1
|
Körtési T, Nagy-Grócz G, Vécsei L. The role of kynurenines in migraine-related neuroimmune pathways. J Headache Pain 2024; 25:129. [PMID: 39107712 PMCID: PMC11304619 DOI: 10.1186/s10194-024-01833-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Migraine, a primary headache disorder whose mechanism remains incompletely understood, appears to involve the activation of the trigeminovascular system (TS) during attacks. Research suggests that inflammatory processes mediated by the immune system may play a role in migraine pathophysiology. Neuroinflammation is often associated with migraine attacks, with cytokines serving as crucial mediators in the process. Elevated levels of pro-inflammatory cytokines, such as interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), have been observed in the blood and cerebrospinal fluid of individuals experiencing migraine attacks. These cytokines have the capacity to sensitize pain pathways in the brain, thereby increasing sensitivity to pain stimuli. This phenomenon, known as central sensitization, is believed to contribute to the intensity and persistence of migraine pain. Kynurenines, endogenous mediators of glutamatergic mechanisms, can significantly influence the pathophysiology of primary headache disorders. The kynurenine system is collectively known as the kynurenine pathway (KP), which can act on multiple receptors, such as glutamate receptors, aryl hydrocarbon receptors (AhRs), G protein-coupled receptors 35 (GPR35), and α-7 nicotinic acetylcholine (α7 nACh) receptors. These receptors are also found on various cells of the immune system, so the role of the KP in the pathomechanism of primary headaches may also be mediated through them. In this review, our goal is to show a possible link between the receptors of the KP and immune system in the context of inflammation and migraine. Migraine research in recent years has focused on neuropeptides, such as calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) as potential pathogenic factors and possible therapeutic approaches. These peptides share many similarities in their characteristics and roles. For instance, they exhibit potent vasodilation, occur in both the peripheral and central nervous systems, and play a role in transmitting nociception and neurogenic inflammation. The investigation of potential connections between the aforementioned neuropeptides and the kynurenine pathway could play a significant role in uncovering the pathomechanism of migraine and identifying new drug candidates.
Collapse
Affiliation(s)
- Tamás Körtési
- Department of Theoretical Health Sciences and Health Management, Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31, Szeged, H-6726, Hungary
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, Danube Neuroscience Research Laboratory, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, Szeged, H- 6725, Hungary
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, Szeged, H-6720, Hungary
| | - Gábor Nagy-Grócz
- Department of Theoretical Health Sciences and Health Management, Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31, Szeged, H-6726, Hungary
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, Szeged, H-6720, Hungary
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, Danube Neuroscience Research Laboratory, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, Szeged, H- 6725, Hungary.
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary.
| |
Collapse
|
2
|
Greco R, Demartini C, Francavilla M, Zanaboni AM, Facchetti S, Palmisani M, Franco V, Tassorelli C. Effects of the Dual FAAH/MAGL Inhibitor AKU-005 on Trigeminal Hyperalgesia in Male Rats. Cells 2024; 13:830. [PMID: 38786051 PMCID: PMC11119298 DOI: 10.3390/cells13100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
The inhibition of endocannabinoid hydrolysis by enzymatic inhibitors may interfere with mechanisms underlying migraine-related pain. The dual FAAH/MAGL inhibitor AKU-005 shows potent inhibitory activity in vitro. Here, we assessed the effect of AKU-005 in a migraine animal model based on nitroglycerin (NTG) administration. Male rats were treated with AKU-005 (0.5 mg/kg, i.p.) or vehicle 3 h after receiving NTG (10 mg/kg, i.p.) or NTG vehicle. One hour later, rats were subjected to the open field test followed by the orofacial formalin test. At the end of the test, we collected serum samples for assessing calcitonin gene-related peptide (CGRP) levels as well as meninges, trigeminal ganglia, and brain areas to assess mRNA levels of CGRP and pro-inflammatory cytokines, and endocannabinoid and related lipid levels. AKU-005 reduced NTG-induced hyperalgesia during the orofacial formalin test but did not influence NTG-induced changes in the open field test. It significantly reduced serum levels of CGRP, CGRP, and pro-inflammatory cytokine mRNA levels in the meninges, trigeminal ganglia, and central areas. Surprisingly, AKU-005 caused no change in endocannabinoids and related lipids in the regions evaluated. The present findings suggest that AKU-005 may have anti-migraine effects by reducing CGRP synthesis and release and the associated inflammatory events. This effect, however, does not seem mediated via an interference with the endocannabinoid pathway.
Collapse
Affiliation(s)
- Rosaria Greco
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
| | - Chiara Demartini
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
| | - Miriam Francavilla
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Anna Maria Zanaboni
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Sara Facchetti
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Michela Palmisani
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Department of Internal Medicine and Therapeutics, Clinical and Experimental Pharmacology Unit, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Valentina Franco
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Department of Internal Medicine and Therapeutics, Clinical and Experimental Pharmacology Unit, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| |
Collapse
|
3
|
Spekker E, Fejes-Szabó A, Nagy-Grócz G. Models of Trigeminal Activation: Is There an Animal Model of Migraine? Brain Sci 2024; 14:317. [PMID: 38671969 PMCID: PMC11048078 DOI: 10.3390/brainsci14040317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Migraine, recognized as a severe headache disorder, is widely prevalent, significantly impacting the quality of life for those affected. This article aims to provide a comprehensive review of the application of animal model technologies in unraveling the pathomechanism of migraine and developing more effective therapies. It introduces a variety of animal experimental models used in migraine research, emphasizing their versatility and importance in simulating various aspects of the condition. It details the benefits arising from the utilization of these models, emphasizing their role in elucidating pain mechanisms, clarifying trigeminal activation, as well as replicating migraine symptoms and histological changes. In addition, the article consciously acknowledges the inherent limitations and challenges associated with the application of animal experimental models. Recognizing these constraints is a fundamental step toward fine-tuning and optimizing the models for a more accurate reflection of and translatability to the human environment. Overall, a detailed and comprehensive understanding of migraine animal models is crucial for navigating the complexity of the disease. These findings not only provide a deeper insight into the multifaceted nature of migraine but also serve as a foundation for developing effective therapeutic strategies that specifically address the unique challenges arising from migraine pathology.
Collapse
Affiliation(s)
- Eleonóra Spekker
- Interdisciplinary Research Development and Innovation, Center of Excellence, University of Szeged, H-6725 Szeged, Hungary
| | - Annamária Fejes-Szabó
- HUN-REN–SZTE Neuroscience Research Group, University of Szeged, H-6725 Szeged, Hungary;
| | - Gábor Nagy-Grócz
- Department of Theoretical Health Sciences and Health Management, Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári Krt. 31., H-6726 Szeged, Hungary;
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
4
|
Hazrati E, Eftekhar SP, Mosaed R, Shiralizadeh Dini S, Namazi M. Understanding the kynurenine pathway: A narrative review on its impact across chronic pain conditions. Mol Pain 2024; 20:17448069241275097. [PMID: 39093627 PMCID: PMC11331475 DOI: 10.1177/17448069241275097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Chronic pain is a debilitating symptom with a significant negative impact on the quality of life and socioeconomic status, particularly among adults and the elderly. Major Depressive Disorder (MDD) stands out as one of the most important comorbid disorders accompanying chronic pain. The kynurenine pathway serves as the primary route for tryptophan degradation and holds critical significance in various biological processes, including the regulation of neurotransmitters, immune responses, cancer development, metabolism, and inflammation. This review encompasses key research studies related to the kynurenine pathway in the context of headache, neuropathic pain, gastrointestinal disorders, fibromyalgia, chronic fatigue syndrome, and MDD. Various metabolites produced in the kynurenine pathway, such as kynurenic acid and quinolinic acid, exhibit neuroprotective and neurotoxic effects, respectively. Recent studies have highlighted the significant involvement of kynurenine and its metabolites in the pathophysiology of pain. Moreover, pharmacological interventions targeting the regulation of the kynurenine pathway have shown therapeutic promise in pain management. Understanding the underlying mechanisms of this pathway presents an opportunity for developing personalized, innovative, and non-opioid approaches to pain treatment. Therefore, this narrative review explores the role of the kynurenine pathway in various chronic pain disorders and its association with depression and chronic pain.
