1
|
Rees TA, Buttle BJ, Tasma Z, Yang SH, Harris PWR, Walker CS. Tirzepatide, GIP(1-42) and GIP(1-30) display unique signaling profiles at two common GIP receptor variants, E354 and Q354. Front Pharmacol 2024; 15:1463313. [PMID: 39464637 PMCID: PMC11502443 DOI: 10.3389/fphar.2024.1463313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024] Open
Abstract
Type 2 diabetes (T2D) and obesity are prevalent metabolic disorders affecting millions of individuals worldwide. A new effective therapeutic drug called tirzepatide for the treatment of obesity and T2D is a dual agonist of the GIP receptor and GLP-1 receptor. Tirzepatide is clinically more effective than GLP-1 receptor agonists but the reasons why are not well understood. Tirzepatide reportedly stimulates the GIP receptor more potently than the GLP-1 receptor. However, tirzepatide signaling has not been thoroughly investigated at the E354 (wildtype) or Q354 (E354Q) GIP receptor variants. The E354Q variant is associated increased risk of T2D and lower body mass index. To better understand GIP receptor signaling we characterized the activity of endogenous agonists and tirzepatide at both GIP receptor variants. Using Cos7 cells we examined wildtype and E354Q GIP receptor signaling, analyzing cAMP and IP1 accumulation as well as AKT, ERK1/2 and CREB phosphorylation. GIP(1-42) and GIP(1-30)NH2 displayed equipotent effects on these pathways excluding CREB phosphorylation where GIP(1-30)NH2 was more potent than GIP(1-42) at the E354Q GIP receptor. Tirzepatide favored cAMP signaling at both variants. These findings indicate that tirzepatide is a biased agonist towards Gαs signaling and suggests it equally activates the wildtype and E354Q GIP receptor variants. We also observed differences between the pharmacology of the GIP receptor variants with endogenous peptides, which may help to explain differences in phenotype. These findings contribute to a comprehensive understanding of GIP receptor signaling, and will aid development of therapies combating T2D and obesity.
Collapse
Affiliation(s)
- Tayla A. Rees
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Headache Group, Wolfson Sensory Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Benjamin J. Buttle
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Zoe Tasma
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Sung-Hyun Yang
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Paul W. R. Harris
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Christopher S. Walker
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Melo-Carrillo A, Strassman AM, Broide R, Adams A, Dabruzzo B, Brin M, Burstein R. Novel insight into atogepant mechanisms of action in migraine prevention. Brain 2024; 147:2884-2896. [PMID: 38411458 PMCID: PMC11292906 DOI: 10.1093/brain/awae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Recently, we showed that while atogepant-a small-molecule calcitonin gene-related peptide (CGRP) receptor antagonist-does not fully prevent activation of meningeal nociceptors, it significantly reduces a cortical spreading depression (CSD)-induced early response probability in C fibres and late response probability in Aδ fibres. The current study investigates atogepant effect on CSD-induced activation and sensitization of high threshold (HT) and wide dynamic range (WDR) central dura-sensitive trigeminovascular neurons. In anaesthetized male rats, single-unit recordings were used to assess effects of atogepant (5 mg/kg) versus vehicle on CSD-induced activation and sensitization of HT and WDR trigeminovascular neurons. Single cell analysis of atogepant pretreatment effects on CSD-induced activation and sensitization of central trigeminovascular neurons in the spinal trigeminal nucleus revealed the ability of this small molecule CGRP receptor antagonist to prevent activation and sensitization of nearly all HT neurons (8/10 versus 1/10 activated neurons in the control versus treated groups, P = 0.005). In contrast, atogepant pretreatment effects on CSD-induced activation and sensitization of WDR neurons revealed an overall inability to prevent their activation (7/10 versus 5/10 activated neurons in the control versus treated groups, P = 0.64). Unexpectedly however, in spite of atogepant's inability to prevent activation of WDR neurons, it prevented their sensitization (as reflected their responses to mechanical stimulation of the facial receptive field before and after the CSD). Atogepant' ability to prevent activation and sensitization of HT neurons is attributed to its preferential inhibitory effects on thinly myelinated Aδ fibres. Atogepant's inability to prevent activation of WDR neurons is attributed to its lesser inhibitory effects on the unmyelinated C fibres. Molecular and physiological processes that govern neuronal activation versus sensitization can explain how reduction in CGRP-mediated slow but not glutamate-mediated fast synaptic transmission between central branches of meningeal nociceptors and nociceptive neurons in the spinal trigeminal nucleus can prevent their sensitization but not activation.
Collapse
Affiliation(s)
- Agustin Melo-Carrillo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center. Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Andrew M Strassman
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center. Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Ron Broide
- Allergan, an Abbvie Company, Irvine, CA 92612, USA
| | - Aubrey Adams
- Allergan, an Abbvie Company, Irvine, CA 92612, USA
| | | | - Mitchell Brin
- Allergan, an Abbvie Company, Irvine, CA 92612, USA
- Department of Neurology, University of California, Irvine, CA 92697USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center. Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
3
|
Garelja ML, Alexander TI, Bennie A, Nimick M, Petersen J, Walker CS, Hay DL. Pharmacological characterisation of erenumab, Aimovig, at two calcitonin gene-related peptide responsive receptors. Br J Pharmacol 2024; 181:142-161. [PMID: 37580864 PMCID: PMC10840612 DOI: 10.1111/bph.16218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/30/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Calcitonin gene-related peptide (CGRP) is involved in migraine pathophysiology. CGRP can signal through two receptors. The canonical CGRP receptor comprises the calcitonin receptor-like receptor and receptor activity-modifying protein 1 (RAMP1); the AMY1 receptor comprises the calcitonin receptor with RAMP1. Drugs that reduce CGRP activity, such as receptor antagonists, are approved for the treatment and prevention of migraine. Despite being designed to target the canonical CGRP receptor, emerging evidence suggests that these antagonists, including erenumab (a monoclonal antibody antagonist) can also antagonise the AMY1 receptor. However, it is difficult to estimate its selectivity because direct comparisons between receptors under matched conditions have not been made. We therefore characterised erenumab at both CGRP-responsive receptors with multiple ligands, including αCGRP and βCGRP. EXPERIMENTAL APPROACH Erenumab antagonism was quantified through IC50 and pKB experiments, measuring cAMP production. We used SK-N-MC cells which endogenously express the human CGRP receptor, and HEK293S and Cos7 cells transiently transfected to express either human CGRP or AMY1 receptors. KEY RESULTS Erenumab antagonised both the CGRP and AMY1 receptors with an ~20-120-fold preference for the CGRP receptor, depending on the cells, agonist, analytical approach and/or assay format. Erenumab antagonised both forms of CGRP equally, and appeared to act as a competitive reversible antagonist at both receptors. CONCLUSION AND IMPLICATIONS Despite being designed to target the CGRP receptor, erenumab can antagonise the AMY1 receptor. Its ability to antagonise CGRP activity at both receptors may be useful in better understanding the clinical profile of erenumab.
Collapse
Affiliation(s)
- Michael L. Garelja
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Tyla I. Alexander
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Amy Bennie
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Mhairi Nimick
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Jakeb Petersen
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Christopher S. Walker
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L. Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
4
|
Cho S, Kim BK. Update of Gepants in the Treatment of Chronic Migraine. Curr Pain Headache Rep 2023; 27:561-569. [PMID: 37656319 DOI: 10.1007/s11916-023-01167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE OF REVIEW Despite the unmet therapeutic needs of patients with chronic migraine (CM) and/or medication overuse, available treatment options are limited. Recently, four calcitonin gene-related peptide receptor antagonists, known as gepants, have been approved for the treatment of migraine. This review focuses on the preventive treatment of CM with gepants and highlights recent findings. RECENT FINDINGS Two randomized controlled trials (RCTs) have shown promising results for rimegepant and atogepant as preventive treatments for CM. In an RCT targeting patients with CM, atogepant demonstrated a significant reduction in the mean monthly migraine days, irrespective of acute medication overuse. Moreover, the patients reported no significant safety concerns and exhibited good tolerance to treatment. These findings highlight the potential of gepants as a new and effective therapeutic option for patients with CM and/or medication overuse. Gepant use will help improve the management and quality of life of individuals with this debilitating condition.
