1
|
Harriott AM, Kaya M, Ayata C. Oxytocin shortens spreading depolarization-induced periorbital allodynia. J Headache Pain 2024; 25:152. [PMID: 39289629 PMCID: PMC11406737 DOI: 10.1186/s10194-024-01855-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Migraine is among the most prevalent and burdensome neurological disorders in the United States based on disability-adjusted life years. Cortical spreading depolarization (SD) is the most likely electrophysiological cause of migraine aura and may be linked to trigeminal nociception. We previously demonstrated, using a minimally invasive optogenetic approach of SD induction (opto-SD), that opto-SD triggers acute periorbital mechanical allodynia that is reversed by 5HT1B/1D receptor agonists, supporting SD-induced activation of migraine-relevant trigeminal pain pathways in mice. Recent data highlight hypothalamic neural circuits in migraine, and SD may activate hypothalamic neurons. Furthermore, neuroanatomical, electrophysiological, and behavioral data suggest a homeostatic analgesic function of hypothalamic neuropeptide hormone, oxytocin. We, therefore, examined the role of hypothalamic paraventricular nucleus (PVN) and oxytocinergic (OXT) signaling in opto-SD-induced trigeminal pain behavior. METHODS We induced a single opto-SD in adult male and female Thy1-ChR2-YFP transgenic mice and quantified fos immunolabeling in the PVN and supraoptic nucleus (SON) compared with sham controls. Oxytocin expression was also measured in fos-positive neurons in the PVN. Periorbital mechanical allodynia was tested after treatment with selective OXT receptor antagonist L-368,899 (5 to 25 mg/kg i.p.) or vehicle at 1, 2, and 4 h after opto-SD or sham stimulation using von Frey monofilaments. RESULTS Opto-SD significantly increased the number of fos immunoreactive cells in the PVN and SON as compared to sham stimulation (p < 0.001, p = 0.018, respectively). A subpopulation of fos-positive neurons also stained positive for oxytocin. Opto-SD evoked periorbital mechanical allodynia 1 h after SD (p = 0.001 vs. sham), which recovered quickly within 2 h (p = 0.638). OXT receptor antagonist L-368,899 dose-dependently prolonged SD-induced periorbital allodynia (p < 0.001). L-368,899 did not affect mechanical thresholds in the absence of opto-SD. CONCLUSIONS These data support an SD-induced activation of PVN neurons and a role for endogenous OXT in alleviating acute SD-induced trigeminal allodynia by shortening its duration.
Collapse
Affiliation(s)
- Andrea M Harriott
- Neurovascular Research Unit, Department of Neurology, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston MA, 02129, USA.
| | - Melih Kaya
- Neurovascular Research Unit, Department of Neurology, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston MA, 02129, USA
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Neurology, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston MA, 02129, USA
| |
Collapse
|
2
|
Albinni B, Zimmerman M, Ross J, Ozdoyuran L, Alasha V, Schuster NM, Said E, Case L. Subcutaneous Oxytocin Injection Reduces Heat Pain: A Randomized-Controlled Trial. THE JOURNAL OF PAIN 2024; 25:104547. [PMID: 38642595 DOI: 10.1016/j.jpain.2024.104547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
Oxytocin (OT) is a neuropeptide broadly implicated in social relationships and behavior. OT also exerts antinociceptive and pain-reducing effects in both humans and rodents. Recent research in rodents demonstrates that these effects can be peripheral and local. In human studies, intravenous OT has reduced visceral pain, and subcutaneous injection of OT has reduced postsurgical pain. However, the local effects of subcutaneous OT on experimental pain have not been studied. We conducted a 2-session crossover study during which healthy adults received a subcutaneous injection of synthetic OT (4 mcg/2 mL) or saline placebo (isotonic saline 2 mL), in a randomized and double-blinded manner. Eighteen participants completed full study procedures. We hypothesized that 10 minutes after injection, OT would reduce measures of acute mechanical pain, pressure pain, and heat pain perception. Subcutaneous OT significantly reduced ratings of heat pain intensity and unpleasantness (both P < .01), but did not alter mechanical pain, pressure pain, or heat pain threshold (all P > .05). Changes in heat pain were observed only on the injected arm and not on the contralateral arm, confirming a localized mechanism. These findings confirm the ability of OT in or near the skin to modulate nociceptive processes in cutaneous tissues in human adults, opening exciting avenues for further mechanistic research as well as potential clinical applications for acute pain. PERSPECTIVE: This randomized-controlled trial showed that a subcutaneous injection of OT could reduce perception of heat pain tested with a thermode. OT did not alter mechanical or pressure pain or thresholds for perceiving heat pain. These findings are relevant to scientists and clinicians seeking nonaddictive local drug treatments for pain.
Collapse
Affiliation(s)
- Benedetta Albinni
- Department of Anesthesiology, UC San Diego Health, La Jolla, California
| | - Marisa Zimmerman
- Department of Anesthesiology, UC San Diego Health, La Jolla, California
| | - Jacob Ross
- Department of Anesthesiology, UC San Diego Health, La Jolla, California
| | - Leyla Ozdoyuran
- Department of Anesthesiology, UC San Diego Health, La Jolla, California
| | - Vincent Alasha
- Department of Anesthesiology, UC San Diego Health, La Jolla, California
| | | | - Engy Said
- Department of Anesthesiology, UC San Diego Health, La Jolla, California
| | - Laura Case
- Department of Anesthesiology, UC San Diego Health, La Jolla, California; VA San Diego Healthcare System, San Diego, California.
| |
Collapse
|
3
|
Bharadwaj VN, Klukinov M, Cowan RP, Mahinparvar N, Clark DJ, Yeomans DC. Oxytocin Receptors on Calvarial Periosteal Innervation: Therapeutic Target for Post-Traumatic Headache? Pharmaceutics 2024; 16:760. [PMID: 38931882 PMCID: PMC11206786 DOI: 10.3390/pharmaceutics16060760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE Following a mild traumatic brain injury (mTBI), the most prevalent and profoundly debilitating occurrence is the emergence of an acute and persistent post-traumatic headache (PTH), for which there are presently no approved treatments. A crucial gap in knowledge exists regarding the consequences of an mTBI, which could serve as a foundation for the development of therapeutic approaches. The activation of trigeminal sensory nerve terminals that innervate the calvarial periosteum (CP)-a densely innervated tissue layer covering the calvarial skull-has been implicated in both migraines and PTHs. We have previously shown that trigeminal oxytocin receptors (OTRs) may provide a therapeutic target for PTHs. This study examined the expression of oxytocin receptors on trigeminal nerves innervating the periosteum and whether these receptors might serve as a therapeutic target for PTHs using a direct application of oxytocin to the periosteum in a rodent model of PTH. METHODS We used retrograde tracing and immunohistochemistry to determine if trigeminal ganglion (TG) neurons innervating the periosteum expressed OTRs and/or CGRPs. To model the impact of local inflammation that occurs following an mTBI, we applied chemical inflammatory mediators directly to the CP and assessed for changes in immediate-early gene expression as an indication of neuronal activation. We also determined whether mTBI would lead to expression changes to OTR levels. To determine whether these OTRs could be a viable therapeutic target, we assessed the impact of oxytocin injections into the CP in a mouse model of PTH-induced periorbital allodynia. RESULTS The results of these experiments demonstrate the following: (1) the cell bodies of CP afferents reside in the TG and express both OTRs and CGRPs; (2) inflammatory chemical stimulation of the periosteum leads to rapid activation of TG neurons (phospho-ERK (p-ERK) expression), (3) mTBI-induced inflammation increased OTR expression compared to the sham group; and (4) administration of oxytocin into the periosteum on day 2 and day 40 blocked cutaneous allodynia for up to one hour post-administration for both acute and persistence phases in the PTH model-an effect that was preventable by the administration of an OTR antagonist. CONCLUSION Taken together, our observations suggest that periosteal trigeminal afferents contribute to post-TBI craniofacial pain, and that periosteum tissue can be used as a potential local target for therapeutics such as oxytocin.
Collapse
Affiliation(s)
- Vimala N. Bharadwaj
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA (M.K.); (R.P.C.); (N.M.); (D.J.C.)
| | - Michael Klukinov
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA (M.K.); (R.P.C.); (N.M.); (D.J.C.)
| | - Robert Paul Cowan
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA (M.K.); (R.P.C.); (N.M.); (D.J.C.)
| | - Nazanin Mahinparvar
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA (M.K.); (R.P.C.); (N.M.); (D.J.C.)
| | - David John Clark
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA (M.K.); (R.P.C.); (N.M.); (D.J.C.)
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA 94304, USA
| | - David Clifford Yeomans
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA (M.K.); (R.P.C.); (N.M.); (D.J.C.)
| |
Collapse
|
4
|
van Lohuizen R, Paungarttner J, Lampl C, MaassenVanDenBrink A, Al-Hassany L. Considerations for hormonal therapy in migraine patients: a critical review of current practice. Expert Rev Neurother 2023; 24:1-21. [PMID: 38112066 PMCID: PMC10791067 DOI: 10.1080/14737175.2023.2296610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
INTRODUCTION Migraine, a neurovascular headache disorder, is a leading cause of disability worldwide. Within the multifaceted pathophysiology of migraine, hormonal fluctuations play an evident triggering and exacerbating role, pointing toward the need for identification and proper usage of both existing and new hormonal targets in migraine treatment. AREAS COVERED With a threefold higher incidence of migraine in women than in men, the authors delve into sex hormone-related events in migraine patients. A comprehensive overview is given of existing hormonal therapies, including oral contraceptives, intrauterine devices, transdermal and subcutaneous estradiol patches, gnRH-agonists, oral testosterone, and 5α reductase inhibitors. The authors discuss their effectiveness and risks, noting their suitability for different patient profiles. Next, novel evolving hormonal treatments, such as oxytocin and prolactin, are explored. Lastly, the authors cover hormonal conditions associated with migraine, such as polycystic ovary syndrome, endometriosis, and transgender persons receiving gender affirming hormone therapy, aiming to provide more personalized and effective solutions for migraine management. EXPERT OPINION Rigorous research into both existing and new hormonal targets, as well as the underlying pathophysiology, is needed to support a tailored approach in migraine treatment, in an ongoing effort to alleviate the impact of migraine on individuals and society.