Collapse
Affiliation(s)
- Ebrahim Hazrati
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Seyed Parsa Eftekhar
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Mosaed
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | | | - Mehrshad Namazi
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
- Clinical Biomechanics and Ergonomics Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Spekker E, Nagy-Grócz G, Vécsei L. Ion Channel Disturbances in Migraine Headache: Exploring the Potential Role of the Kynurenine System in the Context of the Trigeminovascular System. Int J Mol Sci 2023; 24:16574. [PMID: 38068897 PMCID: PMC10706278 DOI: 10.3390/ijms242316574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Migraine is a primary headache disorder, which is an enormous burden to the healthcare system. While some aspects of the pathomechanism of migraines remain unknown, the most accepted theory is that activation and sensitization of the trigeminovascular system are essential during migraine attacks. In recent decades, it has been suggested that ion channels may be important participants in the pathogenesis of migraine. Numerous ion channels are expressed in the peripheral and central nervous systems, including the trigeminovascular system, affecting neuron excitability, synaptic energy homeostasis, inflammatory signaling, and pain sensation. Dysfunction of ion channels could result in neuronal excitability and peripheral or central sensitization. This narrative review covers the current understanding of the biological mechanisms leading to activation and sensitization of the trigeminovascular pain pathway, with a focus on recent findings on ion channel activation and modulation. Furthermore, we focus on the kynurenine pathway since this system contains kynurenic acid, which is an endogenous glutamate receptor antagonist substance, and it has a role in migraine pathophysiology.
Collapse
Affiliation(s)
| | - Gábor Nagy-Grócz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Hungary;
- Faculty of Health Sciences and Social Studies, University of Szeged, H-6726 Szeged, Hungary
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6725 Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, University of Szeged, H-6725 Szeged, Hungary
| |
Collapse
|
6
|
Koroleva K, Svitko S, Ananev A, Buglinina A, Bogatova K, Yakovleva O, Nurmieva D, Shaidullov I, Sitdikova G. Effects of Nitric Oxide on the Activity of P2X and TRPV1 Receptors in Rat Meningeal Afferents of the Trigeminal Nerve. Int J Mol Sci 2023; 24:ijms24087519. [PMID: 37108677 PMCID: PMC10144808 DOI: 10.3390/ijms24087519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Nitric oxide is one of the endogenous molecules that play a key role in migraine. However, the interaction between NO and the main players in the nociceptive activity of the meningeal trigeminal afferents-TRPV1 and P2X3 receptors-remains unstudied. In the current project, the effects of acute and chronic NO administration on the activity of TRPV1 and P2X3 receptors in the peripheral afferents were studied using electrophysiological recording of action potentials of the trigeminal nerve in the rat hemiskull preparations. The data obtained indicate that exogenous and endogenous NO increased the activity of the trigeminal nerve independent on the inhibition of the TRPV1 and P2X3 receptors. The activity of the trigeminal nerve triggered by ATP changed neither in acute incubation in the NO donor-sodium nitroprusside (SNP) nor in the chronic nitroglycerine (NG)-induced migraine model. Moreover, the chronic NG administration did not increase in the number of degranulated mast cells in the rat meninges. At the same time, the capsaicin-induced activity of the trigeminal nerve was higher with chronic NO administration or after acute NO application, and these effects were prevented by N-ethylmaleimide. In conclusion, we suggested that NO positively modulates the activity of TRPV1 receptors by S-nitrosylation, which may contribute to the pro-nociceptive action of NO and underlie the sensitization of meningeal afferents in chronic migraine.
Collapse
Affiliation(s)
- Kseniia Koroleva
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Svetlana Svitko
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Anton Ananev
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Anastasiia Buglinina
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ksenia Bogatova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Olga Yakovleva
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Dinara Nurmieva
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ilnar Shaidullov
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Guzel Sitdikova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
7
|
Zhang L, Zhou Y, Wang Y, Yang L, Wang Y, Shan Z, Liang J, Xiao Z. Inhibiting PAC1 receptor internalization and endosomal ERK pathway activation may ameliorate hyperalgesia in a chronic migraine rat model. Cephalalgia 2023; 43:3331024231163131. [PMID: 36946245 DOI: 10.1177/03331024231163131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multipotent neuropeptide widely distributed in the trigeminovascular system (TVS) and higher brain regions. At present, the underlying mechanism of PACAP/PACAP type1 (PAC1) receptor in migraine generation remains unclear. METHODS The rat model of chronic migraine (CM) was established by repeated intraperitoneal injection of nitroglycerin (NTG). Von Frey filaments and hot plate tests were used to measure the mechanical and thermal thresholds. The expression levels of c-Fos, calcitonin gene-related peptide (CGRP), PACAP, PAC1, protein kinase A (PKA) and phosphorylated extracellular signal-regulated kinase (ERK) were assessed by western blotting or immunofluorescence staining. The internalization of PAC1 receptor was visualized by fluorescence microscope and laser scanning confocal microscope. RESULTS The results showed that c-Fos and CGRP expression significantly increased after repeated administrations of NTG or PACAP. Pitstop2 notably improved hyperalgesia in CM rats, while PACAP6-38 offered no benefit. In addition, PACAP-induced PAC1 receptor internalization, PKA and ERK pathways activation were blocked by Pitstop2 instead of PACAP6-38. CONCLUSIONS Our results demonstrate that inhibition of PAC1 receptor internalization could effectively improve allodynia in CM rats by restraining ERK signaling pathway activation in a chronic migraine rat model. Modulation of receptor internalization may be a novel perspective to explore specific mechanisms of PACAP signaling activation in the trigeminal vascular system.
Collapse
Affiliation(s)
- Lily Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanjie Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yajuan Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liu Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yue Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhengming Shan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingjing Liang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Demartini C, Francavilla M, Zanaboni AM, Facchetti S, De Icco R, Martinelli D, Allena M, Greco R, Tassorelli C. Biomarkers of Migraine: An Integrated Evaluation of Preclinical and Clinical Findings. Int J Mol Sci 2023; 24:ijms24065334. [PMID: 36982428 PMCID: PMC10049673 DOI: 10.3390/ijms24065334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, numerous efforts have been made to identify reliable biomarkers useful in migraine diagnosis and progression or associated with the response to a specific treatment. The purpose of this review is to summarize the alleged diagnostic and therapeutic migraine biomarkers found in biofluids and to discuss their role in the pathogenesis of the disease. We included the most informative data from clinical or preclinical studies, with a particular emphasis on calcitonin gene-related peptide (CGRP), cytokines, endocannabinoids, and other biomolecules, the majority of which are related to the inflammatory aspects and mechanisms of migraine, as well as other actors that play a role in the disease. The potential issues affecting biomarker analysis are also discussed, such as how to deal with bias and confounding data. CGRP and other biological factors associated with the trigeminovascular system may offer intriguing and novel precision medicine opportunities, although the biological stability of the samples used, as well as the effects of the confounding role of age, gender, diet, and metabolic factors should be considered.
Collapse
Affiliation(s)
- Chiara Demartini
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Miriam Francavilla
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Anna Maria Zanaboni
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Sara Facchetti
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Daniele Martinelli
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Marta Allena
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Rosaria Greco
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-(0382)-380255
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| |
Collapse
|
9
|
Exploring the Tryptophan Metabolic Pathways in Migraine-Related Mechanisms. Cells 2022; 11:cells11233795. [PMID: 36497053 PMCID: PMC9736455 DOI: 10.3390/cells11233795] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Migraine is a complex neurovascular disorder, which causes intense socioeconomic problems worldwide. The pathophysiology of disease is enigmatic; accordingly, therapy is not sufficient. In recent years, migraine research focused on tryptophan, which is metabolized via two main pathways, the serotonin and kynurenine pathways, both of which produce neuroactive molecules that influence pain processing and stress response by disturbing neural and brain hypersensitivity and by interacting with molecules that control vascular and inflammatory actions. Serotonin has a role in trigeminal pain processing, and melatonin, which is another product of this pathway, also has a role in these processes. One of the end products of the kynurenine pathway is kynurenic acid (KYNA), which can decrease the overexpression of migraine-related neuropeptides in experimental conditions. However, the ability of KYNA to cross the blood-brain barrier is minimal, necessitating the development of synthetic analogs with potentially better pharmacokinetic properties to exploit its therapeutic potential. This review summarizes the main translational and clinical findings on tryptophan metabolism and certain neuropeptides, as well as therapeutic options that may be useful in the prevention and treatment of migraine.