Collapse
Affiliation(s)
- Soohyun Cho
- Department of Neurology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Korea
| | - Byung-Kun Kim
- Department of Neurology, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Rees TA, Labastida-Ramírez A, Rubio-Beltrán E. Calcitonin/PAC 1 receptor splice variants: a blind spot in migraine research. Trends Pharmacol Sci 2023; 44:651-663. [PMID: 37543479 PMCID: PMC10529278 DOI: 10.1016/j.tips.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 08/07/2023]
Abstract
The neuropeptides calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) and their receptors are linked to migraine neurobiology. Recent antimigraine therapeutics targeting the signaling of these neuropeptides are effective; however, some patients respond suboptimally, indicating an incomplete understanding of migraine pathophysiology. The CGRP- and PACAP-responsive receptors can be differentially spliced. It is known that receptor splice variants can have different pathophysiological effects in other receptor-mediated pain pathways. Despite considerable knowledge on the structural and pharmacological differences of the CGRP- and PACAP-responsive receptor splice variants and their expression in migraine-relevant tissues, their role in migraine is rarely considered. Here we shine a spotlight on the calcitonin and PACAP (PAC1) receptor splice variants and examine what implications they may have for drug activity and design.
Collapse
Affiliation(s)
- Tayla A Rees
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| | - Alejandro Labastida-Ramírez
- Headache Group, Wolfson Center for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eloisa Rubio-Beltrán
- Headache Group, Wolfson Center for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
6
|
Kuburas A, Russo AF. Shared and independent roles of CGRP and PACAP in migraine pathophysiology. J Headache Pain 2023; 24:34. [PMID: 37009867 PMCID: PMC10069045 DOI: 10.1186/s10194-023-01569-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023] Open
Abstract
The neuropeptides calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) have emerged as mediators of migraine pathogenesis. Both are vasodilatory peptides that can cause migraine-like attacks when infused into people and migraine-like symptoms when injected into rodents. In this narrative review, we compare the similarities and differences between the peptides in both their clinical and preclinical migraine actions. A notable clinical difference is that PACAP, but not CGRP, causes premonitory-like symptoms in patients. Both peptides are found in distinct, but overlapping areas relevant to migraine, most notably with the prevalence of CGRP in trigeminal ganglia and PACAP in sphenopalatine ganglia. In rodents, the two peptides share activities, including vasodilation, neurogenic inflammation, and nociception. Most strikingly, CGRP and PACAP cause similar migraine-like symptoms in rodents that are manifested as light aversion and tactile allodynia. Yet, the peptides appear to act by independent mechanisms possibly by distinct intracellular signaling pathways. The complexity of these signaling pathways is magnified by the existence of multiple CGRP and PACAP receptors that may contribute to migraine pathogenesis. Based on these differences, we suggest PACAP and its receptors provide a rich set of targets to complement and augment the current CGRP-based migraine therapeutics.
Collapse
Affiliation(s)
- Adisa Kuburas
- Department of Molecular Physiology and Biophysics and Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics and Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA.
- Veterans Affairs Medical Center, Iowa City, IA, 52246, USA.
| |
Collapse
|
7
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Biscetti L, Cresta E, Cupini LM, Calabresi P, Sarchielli P. The putative role of neuroinflammation in the complex pathophysiology of migraine: From bench to bedside. Neurobiol Dis 2023; 180:106072. [PMID: 36907522 DOI: 10.1016/j.nbd.2023.106072] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/18/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
The implications of neurogenic inflammation and neuroinflammation in the pathophysiology of migraine have been clearly demonstrated in preclinical migraine models involving several sites relevant in the trigemino-vascular system, including dural vessels and trigeminal endings, the trigeminal ganglion, the trigeminal nucleus caudalis as well as central trigeminal pain processing structures. In this context, a relevant role has been attributed over the years to some sensory and parasympathetic neuropeptides, in particular calcitonin gene neuropeptide, vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Several preclinical and clinical lines of evidence also support the implication of the potent vasodilator and messenger molecule nitric oxide in migraine pathophysiology. All these molecules are involved in vasodilation of the intracranial vasculature, as well as in the peripheral and central sensitization of the trigeminal system. At meningeal level, the engagement of some immune cells of innate immunity, including mast-cells and dendritic cells, and their mediators, has been observed in preclinical migraine models of neurogenic inflammation in response to sensory neuropeptides release due to trigemino-vascular system activation. In the context of neuroinflammatory events implicated in migraine pathogenesis, also activated glial cells in the peripheral and central structures processing trigeminal nociceptive signals seem to play a relevant role. Finally, cortical spreading depression, the pathophysiological substrate of migraine aura, has been reported to be associated with inflammatory mechanisms such as pro-inflammatory cytokine upregulation and intracellular signalling. Reactive astrocytosis consequent to cortical spreading depression is linked to an upregulation of these inflammatory markers. The present review summarizes current findings on the roles of immune cells and inflammatory responses in the pathophysiology of migraine and their possible exploitation in the view of innovative disease-modifying strategies.
Collapse
Affiliation(s)
- Leonardo Biscetti
- Istituto Nazionale di Ricovero e Cura dell'Anziano a carattere scientifico, IRCCS-INRCA, Ancona, Italy.
| | - Elena Cresta
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Paolo Calabresi
- Department of Neuroscience, Università Cattolica Sacro Cuore, Rome, Italy; Neurologia, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Paola Sarchielli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
9
|
Garelja ML, Hay DL. A narrative review of the calcitonin peptide family and associated receptors as migraine targets: Calcitonin gene-related peptide and beyond. Headache 2022; 62:1093-1104. [PMID: 36226379 PMCID: PMC9613588 DOI: 10.1111/head.14388] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/08/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To summarize the pharmacology of the calcitonin peptide family of receptors and explore their relationship to migraine and current migraine therapies. BACKGROUND Therapeutics that dampen calcitonin gene-related peptide (CGRP) signaling are now in clinical use to prevent or treat migraine. However, CGRP belongs to a broader peptide family, including the peptides amylin and adrenomedullin. Receptors for this family are complex, displaying overlapping pharmacologic profiles. Despite the focus on CGRP and the CGRP receptor in migraine research, recent evidence implicates related peptides and receptors in migraine. METHODS This narrative review summarizes literature encompassing the current pharmacologic understanding of the calcitonin peptide family, and the evidence that links specific members of this family to migraine and migraine-like behaviors. RESULTS Recent work links amylin and adrenomedullin to migraine-like behavior in rodent models and migraine-like attacks in individuals with migraine. We collate novel information that suggests females may be more sensitive to amylin and CGRP in the context of migraine-like behaviors. We report that drugs designed to antagonize the canonical CGRP receptor also antagonize a second CGRP-responsive receptor and speculate as to whether this influences therapeutic efficacy. We also discuss the specificity of current drugs with regards to CGRP isoforms and how this may influence therapeutic profiles. Lastly, we emphasize that receptors related to, but distinct from, the canonical CGRP receptor may represent underappreciated and novel drug targets. CONCLUSION Multiple peptides within the calcitonin family have been linked to migraine. The current focus on CGRP and its canonical receptor may be obscuring pathways to further therapeutics. Drug discovery schemes that take a wider view of the receptor family may lead to the development of new anti-migraine drugs with favorable clinical profiles. We also propose that understanding these related peptides and receptors may improve our interpretation regarding the mechanism of action of current drugs.