Collapse
Affiliation(s)
- Romy van Lohuizen
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Christian Lampl
- Headache Medical Center Linz, Linz, Austria
- Department of Neurology and Stroke Unit, Koventhospital Barmherzige Brüder Linz, Linz, Austria
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Linda Al-Hassany
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
5
|
El Heni H, Kemenesi-Gedei PB, Pálvölgyi L, Kozma-Szeredi ID, Kis G. Peripheral Branch Injury Induces Oxytocin Receptor Expression at the Central Axon Terminals of Primary Sensory Neurons. Int J Mol Sci 2023; 25:7. [PMID: 38203176 PMCID: PMC10779307 DOI: 10.3390/ijms25010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Considerable evidence suggests that oxytocin, as a regulatory nonapeptide, participates in modulatory mechanisms of nociception. Nonetheless, the role of this hypothalamic hormone and its receptor in the sensory pathway has yet to be fully explored. The present study performed immunohistochemistry, enzyme-linked immunosorbent assay, and RT-qPCR analysis to assess changes in the expression of the neuronal oxytocin receptor in female rats following tight ligation of the sciatic nerve after 1, 3, and 7 days of survival. Oxytocin receptor immunoreactivity was present in both dorsal root ganglia and lumbar spinal cord segments, but not accumulated at the site of the ligation of the peripheral nerve branch. We found a time-dependent change in the expression of oxytocin receptor mRNA in L5 dorsal root ganglion neurons, as well as an increase in the level of the receptor protein in the lumbar segment of the spinal cord. A peak in the expression was observed on day 3, which downturned slightly by day 7 after the nerve ligation. These results show that OTR expression is up-regulated in response to peripheral nerve lesions. We assume that the importance of OTR is to modify spinal presynaptic inputs of the sensory neurons upon injury-induced activation, thus to be targets of the descending oxytocinergic neurons from supraspinal levels. The findings of this study support the concept that oxytocin plays a role in somatosensory transmission.
Collapse
Affiliation(s)
- Heni El Heni
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Péter Bátor Kemenesi-Gedei
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Laura Pálvölgyi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Ivett Dorina Kozma-Szeredi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Gyöngyi Kis
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
6
|
Chen Q, Bharadwaj V, Irvine KA, Clark JD. Mechanisms and treatments of chronic pain after traumatic brain injury. Neurochem Int 2023; 171:105630. [PMID: 37865340 DOI: 10.1016/j.neuint.2023.105630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
While pain after trauma generally resolves, some trauma patients experience pain for months to years after injury. An example, relevant to both combat and civilian settings, is chronic pain after traumatic brain injury (TBI). Headache as well as pain in the back and extremities are common locations for TBI-related chronic pain to be experienced. TBI-related pain can exist alone or can exacerbate pain from other injuries long after healing has occurred. Consequences of chronic pain in these settings include increased suffering, higher levels of disability, serious emotional problems, and worsened cognitive deficits. The current review will examine recent evidence regarding dysfunction of endogenous pain modulatory mechanisms, neuroplastic changes in the trigeminal circuitry and alterations in spinal nociceptive processing as contributors to TBI-related chronic pain. Key pain modulatory centers including the locus coeruleus, periaqueductal grey matter, and rostroventromedial medulla are vulnerable to TBI. Both the rationales and existing evidence for the use of monoamine reuptake inhibitors, CGRP antagonists, CXCR2 chemokine receptor antagonists, and interventional therapies will be presented. While consensus guidelines for the management of chronic post-traumatic TBI-related pain are lacking, several approaches to this clinically challenging situation deserve focused evaluation and may prove to be viable therapeutic options.
Collapse
Affiliation(s)
- QiLiang Chen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | - Vimala Bharadwaj
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | - Karen-Amanda Irvine
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA, 94304, USA
| | - J David Clark
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA, 94304, USA.
| |
Collapse
|
7
|
Kamrani-Sharif R, Hayes AW, Gholami M, Salehirad M, Allahverdikhani M, Motaghinejad M, Emanuele E. Oxytocin as neuro-hormone and neuro-regulator exert neuroprotective properties: A mechanistic graphical review. Neuropeptides 2023; 101:102352. [PMID: 37354708 DOI: 10.1016/j.npep.2023.102352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 03/28/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Neurodegeneration is progressive cell loss in specific neuronal populations, often resulting in clinical consequences with significant medical, societal, and economic implications. Because of its antioxidant, anti-inflammatory, and anti-apoptotic properties, oxytocin has been proposed as a potential neuroprotective and neurobehavioral therapeutic agent, including modulating mood disturbances and cognitive enchantment. METHODS Literature searches were conducted using the following databases Web of Science, PubMed, Elsevier Science Direct, Google Scholar, the Core Collection, and Cochrane from January 2000 to February 2023 for articles dealing with oxytocin neuroprotective properties in preventing or treating neurodegenerative disorders and diseases with a focus on oxidative stress, inflammation, and apoptosis/cell death. RESULTS The neuroprotective effects of oxytocin appears to be mediated by its anti-inflammatory properties, inhibition of neuro inflammation, activation of several antioxidant enzymes, inhibition of oxidative stress and free radical formation, activation of free radical scavengers, prevent of mitochondrial dysfunction, and inhibition of apoptosis. CONCLUSION Oxytocin acts as a neuroprotective agent by preventing neuro-apoptosis, neuro-inflammation, and neuronal oxidative stress, and by restoring mitochondrial function.
Collapse
Affiliation(s)
- Roya Kamrani-Sharif
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Salehirad
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Allahverdikhani
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
8
|
Kemenesi-Gedei PB, Csabafi KA, Kis G. Inflammatory Orofacial Pain Activates Peptidergic Neurons and Upregulates the Oxytocin Receptor Expression in Trigeminal Ganglion. Biomedicines 2023; 11:2419. [PMID: 37760859 PMCID: PMC10525584 DOI: 10.3390/biomedicines11092419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The majority of orofacial pain is caused by musculoskeletal and neuropathological diseases related to inflammatory processes that lead even to transcriptional alterations in the trigeminal ganglion (TG) neurons. The hypothalamic nonapeptide oxytocin has been reported to modulate nociception via binding and activating its receptor in primary sensory neurons. The purpose of this study was to analyze the gene expression of the oxytocin receptor (OTR), c-Fos, an indicator of neuronal activity, and α-calcitonin gene-related peptide (αCGRP), a characteristic neurotransmitter of the peptidergic trigeminal primary afferents in an animal model of inflammation-induced orofacial pain. Carrageenan was unilaterally injected into the vibrissal pads of male and female adult Wistar rats. RT-qPCR was performed to analyze the levels of mRNA expression in TGs 24 h after injection. The gene expression analysis revealed higher fold changes regarding the c-Fos (mean ± S.E: ♀: 3.9 ± 0.19; ♂: 3.55 ± 0.18) and αCGRP (♀: 2.84 ± 0.13; ♂: 3.39 ± 0.47) expression levels of mRNA, and a moderate rise in the expression of the OTR mRNA (♀: 1.52 ± 0.07; ♂: 1.49 ± 0.07) was observed in comparison to both vehicle(saline)-treated and untreated controls. Our results furnish evidence for inflammation-induced activation of peptidergic neurons, and it is suggested that oxytocin modulates inflammation-induced nociception by enhancing their signaling capacity due to its elevated expression in the sensory ganglion cells, thus providing new therapies for orofacial pain relief that target the OTRs.
Collapse
Affiliation(s)
- Péter Bátor Kemenesi-Gedei
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Krisztina Anna Csabafi
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Gyöngyi Kis
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
9
|
Szewczyk AK, Ulutas S, Aktürk T, Al-Hassany L, Börner C, Cernigliaro F, Kodounis M, Lo Cascio S, Mikolajek D, Onan D, Ragaglini C, Ratti S, Rivera-Mancilla E, Tsanoula S, Villino R, Messlinger K, Maassen Van Den Brink A, de Vries T. Prolactin and oxytocin: potential targets for migraine treatment. J Headache Pain 2023; 24:31. [PMID: 36967387 PMCID: PMC10041814 DOI: 10.1186/s10194-023-01557-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/28/2023] [Indexed: 03/28/2023] Open
Abstract
Migraine is a severe neurovascular disorder of which the pathophysiology is not yet fully understood. Besides the role of inflammatory mediators that interact with the trigeminovascular system, cyclic fluctuations in sex steroid hormones are involved in the sex dimorphism of migraine attacks. In addition, the pituitary-derived hormone prolactin and the hypothalamic neuropeptide oxytocin have been reported to play a modulating role in migraine and contribute to its sex-dependent differences. The current narrative review explores the relationship between these two hormones and the pathophysiology of migraine. We describe the physiological role of prolactin and oxytocin, its relationship to migraine and pain, and potential therapies targeting these hormones or their receptors.In summary, oxytocin and prolactin are involved in nociception in opposite ways. Both operate at peripheral and central levels, however, prolactin has a pronociceptive effect, while oxytocin appears to have an antinociceptive effect. Therefore, migraine treatment targeting prolactin should aim to block its effects using prolactin receptor antagonists or monoclonal antibodies specifically acting at migraine-pain related structures. This action should be local in order to avoid a decrease in prolactin levels throughout the body and associated adverse effects. In contrast, treatment targeting oxytocin should enhance its signalling and antinociceptive effects, for example using intranasal administration of oxytocin, or possibly other oxytocin receptor agonists. Interestingly, the prolactin receptor and oxytocin receptor are co-localized with estrogen receptors as well as calcitonin gene-related peptide and its receptor, providing a positive perspective on the possibilities for an adequate pharmacological treatment of these nociceptive pathways. Nevertheless, many questions remain to be answered. More particularly, there is insufficient data on the role of sex hormones in men and the correct dosing according to sex differences, hormonal changes and comorbidities. The above remains a major challenge for future development.
Collapse
Affiliation(s)
- Anna K Szewczyk
- Doctoral School, Medical University of Lublin, Lublin, Poland
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Samiye Ulutas
- Department of Neurology, Kartal Dr. Lutfi Kirdar Research and Training Hospital, Istanbul, Turkey
| | - Tülin Aktürk
- Department of Neurology, Kartal Dr. Lutfi Kirdar Research and Training Hospital, Istanbul, Turkey
| | - Linda Al-Hassany
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Corinna Börner
- Department of Pediatrics - Dr. von Hauner Children's Hospital, LMU Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians Universität München, Lindwurmstr. 4, 80337, Munich, Germany
- LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians-Universität München, Lindwurmstr. 4, 80337, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Federica Cernigliaro
- Child Neuropsychiatry Unit Department, Pro.M.I.S.E. "G D'Alessandro, University of Palermo, 90133, Palermo, Italy
| | - Michalis Kodounis
- First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Salvatore Lo Cascio
- Child Neuropsychiatry Unit Department, Pro.M.I.S.E. "G D'Alessandro, University of Palermo, 90133, Palermo, Italy
| | - David Mikolajek
- Department of Neurology, City Hospital Ostrava, Ostrava, Czech Republic
| | - Dilara Onan
- Spine Health Unit, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Chiara Ragaglini
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - Susanna Ratti
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - Eduardo Rivera-Mancilla
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sofia Tsanoula
- Department of Neurology, 401 Military Hospital of Athens, Athens, Greece
| | - Rafael Villino
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Antoinette Maassen Van Den Brink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tessa de Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Maddahi A, Edvinsson L, Warfvinge K. Expression of vasopressin and its receptors in migraine-related regions in CNS and the trigeminal system: influence of sex. J Headache Pain 2022; 23:152. [PMID: 36456902 PMCID: PMC9713967 DOI: 10.1186/s10194-022-01524-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Hypothalamus is a key region in migraine attacks. In addition, women are disproportionately affected by migraine. The calcitonin gene-related peptide (CGRP) system is an important key player in migraine pathophysiology. CGRP signaling could be a target of hormones that influence migraine. Our aim is to identify the expression of vasopressin and its receptors in the brain and in the trigeminovascular system with focus on the migraine-related regions and, furthermore, to examine the role of sex on the expression of neurohormones in the trigeminal ganglion. METHODS Rat brain and trigeminal ganglia were carefully harvested, and protein and mRNA levels were analyzed by immunohistochemistry and real-time PCR, respectively. RESULTS Vasopressin and its receptors immunoreactivity were found in migraine-related areas within the brain and, in the trigeminal ganglion, predominantly in neuronal cytoplasm. There were no differences in the number of positive immunoreactivity cells expression of CGRP and vasopressin in the trigeminal ganglion between male and female rats. In contrast, the number of RAMP1 (CGRP receptor), oxytocin (molecular relative to vasopressin), oxytocin receptor and vasopressin receptors (V1aR and V1bR) immunoreactive cells were higher in female compared to male rats. Vasopressin and its receptors mRNA were expressed in both hypothalamus and trigeminal ganglion; however, the vasopressin mRNA level was significantly higher in the hypothalamus. CONCLUSIONS A better understanding of potential hormonal influences on migraine mechanisms is needed to improve treatment of female migraineurs. It is intriguing that vasopressin is an output of hypothalamic neurons that influences areas associated with migraine. Therefore, vasopressin and the closely related oxytocin might be important hypothalamic components that contribute to migraine pathophysiology.
