino, 1, 80137, Naples, Italy
| |
Collapse
|
16
|
Pathology of muscular steatosis in the bovine species: report of two spontaneously arising cases and comparative overview of the condition. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s00580-016-2376-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Immunopathological Features of Canine Myocarditis Associated with Leishmania infantum Infection. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8016186. [PMID: 27413751 PMCID: PMC4930798 DOI: 10.1155/2016/8016186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 11/17/2022]
Abstract
Myocarditis associated with infectious diseases may occur in dogs, including those caused by the protozoa Neospora caninum, Trypanosoma cruzi, Babesia canis, and Hepatozoon canis. However, although cardiac disease due to Leishmania infection has also been documented, the immunopathological features of myocarditis have not been reported so far. The aim of this study was to examine the types of cellular infiltrates and expression of MHC classes I and II in myocardial samples obtained at necropsy from 15 dogs with an established intravitam diagnosis of visceral leishmaniasis. Pathological features of myocardium were characterized by hyaline degeneration of cardiomyocytes, necrosis, and infiltration of mononuclear inflammatory cells consisting of lymphocytes and macrophages, sometimes with perivascular pattern; fibrosis was also present in various degrees. Immunophenotyping of inflammatory cells was performed by immunohistochemistry on cryostat sections obtained from the heart of the infected dogs. The predominant leukocyte population was CD8+ with a fewer number of CD4+ cells. Many cardiomyocytes expressed MHC classes I and II on the sarcolemma. Leishmania amastigote forms were not detected within macrophages or any other cell of the examined samples. Our study provided evidence that myocarditis in canine visceral leishmaniasis might be related to immunological alterations associated with Leishmania infection.
Collapse
|