Collapse
|
10
|
Tanaka M, Szabó Á, Spekker E, Polyák H, Tóth F, Vécsei L. Mitochondrial Impairment: A Common Motif in Neuropsychiatric Presentation? The Link to the Tryptophan-Kynurenine Metabolic System. Cells 2022; 11:2607. [PMID: 36010683 PMCID: PMC9406499 DOI: 10.3390/cells11162607] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 02/07/2023] Open
Abstract
Nearly half a century has passed since the discovery of cytoplasmic inheritance of human chloramphenicol resistance. The inheritance was then revealed to take place maternally by mitochondrial DNA (mtDNA). Later, a number of mutations in mtDNA were identified as a cause of severe inheritable metabolic diseases with neurological manifestation, and the impairment of mitochondrial functions has been probed in the pathogenesis of a wide range of illnesses including neurodegenerative diseases. Recently, a growing number of preclinical studies have revealed that animal behaviors are influenced by the impairment of mitochondrial functions and possibly by the loss of mitochondrial stress resilience. Indeed, as high as 54% of patients with one of the most common primary mitochondrial diseases, mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome, present psychiatric symptoms including cognitive impairment, mood disorder, anxiety, and psychosis. Mitochondria are multifunctional organelles which produce cellular energy and play a major role in other cellular functions including homeostasis, cellular signaling, and gene expression, among others. Mitochondrial functions are observed to be compromised and to become less resilient under continuous stress. Meanwhile, stress and inflammation have been linked to the activation of the tryptophan (Trp)-kynurenine (KYN) metabolic system, which observably contributes to the development of pathological conditions including neurological and psychiatric disorders. This review discusses the functions of mitochondria and the Trp-KYN system, the interaction of the Trp-KYN system with mitochondria, and the current understanding of the involvement of mitochondria and the Trp-KYN system in preclinical and clinical studies of major neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Masaru Tanaka
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Eleonóra Spekker
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Helga Polyák
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Fanni Tóth
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
11
|
Citalopram Neuroendocrine Challenge Shows Altered Tryptophan and Kynurenine Metabolism in Migraine. Cells 2022; 11:cells11142258. [PMID: 35883701 PMCID: PMC9324582 DOI: 10.3390/cells11142258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Altered tryptophan (TRP) metabolism may have an important role in migraine susceptibility through its main metabolites, serotonin and kynurenine (KYN). Both affect pain processing and stress response by interfering with neural and brain hypersensitivity and by interacting with chemokines and cytokines that control vascular and inflammatory processes. The involvement of these pathways in migraine has been widely studied, but acute citalopram neuroendocrine challenge on TRP metabolism and cytokine profile has not been investigated yet. In our study, females with episodic migraine without aura and healthy controls were studied before and after acute citalopram or placebo in a double-blind setting. At baseline, increased TRP/large neutral amino acid (LNAA) ratio and decreased RANTES chemokine concentration were detected in migraine patients compared to controls. The challenge induced a significant increase in TRP, KYN, and TRP/LNAA in healthy controls, but not in migraine patients. Furthermore, migraine attack frequency negatively correlated with KYN/TRP ratio and positively correlated with the neuroendocrine-challenge-induced KYN concentration increase. Our results support a decreased breakdown of TRP via KYN pathway and a failure to modulate TRP–KYN pathway during citalopram-induced acute stress together with an increased vascular sensitivity in migraine. These mechanisms may provide useful drug targets for future drug development.
Collapse
|
12
|
Zubrzycki M, Zubrzycka M, Wysiadecki G, Szemraj J, Jerczynska H, Stasiolek M. Effect of Fatty Acid Amide Hydrolase Inhibitor URB597 on Orofacial Pain Perception in Rats. Int J Mol Sci 2022; 23:4665. [PMID: 35563056 PMCID: PMC9100922 DOI: 10.3390/ijms23094665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022] Open
Abstract
Endocannabinoids act as analgesic agents in a number of headache models. However, their effectiveness varies with the route of administration and the type of pain. In this study, we assessed the role of the fatty acid amide hydrolase inhibitor URB597 in an animal model of orofacial pain based on tooth pulp stimulation. More specifically, we assessed the effects of intracerbroventricular (i.c.v.) and intraperitoneal (i.p.) administration of URB597 on the amplitude of evoked tongue jerks (ETJ) in rats. The levels of the investigated mediators anandamide (AEA), 2-arachidonyl glycerol (2-AG), Substance P (SP), calcitonin-gene-related peptide (CGRP), endomorphin-2 (EM-2) and fatty acid amide hydrolase (FAAH) inhibitor by URB597 and receptors cannabinoid type-1 receptors (CB1R), cannabinoid type-2 receptors (CB2R) and µ-opioid receptors (MOR) were determined in the mesencephalon, thalamus and hypothalamus tissues. We have shown that increasing endocannabinoid AEA levels by both central and peripheral inhibition of FAAH inhibitor by URB597 has an antinociceptive effect on the trigemino-hypoglossal reflex mediated by CB1R and influences the activation of the brain areas studied. On the other hand, URB597 had no effect on the concentration of 2-AG in the examined brain structures and caused a significant decrease in CB2R mRNA expression in the hypothalamus only. Tooth pulp stimulation caused in a significant increase in SP, CGRP and EM-2 gene expression in the midbrain, thalamus and hypothalamus. In contrast, URB597 administered peripherally one hour before stimulation decreased the mRNA level of these endogenous neuropeptides in comparison with the control and stimulation in all examined brain structures. Our results show that centrally and peripherally administered URB597 is effective at preventing orofacial pain by inhibiting AEA catabolism and reducing the level of CGRP, SP and EM-2 gene expression and that AEA and 2-AG have different species and model-specific regulatory mechanisms. The data presented in this study may represent a new promising therapeutic target in the treatment of orofacial pain.
Collapse
Affiliation(s)
- Marek Zubrzycki
- Department of Cardiac Surgery and Transplantology, The Cardinal Stefan Wyszynski Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland
| | - Maria Zubrzycka
- Department of Clinical Physiology, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Grzegorz Wysiadecki
- Department of Normal and Clinical Anatomy, Chair of Anatomy and Histology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Hanna Jerczynska
- Central Scientific Laboratory (CoreLab), Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Mariusz Stasiolek
- Department of Neurology, Medical University of Lodz, Kopcinskiego 22, 90-153 Lodz, Poland;
| |
Collapse
|
13
|
Greco R, Demartini C, Zanaboni AM, Francavilla M, De Icco R, Ahmad L, Tassorelli C. The endocannabinoid system and related lipids as potential targets for the treatment of migraine-related pain. Headache 2022; 62:227-240. [PMID: 35179780 DOI: 10.1111/head.14267] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Migraine is a complex and highly disabling neurological disease whose treatment remains challenging in many patients, even after the recent advent of the first specific-preventive drugs, namely monoclonal antibodies that target calcitonin gene-related peptide. For this reason, headache researchers are actively searching for new therapeutic targets. Cannabis has been proposed for migraine treatment, but controlled clinical studies are lacking. A major advance in cannabinoid research has been the discovery of the endocannabinoid system (ECS), which consists of receptors CB1 and CB2; their endogenous ligands, such as N-arachidonoylethanolamine; and the enzymes that catalyze endocannabinoid biosynthesis or degradation. Preclinical and clinical findings suggest a possible role for endocannabinoids and related lipids, such as palmitoylethanolamide (PEA), in migraine-related pain treatment. In animal models of migraine-related pain, endocannabinoid tone modulation via inhibition of endocannabinoid-catabolizing enzymes has been a particular focus of research. METHODS To conduct a narrative review of available data on the possible effects of cannabis, endocannabinoids, and other lipids in migraine-related pain, relevant key words were used to search the PubMed/MEDLINE database for basic and clinical studies. RESULTS Endocannabinoids and PEA seem to reduce trigeminal nociception by interacting with many pathways associated with migraine, suggesting a potential synergistic or similar effect. CONCLUSIONS Modulation of the metabolic pathways of the ECS may be a basis for new migraine treatments. The multiplicity of options and the wealth of data already obtained in animal models underscore the importance of further advancing research in this area. Multiple molecules related to the ECS or to allosteric modulation of CB1 receptors have emerged as potential therapeutic targets in migraine-related pain. The complexity of the ECS calls for accurate biochemical and pharmacological characterization of any new compounds undergoing testing and development.
Collapse
Affiliation(s)
- Rosaria Greco
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Demartini
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Maria Zanaboni
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Miriam Francavilla
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto De Icco
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lara Ahmad
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Cristina Tassorelli
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
14
|
Woodman SE, Antonopoulos SR, Durham PL. Inhibition of Nociception in a Preclinical Episodic Migraine Model by Dietary Supplementation of Grape Seed Extract Involves Activation of Endocannabinoid Receptors. FRONTIERS IN PAIN RESEARCH 2022; 3:809352. [PMID: 35295808 PMCID: PMC8915558 DOI: 10.3389/fpain.2022.809352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/04/2022] [Indexed: 01/15/2023] Open
Abstract
Migraine is associated with peripheral and central sensitization of the trigeminal system and dysfunction of descending pain modulation pathways. Recently, dietary inclusion of grape seed extract (GSE) was shown to inhibit mechanical nociception in a preclinical model of chronic temporomandibular joint disorder, a condition often comorbid with migraine, with the antinociceptive effect mediated, in part, by activation of 5-HT3/7 and GABAB receptors. This study further investigated the mechanisms by which GSE inhibits mechanical nociception in a preclinical model of episodic migraine. Hyperalgesic priming of female and male Sprague Dawley rats was induced by three consecutive daily two-hour episodes of restraint stress. Seven days after the final restraint stress, rats were exposed to pungent odors from an oil extract that contains the compound umbellulone, which stimulates CGRP release and induces migraine-like pain. Some animals received dietary supplementation of GSE in their drinking water beginning one week prior to restraint stress. Changes in mechanical sensitivity in the orofacial region and hindpaw were determined using von Frey filaments. To investigate the role of the endocannabinoid receptors in the effect of GSE, some animals were injected intracisternally with the CB1 antagonist AM 251 or the CB2 antagonist AM 630 prior to odor inhalation. Changes in CGRP expression in the spinal trigeminal nucleus (STN) in response to stress, odor and GSE supplementation were studied using immunohistochemistry. Exposure of stress-primed animals to the odor caused a significant increase in the average number of withdrawal responses to mechanical stimulation in both the orofacial region and hindpaw, and the effect was significantly suppressed by daily supplementation with GSE. The anti-nociceptive effect of GSE was inhibited by intracisternal administration of antagonists of CB1 and CB2 receptors. GSE supplementation inhibited odor-mediated stimulation of CGRP expression in the STN in sensitized animals. These results demonstrate that GSE supplementation inhibits trigeminal pain signaling in an injury-free model of migraine-like pain via activation of endocannabinoid receptors and repression of CGRP expression centrally. Hence, we propose that GSE may be beneficial as a complementary migraine therapeutic.