Collapse
Affiliation(s)
- Aida Maddahi
- grid.411843.b0000 0004 0623 9987Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Lars Edvinsson
- grid.411843.b0000 0004 0623 9987Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden ,grid.475435.4Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| | - Karin Warfvinge
- grid.411843.b0000 0004 0623 9987Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden ,grid.475435.4Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
11
|
Kc E, Islam J, Park YS. Trigeminal ganglion itself can be a viable target to manage trigeminal neuralgia. J Headache Pain 2022; 23:150. [PMID: 36424545 PMCID: PMC9686102 DOI: 10.1186/s10194-022-01512-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
Excruciating trigeminal neuralgia (TN) management is very difficult and severely affects the patient's quality of life. Earlier studies have shown that the trigeminal ganglion (TG) comprises several receptors and signal molecules that are involved in the process of peripheral sensitization, which influences the development and persistence of neuropathic pain. Targeting TG can modulate this sensitization pathway and mediate the pain-relieving effect. So far,there are few studies in which modulation approaches to TG itself have been suggested so far. "Trigeminal ganglion modulation" and "trigeminal neuralgia" were used as search phrases in the Scopus Index and PubMed databases to discover articles that were pertinent to the topic. In this review, we address the role of the trigeminal ganglion in TN and underlying molecules and neuropeptides implicated in trigeminal pain pathways in processing pathological orofacial pain. We also reviewed different modulation approaches in TG for TN management. Furthermore, we discuss the prospect of targeting trigeminal ganglion to manage such intractable pain.
Collapse
Affiliation(s)
- Elina Kc
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Jaisan Islam
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Young Seok Park
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Korea.
| |
Collapse
|
12
|
Lopez JB, Chang CC, Kuo YM, Chan MF, Winn BJ. Oxytocin and secretin receptors - implications for dry eye syndrome and ocular pain. FRONTIERS IN OPHTHALMOLOGY 2022; 2:948481. [PMID: 38983562 PMCID: PMC11182124 DOI: 10.3389/fopht.2022.948481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/11/2022] [Indexed: 07/11/2024]
Abstract
Dry eye syndrome, a form of ocular surface inflammation, and chronic ocular pain are common conditions impacting activities of daily living and quality of life. Oxytocin and secretin are peptide hormones that have been shown to synergistically reduce inflammation in various tissues and attenuate the pain response at both the neuron and brain level. The oxytocin receptor (OXTR) and secretin receptor (SCTR) have been found in a wide variety of tissues and organs, including the eye. We reviewed the current literature of in vitro experiments, animal models, and human studies that examine the anti-inflammatory and anti-nociceptive roles of oxytocin and secretin. This review provides an overview of the evidence supporting oxytocin and secretin as the basis for novel treatments of dry eye and ocular pain syndromes.
Collapse
Affiliation(s)
- Jacqueline B Lopez
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States
| | - Chih-Chiun Chang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States
| | - Yien-Ming Kuo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States
| | - Matilda F Chan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States
- Department of Ophthalmology, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA, United States
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, CA, United States
| | - Bryan J Winn
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States
- Surgical Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| |
Collapse
|
13
|
Bharadwaj VN, Meyerowitz J, Zou B, Klukinov M, Yan N, Sharma K, Clark DJ, Xie X, Yeomans DC. Impact of Magnesium on Oxytocin Receptor Function. Pharmaceutics 2022; 14:1105. [PMID: 35631690 PMCID: PMC9144867 DOI: 10.3390/pharmaceutics14051105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND PURPOSE The intranasal administration of oxytocin (OT) reduces migraine headaches through activation of the oxytocin receptor (OTR). Magnesium ion (Mg2+) concentration is critical to the activation of the OTR, and a low serum Mg2+ concentration is predictive of a migraine headache. We, therefore, examined the functional impact of Mg2+ concentration on OT-OTR binding efficacy using two complimentary bioassays. EXPERIMENTAL APPROACH Current clamp recordings of rat trigeminal ganglia (TG) neurons measured the impact of Mg2+ on an OT-induced reduction in excitability. In addition, we assessed the impact of Mg2+ on intranasal OT-induced craniofacial analgesia in rats. KEY RESULTS While OT alone dose-dependently hyperpolarized TG neurons, decreasing their excitability, the addition of 1.75 mM Mg2+ significantly enhanced this effect. Similarly, while the intranasal application of OT produced dose-dependent craniofacial analgesia, Mg2+ significantly enhanced these effects. CONCLUSIONS AND IMPLICATIONS OT efficacy may be limited by low ambient Mg2+ levels. The addition of Mg2+ to OT formulations may improve its efficacy in reducing headache pain as well as for other OT-dependent processes.
Collapse
Affiliation(s)
- Vimala N. Bharadwaj
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (V.N.B.); (J.M.); (M.K.); (D.J.C.)
| | - Justin Meyerowitz
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (V.N.B.); (J.M.); (M.K.); (D.J.C.)
| | - Bende Zou
- AfaSci Inc., Burlingame, CA 94010, USA; (B.Z.); (N.Y.); (K.S.); (X.X.)
| | - Michael Klukinov
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (V.N.B.); (J.M.); (M.K.); (D.J.C.)
| | - Ni Yan
- AfaSci Inc., Burlingame, CA 94010, USA; (B.Z.); (N.Y.); (K.S.); (X.X.)
| | - Kaustubh Sharma
- AfaSci Inc., Burlingame, CA 94010, USA; (B.Z.); (N.Y.); (K.S.); (X.X.)
| | - David J. Clark
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (V.N.B.); (J.M.); (M.K.); (D.J.C.)
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Xinmin Xie
- AfaSci Inc., Burlingame, CA 94010, USA; (B.Z.); (N.Y.); (K.S.); (X.X.)
| | - David C. Yeomans
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (V.N.B.); (J.M.); (M.K.); (D.J.C.)
| |
Collapse
|
14
|
Diep PT, Chaudry M, Dixon A, Chaudry F, Kasabri V. Oxytocin, the panacea for long-COVID? a review. Horm Mol Biol Clin Investig 2022; 43:363-371. [DOI: 10.1515/hmbci-2021-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 03/12/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Objectives
In this hypothesis paper we explore the underlying mechanisms for long-COVID and how the oxytocinergic neurones could be infected by SARS-CoV-2 leading to a reduction in plasma oxytocin (OXT). Furthermore, we aim to review the relevance of OXT and hypothalamic function in recovery from long-COVID symptoms and pathology, through exploring the pro-health effects of the OXT neuropeptide.
Methods
A review of published literature was surveyed using Google Scholar and PubMed.
Results
Numerous experimental data can be shown to correlate with OXT and long-COVID symptoms and conditions, thus providing strong circumstantial evidence to support our hypothesis. It is postulated that the reduction in plasma OXT due to acute and post-viral damage to the hypothalamus and oxytocinergic neurones contributes to the variable multi-system, remitting and relapsing nature of long-COVID. The intranasal route of OXT application was determined to be most appropriate and clinically relevant for the restoration of oxytocinergic function post COVID-19 infection.
Conclusions
We believe it is imperative to further investigate whether OXT alleviates the prolonged suffering of patients with long-COVID. Succinctly, OXT may be the much-needed post-pandemic panacea.
Collapse
Affiliation(s)
- Phuoc-Tan Diep
- Department of Pathology , NHS Foundation Trust - University Hospitals of Morecambe Bay , Kendal , UK
| | - Mohammed Chaudry
- Department of Pathology , NHS Foundation Trust - University Hospitals of Morecambe Bay , Kendal , UK
| | - Adam Dixon
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London , London , UK
| | | | - Violet Kasabri
- School of Pharmacy , University of Jordan , Amman , Jordan
| |
Collapse
|
15
|
Li YX, Li JH, Guo Y, Tao ZY, Qin SH, Traub RJ, An H, Cao DY. Oxytocin inhibits hindpaw hyperalgesia induced by orofacial inflammation combined with stress. Mol Pain 2022; 18:17448069221089591. [PMID: 35266833 PMCID: PMC9047792 DOI: 10.1177/17448069221089591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Oxytocin (OT) is recognized as a critical neuropeptide in pain-related disorders. Chronic pain caused by the comorbidity of temporomandibular disorder (TMD) and fibromyalgia syndrome (FMS) is common, but whether OT plays an analgesic role in the comorbidity of TMD and FMS is unknown. Female rats with masseter muscle inflammation combined with 3-day forced swim (FS) stress developed somatic hypersensitivity, which modeled the comorbidity of TMD and FMS. Using this model, the effects of spinal OT administration on mechanical allodynia and thermal hyperalgesia in hindpaws were examined. Furthermore, the protein levels of OT receptors and 5-HT2A receptors in the L4-L5 spinal dorsal horn were analyzed by Western blot. The OT receptor antagonist atosiban and 5-HT2A receptor antagonist ritanserin were intrathecally injected prior to OT injection in the separate groups. Intrathecal injection of 0.125 μg and 0.5 μg OT attenuated the hindpaw hyperalgesia. The expression of OT receptors and 5-HT2A receptors in the L4-L5 spinal dorsal horn significantly increased following intrathecal injection of 0.5 μg OT. Intrathecal administration of either the OT receptor antagonist atosiban or 5-HT2A receptor antagonist ritanserin blocked the analgesic effect of OT. These results suggest that OT may inhibit hindpaw hyperalgesia evoked by orofacial inflammation combined with stress through OT receptors and/or 5-HT2A receptors, thus providing a therapeutic prospect for drugs targeting the OT system and for patients with comorbidity of TMD and FMS.