Collapse
Affiliation(s)
- Michael L. Garelja
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
| | - Debbie L. Hay
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand,Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
10
|
Salahi M, Parsa S, Nourmohammadi D, Razmkhah Z, Salimi O, Rahmani M, Zivary S, Askarzadeh M, Tapak MA, Vaezi A, Sadeghsalehi H, Yaghoobpoor S, Mottahedi M, Garousi S, Deravi N. Immunologic aspects of migraine: A review of literature. Front Neurol 2022; 13:944791. [PMID: 36247795 PMCID: PMC9554313 DOI: 10.3389/fneur.2022.944791] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Migraine headaches are highly prevalent, affecting 15% of the population. However, despite many studies to determine this disease's mechanism and efficient management, its pathophysiology has not been fully elucidated. There are suggested hypotheses about the possible mediating role of mast cells, immunoglobulin E, histamine, and cytokines in this disease. A higher incidence of this disease in allergic and asthma patients, reported by several studies, indicates the possible role of brain mast cells located around the brain vessels in this disease. The mast cells are more specifically within the dura and can affect the trigeminal nerve and cervical or sphenopalatine ganglion, triggering the secretion of substances that cause migraine. Neuropeptides such as calcitonin gene-related peptide (CGRP), neurokinin-A, neurotensin (NT), pituitary adenylate-cyclase-activating peptide (PACAP), and substance P (SP) trigger mast cells, and in response, they secrete pro-inflammatory and vasodilatory molecules such as interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) as a selective result of corticotropin-releasing hormone (CRH) secretion. This stress hormone contributes to migraine or intensifies it. Blocking these pathways using immunologic agents such as CGRP antibody, anti-CGRP receptor antibody, and interleukin-1 beta (IL-1β)/interleukin 1 receptor type 1 (IL-1R1) axis-related agents may be promising as potential prophylactic migraine treatments. This review is going to summarize the immunological aspects of migraine.
Collapse
Affiliation(s)
- Mehrnaz Salahi
- Student Research Committee, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Parsa
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Delaram Nourmohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razmkhah
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Salimi
- Student Research Committee, Faculty of Medicine, Islamic Azad University of Najafabad, Isfahan, Iran
| | | | - Saeid Zivary
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Monireh Askarzadeh
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Tapak
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ali Vaezi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sadeghsalehi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Jiang Y, Huang ZL. Recent advances in targeting calcitonin gene-related peptide for the treatment of menstrual migraine: A narrative review. Medicine (Baltimore) 2022; 101:e29361. [PMID: 35713436 PMCID: PMC9276107 DOI: 10.1097/md.0000000000029361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 04/08/2022] [Indexed: 11/26/2022] Open
Abstract
Menstrual migraine (MM) has a longer duration and higher drug resistance than non-perimenstrual migraine. Calcitonin gene-related peptide (CGRP) and CGRP receptors are expressed in the peripheral and central nervous systems throughout the trigeminovascular system. The CGRP/CGRP receptor axis plays an important role in sensory physiology and pharmacology. CGRP receptor antagonists and anti-CGRP monoclonal antibodies (mAbs) have shown consistent efficacy and tolerability in the prevention of chronic or episodic migraine and are now approved for clinical use. However, few studies have reported the use of these drugs in MM, and no specific treatment for MM has been approved. This review aimed to shed light on the recent advances in targeting calcitonin gene-related peptides for the treatment of menstrual migraines in PubMed. In this review, we first discuss the axis of the CGRP/CGRP receptor. We then discuss the role of CGRP receptor antagonists and anti-CGRP mAbs in MM treatment. Finally, we discuss the role of the combination of anti-CGRP mAbs and CGRP receptor antagonists in migraine treatment and the drugs that inhibit CGRP release. Altogether, the anti-CGRP mAbs or CGRP receptor antagonists showed good efficacy and safety in the treatment of MM.
Collapse
|
12
|
Hage La Cour S, Juhler K, Kogelman LJA, Olesen J, Klærke DA, Kristensen DM, Jansen-Olesen I. Characterization of erenumab and rimegepant on calcitonin gene-related peptide induced responses in Xenopus Laevis oocytes expressing the calcitonin gene-related peptide receptor and the amylin-1 receptor. J Headache Pain 2022; 23:59. [PMID: 35614383 PMCID: PMC9134599 DOI: 10.1186/s10194-022-01425-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/28/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The clinical use of calcitonin gene-related peptide receptor (CGRP-R) antagonists and monoclonal antibodies against CGRP and CGRP-R has offered new treatment possibilities for migraine patients. CGRP activates both the CGRP-R and structurally related amylin 1 receptor (AMY1-R). The relative effect of erenumab and the small-molecule CGRP-R antagonist, rimegepant, towards the CGRP-R and AMY-R needs to be further characterized. METHODS The effect of CGRP and two CGRP-R antagonists were examined in Xenopus laevis oocytes expressing human CGRP-R, human AMY1-R and their subunits. RESULTS CGRP administered to receptor expressing oocytes induced a concentration-dependent increase in current with the order of potency CGRP-R> > AMY1-R > calcitonin receptor (CTR). There was no effect on single components of the CGRP-R; calcitonin receptor-like receptor and receptor activity-modifying protein 1. Amylin was only effective on AMY1-R and CTR. Inhibition potencies (pIC50 values) for erenumab on CGRP induced currents were 10.86 and 9.35 for CGRP-R and AMY1-R, respectively. Rimegepant inhibited CGRP induced currents with pIC50 values of 11.30 and 9.91 for CGRP-R and AMY1-R, respectively. CONCLUSION Our results demonstrate that erenumab and rimegepant are potent antagonists of CGRP-R and AMY1-R with 32- and 25-times preference for the CGRP-R over the AMY1-R, respectively. It is discussed if this difference in affinity between the two receptors is the likely reason why constipation is a common and serious adverse effect during CGRP-R antagonism but less so with CGRP binding antibodies.
Collapse
Affiliation(s)
- Sanne Hage La Cour
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kiki Juhler
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lisette J A Kogelman
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Dan Arne Klærke
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - David Møbjerg Kristensen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Inserm (Institut national de la santé et de la recherche médicale), Irset - Inserm UMR 1085, Rennes, France
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Inger Jansen-Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Jamaluddin A, Chuang CL, Williams ET, Siow A, Yang SH, Harris PWR, Petersen JSSM, Bower RL, Chand S, Brimble MA, Walker CS, Hay DL, Loomes KM. Lipidated Calcitonin Gene-Related Peptide (CGRP) Peptide Antagonists Retain CGRP Receptor Activity and Attenuate CGRP Action In Vivo. Front Pharmacol 2022; 13:832589. [PMID: 35341216 PMCID: PMC8942775 DOI: 10.3389/fphar.2022.832589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Signaling through calcitonin gene-related peptide (CGRP) receptors is associated with pain, migraine, and energy expenditure. Small molecule and monoclonal antibody CGRP receptor antagonists that block endogenous CGRP action are in clinical use as anti-migraine therapies. By comparison, the potential utility of peptide antagonists has received less attention due to suboptimal pharmacokinetic properties. Lipidation is an established strategy to increase peptide half-life in vivo. This study aimed to explore the feasibility of developing lipidated CGRP peptide antagonists that retain receptor antagonist activity in vitro and attenuate endogenous CGRP action in vivo. CGRP peptide analogues based on the archetypal CGRP receptor antagonist, CGRP8-37, were palmitoylated at the N-terminus, position 24, and near the C-terminus at position 35. The antagonist activities of the lipidated peptide analogues were tested in vitro using transfected Cos-7 cells expressing either the human or mouse CGRP receptor, amylin subtype 1 (AMY1) receptor, adrenomedullin (AM) receptors, or calcitonin receptor. Antagonist activities were also evaluated in SK-N-MC cells that endogenously express the human CGRP receptor. Lipidated peptides were then tested for their ability to antagonize endogenous CGRP action in vivo using a capsaicin-induced dermal vasodilation (CIDV) model in C57/BL6J mice. All lipidated peptides except for the C-terminally modified analogue retained potent antagonist activity compared to CGRP8-37 towards the CGRP receptor. The lipidated peptides also retained, and sometimes gained, antagonist activities at AMY1, AM1 and AM2 receptors. Several lipidated peptides produced robust inhibition of CIDV in mice. This study demonstrates that selected lipidated peptide antagonists based on αCGRP8-37 retain potent antagonist activity at the CGRP receptor and are capable of inhibition of endogenous CGRP action in vivo. These findings suggest that lipidation can be applied to peptide antagonists, such as αCGRP8-37 and are a potential strategy for antagonizing CGRP action.