Collapse
Affiliation(s)
| | | | - Paul L. Durham
- Department of Biology, Missouri State University, Jordan Valley Innovation Center-Center for Biomedical and Life Sciences, Springfield, MO, United States
| |
Collapse
|
15
|
Levine A, Liktor-Busa E, Lipinski AA, Couture S, Balasubramanian S, Aicher SA, Langlais PR, Vanderah TW, Largent-Milnes TM. Sex differences in the expression of the endocannabinoid system within V1M cortex and PAG of Sprague Dawley rats. Biol Sex Differ 2021; 12:60. [PMID: 34749819 PMCID: PMC8577021 DOI: 10.1186/s13293-021-00402-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/25/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Several chronic pain disorders, such as migraine and fibromyalgia, have an increased prevalence in the female population. The underlying mechanisms of this sex-biased prevalence have yet to be thoroughly documented, but could be related to endogenous differences in neuromodulators in pain networks, including the endocannabinoid system. The cellular endocannabinoid system comprises the endogenous lipid signals 2-AG (2-arachidonoylglycerol) and AEA (anandamide); the enzymes that synthesize and degrade them; and the cannabinoid receptors. The relative prevalence of different components of the endocannabinoid system in specific brain regions may alter responses to endogenous and exogenous ligands. METHODS Brain tissue from naïve male and estrous staged female Sprague Dawley rats was harvested from V1M cortex, periaqueductal gray, trigeminal nerve, and trigeminal nucleus caudalis. Tissue was analyzed for relative levels of endocannabinoid enzymes, ligands, and receptors via mass spectrometry, unlabeled quantitative proteomic analysis, and immunohistochemistry. RESULTS Mass spectrometry revealed significant differences in 2-AG and AEA concentrations between males and females, as well as between female estrous cycle stages. Specifically, 2-AG concentration was lower within female PAG as compared to male PAG (*p = 0.0077); female 2-AG concentration within the PAG did not demonstrate estrous stage dependence. Immunohistochemistry followed by proteomics confirmed the prevalence of 2-AG-endocannabinoid system enzymes in the female PAG. CONCLUSIONS Our results suggest that sex differences exist in the endocannabinoid system in two CNS regions relevant to cortical spreading depression (V1M cortex) and descending modulatory networks in pain/anxiety (PAG). These basal differences in endogenous endocannabinoid mechanisms may facilitate the development of chronic pain conditions and may also underlie sex differences in response to therapeutic intervention.
Collapse
Affiliation(s)
- Aidan Levine
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Erika Liktor-Busa
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Austin A Lipinski
- Endocrinology Division, Department of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Sarah Couture
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Shreya Balasubramanian
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Sue A Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Paul R Langlais
- Endocrinology Division, Department of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Tally M Largent-Milnes
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA.
| |
Collapse
|
16
|
Greco R, Demartini C, Francavilla M, Zanaboni AM, Tassorelli C. Dual Inhibition of FAAH and MAGL Counteracts Migraine-like Pain and Behavior in an Animal Model of Migraine. Cells 2021; 10:2543. [PMID: 34685523 PMCID: PMC8534238 DOI: 10.3390/cells10102543] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
The endocannabinoid system exerts an important role in pain processing and modulation. Modulation of the system with hydrolase inhibitors of anandamide (AEA) or 2-arachidonyl glycerol (2-AG) has proved effective in reducing migraine-like features in animal models of migraine. Here, we investigated the effect of dual inhibition of the AEA and 2-AG catabolic pathways in the nitroglycerin-based animal model of migraine. The dual inhibitor JZL195 was administered to rats 2 h after nitroglycerin or vehicle injection. Rats were then exposed to the open field test and the orofacial formalin test. At the end of the tests, they were sacrificed to evaluate calcitonin gene-related peptide (CGRP) serum levels and gene expression of CGRP and cytokines in the cervical spinal cord and the trigeminal ganglion. The dual inhibitor significantly reduced the nitroglycerin-induced trigeminal hyperalgesia and pain-associated behavior, possibly via cannabinoid 1 receptors-mediated action, but it did not change the hypomotility and the anxiety behaviors induced by nitroglycerin. The decreased hyperalgesia was associated with a reduction in CGRP and cytokine gene expression levels in central and peripheral structures and reduced CGRP serum levels. These data suggest an antinociceptive synergy of the endocannabinoid action in peripheral and central sites, confirming that this system participates in reduction of cephalic pain signals.
Collapse
Affiliation(s)
- Rosaria Greco
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
| | - Chiara Demartini
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
| | - Miriam Francavilla
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
| | - Anna Maria Zanaboni
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| |
Collapse
|
17
|
De Icco R, Greco R, Demartini C, Vergobbi P, Zanaboni A, Tumelero E, Reggiani A, Realini N, Sances G, Grillo V, Allena M, Tassorelli C. Spinal nociceptive sensitization and plasma palmitoylethanolamide levels during experimentally induced migraine attacks. Pain 2021; 162:2376-2385. [PMID: 33587406 PMCID: PMC8374714 DOI: 10.1097/j.pain.0000000000002223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/04/2021] [Accepted: 01/22/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Migraine pathophysiology has been suggested to include dysregulation of the endocannabinoid system (ES). We simultaneously evaluated plasma anandamide (AEA) and palmitoylethanolamide (PEA) levels and spinal sensitization in a validated human model of migraine based on systemic nitroglycerin (NTG) administration. Twenty-four subjects with episodic migraine (MIG) and 19 healthy controls (HC) underwent blood sampling and investigation of nociceptive withdrawal reflex thresholds (RTh: single-stimulus threshold; TST: temporal summation threshold) before and 30 (T30), 60 (T60), and 120 (T120) minutes after sublingual NTG administration (0.9 mg). At baseline, the MIG and HC groups were comparable for plasma AEA (P = 0.822) and PEA (P = 0.182) levels, and for RTh (P = 0.142) and TST values (P = 0.150). Anandamide levels increased after NTG administration (P = 0.022) in both groups, without differences between them (P = 0.779). By contrast, after NTG administration, PEA levels increased in the MIG group at T120 (P = 0.004), while remaining stable in the HC group. Nitroglycerin administration induced central sensitization in the MIG group, which was recorded as reductions in RTh (P = 0.046) at T30 and T120, and in TST (P = 0.001) at all time points. In the HC group, we observed increases in RTh (P = 0.001) and TST (P = 0.008), which suggest the occurrence of habituation. We found no significant correlations between the ES and neurophysiological parameters. Our findings suggest a role for PEA in the ictal phase of episodic migraine. The ES does not seem to be directly involved in the modulation of NTG-induced central sensitization, which suggests that the observed PEA increase and spinal sensitization are parallel, probably unrelated, phenomena.
Collapse
Affiliation(s)
- Roberto De Icco
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Rosaria Greco
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Demartini
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Pietro Vergobbi
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Annamaria Zanaboni
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Elena Tumelero
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Angelo Reggiani
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genova, Italy
| | - Natalia Realini
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genova, Italy
| | - Grazia Sances
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Valentina Grillo
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Marta Allena
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Tassorelli
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
18
|
Baraldi C, Lo Castro F, Negro A, Ferrari A, Cainazzo MM, Pani L, Guerzoni S. Oral cannabinoid preparations for the treatment of chronic migraine: a retrospective study. PAIN MEDICINE 2021; 23:396-402. [PMID: 34347088 DOI: 10.1093/pm/pnab245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To explore the effectiveness and safety of 3 oral cannabinoid preparations (FM2®, Bedrocan® and Bediol®) in the treatment of chronic migraine. DESIGN Retrospective, cohort study. SUBJECTS Patients with chronic migraine who received FM2®, Bedrocan® or Bediol® daily for the off-label treatment of their headache, up to 6 months. METHODS The number of migraine days per month, pain intensity, the number of acute medications taken per month, the number of days per month when the patient took at least one acute medication, and adverse events were recorded at baseline, 3 months, and 6 months after the start of treatment with oral cannabinoid preparations. RESULTS The number of migraine days didn't change significantly after the 3rd and the 6th month when compared to baseline (P = 0.1182). The pain intensity (P = 0.0004), the acute medication consumption (P = 0.0006) and the number of days per month in which patients took, at least, one acute medication, (P = 0.0004) significantly decreased when compared to the baseline. No significant differences were found between patients who were still taking a preventive treatment for chronic migraine and those who weren't (all P > 0.05). Different oral cannabinoid preparations displayed similar effectiveness (all P > 0.05). The AEs were mostly mild and occurred in the 43.75% of patients. CONCLUSIONS Oral cannabinoid preparations may have a role in reducing pain intensity and acute medication intake in patients with chronic migraine, but the magnitude of the effect seems modest; further studies are needed.