Collapse
Affiliation(s)
- Yue-Xin Li
- Key Laboratory of Shaanxi Province
for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi’an Jiaotong University College of
Stomatology, China
- Department of Special Dental Care, Xi’an Jiaotong University College of
Stomatology, China
| | - Jia-Heng Li
- Key Laboratory of Shaanxi Province
for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi’an Jiaotong University College of
Stomatology, China
| | - Yi Guo
- Key Laboratory of Shaanxi Province
for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi’an Jiaotong University College of
Stomatology, China
| | - Zhuo-Ying Tao
- Key Laboratory of Shaanxi Province
for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi’an Jiaotong University College of
Stomatology, China
| | - Shi-Hao Qin
- Key Laboratory of Shaanxi Province
for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi’an Jiaotong University College of
Stomatology, China
- Department of Special Dental Care, Xi’an Jiaotong University College of
Stomatology, China
| | - Richard J Traub
- Department of Neural and Pain
Sciences, School of Dentistry, Center to Advance Chronic Pain Research, University of Maryland
Baltimore, Baltimore, MD, USA
| | - Hong An
- Department of Special Dental Care, Xi’an Jiaotong University College of
Stomatology, China
| | - Dong-Yuan Cao
- Key Laboratory of Shaanxi Province
for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi’an Jiaotong University College of
Stomatology, China
| |
Collapse
|
16
|
Zheng H, Lim JY, Kim Y, Jung ST, Hwang SW. The role of oxytocin, vasopressin, and their receptors at nociceptors in peripheral pain modulation. Front Neuroendocrinol 2021; 63:100942. [PMID: 34437871 DOI: 10.1016/j.yfrne.2021.100942] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/01/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Oxytocin and vasopressin are neurohypophyseal hormones with sequence similarity and play a central role in bodily homeostatic regulation. Pain is currently understood to be an important phenotype that those two neurohormones strongly downregulate. Nociceptors, the first component of the ascending neural circuit for pain signals, have constantly been shown to be modulated by those peptides. The nociceptor modulation appears to be critical in pain attenuation, which has led to a gradual increase in scientific interest about their physiological processes and also drawn attention to their translational potentials. This review focused on what are recently understood and stay under investigation in the functional modulation of nociceptors by oxytocin and vasopressin. Effort to produce a nociceptor-specific view could help to construct a more systematic picture of the peripheral pain modulation by oxytocin and vasopressin.
Collapse
Affiliation(s)
- Haiyan Zheng
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Ji Yeon Lim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Yerin Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea.
| |
Collapse
|
17
|
Hormonal influences in migraine - interactions of oestrogen, oxytocin and CGRP. Nat Rev Neurol 2021; 17:621-633. [PMID: 34545218 DOI: 10.1038/s41582-021-00544-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Migraine is ranked as the second highest cause of disability worldwide and the first among women aged 15-49 years. Overall, the incidence of migraine is threefold higher among women than men, though the frequency and severity of attacks varies during puberty, the menstrual cycle, pregnancy, the postpartum period and menopause. Reproductive hormones are clearly a key influence in the susceptibility of women to migraine. A fall in plasma oestrogen levels can trigger attacks of migraine without aura, whereas higher oestrogen levels seem to be protective. The basis of these effects is unknown. In this Review, we discuss what is known about sex hormones and their receptors in migraine-related areas in the CNS and the peripheral trigeminovascular pathway. We consider the actions of oestrogen via its multiple receptor subtypes and the involvement of oxytocin, which has been shown to prevent migraine attacks. We also discuss possible interactions of these hormones with the calcitonin gene-related peptide (CGRP) system in light of the success of anti-CGRP treatments. We propose a simple model to explain the hormone withdrawal trigger in menstrual migraine, which could provide a foundation for improved management and therapy for hormone-related migraine in women.
Collapse
|
18
|
Wang Y, Pan Q, Tian R, Wen Q, Qin G, Zhang D, Chen L, Zhang Y, Zhou J. Repeated oxytocin prevents central sensitization by regulating synaptic plasticity via oxytocin receptor in a chronic migraine mouse model. J Headache Pain 2021; 22:84. [PMID: 34315403 PMCID: PMC8314458 DOI: 10.1186/s10194-021-01299-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/16/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Central sensitization is one of the characters of chronic migraine (CM). Aberrant synaptic plasticity can induce central sensitization. Oxytocin (OT), which is a hypothalamic hormone, plays an important antinociceptive role. However, the antinociceptive effect of OT and the underlying mechanism in CM remains unclear. Therefore, we explored the effect of OT on central sensitization in CM and its implying mechanism, focusing on synaptic plasticity. METHODS A CM mouse model was established by repeated intraperitoneal injection of nitroglycerin (NTG). Von Frey filaments and radiant heat were used to measure the nociceptive threshold. Repeated intranasal OT and intraperitoneal L368,899, an oxytocin receptor (OTR) antagonist, were administered to investigate the effect of OT and the role of OTR. The expression of calcitonin gene-related peptide (CGRP) and c-fos were measured to assess central sensitization. N-methyl D-aspartate receptor subtype 2B (NR2B)-regulated synaptic-associated proteins and synaptic plasticity were explored by western blot (WB), transmission electron microscope (TEM), and Golgi-Cox staining. RESULTS Our results showed that the OTR expression in the trigeminal nucleus caudalis (TNC) of CM mouse was significantly increased, and OTR was colocalized with the postsynaptic density protein 95 (PSD-95) in neurons. Repeated intranasal OT alleviated the NTG-induced hyperalgesia and prevented central sensitization in CM mouse. Additionally, the OT treatment inhibited the overexpression of phosphorylated NR2B and synaptic-associated proteins including PSD-95, synaptophysin-1 (syt-1), and synaptosomal-associated protein 25 (snap25) in the TNC of CM mouse and restored the abnormal synaptic structure. The protective effect of OT was prevented by L368,899. Furthermore, the expression of adenylyl cyclase 1 (AC1)/ protein kinase A (PKA)/ phosphorylation of cyclic adenosine monophosphate response element-binding protein (pCREB) pathway was depressed by OT and restored by L368,899. CONCLUSIONS Our findings demonstrate that repeated intranasal OT eliminates central sensitization by regulating synaptic plasticity via OTR in CM. The effect of OT has closely associated with the down-regulation of AC1/PKA/pCREB signaling pathway, which is activated in CM model. Repeated intranasal OT may be a potential candidate for CM prevention.
Collapse
Affiliation(s)
- Yunfeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, 400016, Chongqing, China.,Department of Neurology, Nanchong Central Hospital, Nanchong, China
| | - Qi Pan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, 400016, Chongqing, China
| | - Ruimin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, 400016, Chongqing, China
| | - Qianwen Wen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yixin Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, 400016, Chongqing, China.
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, 400016, Chongqing, China.
| |
Collapse
|
19
|
Nasal oxytocin for the treatment of psychiatric disorders and pain: achieving meaningful brain concentrations. Transl Psychiatry 2021; 11:388. [PMID: 34247185 PMCID: PMC8272715 DOI: 10.1038/s41398-021-01511-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
There is evidence of the therapeutic potential of intranasal oxytocin for the treatment of pain and various psychiatric disorders, however, there is scant evidence that oxytocin reaches the brain. We quantified the concentration and distribution pattern of [125I]-radiolabeled oxytocin in the brains and peripheral tissues of rats after intranasal delivery using gamma counting and autoradiography, respectively. Radiolabel was detected in high concentrations in the trigeminal and olfactory nerves as well as in brain regions along their trajectories. Considerable concentrations were observed in the blood, however, relatively low levels of radiolabel were measured in peripheral tissues. The addition of a mucoadhesive did not enhance brain concentrations. These results provide support for intranasal OT reaching the brain via the olfactory and trigeminal neural pathways. These findings will inform the design and interpretation of clinical studies with intranasal oxytocin.
Collapse
|
20
|
Bharadwaj VN, Porreca F, Cowan RP, Kori S, Silberstein SD, Yeomans DC. A new hypothesis linking oxytocin to menstrual migraine. Headache 2021; 61:1051-1059. [PMID: 34125955 DOI: 10.1111/head.14152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/05/2021] [Accepted: 04/07/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To highlight the emerging understanding of oxytocin (OT) and oxytocin receptors (OTRs) in modulating menstrual-related migraine (MRM). BACKGROUND MRM is highly debilitating and less responsive to therapy, and attacks are of longer duration than nonmenstrually related migraine. A clear understanding of the mechanisms underlying MRM is lacking. METHODS We present a narrative literature review on the developing understanding of the role of OT and the OTR in MRM. Literature on MRM on PubMed/MEDLINE database including clinical trials and basic science publications was reviewed using specific keywords. RESULTS OT is a cyclically released hypothalamic hormone/neurotransmitter that binds to the OTR resulting in inhibition of trigeminal neuronal excitability that can promote migraine pain including that of MRM. Estrogen regulates OT release as well as expression of the OTR. Coincident with menstruation, levels of both estrogen and OT decrease. Additionally, other serum biochemical factors, including magnesium and cholesterol, which positively modulate the affinity of OT for OTRs, both decrease during menstruation. Thus, during menstruation, multiple menstrually associated factors may lead to decreased circulating OT levels, decreased OT affinity for OTR, and decreased expression of the trigeminal OTR. Consistent with the view of migraine as a threshold disorder, these events may collectively result in decreased inhibition promoting lower thresholds for activation of meningeal trigeminal nociceptors and increasing the likelihood of an MRM attack. CONCLUSION Trigeminal OTR may thus be a novel target for the development of MRM therapeutics.
Collapse
Affiliation(s)
- Vimala N Bharadwaj
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA.,Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Robert P Cowan
- Department of Neurology, School of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - David C Yeomans
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
21
|
Ornello R, De Matteis E, Di Felice C, Caponnetto V, Pistoia F, Sacco S. Acute and Preventive Management of Migraine during Menstruation and Menopause. J Clin Med 2021; 10:jcm10112263. [PMID: 34073696 PMCID: PMC8197159 DOI: 10.3390/jcm10112263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
Migraine course is influenced by female reproductive milestones, including menstruation and perimenopause; menstrual migraine (MM) represents a distinct clinical entity. Increased susceptibility to migraine during menstruation and in perimenopause is probably due to fluctuations in estrogen levels. The present review provides suggestions for the treatment of MM and perimenopausal migraine. MM is characterized by long, severe, and poorly treatable headaches, for which the use of long-acting triptans and/or combined treatment with triptans and common analgesics is advisable. Short-term prophylaxis with triptans and/or estrogen treatment is another viable option in women with regular menstrual cycles or treated with combined hormonal contraceptives; conventional prevention may also be considered depending on the attack-related disability and the presence of attacks unrelated to menstruation. In women with perimenopausal migraine, hormonal treatments should aim at avoiding estrogen fluctuations. Future research on migraine treatments will benefit from the ascertainment of the interplay between female sex hormones and the mechanisms of migraine pathogenesis, including the calcitonin gene-related peptide pathway.