Collapse
Affiliation(s)
- Aqfan Jamaluddin
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Chia-Lin Chuang
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Elyse T Williams
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Andrew Siow
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Sung Hyun Yang
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | - Rebekah L Bower
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Shanan Chand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | - Debbie L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Kerry M Loomes
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Strassman AM, Melo-Carrillo A, Houle TT, Adams A, Brin MF, Burstein R. Atogepant - an orally-administered CGRP antagonist - attenuates activation of meningeal nociceptors by CSD. Cephalalgia 2022; 42:933-943. [PMID: 35332801 DOI: 10.1177/03331024221083544] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND This study investigated the mechanism of action of atogepant, a small-molecule CGRP receptor antagonist recently approved for the preventive treatment of episodic migraine, by assessing its effect on activation of mechanosensitive C- and Aδ-meningeal nociceptors following cortical spreading depression. METHODS Single-unit recordings of trigeminal ganglion neurons (32 Aδ and 20 C-fibers) innervating the dura was used to document effects of orally administered atogepant (5 mg/kg) or vehicle on cortical spreading depression-induced activation in anesthetized male rats. RESULTS Bayesian analysis of time effects found that atogepant did not completely prevent the activation of nociceptors at the tested dose, but it significantly reduced response amplitude and probability of response in both the C- and the Aδ-fibers at different time intervals following cortical spreading depression induction. For C-fibers, the reduction in responses was significant in the early phase (first hour), but not delayed phase of activation, whereas in Aδ-fibers, significant reduction in activation was apparent in the delayed phase (second and third hours) but not early phase of activation. CONCLUSIONS These findings identify differences between the actions of atogepant, a small molecule CGRP antagonist (partially inhibiting both Aδ and C-fibers) and those found previously for fremanezumab, a CGRP-targeted antibody (inhibiting Aδ fibers only) and onabotulinumtoxinA (inhibiting C-fibers only)- suggesting that these agents differ in their mechanisms for the preventive treatment of migraine.
Collapse
Affiliation(s)
- Andrew M Strassman
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center.,Harvard Medical School, Boston, Massachusetts, USA
| | - Agustin Melo-Carrillo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center.,Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy T Houle
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, USA
| | - Aubrey Adams
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, USA
| | - Mitchell F Brin
- Allergan, an AbbVie Company, Irvine, CA, USA.,Dept of Neurology, University of California, Irvine, USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Moreno-Ajona D, Villar-Martínez MD, Goadsby PJ. New Generation Gepants: Migraine Acute and Preventive Medications. J Clin Med 2022; 11:1656. [PMID: 35329982 PMCID: PMC8953732 DOI: 10.3390/jcm11061656] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Migraine is a debilitating disease whose clinical and social impact is out of debate. Tolerability issues, interactions, contraindications, and inefficacy of the available medications make new options necessary. The calcitonin-gene-related peptide (CGRP) pathway has shown its importance in migraine pathophysiology and specific medications targeting this have become available. The first-generation CGRP receptor antagonists or gepants, have undergone clinical trials but their development was stopped because of hepatotoxicity. The new generation of gepants, however, are efficacious, safe, and well tolerated as per recent clinical trials. This led to the FDA-approval of rimegepant, ubrogepant, and atogepant. The clinical trials of the available gepants and some of the newer CGRP-antagonists are reviewed in this article.
Collapse
Affiliation(s)
- David Moreno-Ajona
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (D.M.-A.); (M.D.V.-M.)
- NIHR-Wellcome Trust King’s Clinical Research Facility/SLaM Biomedical Research Centre, King’s College Hospital, London SE5 9RS, UK
| | - María Dolores Villar-Martínez
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (D.M.-A.); (M.D.V.-M.)
- NIHR-Wellcome Trust King’s Clinical Research Facility/SLaM Biomedical Research Centre, King’s College Hospital, London SE5 9RS, UK
| | - Peter J. Goadsby
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (D.M.-A.); (M.D.V.-M.)
- NIHR-Wellcome Trust King’s Clinical Research Facility/SLaM Biomedical Research Centre, King’s College Hospital, London SE5 9RS, UK
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Simonetta I, Riolo R, Todaro F, Tuttolomondo A. New Insights on Metabolic and Genetic Basis of Migraine: Novel Impact on Management and Therapeutical Approach. Int J Mol Sci 2022; 23:3018. [PMID: 35328439 PMCID: PMC8955051 DOI: 10.3390/ijms23063018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Migraine is a hereditary disease, usually one-sided, sometimes bilateral. It is characterized by moderate to severe pain, which worsens with physical activity and may be associated with nausea and vomiting, may be accompanied by photophobia and phonophobia. The disorder can occur at any time of the day and can last from 4 to 72 h, with and without aura. The pathogenic mechanism is unclear, but extensive preclinical and clinical studies are ongoing. According to electrophysiology and imaging studies, many brain areas are involved, such as cerebral cortex, thalamus, hypothalamus, and brainstem. The activation of the trigeminovascular system has a key role in the headache phase. There also appears to be a genetic basis behind the development of migraine. Numerous alterations have been identified, and in addition to the genetic cause, there is also a close association with the surrounding environment, as if on the one hand, the genetic alterations may be responsible for the onset of migraine, on the other, the environmental factors seem to be more strongly associated with exacerbations. This review is an analysis of neurophysiological mechanisms, neuropeptide activity, and genetic alterations that play a fundamental role in choosing the best therapeutic strategy. To date, the goal is to create a therapy that is as personalized as possible, and for this reason, steps forward have been made in the pharmacological field in order to identify new therapeutic strategies for both acute treatment and prophylaxis.
Collapse
Affiliation(s)
- Irene Simonetta
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
- Molecular and Clinical Medicine PhD Programme, University of Palermo, P.zza delle Cliniche n.2, 90127 Palermo, Italy
| | - Renata Riolo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
| | - Federica Todaro
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
- Molecular and Clinical Medicine PhD Programme, University of Palermo, P.zza delle Cliniche n.2, 90127 Palermo, Italy
| |
Collapse
|
17
|
Tian R, Zhang Y, Pan Q, Wang Y, Wen Q, Fan X, Qin G, Zhang D, Chen L, Zhang Y, Zhou J. Calcitonin gene-related peptide receptor antagonist BIBN4096BS regulates synaptic transmission in the vestibular nucleus and improves vestibular function via PKC/ERK/CREB pathway in an experimental chronic migraine rat model. J Headache Pain 2022; 23:35. [PMID: 35260079 PMCID: PMC8903578 DOI: 10.1186/s10194-022-01403-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
Abstract
Background Vestibular symptoms are frequently reported in patients with chronic migraine (CM). However, whether vestibular symptoms arise through overlapping neurobiology of migraine remains to be elucidated. The neuropeptide calcitonin gene-related peptide (CGRP) and CGRP1 receptor play important pathological roles in facilitating central sensitization in CM. Therefore, we aimed to investigate whether CGRP1 receptor contributes to vestibular dysfunction after CM by improving synaptic transmission in the vestibular nucleus (VN). Methods A CM rat model was established by recurrent intermittent administration of nitroglycerin (NTG). Migraine- and vestibular-related behaviors were assessed. CGRP1 receptor specific antagonist, BIBN4096BS, and protein kinase C (PKC) inhibitor chelerythrine chloride (CHE) were administered intracerebroventricularly. The expressions of CGRP and CGRP1 receptor components, calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) were evaluated by western blot, immunofluorescent staining and quantitative real-time polymerase chain reaction in the vestibular nucleus (VN). Synaptic associated proteins and synaptic morphological characteristics were explored by western blot, transmission electron microscope, and Golgi-cox staining. The expressions of PKC, phosphorylated extracellular signal regulated kinase (p-ERK), phosphorylated cAMP response element-binding protein at serine 133 site (p-CREB-S133) and c-Fos were detected using western blot or immunofluorescent staining. Results The expressions of CGRP, CLR and RAMP1 were significantly upregulated in CM rats. CLR and RAMP1 were expressed mainly in neurons. BIBN4096BS treatment and PKC inhibition alleviated mechanical allodynia, thermal hyperalgesia and vestibular dysfunction in CM rats. Additionally, BIBN4096BS treatment and PKC inhibition markedly inhibited the overexpression of synaptic associated proteins and restored the abnormal synaptic structure in VN after CM. Furthermore, BIBN4096BS treatment dysregulated the expression levels of PKC, p-ERK and p-CREB-S133, and attenuated neuronal activation in VN after CM. Conclusions The present study demonstrated that CGRP1 receptor inhibition improved vestibular function after CM by reversing the aberrant synaptic transmission via downregulating PKC/ERK/CREB signaling pathway. Therapeutic interventions by inhibiting CGRP/CGRP1 signaling may be a new target for the treatment of vestibular symptoms in CM.