Collapse
Affiliation(s)
- Carlo Baraldi
- Doctoral school of neurosciences; Department of biomedical, metabolic and neural sciences; University of Modena and Reggio Emilia; Via Campi 287, 41124, Modena, Italy
| | - Flavia Lo Castro
- Post graduated school in pharmacology and clinical toxicology; Department of biomedical, metabolic and neural sciences; University of Modena and Reggio Emilia; Via Campi 287, 41124, Modena, Italy
| | - Andrea Negro
- Regional referral headache center; Department of clinical and molecular medicine; Sapienza University of Rome; Via Di Grottarossa 1035, 00189, Rome, Italy
| | - Anna Ferrari
- Unit of medical toxicology, headache and drug abuse research center; Department of biomedical, metabolic and neural sciences; University of Modena and Reggio Emilia; Via del Pozzo 71, 41124, Modena, Italy
| | - Maria Michela Cainazzo
- Unit of medical toxicology, headache and drug abuse research center; Department of medical specialties; AOU Policlinico di Modena; Via del Pozzo 71, 41124, Modena, Italy
| | - Luca Pani
- Pharmacology unit; Department of biomedical, metabolic and neural sciences; University of Modena and Reggio Emilia; Via Campi 287, 41124, Modena, Italy.,Department of psychiatry and behavioral sciences, University of Miami, Miami, USA.,VeraSci, Durham, NC, USA
| | - Simona Guerzoni
- Unit of medical toxicology, headache and drug abuse research center; Department of biomedical, metabolic and neural sciences; University of Modena and Reggio Emilia; Via del Pozzo 71, 41124, Modena, Italy
| |
Collapse
|
19
|
Yamamoto T, Mulpuri Y, Izraylev M, Li Q, Simonian M, Kramme C, Schmidt BL, Seltzman HH, Spigelman I. Selective targeting of peripheral cannabinoid receptors prevents behavioral symptoms and sensitization of trigeminal neurons in mouse models of migraine and medication overuse headache. Pain 2021; 162:2246-2262. [PMID: 33534356 PMCID: PMC8277668 DOI: 10.1097/j.pain.0000000000002214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/19/2021] [Indexed: 01/03/2023]
Abstract
ABSTRACT Migraine affects ∼15% of the world's population greatly diminishing their quality of life. Current preventative treatments are effective in only a subset of migraine patients, and although cannabinoids seem beneficial in alleviating migraine symptoms, central nervous system side effects limit their widespread use. We developed peripherally restricted cannabinoids (PRCBs) that relieve chronic pain symptoms of cancer and neuropathies, without appreciable central nervous system side effects or tolerance development. Here, we determined PRCB effectiveness in alleviating hypersensitivity symptoms in mouse models of migraine and medication overuse headache. Long-term glyceryl trinitrate (GTN, 10 mg/kg) administration led to increased sensitivity to mechanical stimuli and increased expression of phosphorylated protein kinase A, neuronal nitric oxide synthase, and transient receptor potential ankyrin 1 proteins in trigeminal ganglia. Peripherally restricted cannabinoid pretreatment, but not posttreatment, prevented behavioral and biochemical correlates of GTN-induced sensitization. Low pH-activated and allyl isothiocyanate-activated currents in acutely isolated trigeminal neurons were reversibly attenuated by PRCB application. Long-term GTN treatment significantly enhanced these currents. Long-term sumatriptan treatment also led to the development of allodynia to mechanical and cold stimuli that was slowly reversible after sumatriptan discontinuation. Subsequent challenge with a previously ineffective low-dose GTN (0.1-0.3 mg/kg) revealed latent behavioral sensitization and increased expression of phosphorylated protein kinase A, neuronal nitric oxide synthase, and transient receptor potential ankyrin 1 proteins in trigeminal ganglia. Peripherally restricted cannabinoid pretreatment prevented all behavioral and biochemical correlates of allodynia and latent sensitization. Importantly, long-term PRCB treatment alone did not produce any behavioral or biochemical signs of sensitization. These data validate peripheral cannabinoid receptors as potential therapeutic targets in migraine and medication overuse headache.
Collapse
Affiliation(s)
- Toru Yamamoto
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Yatendra Mulpuri
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Mikhail Izraylev
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Qianyi Li
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Menooa Simonian
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Christian Kramme
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Brian L. Schmidt
- Department of Oral & Maxillofacial Surgery and Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY
| | - Herbert H. Seltzman
- Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC
| | - Igor Spigelman
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
20
|
Morris G, Walder K, Kloiber S, Amminger P, Berk M, Bortolasci CC, Maes M, Puri BK, Carvalho AF. The endocannabinoidome in neuropsychiatry: Opportunities and potential risks. Pharmacol Res 2021; 170:105729. [PMID: 34119623 DOI: 10.1016/j.phrs.2021.105729] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system (ECS) comprises two cognate endocannabinoid receptors referred to as CB1R and CB2R. ECS dysregulation is apparent in neurodegenerative/neuro-psychiatric disorders including but not limited to schizophrenia, major depressive disorder and potentially bipolar disorder. The aim of this paper is to review mechanisms whereby both receptors may interact with neuro-immune and neuro-oxidative pathways, which play a pathophysiological role in these disorders. CB1R is located in the presynaptic terminals of GABAergic, glutamatergic, cholinergic, noradrenergic and serotonergic neurons where it regulates the retrograde suppression of neurotransmission. CB1R plays a key role in long-term depression, and, to a lesser extent, long-term potentiation, thereby modulating synaptic transmission and mediating learning and memory. Optimal CB1R activity plays an essential neuroprotective role by providing a defense against the development of glutamate-mediated excitotoxicity, which is achieved, at least in part, by impeding AMPA-mediated increase in intracellular calcium overload and oxidative stress. Moreover, CB1R activity enables optimal neuron-glial communication and the function of the neurovascular unit. CB2R receptors are detected in peripheral immune cells and also in central nervous system regions including the striatum, basal ganglia, frontal cortex, hippocampus, amygdala as well as the ventral tegmental area. CB2R upregulation inhibits the presynaptic release of glutamate in several brain regions. CB2R activation also decreases neuroinflammation partly by mediating the transition from a predominantly neurotoxic "M1" microglial phenotype to a more neuroprotective "M2" phenotype. CB1R and CB2R are thus novel drug targets for the treatment of neuro-immune and neuro-oxidative disorders including schizophrenia and affective disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Stefan Kloiber
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Ursula Franklin Street, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Amminger
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
21
|
Auricular Electrical Stimulation Alleviates Headache through CGRP/COX-2/TRPV1/TRPA1 Signaling Pathways in a Nitroglycerin-Induced Migraine Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2413919. [PMID: 31885641 PMCID: PMC6927049 DOI: 10.1155/2019/2413919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/17/2019] [Accepted: 11/23/2019] [Indexed: 12/15/2022]
Abstract
The study aimed to investigate effect of auricular electrical stimulation (ES) on migraine. Migraine was induced in rats by intraperitoneal administration of nitroglycerin (NTG, 10 mg/kg) three times. Auricular ES pretreatment was performed for five consecutive days. Migraine behaviors were observed by a video recording. Auricular ES pretreatment could reverse the decrease of the total time spent on exploratory (2619.0 ± 113.0 s vs 1581.7 ± 217.6 s, p=0.0029) and locomotor behaviors (271.3 ± 21.4 s vs 114.3 ± 19.7 s, p=0.0135) and also could reverse the increase of the total time spent on resting (19.0 ± 10.6 s vs 154.3 ± 46.5 s, p=0.0398) and grooming (369.9 ± 66.8 s vs 1302.0 ± 244.5 s, p=0.0324) behaviors. Auricular ES pretreatment could increase the frequency of rearing behaviors (38.0 ± 1.8 vs 7.7 ± 3.5, p < 0.0001) and total distance traveled (1372.0 ± 157.9 cm vs 285.3 ± 85.6 cm, p < 0.0001) and also could increase the percentage of inner zone time (6.0 ± 1.6% vs 0.4 ± 0.2%, p=0.0472). The CGRP, COX-2, TRPV1, and TRPA1 immunoreactive cells in the trigeminal ganglion increased in the NTG group compared with the control group (all p < 0.0001); this increase could, however, be reduced by auricular ES pretreatment (27.8 ± 2.6 vs 63.0 ± 4.2, p < 0.0001; 21.7 ± 1.2 vs 61.8 ± 4.0, p < 0.0001; 24.3 ± 1.0 vs 36.5 ± 1.7, p=0.0003; and 20.7 ± 1.9 vs 90.8 ± 6.5, p < 0.0001, respectively). Therefore, we suggest that auricular ES pretreatment is beneficial for the treatment of migraine and this effect is partly related to CGRP/COX-2/TRPV1/TRPA1 signaling pathways.