Collapse
|
22
|
González-Hernández A, Condés-Lara M, García-Boll E, Villalón CM. An outlook on the trigeminovascular mechanisms of action and side effects concerns of some potential neuropeptidergic antimigraine therapies. Expert Opin Drug Metab Toxicol 2021; 17:179-199. [DOI: 10.1080/17425255.2021.1856366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Miguel Condés-Lara
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Enrique García-Boll
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Carlos M. Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Ciudad de México, México
| |
Collapse
|
23
|
Huang CL, Liu F, Zhang YY, Lin J, Fu M, Li YL, Zhou C, Li CJ, Shen JF. Activation of oxytocin receptor in the trigeminal ganglion attenuates orofacial ectopic pain attributed to inferior alveolar nerve injury. J Neurophysiol 2020; 125:223-231. [PMID: 33326336 DOI: 10.1152/jn.00646.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study explores the effects of oxytocin receptor (OXTR) in the trigeminal ganglion (TG) on orofacial neuropathic pain. We demonstrate that OXTR activation in the TG relieves the orofacial ectopic pain as well as inhibits the upregulated expression of calcitonin gene-related peptide (CGRP), IL-1β, and TNFα in the TG and spinal trigeminal nucleus caudalis (SpVc) of rats with inferior alveolar nerve transection. OXTR, a G protein-coupled receptor, has been demonstrated to play a significant role in analgesia after activation by its canonical agonist oxytocin (OXT) in the dorsal root ganglion. However, the role of OXTR in the trigeminal nervous system on the orofacial neuropathic pain is still little known. In the present study, we aimed to investigate the regulation effect and mechanism of OXTR in the TG) and SpVc) on orofacial ectopic pain induced by trigeminal nerve injury. The inferior alveolar nerve (IAN) was transected to establish a ectopic pain model. A behavioral test with electronic von Frey filament demonstrated IAN transection (IANX) evoked mechanical hypersensitivity in the whisker pad from day 1 to at least day 14 after surgery. In addition, administration of OXT (50 and 100 μM) into the TG attenuated the mechanical hypersensitivity induced by IANX, which was reversed by pretreatment with L-368,899 (a selective antagonist of OXTR) into the TG. In addition, immunofluorescence showed the expression of OXTR in neurons in the TG and SpVc. Furthermore, Western blot analysis indicated that the upregulated expression of OXTR, CGRP, IL-1β, and TNFα in the TG and SpVc after IANX was inhibited by the administration of OXT into the TG. And the inhibition effect of OXT on the expression of CGRP, IL-1β, and TNFα was abolished by preapplication of OXTR antagonist L-368,899 into the TG.NEW & NOTEWORTHY This study explores the effects of oxytocin receptor (OXTR) in the trigeminal ganglion (TG) on orofacial neuropathic pain. We demonstrate that OXTR activation in the TG relieves the orofacial ectopic pain as well as inhibits the upregulated expression of calcitonin gene-related peptide, IL-1β, and TNF-α in the TG and spinal trigeminal nucleus caudalis of rats with inferior alveolar nerve transection.
Collapse
Affiliation(s)
- Chao-Lan Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Min Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Oxytocin-Dependent Regulation of TRPs Expression in Trigeminal Ganglion Neurons Attenuates Orofacial Neuropathic Pain Following Infraorbital Nerve Injury in Rats. Int J Mol Sci 2020; 21:ijms21239173. [PMID: 33271955 PMCID: PMC7731199 DOI: 10.3390/ijms21239173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
We evaluated the mechanisms underlying the oxytocin (OXT)-induced analgesic effect on orofacial neuropathic pain following infraorbital nerve injury (IONI). IONI was established through tight ligation of one-third of the infraorbital nerve thickness. Subsequently, the head withdrawal threshold for mechanical stimulation (MHWT) of the whisker pad skin was measured using a von Frey filament. Trigeminal ganglion (TG) neurons innervating the whisker pad skin were identified using a retrograde labeling technique. OXT receptor-immunoreactive (IR), transient receptor potential vanilloid 1 (TRPV1)-IR, and TRPV4-IR TG neurons innervating the whisker pad skin were examined on post-IONI day 5. The MHWT remarkably decreased from post-IONI day 1 onward. OXT application to the nerve-injured site attenuated the decrease in MHWT from day 5 onward. TRPV1 or TRPV4 antagonism significantly suppressed the decrement of MHWT following IONI. OXT receptors were expressed in the uninjured and Fluoro-Gold (FG)-labeled TG neurons. Furthermore, there was an increase in the number of FG-labeled TRPV1-IR and TRPV4-IR TG neurons, which was inhibited by administering OXT. This inhibition was suppressed by co-administration with an OXT receptor antagonist. These findings suggest that OXT application inhibits the increase in TRPV1-IR and TRPV4-IR TG neurons innervating the whisker pad skin, which attenuates post-IONI orofacial mechanical allodynia.
Collapse
|
25
|
Anderson G. Integrating Pathophysiology in Migraine: Role of the Gut Microbiome and Melatonin. Curr Pharm Des 2020; 25:3550-3562. [PMID: 31538885 DOI: 10.2174/1381612825666190920114611] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The pathoetiology and pathophysiology of migraine are widely accepted as unknown. METHODS The current article reviews the wide array of data associated with the biological underpinnings of migraine and provides a framework that integrates previously disparate bodies of data. RESULTS The importance of alterations in stress- and pro-inflammatory cytokine- induced gut dysbiosis, especially butyrate production, are highlighted. This is linked to a decrease in the availability of melatonin, and a relative increase in the N-acetylserotonin/melatonin ratio, which has consequences for the heightened glutamatergic excitatory transmission in migraine. It is proposed that suboptimal mitochondria functioning and metabolic regulation drive alterations in astrocytes and satellite glial cells that underpin the vasoregulatory and nociceptive changes in migraine. CONCLUSION This provides a framework not only for classical migraine associated factors, such as calcitonin-gene related peptide and serotonin, but also for wider factors in the developmental pathoetiology of migraine. A number of future research and treatment implications arise, including the clinical utilization of sodium butyrate and melatonin in the management of migraine.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London, United Kingdom
| |
Collapse
|
26
|
Warfvinge K, Krause DN, Maddahi A, Grell AS, Edvinsson JC, Haanes KA, Edvinsson L. Oxytocin as a regulatory neuropeptide in the trigeminovascular system: Localization, expression and function of oxytocin and oxytocin receptors. Cephalalgia 2020; 40:1283-1295. [PMID: 32486908 DOI: 10.1177/0333102420929027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Recent clinical findings suggest that oxytocin could be a novel treatment for migraine. However, little is known about the role of this neuropeptide/hormone and its receptor in the trigeminovascular pathway. Here we determine expression, localization, and function of oxytocin and oxytocin receptors in rat trigeminal ganglia and targets of peripheral (dura mater and cranial arteries) and central (trigeminal nucleus caudalis) afferents. METHODS The methods include immunohistochemistry, messenger RNA measurements, quantitative PCR, release of calcitonin gene-related peptide and myography of arterial segments. RESULTS Oxytocin receptor mRNA was expressed in rat trigeminal ganglia and the receptor protein was localized in numerous small to medium-sized neurons and thick axons characteristic of A∂ sensory fibers. Double immunohistochemistry revealed only a small number of neurons expressing both oxytocin receptors and calcitonin gene-related peptide. In contrast, double immunostaining showed expression of the calcitonin gene-related peptide receptor component receptor activity-modifying protein 1 and oxytocin receptors in 23% of the small cells and in 47% of the medium-sized cells. Oxytocin immunofluorescence was observed only in trigeminal ganglia satellite glial cells. Oxytocin mRNA was below detection limit in the trigeminal ganglia. The trigeminal nucleus caudalis expressed mRNA for both oxytocin and its receptor. K+-evoked calcitonin gene-related peptide release from either isolated trigeminal ganglia or dura mater and it was not significantly affected by oxytocin (10 µM). Oxytocin directly constricted cranial arteries ex vivo (pEC50 ∼ 7); however, these effects were inhibited by the vasopressin V1A antagonist SR49059. CONCLUSION Oxytocin receptors are extensively expressed throughout the rat trigeminovascular system and in particular in trigeminal ganglia A∂ neurons and fibers, but no functional oxytocin receptors were demonstrated in the dura and cranial arteries. Thus, circulating oxytocin may act on oxytocin receptors in the trigeminal ganglia to affect nociception transmission. These effects may help explain hormonal influences in migraine and offer a novel way for treatment.
Collapse
Affiliation(s)
- Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark.,Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Diana N Krause
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden.,Department of Pharmaceutical Sciences, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Aida Maddahi
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| | - Anne-Sofie Grell
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| | - Jacob Ca Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark.,Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| |
Collapse
|
27
|
Cross-talk signaling in the trigeminal ganglion: role of neuropeptides and other mediators. J Neural Transm (Vienna) 2020; 127:431-444. [PMID: 32088764 PMCID: PMC7148261 DOI: 10.1007/s00702-020-02161-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/12/2020] [Indexed: 11/08/2022]
Abstract
The trigeminal ganglion with its three trigeminal nerve tracts consists mainly of clusters of sensory neurons with their peripheral and central processes. Most neurons are surrounded by satellite glial cells and the axons are wrapped by myelinating and non-myelinating Schwann cells. Trigeminal neurons express various neuropeptides, most notably, calcitonin gene-related peptide (CGRP), substance P, and pituitary adenylate cyclase-activating polypeptide (PACAP). Two types of CGRP receptors are expressed in neurons and satellite glia. A variety of other signal molecules like ATP, nitric oxide, cytokines, and neurotrophic factors are released from trigeminal ganglion neurons and signal to neighboring neurons or satellite glial cells, which can signal back to neurons with same or other mediators. This potential cross-talk of signals involves intracellular mechanisms, including gene expression, that can modulate mediators of sensory information, such as neuropeptides, receptors, and neurotrophic factors. From the ganglia cell bodies, which are outside the blood–brain barrier, the mediators are further distributed to peripheral sites and/or to the spinal trigeminal nucleus in the brainstem, where they can affect neural transmission. A major question is how the sensory neurons in the trigeminal ganglion differ from those in the dorsal root ganglion. Despite their functional overlap, there are distinct differences in their ontogeny, gene expression, signaling pathways, and responses to anti-migraine drugs. Consequently, drugs that modulate cross-talk in the trigeminal ganglion can modulate both peripheral and central sensitization, which may potentially be distinct from sensitization mediated in the dorsal root ganglion.
Collapse
|
28
|
Warfvinge K, Krause D, Edvinsson L. The distribution of oxytocin and the oxytocin receptor in rat brain: relation to regions active in migraine. J Headache Pain 2020; 21:10. [PMID: 32028899 PMCID: PMC7006173 DOI: 10.1186/s10194-020-1079-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent work, both clinical and experimental, suggests that the hypothalamic hormone oxytocin (OT) and its receptor (OTR) may be involved in migraine pathophysiology. In order to better understand possible central actions of OT in migraine/headache pathogenesis, we mapped the distribution of OT and OTR in nerve cells and fibers in rat brain with a focus on areas related to migraine attacks and/or shown previously to contain calcitonin gene related peptide (CGRP), another neuropeptide involved in migraine. METHODS Distribution of OT and OTR in the adult, rat brain was qualitatively examined with immunohistochemistry using a series of well characterized specific antibodies. RESULTS As expected, OT was extensively localized in the cell somas of two hypothalamic nuclei, the supraoptic (SO or SON) and paraventricular nuclei (Pa or PVN). OT also was found in many other regions of the brain where it was localized mainly in nerve fibers. In contrast, OTR staining in the brain was mainly observed in cell somas with very little expression in fibers. The most distinct OTR expression was found in the hippocampus, the pons and the substantia nigra. In some regions of the brain (e.g. the amygdala and the hypothalamus), both OT and OTR were expressed (match). Mismatch between the peptide and its receptor was primarily observed in the cerebral and cerebellar cortex (OT expression) and hippocampus (OTR expression). CONCLUSIONS We compared OT/OTR distribution in the CNS with that of CGRP and identified regions related to migraine. In particular, regions suggested as "migraine generators", showed correspondence among the three mappings. These findings suggest central OT pathways may contribute to the role of the hypothalamus in migraine attacks.