Collapse
|
18
|
Christiansen IM, Edvinsson JCA, Reducha PV, Edvinsson L, Haanes KA. Dual action of the cannabinoid receptor 1 ligand arachidonyl-2′-chloroethylamide on calcitonin gene-related peptide release. J Headache Pain 2022; 23:30. [PMID: 35189809 PMCID: PMC8903492 DOI: 10.1186/s10194-022-01399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background Based on the current understanding of the role of neuropeptide signalling in migraine, we explored the therapeutic potential of a specific cannabinoid agonist. The aim of the present study was to examine the effect of the synthetic endocannabinoid (eCB) analogue, arachidonyl-2′-chloroethylamide (ACEA), on calcitonin gene-related peptide (CGRP) release in the dura and trigeminal ganglion (TG), as cannabinoids are known to activate Gi/o-coupled cannabinoid receptors type 1 (CB1), resulting in neuronal inhibition. Methods The experiments were performed using the hemi-skull model and dissected TGs from male Sprague-Dawley rats. CGRP release was induced by either 60 mM K+ (for depolarization-induced stimulation) or 100 nM capsaicin (for transient receptor potential vanilloid 1 (TRPV1) -induced stimulation) and measured using an enzyme-linked immunosorbent assay. The analysis of CGRP release data was combined with immunohistochemistry in order to study the cellular localization of CB1, cannabinoid receptor type 2 (CB2), CGRP and receptor activity modifying protein 1 (RAMP1), a subunit of the functional CGRP receptor, in the TG. Results CB1 was predominantly expressed in neuronal somas in which colocalization with CGRP was observed. Furthermore, CB1 exhibited colocalization with RAMP1 in neuronal Aδ-fibres but was not clearly expressed in the CGRP-immunoreactive C-fibres. CB2 was mainly expressed in satellite glial cells and did not show substantial colocalization with either CGRP or RAMP1. Without stimulation, 140 nM ACEA per se caused a significant increase in CGRP release in the dura but not TG, compared to vehicle. Furthermore, 140 nM ACEA did not significantly modify neither K+- nor capsaicin-induced CGRP release. However, when the TRPV1 blocker AMG9810 (1 mM) was coapplied with ACEA, K+-induced CGRP release was significantly attenuated in the TG and dura. Conclusions Results from the present study indicate that ACEA per se does not exhibit antimigraine potential due to its dual agonistic properties, resulting in activation of both CB1 and TRPV1, and thereby inhibition and stimulation of CGRP release, respectively. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01399-8.
Collapse
|
19
|
Kumar A, Williamson M, Hess A, DiPette DJ, Potts JD. Alpha-Calcitonin Gene Related Peptide: New Therapeutic Strategies for the Treatment and Prevention of Cardiovascular Disease and Migraine. Front Physiol 2022; 13:826122. [PMID: 35222088 PMCID: PMC8874280 DOI: 10.3389/fphys.2022.826122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Alpha-calcitonin gene-related peptide (α-CGRP) is a vasodilator neuropeptide of the calcitonin gene family. Pharmacological and gene knock-out studies have established a significant role of α-CGRP in normal and pathophysiological states, particularly in cardiovascular disease and migraines. α-CGRP knock-out mice with transverse aortic constriction (TAC)-induced pressure-overload heart failure have higher mortality rates and exhibit higher levels of cardiac fibrosis, inflammation, oxidative stress, and cell death compared to the wild-type TAC-mice. However, administration of α-CGRP, either in its native- or modified-form, improves cardiac function at the pathophysiological level, and significantly protects the heart from the adverse effects of heart failure and hypertension. Similar cardioprotective effects of the peptide were demonstrated in pressure-overload heart failure mice when α-CGRP was delivered using an alginate microcapsules-based drug delivery system. In contrast to cardiovascular disease, an elevated level of α-CGRP causes migraine-related headaches, thus the use of α-CGRP antagonists that block the interaction of the peptide to its receptor are beneficial in reducing chronic and episodic migraine headaches. Currently, several α-CGRP antagonists are being used as migraine treatments or in clinical trials for migraine pain management. Overall, agonists and antagonists of α-CGRP are clinically relevant to treat and prevent cardiovascular disease and migraine pain, respectively. This review focuses on the pharmacological and therapeutic significance of α-CGRP-agonists and -antagonists in various diseases, particularly in cardiac diseases and migraine pain.
Collapse
Affiliation(s)
- Ambrish Kumar
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Maelee Williamson
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Andrew Hess
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Donald J. DiPette
- Department of Internal Medicine, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Jay D. Potts
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
- *Correspondence: Jay D. Potts,
| |
Collapse
|
20
|
Garelja ML, Bower RL, Brimble MA, Chand S, Harris PW, Jamaluddin MA, Petersen J, Siow A, Walker CS, Hay DL. Pharmacological characterisation of mouse calcitonin and calcitonin receptor-like receptors reveals differences compared with human receptors. Br J Pharmacol 2022; 179:416-434. [PMID: 34289083 PMCID: PMC8776895 DOI: 10.1111/bph.15628] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND PURPOSE The calcitonin (CT) receptor family is complex, comprising two receptors (the CT receptor [CTR] and the CTR-like receptor [CLR]), three accessory proteins (RAMPs) and multiple endogenous peptides. This family contains several important drug targets, including CGRP, which is targeted by migraine therapeutics. The pharmacology of this receptor family is poorly characterised in species other than rats and humans. To facilitate understanding of translational and preclinical data, we need to know the receptor pharmacology of this family in mice. EXPERIMENTAL APPROACH Plasmids encoding mouse CLR/CTR and RAMPs were transiently transfected into Cos-7 cells. cAMP production was measured in response to agonists in the absence or presence of antagonists. KEY RESULTS We report the first synthesis and characterisation of mouse adrenomedullin, adrenomedullin 2 and βCGRP and of mouse CTR without or with mouse RAMPs. Receptors containing m-CTR had subtly different pharmacology than human receptors; they were promiscuous in their pharmacology, both with and without RAMPs. Several peptides, including mouse αCGRP and mouse adrenomedullin 2, were potent agonists of the m-CTR:m-RAMP3 complex. Pharmacological profiles of receptors comprising m-CLR:m-RAMPs were generally similar to those of their human counterparts, albeit with reduced specificity. CONCLUSION AND IMPLICATIONS Mouse receptor pharmacology differed from that in humans, with mouse receptors displaying reduced discrimination between ligands. This creates challenges for interpreting which receptor may underlie an effect in preclinical models and thus translation of findings from mice to humans. It also highlights the need for new ligands to differentiate between these complexes. LINKED ARTICLES This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary).. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.
Collapse
Affiliation(s)
- Michael L. Garelja
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand,School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Rebekah L Bower
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Margaret A. Brimble
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand,School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Shanan Chand
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Paul W.R. Harris
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand,School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | | | - Jakeb Petersen
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Andrew Siow
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand,School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Christopher S. Walker
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L. Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand,School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand,Author to whom correspondence should be addressed,
| |
Collapse
|
21
|
Biscetti L, De Vanna G, Cresta E, Bellotti A, Corbelli I, Letizia Cupini M, Calabresi P, Sarchielli P. Immunological findings in patients with migraine and other primary headaches: a narrative review. Clin Exp Immunol 2022; 207:11-26. [PMID: 35020858 PMCID: PMC8802184 DOI: 10.1093/cei/uxab025] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Experimental findings suggest an involvement of neuroinflammatory mechanisms in the pathophysiology of migraine. Specifically, preclinical models of migraine have emphasized the role of neuroinflammation following the activation of the trigeminal pathway at several peripheral and central sites including dural vessels, the trigeminal ganglion, and the trigeminal nucleus caudalis. The evidence of an induction of inflammatory events in migraine pathophysiological mechanisms has prompted researchers to investigate the human leukocyte antigen (HLA) phenotypes as well as cytokine genetic polymorphisms in order to verify their potential relationship with migraine risk and severity. Furthermore, the role of neuroinflammation in migraine seems to be supported by evidence of an increase in pro-inflammatory cytokines, both ictally and interictally, together with the prevalence of Th1 lymphocytes and a reduction in regulatory lymphocyte subsets in peripheral blood of migraineurs. Cytokine profiles of cluster headache (CH) patients and those of tension-type headache patients further suggest an immunological dysregulation in the pathophysiology of these primary headaches, although evidence is weaker than for migraine. The present review summarizes available findings to date from genetic and biomarker studies that have explored the role of inflammation in primary headaches.