Collapse
|
22
|
Greco R, Demartini C, Zanaboni AM, Tumelero E, Reggiani A, Misto A, Piomelli D, Tassorelli C. FAAH inhibition as a preventive treatment for migraine: A pre-clinical study. Neurobiol Dis 2019; 134:104624. [PMID: 31629892 DOI: 10.1016/j.nbd.2019.104624] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/02/2019] [Accepted: 09/23/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Fatty-acid amide hydrolase (FAAH) is an intracellular serine hydrolase that catalyzes the cleavage of endogenous fatty-acid amides, including the endocannabinoid anandamide (AEA). We previously reported that the peripherally restricted FAAH inhibitor URB937, which selectively increases AEA levels outside the central nervous system, reduces hyperalgesia and c-Fos expression in the trigeminal nucleus caudalis (TNC) and the locus coeruleus in an animal model of migraine based on nitroglycerin (NTG) administration. AIM To further investigate the relevance of FAAH inhibition in the NTG animal model of migraine by testing the effects of the globally active FAAH inhibitor URB597. METHODS Our experimental approach involved mapping neuronal c-Fos protein expression, measurement of AEA levels in brain areas and in trigeminal ganglia, evaluation of pain-related behavior and quantification of molecular mediators in rats that received URB597 (2 mg/kg i.p.) either before or after NTG administration (10 mg/kg, i.p.). RESULTS Pre-treatment with URB597 significantly reduced c-Fos immunoreactivity in the TNC and inhibited NTG-induced hyperalgesia in the orofacial formalin test. This behavioral response was associated with a decrease in neuronal nitric oxide synthase, calcitonin gene-related peptide and cytokine gene expression levels in central and peripheral structures. Administration of URB597 after NTG had no such effect. CONCLUSIONS The findings suggest that global FAAH inhibition may offer a therapeutic approach to the prevention, but not the abortive treatment, of migraine attacks. Further studies are needed to elucidate the exact cellular and molecular mechanisms underlying the protective effects of FAAH inhibition.
Collapse
Affiliation(s)
- Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation Pavia, Italy.
| | - Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation Pavia, Italy
| | - Anna Maria Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Elena Tumelero
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation Pavia, Italy
| | - Angelo Reggiani
- Dept. of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alessandra Misto
- Dept. of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genova, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Italy
| |
Collapse
|
23
|
Demartini C, Greco R, Zanaboni AM, Sances G, De Icco R, Borsook D, Tassorelli C. Nitroglycerin as a comparative experimental model of migraine pain: From animal to human and back. Prog Neurobiol 2019; 177:15-32. [DOI: 10.1016/j.pneurobio.2019.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/19/2019] [Accepted: 02/10/2019] [Indexed: 12/13/2022]
|
24
|
Tassorelli C, Greco R, Silberstein SD. The endocannabinoid system in migraine: from bench to pharmacy and back. Curr Opin Neurol 2019; 32:405-412. [DOI: 10.1097/wco.0000000000000688] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Bulboacă AE, Bolboacă SD, Stănescu IC, Sfrângeu CA, Porfire A, Tefas L, Bulboacă AC. The effect of intravenous administration of liposomal curcumin in addition to sumatriptan treatment in an experimental migraine model in rats. Int J Nanomedicine 2018; 13:3093-3103. [PMID: 29872296 PMCID: PMC5975613 DOI: 10.2147/ijn.s162087] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Curcumin has antioxidative properties that could be useful in various diseases due to its ability to act on multiple targets of various cellular pathways. We aimed to assess the efficacy of liposomal curcumin compared with curcumin solution, when in addition to sumatriptan (ST) treatment, in an experimental migraine model induced with nitroglycerin (NTG) in rats. METHODS Seven groups of 9 rats each were investigated: control group without migraine (1 mL saline solution intraperitoneal injection [ip]), control group with induced migraine, NTG+ST group (ST), NTG+ST+curcumin1 (CC1) group - 1 mg/100 g body weight (bw), NTG+ST+CC2 - 2 mg/100 g bw, NTG+ST+liposomal curcumin1 (lCC1) group - 1 mg/100 g bw, and NTG+ST+lCC2 (lCC2) group - 2 mg/100 g bw. NTG and ST were administered as 1 mL ip NTG | 1 mg/100 g bw and 1 mL ip ST | 1 mg/100 g bw, respectively. Plasma total oxidative stress (TOS), malondialdehyde (MDA), nitric oxide (NOx), thiol levels, as well as total antioxidative capacity (TAC) were assessed. The nociception process was assessed by counting the number of flinches and shakes after the formalin test. RESULTS The plasma TOS, MDA, and NOx levels, as oxidative stress parameters, were significantly decreased in the curcumin-treated groups, especially where curcumin was in liposomal form. The thiol and TAC were also improved by the curcumin treatment, with the best results obtained for the liposomal curcumin. The closest number of flinches and shakes to the control group was obtained for the group treated with liposomal curcumin at a dose of 2 mg/100 g bw. CONCLUSION Liposomal curcumin in a dose of 2 mg/100 g bw when in addition to ST treatment could be an optimum therapeutic strategy for migraine attacks and could represent a base for future clinical research and application.
Collapse
Affiliation(s)
- Adriana E Bulboacă
- Department of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Sorana D Bolboacă
- Department of Medical Informatics and Biostatistics, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Ioana C Stănescu
- Department of Neurology and Pediatric Neurology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Carmen A Sfrângeu
- Department of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu-Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Lucia Tefas
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu-Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Angelo C Bulboacă
- Department of Neurology and Pediatric Neurology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
26
|
Greco R, Demartini C, Zanaboni AM, Piomelli D, Tassorelli C. Endocannabinoid System and Migraine Pain: An Update. Front Neurosci 2018; 12:172. [PMID: 29615860 PMCID: PMC5867306 DOI: 10.3389/fnins.2018.00172] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/05/2018] [Indexed: 12/14/2022] Open
Abstract
The trigeminovascular system (TS) activation and the vasoactive release from trigeminal endings, in proximity of the meningeal vessels, are considered two of the main effector mechanisms of migraine attacks. Several other structures and mediators are involved, however, both upstream and alongside the TS. Among these, the endocannabinoid system (ES) has recently attracted considerable attention. Experimental and clinical data suggest indeed a link between dysregulation of this signaling complex and migraine headache. Clinical observations, in particular, show that the levels of anandamide (AEA)—one of the two primary endocannabinoid lipids—are reduced in cerebrospinal fluid and plasma of patients with chronic migraine (CM), and that this reduction is associated with pain facilitation in the spinal cord. AEA is produced on demand during inflammatory conditions and exerts most of its effects by acting on cannabinoid (CB) receptors. AEA is rapidly degraded by fatty acid amide hydrolase (FAAH) enzyme and its levels can be modulated in the peripheral and central nervous system (CNS) by FAAH inhibitors. Inhibition of AEA degradation via FAAH is a promising therapeutic target for migraine pain, since it is presumably associated to an increased availability of the endocannabinoid, specifically at the site where its formation is stimulated (e.g., trigeminal ganglion and/or meninges), thus prolonging its action.