Collapse
Affiliation(s)
- Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark.
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden.
| | - Diana Krause
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
- Department of Pharmacology, School of Medicine, University of California at Irvine, Irvine, CA, USA
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| |
Collapse
|
29
|
Tabbaa M, Hammock EAD. Orally administered oxytocin alters brain activation and behaviors of pre-weaning mice. Horm Behav 2020; 118:104613. [PMID: 31654673 PMCID: PMC7015803 DOI: 10.1016/j.yhbeh.2019.104613] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 02/02/2023]
Abstract
Oxytocin (OXT) regulates adult social behavior and has been implicated in its development. Because mammalian milk contains OXT and we have recently identified OXT receptors (OXTR) in the face and oronasal cavity of pre-weaning mice, we hypothesize that orally applied OXT may impact brain activity and acute behavior in developing mice. Oral OXT may have effects in the absence of sensory stimulation or perhaps by modulating sensory input, such as whisker stimulation. The present study investigates the acute c-Fos response in the paraventricular nucleus of the hypothalamus (PVN) and along whisker sensory processing brain regions (trigeminothalamocortical circuit) to orally applied OXT, compared to saline, with and without whisker stimulation in postnatal day (P) 14 and P21 male and female mice. Acute behavioral responses were also quantified after oral OXT with whisker stimulation in a non-social context. Oral OXT with and without whisker stimulation increased c-Fos activity in the PVN of males and decreased c-Fos in the ventroposterior medial thalamus in both males and females compared to saline. Additionally, oral OXT with whisker stimulation decreased c-Fos activity across whisker sensory processing brain regions in males and females and decreased c-Fos activity in the trigeminal motor nucleus of females. Lastly, oral OXT with whisker stimulation increased males' locomotor behavior and decreased females' oromotor behavior compared to saline-treated controls. These data indicate that orally applied OXT has acute brain and behavioral effects on developing mice. OXT-modulated sensory signals may bias brain and behavior development toward the social world.
Collapse
Affiliation(s)
- Manal Tabbaa
- Department of Psychology and Program in Neuroscience, The Florida State University, Tallahassee, FL, 32306, USA
| | - Elizabeth A D Hammock
- Department of Psychology and Program in Neuroscience, The Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
30
|
Maegawa H, Adachi N, Hanamoto H, Kudo C, Niwa H. Bilateral Parkinson's disease model rats exhibit hyperalgesia to subcutaneous formalin administration into the vibrissa pad. PLoS One 2019; 14:e0225928. [PMID: 31805115 PMCID: PMC6894844 DOI: 10.1371/journal.pone.0225928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/12/2019] [Indexed: 01/26/2023] Open
Abstract
We bilaterally injected 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle of rats and developed bilateral Parkinson’s disease (PD) model rats in order to experimentally investigate the neural mechanisms underlying the alteration of nociception in the orofacial region of patients with PD. We explored the effects of dopamine depletion on nociception by investigating behavioral responses (face rubbing) triggered by subcutaneous administration of formalin into the vibrissa pad. We also assessed the number of c-Fos–immunoreactive (c-Fos-IR) cells in the superficial layers of the trigeminal spinal subnucleus caudalis (Vc). Subcutaneous formalin administration evoked a two-phase increase in face rubbing. We observed the first increase 0–5 min after formalin administration (first phase) and the second increase 10–60 min after administration (second phase). The number of face rubbing behaviors of 6OHDA–injected rats did not significantly change compared with saline–injected rats in both phases. Significant increase of c-Fos-IR cells in the Vc was found in 6-OHDA–injected rats after formalin administration compared with those in saline–injected rats after formalin administration. We also assessed expression of c-Fos-IR cells in the paraventricular nucleus (PVN), and significant decrease of c-Fos-IR cells in the PVN of 6-OHDA–injected rats was found. Taken together, these findings suggest that bilateral dopaminergic denervation evoked by 6-OHDA administration causes hyperalgesia in the trigeminal region and the PVN may be involved in the hyperalgesia.
Collapse
Affiliation(s)
- Hiroharu Maegawa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- * E-mail: ,
| | - Nayuka Adachi
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Hiroshi Hanamoto
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Chiho Kudo
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Hitoshi Niwa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
31
|
Application of oxytocin with low-level laser irradiation suppresses the facilitation of cortical excitability by partial ligation of the infraorbital nerve in rats: An optical imaging study. Brain Res 2019; 1728:146588. [PMID: 31811836 DOI: 10.1016/j.brainres.2019.146588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 12/19/2022]
Abstract
The effects of current treatments for neuropathic pain are limited. Oxytocin is a novel candidate substance to relieve neuropathic pain, as demonstrated in various animal models with nerve injury. Low-level laser therapy (LLLT) is another option for the treatment of neuropathic pain. In this study, we quantified the effects of oxytocin or LLLT alone and the combination of oxytocin and LLLT on cortical excitation induced by electrical stimulation of the dental pulp using optical imaging with a voltage-sensitive dye in the neuropathic pain model with partial ligation of the infraorbital nerve (pl-ION). We applied oxytocin (OXT, 0.5 μmol) to the rat once on the day of pl-ION locally to the injured nerve. LLLT using a diode laser (810 nm, 0.1 W, 500 s, continuous mode) was performed daily via the skin to the injured nerve from the day of pl-ION to 2 days after pl-ION. Cortical responses to electrical stimulation of the mandibular molar pulp under urethane anesthesia were recorded 3 days after pl-ION. Both the amplitude and area of excitation in the primary and secondary somatosensory and insular cortices in pl-ION rats were larger than those in sham rats. The larger amplitude of cortical excitation caused by pl-ION was suppressed by OXT or LLLT. The expanded area of cortical excitation caused by pl-ION was suppressed by OXT with LLLT but not by OXT or LLLT alone. These results suggest that the combined application of OXT and LLLT is effective in relieving the neuropathic pain induced by trigeminal nerve injury.
Collapse
|
32
|
García-Boll E, Martínez-Lorenzana G, Condés-Lara M, González-Hernández A. Inhibition of nociceptive dural input to the trigeminocervical complex through oxytocinergic transmission. Exp Neurol 2019; 323:113079. [PMID: 31678349 DOI: 10.1016/j.expneurol.2019.113079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/08/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
Migraine is a complex brain disorder that involves abnormal activation of the trigeminocervical complex (TCC). Since an increase of oxytocin concentration has been found in cerebrospinal fluid in migrainous patients and intranasal oxytocin seems to relieve migrainous pain, some studies suggest that the hypothalamic neuropeptide oxytocin may play a role in migraine pathophysiology. However, it remains unknown whether oxytocin can interact with the trigeminovascular system at TCC level. The present study was designed to test the above hypothesis in a well-established electrophysiological model of migraine. Using anesthetized rats, we evaluated the effect of oxytocin on TCC neuronal activity in response to dural nociceptive trigeminovascular activation. We found that spinal oxytocin significantly reduced TCC neuronal firing evoked by meningeal electrical stimulation. Furthermore, pretreatment with L-368,899 (a selective oxytocin receptor antagonist, OTR) abolished the oxytocin-induced inhibition of trigeminovascular neuronal responses. This study provides the first direct evidence that oxytocin, probably by OTR activation at TCC level inhibited dural nociceptive-evoked action potential in this complex. Thus, targeting OTR at TCC could represent a new avenue to treat migraine.
Collapse
Affiliation(s)
- Enrique García-Boll
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro QRO, 76230, Mexico
| | - Guadalupe Martínez-Lorenzana
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro QRO, 76230, Mexico
| | - Miguel Condés-Lara
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro QRO, 76230, Mexico
| | - Abimael González-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro QRO, 76230, Mexico.
| |
Collapse
|
33
|
Leptin and Associated Mediators of Immunometabolic Signaling: Novel Molecular Outcome Measures for Neurostimulation to Treat Chronic Pain. Int J Mol Sci 2019; 20:ijms20194737. [PMID: 31554241 PMCID: PMC6802360 DOI: 10.3390/ijms20194737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/15/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic pain is a devastating condition affecting the physical, psychological, and socioeconomic status of the patient. Inflammation and immunometabolism play roles in the pathophysiology of chronic pain disorders. Electrical neuromodulation approaches have shown a meaningful success in otherwise drug-resistant chronic pain conditions, including failed back surgery, neuropathic pain, and migraine. A literature review (PubMed, MEDLINE/OVID, SCOPUS, and manual searches of the bibliographies of known primary and review articles) was performed using the following search terms: chronic pain disorders, systemic inflammation, immunometabolism, prediction, biomarkers, metabolic disorders, and neuromodulation for chronic pain. Experimental studies indicate a relationship between the development and maintenance of chronic pain conditions and a deteriorated immunometabolic state mediated by circulating cytokines, chemokines, and cellular components. A few uncontrolled in-human studies found increased levels of pro-inflammatory cytokines known to drive metabolic disorders in chronic pain patients undergoing neurostimulation therapies. In this narrative review, we summarize the current knowledge and possible relationships of available neurostimulation therapies for chronic pain with mediators of central and peripheral neuroinflammation and immunometabolism on a molecular level. However, to address the needs for predictive factors and biomarkers, large-scale databank driven clinical trials are needed to determine the clinical value of molecular profiling.