Collapse
Affiliation(s)
- Leonardo Biscetti
- Istituto Nazionale di Riposo e Cura dell'Anziano a carattere scientifico, IRCSS-INRCA, Ancona, Italy
| | - Gioacchino De Vanna
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Cresta
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alessia Bellotti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ilenia Corbelli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Paolo Calabresi
- Department of Neuroscience, Università Cattolica Sacro Cuore, Rome, Italy.,Neurologia, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Paola Sarchielli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
22
|
Blumenfeld A, Durham PL, Feoktistov A, Hay DL, Russo AF, Turner I. Hypervigilance, Allostatic Load, and Migraine Prevention: Antibodies to CGRP or Receptor. Neurol Ther 2021; 10:469-497. [PMID: 34076848 PMCID: PMC8571459 DOI: 10.1007/s40120-021-00250-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/09/2021] [Indexed: 01/03/2023] Open
Abstract
Migraine involves brain hypersensitivity with episodic dysfunction triggered by behavioral or physiological stressors. During an acute migraine attack the trigeminal nerve is activated (peripheral sensitization). This leads to central sensitization with activation of the central pathways including the trigeminal nucleus caudalis, the trigemino-thalamic tract, and the thalamus. In episodic migraine the sensitization process ends with the individual act, but with chronic migraine central sensitization may continue interictally. Increased allostatic load, the consequence of chronic, repeated exposure to stressors, leads to central sensitization, lowering the threshold for future neuronal activation (hypervigilance). Ostensibly innocuous stressors are then sufficient to trigger an attack. Medications that reduce sensitization may help patients who are hypervigilant and help to balance allostatic load. Acute treatments and drugs for migraine prevention have traditionally been used to reduce attack duration and frequency. However, since many patients do not fully respond, an unmet treatment need remains. Calcitonin gene-related peptide (CGRP) is a vasoactive neuropeptide involved in nociception and in the sensitization of peripheral and central neurons of the trigeminovascular system, which is implicated in migraine pathophysiology. Elevated CGRP levels are associated with dysregulated signaling in the trigeminovascular system, leading to maladaptive responses to behavioral or physiological stressors. CGRP may, therefore, play a key role in the underlying pathophysiology of migraine. Increased understanding of the role of CGRP in migraine led to the development of small-molecule antagonists (gepants) and monoclonal antibodies (mAbs) that target either CGRP or the receptor (CGRP-R) to restore homeostasis, reducing the frequency, duration, and severity of attacks. In clinical trials, US Food and Drug Administration-approved anti-CGRP-R/CGRP mAbs were well tolerated and effective as preventive migraine treatments. Here, we explore the role of CGRP in migraine pathophysiology and the use of gepants or mAbs to suppress CGRP-R signaling via inhibition of the CGRP ligand or receptor.
Collapse
Affiliation(s)
- Andrew Blumenfeld
- The Headache Center of Southern California, The Neurology Center, Carlsbad, CA, USA.
| | - Paul L Durham
- Department of Biology, Center for Biomedical and Life Sciences, Missouri State University, Springfield, MO, USA
| | | | - Debbie L Hay
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Andrew F Russo
- Departments of Molecular Physiology and Biophysics, Neurology, University of Iowa, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
| | - Ira Turner
- Island Neurological Associates, Plainview, NY, USA
| |
Collapse
|
23
|
Tasma Z, Siow A, Harris PWR, Brimble MA, Hay DL, Walker CS. Characterisation of agonist signalling profiles and agonist-dependent antagonism at PACAP-responsive receptors: Implications for drug discovery. Br J Pharmacol 2021; 179:435-453. [PMID: 34612509 DOI: 10.1111/bph.15700] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE The pituitary adenylate cyclase-activating peptide (PACAP) family is of clinical interest for the treatment of migraine. These peptides activate three different PACAP-responsive class B G protein-coupled receptors: the PAC1 , VPAC1 and VPAC2 receptors. The PAC1 receptor may be alternatively spliced, generating variants that can differ in their pharmacological or signalling profiles. To inform drug discovery efforts targeting migraine, we need to better understand how the different PACAP-responsive receptors signal and how effectively these responses can be blocked by antagonists. EXPERIMENTAL APPROACH The signalling profiles of the human PAC1n , PAC1s , VPAC1 and VPAC2 receptors were examined in transfected Cos7 cells for cAMP, IP1 , pAkt, pERK and pCREB. Biased signalling was then quantified. The ability of antagonists to block PACAP-38, PACAP-27 or VIP stimulated cAMP accumulation at PACAP-responsive receptors was also determined. KEY RESULTS PACAP-responsive receptors exhibited varied pharmacological profiles but activated signalling in a similar manner. The PAC1n and PAC1s receptors displayed distinct pharmacology. At the PAC1s receptor, VIP and PHM were more potent than at the PAC1n receptor. PACAP-responsive receptors displayed agonist-dependent antagonism where PACAP-38 was less effectively antagonised compared to PACAP-27 and VIP. CONCLUSIONS AND IMPLICATIONS The distinct pharmacological profile displayed by the PAC1s receptor suggests that it can act as a dual receptor for VIP and PACAP. Furthermore, the effectiveness of blocking a signalling pathway can be influenced by which endogenous PACAP family agonist is present. These effects have potential implications for the development and effectiveness of drugs targeting the PACAP system.
Collapse
Affiliation(s)
- Zoe Tasma
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Andrew Siow
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Paul W R Harris
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre and Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre and Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Debbie L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre and Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre and Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Leung L, Liao S, Wu C. To Probe the Binding Interactions between Two FDA Approved Migraine Drugs (Ubrogepant and Rimegepant) and Calcitonin-Gene Related Peptide Receptor (CGRPR) Using Molecular Dynamics Simulations. ACS Chem Neurosci 2021; 12:2629-2642. [PMID: 34184869 DOI: 10.1021/acschemneuro.1c00135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Recently, the FDA approved ubrogepant and rimegepant as oral drugs to treat migraines by targeting the calcitonin-gene related peptide receptor (CGRPR). Unfortunately, there is no high-resolution complex structure with these two drugs; thus the detailed interaction between drugs and the receptor remains elusive. This study uses molecular docking and molecular dynamics simulation to model the drug-receptor complex and analyze their binding interactions at a molecular level. The complex crystal structure (3N7R) of the gepant drugs' predecessor, olcegepant, was used for our molecular docking of the two drugs and served as a control system. The three systems, with ubrogepant, rimegepant, and crystal olcegepant, were subject to 3 × 1000 ns molecular dynamics simulations and followed by the simulation interaction diagram (SID), structural clustering, and MM-GBSA binding energy analyses. Our MD data revealed that olcegepant binds most strongly to the CGRPR, followed by ubrogepant and then rimegepant, largely due to changes in hydrophobic and electrostatic interactions. The order of our MM-GBSA binding energies of these three compounds is consistent with their experimental IC50 values. SID analysis revealed the pharmacophore of the gepant class to be the dihydroquinazolinone group derivative. Subtle differences in interaction profile have been noted, including interactions with the W74 and W72 residues. The ubrogepant and rimegepant both contact A70 and M42 of the receptor, while olcegepant does not. The results of this study elucidate the interactions in the binding pocket of CGRP receptor and can assist in further development for orally available antagonists of the CGRP receptor.