Collapse
Affiliation(s)
- Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna M Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
27
|
Eroli F, Loonen IC, van den Maagdenberg AM, Tolner EA, Nistri A. Differential neuromodulatory role of endocannabinoids in the rodent trigeminal sensory ganglion and cerebral cortex relevant to pain processing. Neuropharmacology 2018; 131:39-50. [DOI: 10.1016/j.neuropharm.2017.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/19/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022]
|
28
|
Körtési T, Tuka B, Tajti J, Bagoly T, Fülöp F, Helyes Z, Vécsei L. Kynurenic Acid Inhibits the Electrical Stimulation Induced Elevated Pituitary Adenylate Cyclase-Activating Polypeptide Expression in the TNC. Front Neurol 2018; 8:745. [PMID: 29387039 PMCID: PMC5775965 DOI: 10.3389/fneur.2017.00745] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022] Open
Abstract
Background Migraine is a primary headache of imprecisely known mechanism, but activation of the trigeminovascular system (TS) appears to be essential during the attack. Intensive research has recently focused on pituitary adenylate cyclase-activating polypeptide (PACAP) and the kynurenine systems as potential pathogenic factors. Aim We investigated the link between these important mediators and the effects of kynurenic acid (KYNA) and its synthetic analog (KYNA-a) on PACAP expression in the rat trigeminal nucleus caudalis (TNC) in a TS stimulation model related to migraine mechanisms. Methods Adult male Sprague-Dawley rats were pretreated with KYNA, KYNA-a, the NMDA receptor antagonist MK-801, or saline (vehicle). Next, the trigeminal ganglion (TRG) was electrically stimulated, the animals were transcardially perfused following 180 min, and the TNC was removed. In the TNC samples, 38 amino acid form of PACAP (PACAP1–38)-like radioimmunoactivity was measured by radioimmunoassay, the relative optical density of preproPACAP was assessed by Western blot analysis, and PACAP1–38 mRNA was detected by real-time PCR. Results and conclusion Electrical TRG stimulation resulted in significant increases of PACAP1–38-LI, preproPACAP, and PACAP1–38 mRNA in the TNC. These increases were prevented by the pretreatments with KYNA, KYNA-a, and MK-801. This is the first study to provide evidence for a direct link between PACAP and the kynurenine system during TS activation.
Collapse
Affiliation(s)
- Tamás Körtési
- Faculty of Medicine, Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Bernadett Tuka
- MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary
| | - János Tajti
- Faculty of Medicine, Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Teréz Bagoly
- Faculty of Medicine, Department of Pharmacology and Pharmacotherapy, University of Pécs, Pécs, Hungary
| | - Ferenc Fülöp
- Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary.,MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsuzsanna Helyes
- Faculty of Medicine, Department of Pharmacology and Pharmacotherapy, University of Pécs, Pécs, Hungary.,János Szentágothai Research Center, University of Pécs, Pécs, Hungary.,MTA-PTE NAP B Chronic Pain Research Group, University of Pécs, Pécs, Hungary
| | - László Vécsei
- Faculty of Medicine, Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
29
|
Farajdokht F, Mohaddes G, Shanehbandi D, Karimi P, Babri S. Ghrelin attenuated hyperalgesia induced by chronic nitroglycerin: CGRP and TRPV1 as targets for migraine management. Cephalalgia 2017; 38:1716-1730. [DOI: 10.1177/0333102417748563] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background According to the neurovascular theory of migraine, activation of the trigeminovascular system contributes to the development of migraine. This study examined the effects of chronic intraperitoneal ghrelin (150 µg/kg) treatment on the development of chronic migraine induced by intermittent injection of nitroglycerin 10 mg/kg. Methods Baseline and post-drug (2 h following nitroglycerin injection) mechanical and thermal sensitivity were assessed by von Frey hair and tail immersion tests, respectively on days 1, 3, 5, 7, 9 and 11. Moreover, we investigated the effect of ghrelin treatment on nitroglycerin-induced aversive behavior by using a two-chamber conditioned place aversion paradigm. At the end of behavioral testing, on day 11, animals were sacrificed and plasma concentration of calcitonin gene-related peptide was measured using a rat-specific enzyme-linked immunosorbent assay kit. Also, real time polymerase chain reaction was used to quantify mRNA expression of calcitonin gene-related peptide and transient receptor potential vanilloid 1 in the trigeminal ganglion. Results Our results indicated that nitroglycerin activated the trigeminovascular system, which was reflected by mechanical and thermal hypersensitivity and elevation of mRNA expression of calcitonin gene-related peptide and transient receptor potential vanilloid-1, as migraine markers, and plasma calcitonin gene-related peptide levels. Moreover, chronic nitroglycerin injection induced conditioned place aversion and body weight loss. Nevertheless, ghrelin modulated nitroglycerin-triggered changes in transient receptor potential vanilloid-1 and calcitonin gene-related peptide expression, and mitigated nitroglycerin-induced hyperalgesia. Conclusion These results provide the first convincing evidence that ghrelin has a modulating effect on central sensitization induced by chronic intermittent nitroglycerin, and its antinociceptive effect may be related to a reduction of these factors in the trigeminal ganglion.
Collapse
Affiliation(s)
- Fereshteh Farajdokht
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Babri
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Nitroglycerin increases serotonin transporter expression in rat spinal cord but anandamide modulated this effect. J Chem Neuroanat 2017. [DOI: 10.1016/j.jchemneu.2017.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
31
|
Greco R, Demartini C, Zanaboni AM, Berliocchi L, Piomelli D, Tassorelli C. Inhibition of monoacylglycerol lipase: Another signalling pathway for potential therapeutic targets in migraine? Cephalalgia 2017; 38:1138-1147. [DOI: 10.1177/0333102417727537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Drugs that modulate endocannabinoid signalling are effective in reducing nociception in animal models of pain and may be of value in the treatment of migraine. Methods We investigated the anti-nociceptive effects of inhibition of monoacylglycerol lipase (MGL), a key enzyme in the hydrolysis of the 2-arachidonoylglycerol, in a rat model of migraine based on nitroglycerin (NTG) administration. We evaluated c-fos expression in specific brain areas and nociceptive behavior in trigeminal and extra-trigeminal body areas. Results URB602, a reversible MGL inhibitor, did not show any analgesic effect in the tail flick test, but it inhibited NTG-induced hyperalgesia in both the tail flick test and the formalin test applied to the hind paw or to the orofacial area. Quite unexpectedly, URB602 potentiated formalin-induced hyperalgesia in the trigeminal area when used alone. The latter result was also confirmed using a structurally distinct, irreversible MGL inhibitor, JZL184. URB602 did not induce neuronal activation in the area of interest, but significantly reduced the NTG-induced neuronal activation in the ventrolateral column of the periaqueductal grey and the nucleus trigeminalis caudalis. Conclusions These findings support the hypothesis that modulation of the endocannabinoid system may be a valuable approach for the treatment of migraine. The topographically segregated effect of MGL inhibition in trigeminal/extra-trigeminal areas calls for further mechanistic research.
Collapse
Affiliation(s)
- Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, “C. Mondino” National Neurological Institute, Pavia, Italy
| | - Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, “C. Mondino” National Neurological Institute, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Anna Maria Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, “C. Mondino” National Neurological Institute, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Laura Berliocchi
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, USA
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, “C. Mondino” National Neurological Institute, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| |
Collapse
|
32
|
Interactions between the Kynurenine and the Endocannabinoid System with Special Emphasis on Migraine. Int J Mol Sci 2017; 18:ijms18081617. [PMID: 28758944 PMCID: PMC5578009 DOI: 10.3390/ijms18081617] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 12/15/2022] Open
Abstract
Both the kynurenine and the endocannabinoid systems are involved in several neurological disorders, such as migraine and there are increasing number of reports demonstrating that there are interactions of two systems. Although their cooperation has not yet been implicated in migraine, there are reports suggesting this possibility. Additionally, the individual role of the endocannabinoid and kynurenine system in migraine is reviewed here first, focusing on endocannabinoids, kynurenine metabolites, in particular kynurenic acid. Finally, the function of NMDA and cannabinoid receptors in the trigeminal system-which has a crucial role in the pathomechanisms of migraine-will also be discussed. The interaction of the endocannabinoid and kynurenine system has been demonstrated to be therapeutically relevant in a number of pathological conditions, such as cannabis addiction, psychosis, schizophrenia and epilepsy. Accordingly, the cross-talk of these two systems may imply potential mechanisms related to migraine, and may offer new approaches to manage the treatment of this neurological disorder.
Collapse
|
33
|
Nagy-Grócz G, Laborc KF, Veres G, Bajtai A, Bohár Z, Zádori D, Fejes-Szabó A, Spekker E, Vécsei L, Párdutz Á. The Effect of Systemic Nitroglycerin Administration on the Kynurenine Pathway in the Rat. Front Neurol 2017; 8:278. [PMID: 28659861 PMCID: PMC5469907 DOI: 10.3389/fneur.2017.00278] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/29/2017] [Indexed: 12/31/2022] Open
Abstract
The primary headache disorders include migraine, which is one of the most frequent neurological disorders, which influences more than 14% of the whole population. Despite the research efforts, its exact pathomechanism is not fully revealed, but evidence points to the role of glutamate and its receptors. Kynurenic acid is an endogenous glutamate receptor antagonist produced by the kynurenine pathway (KP). Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) convert l-tryptophan to N-formyl-l-kynurenine, to be further transformed to l-kynurenine. Kynurenine aminotransferase-II (KAT-II), l-kynurenine hydrolase (KYNU), and l-kynurenine 3-monooxygenase (KMO) are key enzymes in the later steps of the KP. Nitroglycerin (NTG) administration serves as both human and animal model of migraine, causing the activation and sensitization in the trigeminal system. A previous study demonstrated a reduction of KAT-II expression following NTG administration in animals. The goal of current tests was to identify the potential modulatory effect of NTG on other metabolizing enzymes of the KP in the caudal trigeminal nucleus (TNC) of rats. Four hours following the intraperitoneal injection of NTG (10 mg/kg), the rats were perfused transcardially and the TNC was extracted for Western blotting. Western blot studies revealed that the expression of TDO2, IDO1, KYNU, and KMO decreased in the TNC. The results demonstrated that NTG is able to downregulate the KP, with a potential influence on the glutamatergic system as well, contributing to the development of trigeminal activation and sensitization in animals.