Collapse
|
34
|
Recurrent antinociception induced by intrathecal or peripheral oxytocin in a neuropathic pain rat model. Exp Brain Res 2019; 237:2995-3010. [DOI: 10.1007/s00221-019-05651-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/07/2019] [Indexed: 10/26/2022]
|
35
|
Chen Z, Chen X, Liu M, Ma L, Yu S. Volume of Hypothalamus as a Diagnostic Biomarker of Chronic Migraine. Front Neurol 2019; 10:606. [PMID: 31244765 PMCID: PMC6563769 DOI: 10.3389/fneur.2019.00606] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/22/2019] [Indexed: 12/04/2022] Open
Abstract
It is believed than hypothalamus (HTH) might be involved in generation of migraine, and evidence from high resolution fMRI reported that the more anterior part of HTH seemed to play an important role in migraine chronification. The current study was aimed to identify the alteration of morphology and resting-state functional connectivity (FC) of the hypothalamus (HTH) in interictal episodic migraine (EM) and chronic migraine (CM). High-resolution structural and resting-state functional magnetic resonance images were acquired in 18 EM patients, 16 CM patients, and 21 normal controls (NC). The volume of HTH was calculated and voxel-based morphometry (VBM) was performed over the whole HTH. Receiver operating characteristics (ROC) curve analysis was applied to evaluate the diagnostic efficacy of HTH volume. Correlation analyses with clinical variables were performed and FC maps were generated for positive HTH regions according to VBM comparison. The volume of the HTH significantly decreased in both EM and CM patients compared with NC. The cut-off volume of HTH as 1.429 ml had a good diagnostic accuracy for CM with sensitivity of 81.25% and specificity of 100%. VBM analyses identified volume reduction of posterior HTH in EM vs. NC which was negatively correlated with headache frequency. The posterior HTH presented decreased FC with the left inferior temporal gyrus (Brodmann area 20) in EM. Decreased volume of anterior HTH was identified in CM vs. NC and CM vs. EM which was positively correlated with headache frequency in CM. The anterior HTH presented increased FC with the right anterior orbital gyrus (AOrG) (Brodmann area 11) in CM compared with NC and increased FC with the right medial orbital gyrus (MOrG) (Brodmann area 11) in CM compared with EM. Our study provided evidence of structural plasticity and FC changes of HTH in the pathogensis of migraine generation and chronification, supporting potential therapeutic target toward the HTH and its peptide.
Collapse
Affiliation(s)
- Zhiye Chen
- Department of Radiology, Chinese PLA General Hospital, Beijing, China.,Department of Neurology, Chinese PLA General Hospital, Beijing, China.,Department of Radiology, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Xiaoyan Chen
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Mengqi Liu
- Department of Radiology, Chinese PLA General Hospital, Beijing, China.,Department of Radiology, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Lin Ma
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
36
|
Ong JJY, Wei DYT, Goadsby PJ. Recent Advances in Pharmacotherapy for Migraine Prevention: From Pathophysiology to New Drugs. Drugs 2019; 78:411-437. [PMID: 29396834 DOI: 10.1007/s40265-018-0865-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Migraine is a common and disabling neurological disorder, with a significant socioeconomic burden. Its pathophysiology involves abnormalities in complex neuronal networks, interacting at different levels of the central and peripheral nervous system, resulting in the constellation of symptoms characteristic of a migraine attack. Management of migraine is individualised and often necessitates the commencement of preventive medication. Recent advancements in the understanding of the neurobiology of migraine have begun to account for some parts of the symptomatology, which has led to the development of novel target-based therapies that may revolutionise how migraine is treated in the future. This review will explore recent advances in the understanding of migraine pathophysiology, and pharmacotherapeutic developments for migraine prevention, with particular emphasis on novel treatments targeted at the calcitonin gene-related peptide (CGRP) pathway.
Collapse
Affiliation(s)
- Jonathan Jia Yuan Ong
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK.,Division of Neurology, Department of Medicine, National University Health System, University Medicine Cluster, Singapore, Singapore
| | - Diana Yi-Ting Wei
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK
| | - Peter J Goadsby
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. .,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK.
| |
Collapse
|
37
|
Boström A, Scheele D, Stoffel-Wagner B, Hönig F, Chaudhry SR, Muhammad S, Hurlemann R, Krauss JK, Lendvai IS, Chakravarthy KV, Kinfe TM. Saliva molecular inflammatory profiling in female migraine patients responsive to adjunctive cervical non-invasive vagus nerve stimulation: the MOXY Study. J Transl Med 2019; 17:53. [PMID: 30795781 PMCID: PMC6387501 DOI: 10.1186/s12967-019-1801-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/17/2019] [Indexed: 02/07/2023] Open
Abstract
Background Rising evidence indicate that oxytocin and IL-1β impact trigemino-nociceptive signaling. Current perspectives on migraine physiopathology emphasize a cytokine bias towards a pro-inflammatory status. The anti-nociceptive impact of oxytocin has been reported in preclinical and human trials. Cervical non-invasive vagus nerve stimulation (nVNS) emerges as an add-on treatment for the preventive and abortive use in migraine. Less is known about its potential to modulate saliva inflammatory signaling in migraine patients. The rationale was to perform inter-ictal saliva measures of oxytocin and IL-1ß along with headache assessment in migraine patients with 10 weeks adjunctive nVNS compared to healthy controls. Methods 12 migraineurs and 12 suitably matched healthy control were studied with inter-ictal saliva assay of pro- and anti-neuroinflammatory cytokines using enzyme-linked immuno assay techniques along with assessment of headache severity/frequency and associated functional capacity at baseline and after 10 weeks adjunctive cervical nVNS. Results nVNS significantly reduced headache severity (VAS), frequency (headache days and total number of attacks) and significantly improved sleep quality compared to baseline (p < 0.01). Inter-ictal saliva oxytocin and IL-1β were significantly elevated pre- as well as post-nVNS compared to healthy controls (p < 0.01) and similarly showed changes that may reflect the observed clinical effects. Conclusions Our results add to accumulating evidence for a therapeutic efficacy of adjunct cervical non-invasive vagus nerve stimulation in migraine patients. This study failed to provide an evidence-derived conclusion addressed to the predictive value and usefulness of saliva assays due to its uncontrolled study design. However, saliva screening of mediators associated with trigemino-nociceptive traffic represents a novel approach, thus deserve future targeted headache research. Trial registration This study was indexed at the German Register for Clinical Trials (DRKS No. 00011089) registered on 21.09.2016
Collapse
Affiliation(s)
- Azize Boström
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany
| | - Dirk Scheele
- Department of Psychiatry, University Hospital Bonn, Bonn, Germany.,Division of Medical Psychology, University Hospital Bonn, Bonn, Germany.,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany
| | - Birgit Stoffel-Wagner
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany
| | - Frigga Hönig
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany
| | - Shafqat R Chaudhry
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Rene Hurlemann
- Department of Psychiatry, University Hospital Bonn, Bonn, Germany.,Division of Medical Psychology, University Hospital Bonn, Bonn, Germany.,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Medical School Hannover, Hannover, Germany
| | - Ilana S Lendvai
- Department of Psychiatry, University Hospital Bonn, Bonn, Germany.,Division of Medical Psychology, University Hospital Bonn, Bonn, Germany.,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany
| | - Krishnan V Chakravarthy
- Department of Anesthesiology and Pain Medicine, University of California San Diego, San Diego, CA, USA
| | - Thomas M Kinfe
- Department of Psychiatry, University Hospital Bonn, Bonn, Germany. .,Division of Medical Psychology, University Hospital Bonn, Bonn, Germany. .,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany.
| |
Collapse
|
38
|
Gonzalez-Hernandez A, Charlet A. Oxytocin, GABA, and TRPV1, the Analgesic Triad? Front Mol Neurosci 2018; 11:398. [PMID: 30555298 PMCID: PMC6282058 DOI: 10.3389/fnmol.2018.00398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/11/2018] [Indexed: 01/16/2023] Open
Affiliation(s)
- Abimael Gonzalez-Hernandez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Alexandre Charlet
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| |
Collapse
|
39
|
Dussor G, Boyd JT, Akopian AN. Pituitary Hormones and Orofacial Pain. Front Integr Neurosci 2018; 12:42. [PMID: 30356882 PMCID: PMC6190856 DOI: 10.3389/fnint.2018.00042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022] Open
Abstract
Clinical and basic research on regulation of pituitary hormones, extra-pituitary release of these hormones, distribution of their receptors and cell signaling pathways recruited upon receptor binding suggests that pituitary hormones can regulate mechanisms of nociceptive transmission in multiple orofacial pain conditions. Moreover, many pituitary hormones either regulate glands that produce gonadal hormones (GnH) or are regulated by GnH. This implies that pituitary hormones may be involved in sex-dependent mechanisms of orofacial pain and could help explain why certain orofacial pain conditions are more prevalent in women than men. Overall, regulation of nociception by pituitary hormones is a relatively new and emerging area of pain research. The aims of this review article are to: (1) present an overview of clinical conditions leading to orofacial pain that are associated with alterations of serum pituitary hormone levels; (2) discuss proposed mechanisms of how pituitary hormones could regulate nociceptive transmission; and (3) outline how pituitary hormones could regulate nociception in a sex-specific fashion. Pituitary hormones are routinely used for hormonal replacement therapy, while both receptor antagonists and agonists are used to manage certain pathological conditions related to hormonal imbalance. Administration of these hormones may also have a place in the treatment of pain, including orofacial pain. Hence, understanding the involvement of pituitary hormones in orofacial pain, especially sex-dependent aspects of such pain, is essential to both optimize current therapies as well as provide novel and sex-specific pharmacology for a diversity of associated conditions.
Collapse
Affiliation(s)
- Gregory Dussor
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Jacob T Boyd
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Armen N Akopian
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Pharmcology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
40
|
Grinevich V, Stoop R. Interplay between Oxytocin and Sensory Systems in the Orchestration of Socio-Emotional Behaviors. Neuron 2018; 99:887-904. [DOI: 10.1016/j.neuron.2018.07.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 01/01/2023]
|
41
|
Messlinger K, Russo AF. Current understanding of trigeminal ganglion structure and function in headache. Cephalalgia 2018; 39:1661-1674. [PMID: 29989427 DOI: 10.1177/0333102418786261] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The trigeminal ganglion is unique among the somatosensory ganglia regarding its topography, structure, composition and possibly some functional properties of its cellular components. Being mainly responsible for the sensory innervation of the anterior regions of the head, it is a major target for headache research. One intriguing question is if the trigeminal ganglion is merely a transition site for sensory information from the periphery to the central nervous system, or if intracellular modulatory mechanisms and intercellular signaling are capable of controlling sensory information relevant for the pathophysiology of headaches. METHODS An online search based on PubMed was made using the keyword "trigeminal ganglion" in combination with "anatomy", "headache", "migraine", "neuropeptides", "receptors" and "signaling". From the relevant literature, further references were selected in view of their relevance for headache mechanisms. The essential information was organized based on location and cell types of the trigeminal ganglion, neuropeptides, receptors for signaling molecules, signaling mechanisms, and their possible relevance for headache generation. RESULTS The trigeminal ganglion consists of clusters of sensory neurons and their peripheral and central axon processes, which are arranged according to the three trigeminal partitions V1-V3. The neurons are surrounded by satellite glial cells, the axons by Schwann cells. In addition, macrophage-like cells can be found in the trigeminal ganglion. Neurons express various neuropeptides, among which calcitonin gene-related peptide is the most prominent in terms of its prevalence and its role in primary headaches. The classical calcitonin gene-related peptide receptors are expressed in non-calcitonin gene-related peptide neurons and satellite glial cells, although the possibility of a second calcitonin gene-related peptide receptor in calcitonin gene-related peptide neurons remains to be investigated. A variety of other signal molecules like adenosine triphosphate, nitric oxide, cytokines, and neurotrophic factors are released from trigeminal ganglion cells and may act at receptors on adjacent neurons or satellite glial cells. CONCLUSIONS The trigeminal ganglion may act as an integrative organ. The morphological and functional arrangement of trigeminal ganglion cells suggests that intercellular and possibly also autocrine signaling mechanisms interact with intracellular mechanisms, including gene expression, to modulate sensory information. Receptors and neurotrophic factors delivered to the periphery or the trigeminal brainstem can contribute to peripheral and central sensitization, as in the case of primary headaches. The trigeminal ganglion as a target of drug action outside the blood-brain barrier should therefore be taken into account.