Collapse
Affiliation(s)
- Lauren Leung
- College of Letters and Sciences, University of California, Santa Barbara, Santa Barbara, California 93107, United States
| | - Siyan Liao
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Chun Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
25
|
Garelja ML, Walker CS, Hay DL. CGRP receptor antagonists for migraine. Are they also AMY 1 receptor antagonists? Br J Pharmacol 2021; 179:454-459. [PMID: 34076887 DOI: 10.1111/bph.15585] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 01/13/2023] Open
Abstract
The development of several drugs that target the calcitonin gene-related peptide (CGRP) system has been a major breakthrough in the pharmacological management of migraine. These are divided into two major classes, antibodies which bind to the CGRP peptide, preventing it from activating CGRP receptors and receptor antagonists. Within the receptor antagonist class, there are two mechanisms of action, small molecule receptor antagonists and an antibody antagonist. This mini-review considers the pharmacology of these receptor targeted antagonist drugs at the CGRP receptor and closely related AMY1 receptor, at which CGRP may also act. The antagonists are most potent at the CGRP receptor but can also show antagonism of the AMY1 receptor. However, important data are missing and selectivity parameters cannot be provided for all antagonists. The clinical implications of AMY1 receptor antagonism are unknown, but we urge consideration of this receptor as a potential contributing factor to CGRP and antagonist drug actions.
Collapse
Affiliation(s)
- Michael L Garelja
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
26
|
Ghanizada H, Al-Karagholi MAM, Walker CS, Arngrim N, Rees T, Petersen J, Siow A, Mørch-Rasmussen M, Tan S, O’Carroll SJ, Harris P, Skovgaard LT, Jørgensen NR, Brimble M, Waite JS, Rea BJ, Sowers LP, Russo AF, Hay DL, Ashina M. Amylin Analog Pramlintide Induces Migraine-like Attacks in Patients. Ann Neurol 2021; 89:1157-1171. [PMID: 33772845 PMCID: PMC8486152 DOI: 10.1002/ana.26072] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Migraine is a prevalent and disabling neurological disease. Its genesis is poorly understood, and there remains unmet clinical need. We aimed to identify mechanisms and thus novel therapeutic targets for migraine using human models of migraine and translational models in animals, with emphasis on amylin, a close relative of calcitonin gene-related peptide (CGRP). METHODS Thirty-six migraine without aura patients were enrolled in a randomized, double-blind, 2-way, crossover, positive-controlled clinical trial study to receive infusion of an amylin analogue pramlintide or human αCGRP on 2 different experimental days. Furthermore, translational studies in cells and mouse models, and rat, mouse and human tissue samples were conducted. RESULTS Thirty patients (88%) developed headache after pramlintide infusion, compared to 33 (97%) after CGRP (p = 0.375). Fourteen patients (41%) developed migraine-like attacks after pramlintide infusion, compared to 19 patients (56%) after CGRP (p = 0.180). The pramlintide-induced migraine-like attacks had similar clinical characteristics to those induced by CGRP. There were differences between treatments in vascular parameters. Human receptor pharmacology studies showed that an amylin receptor likely mediates these pramlintide-provoked effects, rather than the canonical CGRP receptor. Supporting this, preclinical experiments investigating symptoms associated with migraine showed that amylin treatment, like CGRP, caused cutaneous hypersensitivity and light aversion in mice. INTERPRETATION Our findings propose amylin receptor agonism as a novel contributor to migraine pathogenesis. Greater therapeutic gains could therefore be made for migraine patients through dual amylin and CGRP receptor antagonism, rather than selectively targeting the canonical CGRP receptor. ANN NEUROL 2021;89:1157-1171.
Collapse
Affiliation(s)
- Hashmat Ghanizada
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Christopher S. Walker
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Nanna Arngrim
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Tayla Rees
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Jakeb Petersen
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Andrew Siow
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Mette Mørch-Rasmussen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Sheryl Tan
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Simon J. O’Carroll
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Paul Harris
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | | | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Margaret Brimble
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Jayme S. Waite
- Department of Molecular Physiology and Biophysics, Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Brandon J. Rea
- Department of Molecular Physiology and Biophysics, Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Levi P. Sowers
- Department of Molecular Physiology and Biophysics, Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Andrew F. Russo
- Department of Molecular Physiology and Biophysics, Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Debbie L. Hay
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Danish Headache Knowledge Center, Rigshospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
27
|
Guo Z, Czerpaniak K, Zhang J, Cao YQ. Increase in trigeminal ganglion neurons that respond to both calcitonin gene-related peptide and pituitary adenylate cyclase-activating polypeptide in mouse models of chronic migraine and posttraumatic headache. Pain 2021; 162:1483-1499. [PMID: 33252452 PMCID: PMC8049961 DOI: 10.1097/j.pain.0000000000002147] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/26/2020] [Indexed: 01/05/2023]
Abstract
A large body of animal and human studies indicates that blocking peripheral calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) signaling pathways may prevent migraine episodes and reduce headache frequency. To investigate whether recurring migraine episodes alter the strength of CGRP and PACAP signaling in trigeminal ganglion (TG) neurons, we compared the number of TG neurons that respond to CGRP and to PACAP (CGRP-R and PACAP-R, respectively) under normal and chronic migraine-like conditions. In a mouse model of chronic migraine, repeated nitroglycerin (NTG) administration significantly increased the number of CGRP-R and PACAP-R neurons in TG but not dorsal root ganglia. In TG neurons that express endogenous αCGRP, repeated NTG led to a 7-fold increase in the number of neurons that respond to both CGRP and PACAP (CGRP-R&PACAP-R). Most of these neurons were unmyelinated C-fiber nociceptors. This suggests that a larger fraction of CGRP signaling in TG nociceptors may be mediated through the autocrine mechanism, and the release of endogenous αCGRP can be enhanced by both CGRP and PACAP signaling pathways under chronic migraine condition. The number of CGRP-R&PACAP-R TG neurons was also increased in a mouse model of posttraumatic headache (PTH). Interestingly, low-dose interleukin-2 treatment, which completely reverses chronic migraine-related and PTH-related behaviors in mouse models, also blocked the increase in both CGRP-R and PACAP-R TG neurons. Together, these results suggest that inhibition of both CGRP and PACAP signaling in TG neurons may be more effective in treating chronic migraine and PTH than targeting individual signaling pathways.
Collapse
Affiliation(s)
- Zhaohua Guo
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Katherine Czerpaniak
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Jintao Zhang
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110
- Present address: Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China 510515
| | - Yu-Qing Cao
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
28
|
Tasma Z, Wills P, Hay DL, Walker CS. Agonist bias and agonist-dependent antagonism at corticotrophin releasing factor receptors. Pharmacol Res Perspect 2021; 8:e00595. [PMID: 32529807 PMCID: PMC7290078 DOI: 10.1002/prp2.595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 01/14/2023] Open
Abstract
The corticotropin-releasing factor (CRF) receptors represent potential drug targets for the treatment of anxiety, stress, and other disorders. However, it is not known if endogenous CRF receptor agonists display biased signaling, how effective CRF receptor antagonists are at blocking different agonists and signaling pathways or how receptor activity-modifying proteins (RAMPs) effect these processes. This study aimed to address this by investigating agonist and antagonist action at CRF1 and CRF2 receptors. We used CRF1 and CRF2 receptor transfected Cos7 cells to assess the ability of CRF and urocortin (UCN) peptides to activate cAMP, inositol monophosphate (IP1 ), and extracellular signal-regulated kinase 1/2 signaling and determined the ability of antagonists to block agonist-stimulated cAMP and IP1 accumulation. The ability of RAMPs to interact with CRF receptors was also examined. At the CRF1 receptor, CRF and UCN1 activated signaling in the same manner. However, at the CRF2 receptor, UCN1 and UCN2 displayed similar signaling profiles, whereas CRF and UCN3 displayed bias away from IP1 accumulation over cAMP. The antagonist potency was dependent on the receptor, agonist, and signaling pathway. CRF1 and CRF2 receptors had no effect on RAMP1 or RAMP2 surface expression. The presence of biased agonism and agonist-dependent antagonism at the CRF receptors offers new avenues for developing drugs tailored to activate a specific signaling pathway or block a specific agonist. Our findings suggest that the already complex CRF receptor pharmacology may be underappreciated and requires further investigation.