Collapse
Affiliation(s)
- Gábor Nagy-Grócz
- MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary.,Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Klaudia F Laborc
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Gábor Veres
- MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary
| | - Attila Bajtai
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Zsuzsanna Bohár
- MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary.,Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Dénes Zádori
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | | | - Eleonóra Spekker
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary.,Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Árpád Párdutz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| |
Collapse
|
34
|
Juhasz G, Csepany E, Magyar M, Edes AE, Eszlari N, Hullam G, Antal P, Kokonyei G, Anderson IM, Deakin JFW, Bagdy G. Variants in the CNR1 gene predispose to headache with nausea in the presence of life stress. GENES, BRAIN, AND BEHAVIOR 2017; 16:384-393. [PMID: 27762084 PMCID: PMC5347942 DOI: 10.1111/gbb.12352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/15/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022]
Abstract
One of the main effects of the endocannabinoid system in the brain is stress adaptation with presynaptic endocannabinoid receptor 1 (CB1 receptors) playing a major role. In the present study, we investigated whether the effect of the CB1 receptor coding CNR1 gene on migraine and its symptoms is conditional on life stress. In a cross-sectional European population (n = 2426), recruited from Manchester and Budapest, we used the ID-Migraine questionnaire for migraine screening, the Life Threatening Experiences questionnaire to measure recent negative life events (RLE), and covered the CNR1 gene with 11 SNPs. The main genetic effects and the CNR1 × RLE interaction with age and sex as covariates were tested. None of the SNPs showed main genetic effects on possible migraine or its symptoms, but 5 SNPs showed nominally significant interaction with RLE on headache with nausea using logistic regression models. The effect of rs806366 remained significant after correction for multiple testing and replicated in the subpopulations. This effect was independent from depression- and anxiety-related phenotypes. In addition, a Bayesian systems-based analysis demonstrated that in the development of headache with nausea all SNPs were more relevant with higher a posteriori probability in those who experienced recent life stress. In summary, the CNR1 gene in interaction with life stress increased the risk of headache with nausea suggesting a specific pathological mechanism to develop migraine, and indicating that a subgroup of migraine patients, who suffer from life stress triggered migraine with frequent nausea, may benefit from therapies that increase the endocannabinoid tone.
Collapse
Affiliation(s)
- G. Juhasz
- MTA‐SE‐NAP B Genetic Brain Imaging Migraine Research Group, Hungarian Academy of SciencesBudapestHungary
- Department of Pharmacodynamics, Faculty of PharmacySemmelweis UniversityBudapestHungary
- Neuroscience and Psychiatry UnitThe University of Manchester and Manchester Academic Health Sciences CentreManchesterUnited Kingdom
- MTA‐SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences
- NAP‐A‐SE Research GroupSemmelweis UniversityBudapestHungary
| | - E. Csepany
- MTA‐SE‐NAP B Genetic Brain Imaging Migraine Research Group, Hungarian Academy of SciencesBudapestHungary
- Department of Neurology, Faculty of MedicineSemmelweis UniversityBudapestHungary
| | - M. Magyar
- MTA‐SE‐NAP B Genetic Brain Imaging Migraine Research Group, Hungarian Academy of SciencesBudapestHungary
- Department of Neurology, Faculty of MedicineSemmelweis UniversityBudapestHungary
| | - A. E. Edes
- MTA‐SE‐NAP B Genetic Brain Imaging Migraine Research Group, Hungarian Academy of SciencesBudapestHungary
- MTA‐SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences
| | - N. Eszlari
- MTA‐SE‐NAP B Genetic Brain Imaging Migraine Research Group, Hungarian Academy of SciencesBudapestHungary
- MTA‐SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences
- NAP‐A‐SE Research GroupSemmelweis UniversityBudapestHungary
| | - G. Hullam
- MTA‐SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences
- Department of Measurement and Information SystemsBudapest University of Technology and EconomicsBudapestHungary
- NAP‐A‐SE Research GroupSemmelweis UniversityBudapestHungary
| | - P. Antal
- Neuroscience and Psychiatry UnitThe University of Manchester and Manchester Academic Health Sciences CentreManchesterUnited Kingdom
- Department of Measurement and Information SystemsBudapest University of Technology and EconomicsBudapestHungary
- NAP‐A‐SE Research GroupSemmelweis UniversityBudapestHungary
| | - G. Kokonyei
- MTA‐SE‐NAP B Genetic Brain Imaging Migraine Research Group, Hungarian Academy of SciencesBudapestHungary
- Institute of PsychologyEötvös Loránd UniversityBudapestHungary
| | - I. M. Anderson
- Neuroscience and Psychiatry UnitThe University of Manchester and Manchester Academic Health Sciences CentreManchesterUnited Kingdom
| | - J. F. W. Deakin
- Neuroscience and Psychiatry UnitThe University of Manchester and Manchester Academic Health Sciences CentreManchesterUnited Kingdom
| | - G. Bagdy
- MTA‐SE‐NAP B Genetic Brain Imaging Migraine Research Group, Hungarian Academy of SciencesBudapestHungary
- Department of Pharmacodynamics, Faculty of PharmacySemmelweis UniversityBudapestHungary
- MTA‐SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences
- NAP‐A‐SE Research GroupSemmelweis UniversityBudapestHungary
| |
Collapse
|
35
|
Greco R, Demartini C, Zanaboni AM, Redavide E, Pampalone S, Toldi J, Fülöp F, Blandini F, Nappi G, Sandrini G, Vécsei L, Tassorelli C. Effects of kynurenic acid analogue 1 (KYNA-A1) in nitroglycerin-induced hyperalgesia: Targets and anti-migraine mechanisms. Cephalalgia 2016; 37:1272-1284. [PMID: 27919017 DOI: 10.1177/0333102416678000] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Trigeminal sensitization represents a major mechanism underlying migraine attacks and their recurrence. Nitroglycerin (NTG) administration provokes spontaneous migraine-like headaches and in rat, an increased sensitivity to the formalin test. Kynurenic acid (KYNA), an endogenous regulator of glutamate activity and its analogues attenuate NTG-induced neuronal activation in the nucleus trigeminalis caudalis (NTC). The anti-hyperalgesic effect of KYNA analogue 1 (KYNA-A1) was investigated on animal models specific for migraine pain. Aim Rats made hyperalgesic by NTG administration underwent the plantar or orofacial formalin tests. The effect of KYNA-A1 was evaluated in terms of nocifensive behavior and of neuronal nitric oxide synthase (nNOS), calcitonin gene-related peptide (CGRP) and cytokines expression in areas involved in trigeminal nociception. Results KYNA-A1 abolished NTG-induced hyperalgesia in both pain models; NTG alone or associated to formalin injection induced an increased mRNA expression of CGRP, nNOS and cytokines in the trigeminal ganglia and central areas, which was reduced by KYNA-A1. Additionally, NTG caused a significant increase in nNOS immunoreactivity in the NTC, which was prevented by KYNA-A1. Conclusion Glutamate activity is likely involved in mediating hyperalgesia in an animal model specific for migraine. Its inhibition by means of a KYNA analogue modulates nNOS, CGRP and cytokines expression at peripheral and central levels.
Collapse
Affiliation(s)
- Rosaria Greco
- 1 Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Chiara Demartini
- 1 Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, C. Mondino National Neurological Institute, Pavia, Italy.,2 Department of Brain and Behavior, University of Pavia, Italy
| | - Anna Maria Zanaboni
- 1 Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, C. Mondino National Neurological Institute, Pavia, Italy.,2 Department of Brain and Behavior, University of Pavia, Italy
| | - Elisa Redavide
- 1 Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Selena Pampalone
- 1 Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Joseph Toldi
- 3 Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Hungary
| | - Ferenc Fülöp
- 4 Institute of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Szeged, Hungary
| | - Fabio Blandini
- 5 Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute, Pavia, Italy
| | - Giuseppe Nappi
- 1 Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Giorgio Sandrini
- 1 Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, C. Mondino National Neurological Institute, Pavia, Italy.,2 Department of Brain and Behavior, University of Pavia, Italy
| | - László Vécsei
- 6 Department of Neurology, MTA-SZTE Neuroscience Research Group, University of Szeged, Hungary
| | - Cristina Tassorelli
- 1 Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, C. Mondino National Neurological Institute, Pavia, Italy.,2 Department of Brain and Behavior, University of Pavia, Italy
| |
Collapse
|