Collapse
Affiliation(s)
- Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Iowa VA Health Care System, Iowa City, IA, USA
| |
Collapse
|
42
|
Abstract
The hypothalamus is involved in the regulation of homeostatic mechanisms and migraine-related trigeminal nociception and as such has been hypothesized to play a central role in the migraine syndrome from the earliest stages of the attack. The hypothalamus hosts many key neuropeptide systems that have been postulated to play a role in this pathophysiology. Such neuropeptides include but are not exclusive too orexins, oxytocin, neuropeptide Y, and pituitary adenylate cyclase activating protein, which will be the focus of this review. Each of these peptides has its own unique physiological role and as such many preclinical studies have been conducted targeting these peptide systems with evidence supporting their role in migraine pathophysiology. Preclinical studies have also begun to explore potential therapeutic compounds targeting these systems with some success in all cases. Clinical efficacy of dual orexin receptor antagonists and intranasal oxytocin have been tested; however, both have yet to demonstrate clinical effect. Despite this, there were limitations in these cases and strong arguments can be made for the further development of intranasal oxytocin for migraine prophylaxis. Regarding neuropeptide Y, work has yet to begun in a clinical setting, and clinical trials for pituitary adenylate cyclase activating protein are just beginning to be established with much optimism. Regardless, it is becoming increasingly clear the prominent role that the hypothalamus and its peptide systems have in migraine pathophysiology. Much work is required to better understand this system and the early stages of the attack to develop more targeted and effective therapies aimed at reducing attack susceptibility with the potential to prevent the attack all together.
Collapse
Affiliation(s)
- Lauren C Strother
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Anan Srikiatkhachorn
- International Medical College, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Weera Supronsinchai
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Pathumwan, Bangkok, Thailand.
| |
Collapse
|
43
|
Holland PR. Biology of Neuropeptides: Orexinergic Involvement in Primary Headache Disorders. Headache 2018; 57 Suppl 2:76-88. [PMID: 28485849 DOI: 10.1111/head.13078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/08/2017] [Indexed: 01/01/2023]
Abstract
Migraine is a very common, severe disabling condition that can last for days and strike multiple times per month. Attacks, often characterized by severe unilateral throbbing pain that is exacerbated by activity, are commonly preceded by several diverse symptoms including fatigue, irritability, and yawning. This premonitory (prodromal) phase represents the earliest identifiable feature of an attack that is a reliable predictor of ensuing headache. The diversity of these symptoms underlines the complex nature of migraine and focuses considerable attention on the hypothalamus due to its prominent role in homeostatic regulation allowing state dependent behavioral modifications. While multiple neurotransmitter and neuropeptide systems have been proposed to play a role in migraine, the current review will focus on the emerging role of the hypothalamic orexinergic system in primary headache disorders. Specifically the potential role of altered orexinergic signalling in premonitory symptomatology and the future potential of targeted orexinergic therapies that could with other approaches act during the premonitory phase to prevent the occurrence of the headache or reduce an individual's susceptibility to attacks by altering the brain's response to external and internal triggers.
Collapse
Affiliation(s)
- Philip R Holland
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
44
|
Tzabazis A, Kori S, Mechanic J, Miller J, Pascual C, Manering N, Carson D, Klukinov M, Spierings E, Jacobs D, Cuellar J, Frey WH, Hanson L, Angst M, Yeomans DC. Oxytocin and Migraine Headache. Headache 2018; 57 Suppl 2:64-75. [PMID: 28485846 DOI: 10.1111/head.13082] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 11/28/2022]
Abstract
This article reviews material presented at the 2016 Scottsdale Headache Symposium. This presentation provided scientific results and rationale for the use of intranasal oxytocin for the treatment of migraine headache. Results from preclinical experiments are reviewed, including in vitro experiments demonstrating that trigeminal ganglia neurons possess oxytocin receptors and are inhibited by oxytocin. Furthermore, most of these same neurons contain CGRP, the release of which is inhibited by oxytocin. Results are also presented which demonstrate that nasal oxytocin inhibits responses of trigeminal nucleus caudalis neurons to noxious stimulation using either noxious facial shock or nitroglycerin infusion. These studies led to testing the analgesic effect of intranasal oxytocin in episodic migraineurs-studies which did not meet their primary endpoint of pain relief at 2 h, but which were highly informative and led to additional rat studies wherein inflammation was found to dramatically upregulate the number of oxytocin receptors available on trigeminal neurons. This importance of inflammation was supported by a series of in vivo rat behavioral studies, which demonstrated a clear craniofacial analgesic effect when a pre-existing inflammatory injury was present. The significance of inflammation was further solidified by a small single-dose clinical study, which showed analgesic efficacy that was substantially stronger in chronic migraine patients that had not taken an anti-inflammatory drug within 24 h of oxytocin dosing. A follow-on open label study examining effects of one month of intranasal oxytocin dosing did show a reduction in pain, but a more impressive decrease in the frequency of headaches in both chronic and high frequency episodic migraineurs. This study led to a multicountry double blind, placebo controlled study studying whether, over 2 months of dosing, "as needed" dosing of intranasal oxytocin by chronic and high frequency migraineurs would reduce the frequency of their headaches compared to a 1-month baseline period. This study failed to meet its primary endpoint, due to an extraordinarily high placebo rate in the country of most of the patients (Chile), but was also highly informative, showing strong results in other countries and strong post hoc indications of efficacy. The results provide a strong argument for further development of intranasal oxytocin for migraine prophylaxis.
Collapse
Affiliation(s)
- Alexander Tzabazis
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| | | | | | | | | | - Neil Manering
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| | | | - Michael Klukinov
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| | - Egilius Spierings
- Department of Neurology, Tufts University School of Dental Medicine, Boston, MA
| | - Daniel Jacobs
- Department of Plastic Surgery, Kaiser Permanente Medical Center, San Jose, CA
| | - Jason Cuellar
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| | - William H Frey
- HealthPartners Center for Memory and Aging, Regions Hospital, St. Paul, MN, USA
| | - Leah Hanson
- HealthPartners Center for Memory and Aging, Regions Hospital, St. Paul, MN, USA
| | - Martin Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| | - David C Yeomans
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| |
Collapse
|
45
|
Schindler EAD, Wallace RM, Sloshower JA, D'Souza DC. Neuroendocrine Associations Underlying the Persistent Therapeutic Effects of Classic Serotonergic Psychedelics. Front Pharmacol 2018; 9:177. [PMID: 29545753 PMCID: PMC5838010 DOI: 10.3389/fphar.2018.00177] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/16/2018] [Indexed: 12/12/2022] Open
Abstract
Recent reports on the effects of psychedelic-assisted therapies for mood disorders and addiction, as well as the effects of psychedelics in the treatment of cluster headache, have demonstrated promising therapeutic results. In addition, the beneficial effects appear to persist well after limited exposure to the drugs, making them particularly appealing as treatments for chronic neuropsychiatric and headache disorders. Understanding the basis of the long-lasting effects, however, will be critical for the continued use and development of this drug class. Several mechanisms, including biological and psychological ones, have been suggested to explain the long-lasting effects of psychedelics. Actions on the neuroendocrine system are some such mechanisms that warrant further investigation in the study of persisting psychedelic effects. In this report, we review certain structural and functional neuroendocrinological pathologies associated with neuropsychiatric disorders and cluster headache. We then review the effects that psychedelic drugs have on those systems and provide preliminary support for potential long-term effects. The circadian biology of cluster headache is of particular relevance in this area. We also discuss methodologic considerations for future investigations of neuroendocrine system involvement in the therapeutic benefits of psychedelic drugs.
Collapse
Affiliation(s)
- Emmanuelle A D Schindler
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States.,Department of Neurology, VA Connecticut Healthcare System, West Haven, CT, United States
| | - Ryan M Wallace
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Jordan A Sloshower
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States.,Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, United States
| | - Deepak C D'Souza
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States.,Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
46
|
García-Boll E, Martínez-Lorenzana G, Condés-Lara M, González-Hernández A. Oxytocin inhibits the rat medullary dorsal horn Sp5c/C1 nociceptive transmission through OT but not V 1A receptors. Neuropharmacology 2017; 129:109-117. [PMID: 29169960 DOI: 10.1016/j.neuropharm.2017.11.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/16/2017] [Accepted: 11/17/2017] [Indexed: 02/05/2023]
Abstract
The medullary dorsal horn (MDH or Sp5c/C1 region) plays a key role modulating the nociceptive input arriving from craniofacial structures. Some reports suggest that oxytocin could play a role modulating the nociceptive input at the MDH level, but no study has properly tested this hypothesis. Using an electrophysiological and pharmacological approach, the present study aimed to determine the effect of oxytocin on the nociceptive signaling in the MDH and the receptor involved. In sevoflurane, anesthetized rats, we performed electrophysiological unitary recordings of second order neurons at the MDH region responding to peripheral nociceptive-evoked responses of the first branch (V1; ophthalmic) of the trigeminal nerve. Under this condition, we constructed dose-response curves analyzing the effect of local spinal oxytocin (0.2-20 nmol) on MDH nociceptive neuronal firing. Furthermore, we tested the role of oxytocin receptors (OTR) or vasopressin V1A receptors (V1AR) involved in the oxytocin effects. Oxytocin dose-dependently inhibits the peripheral-evoked activity in nociceptive MDH neurotransmission. This inhibition is associated with a blockade of neuronal activity of Aδ- and C-fibers. Since this antinociception was abolished by pretreatment (in the MDH) with the potent and selective OTR antagonist (L-368,899; 20 nmol) and remained unaffected after the V1AR antagonist (SR49059; 20 nmol or 200 nmol), the role of OTR is implied. This electrophysiological study demonstrates that oxytocin inhibits the peripheral-evoked neuronal activity at MDH, through OTR activation. Thus, OTR may represent a new potential drug target to treat craniofacial nociceptive dysfunction in the MDH.
Collapse
Affiliation(s)
- Enrique García-Boll
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO, 76230, Mexico
| | - Guadalupe Martínez-Lorenzana
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO, 76230, Mexico
| | - Miguel Condés-Lara
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO, 76230, Mexico
| | - Abimael González-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO, 76230, Mexico.
| |
Collapse
|
47
|
Peripheral oxytocin receptors inhibit the nociceptive input signal to spinal dorsal horn wide-dynamic-range neurons. Pain 2017; 158:2117-2128. [DOI: 10.1097/j.pain.0000000000001024] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
|
49
|
The analgesic effects of oxytocin in the peripheral and central nervous system. Neurochem Int 2017; 103:57-64. [DOI: 10.1016/j.neuint.2016.12.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/01/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023]
|
50
|
Oxytocin alleviates orofacial mechanical hypersensitivity associated with infraorbital nerve injury through vasopressin-1A receptors of the rat trigeminal ganglia. Pain 2017; 158:649-659. [DOI: 10.1097/j.pain.0000000000000808] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|