Collapse
Affiliation(s)
- Zoe Tasma
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Peter Wills
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Debbie L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
29
|
Excitatory Effects of Calcitonin Gene-Related Peptide (CGRP) on Superficial Sp5C Neurons in Mouse Medullary Slices. Int J Mol Sci 2021; 22:ijms22073794. [PMID: 33917574 PMCID: PMC8038766 DOI: 10.3390/ijms22073794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 11/17/2022] Open
Abstract
The neuromodulator calcitonin gene-related peptide (CGRP) is known to facilitate nociceptive transmission in the superficial laminae of the spinal trigeminal nucleus caudalis (Sp5C). The central effects of CGRP in the Sp5C are very likely to contribute to the activation of central nociceptive pathways leading to attacks of severe headaches like migraine. To examine the potential impacts of CGRP on laminae I/II neurons at cellular and synaptic levels, we performed whole-cell patch-clamp recordings in juvenile mouse brainstem slices. First, we tested the effect of CGRP on cell excitability, focusing on neurons with tonically firing action potentials upon depolarizing current injection. CGRP (100 nM) enhanced tonic discharges together with membrane depolarization, an excitatory effect that was significantly reduced when the fast synaptic transmissions were pharmacologically blocked. However, CGRP at 500 nM was capable of exciting the functionally isolated cells, in a nifedipine-sensitive manner, indicating its direct effect on membrane intrinsic properties. In voltage-clamped cells, 100 nM CGRP effectively increased the frequency of excitatory synaptic inputs, suggesting its preferential presynaptic effect. Both CGRP-induced changes in cell excitability and synaptic drives were prevented by the CGRP receptor inhibitor BIBN 4096BS. Our data provide evidence that CGRP increases neuronal activity in Sp5C superficial laminae by dose-dependently promoting excitatory synaptic drive and directly enhancing cell intrinsic properties. We propose that the combination of such pre- and postsynaptic actions of CGRP might underlie its facilitation in nociceptive transmission in situations like migraine with elevated CGRP levels.
Collapse
|
30
|
Bhakta M, Vuong T, Taura T, Wilson DS, Stratton JR, Mackenzie KD. Migraine therapeutics differentially modulate the CGRP pathway. Cephalalgia 2021; 41:499-514. [PMID: 33626922 PMCID: PMC8054164 DOI: 10.1177/0333102420983282] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background The clinical efficacy of migraine therapeutic agents directed
towards the calcitonin-gene related peptide (CGRP) pathway has
confirmed the key role of this axis in migraine pathogenesis.
Three antibodies against CGRP – fremanezumab, galcanezumab and
eptinezumab – and one antibody against the CGRP receptor,
erenumab, are clinically approved therapeutics for the
prevention of migraine. In addition, two small molecule CGRP
receptor antagonists, ubrogepant and rimegepant, are approved
for acute migraine treatment. Targeting either the CGRP ligand
or receptor is efficacious for migraine treatment; however, a
comparison of the mechanism of action of these therapeutic
agents is lacking in the literature. Methods To gain insights into the potential differences between these CGRP
pathway therapeutics, we compared the effect of a CGRP ligand
antibody (fremanezumab), a CGRP receptor antibody (erenumab) and
a CGRP receptor small molecule antagonist (telcagepant) using a
combination of binding, functional and imaging assays. Results Erenumab and telcagepant antagonized CGRP, adrenomedullin and
intermedin cAMP signaling at the canonical human CGRP receptor.
In contrast, fremanezumab only antagonized CGRP-induced cAMP
signaling at the human CGRP receptor. In addition, erenumab, but
not fremanezumab, bound and internalized at the canonical human
CGRP receptor. Interestingly, erenumab also bound and
internalized at the human AMY1 receptor, a CGRP
receptor family member. Both erenumab and telcagepant
antagonized amylin-induced cAMP signaling at the AMY1
receptor while fremanezumab did not affect amylin responses. Conclusion The therapeutic effect of agents targeting the CGRP ligand versus
receptor for migraine prevention (antibodies) or acute treatment
(gepants) may involve distinct mechanisms of action. These
findings suggest that differing mechanisms could affect
efficacy, safety, and/or tolerability in migraine patients.
Collapse
|
31
|
Edvinsson L, Haanes KA. Identifying New Antimigraine Targets: Lessons from Molecular Biology. Trends Pharmacol Sci 2021; 42:217-225. [PMID: 33495027 DOI: 10.1016/j.tips.2021.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Primary headaches are one of the most common conditions; migraine being most prevalent. Recent work on the pathophysiology of migraine suggests a mismatch in the communication or tuning of the trigeminovascular system, leading to sensitization and the release of calcitonin gene-related peptide (CGRP). In the current Opinion, we use the up-to-date molecular understanding of mechanisms behind migraine pain, to provide novel aspects on how to modify the system and for the development of future treatments; acute as well as prophylactic. We explore the distribution and the expression of neuropeptides themselves, as well as certain ion channels, and most importantly how they may act in concert as modulators of excitability of both the trigeminal C neurons and the Aδ neurons.
Collapse
Affiliation(s)
- Lars Edvinsson
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark; Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark
| |
Collapse
|
32
|
Small-molecule CGRP receptor antagonists: A new approach to the acute and preventive treatment of migraine. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
33
|
Pan KS, Siow A, Hay DL, Walker CS. Antagonism of CGRP Signaling by Rimegepant at Two Receptors. Front Pharmacol 2020; 11:1240. [PMID: 32973499 PMCID: PMC7468408 DOI: 10.3389/fphar.2020.01240] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/29/2020] [Indexed: 01/29/2023] Open
Abstract
The “gepants” are a class of calcitonin gene-related peptide (CGRP) receptor antagonist molecules that have been developed for the prevention and treatment of migraine. Rimegepant is reported to act at the CGRP receptor, has good oral bioavailability, and has had positive clinical trial results. However, there is very little data available describing its receptor pharmacology. Importantly, rimegepant activity at the AMY1 receptor, a second potent CGRP receptor that is known to be expressed in the trigeminovascular system, has not been reported. The ability of rimegepant to antagonize activation of human CGRP, AMY1, and related adrenomedullin receptors was determined in transfected in Cos7 cells. Rimegepant was an effective antagonist at both the CGRP and AMY1 receptor. The antagonism of both CGRP and AMY1 receptors may have implications for our understanding of the mechanism of action of rimegepant in the treatment of migraine.
Collapse
Affiliation(s)
- Kylie S Pan
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Andrew Siow
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Debbie L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
34
|
de Vries T, Villalón CM, MaassenVanDenBrink A. Pharmacological treatment of migraine: CGRP and 5-HT beyond the triptans. Pharmacol Ther 2020; 211:107528. [PMID: 32173558 DOI: 10.1016/j.pharmthera.2020.107528] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/08/2020] [Indexed: 01/08/2023]
Abstract
Migraine is a highly disabling neurovascular disorder characterized by a severe headache (associated with nausea, photophobia and/or phonophobia), and trigeminovascular system activation involving the release of calcitonin-gene related peptide (CGRP). Novel anti-migraine drugs target CGRP signaling through either stimulation of 5-HT1F receptors on trigeminovascular nerves (resulting in inhibition of CGRP release) or direct blockade of CGRP or its receptor. Lasmiditan is a highly selective 5-HT1F receptor agonist and, unlike the triptans, is devoid of vasoconstrictive properties, allowing its use in patients with cardiovascular risk. Since lasmiditan can actively penetrate the blood-brain barrier, central therapeutic as well as side effects mediated by 5-HT1F receptor activation should be further investigated. Other novel anti-migraine drugs target CGRP signaling directly. This neuropeptide can be targeted by the monoclonal antibodies eptinezumab, fremanezumab and galcanezumab, or by CGRP-neutralizing L-aptamers called Spiegelmers. The CGRP receptor can be targeted by the monoclonal antibody erenumab, or by small-molecule antagonists called gepants. Currently, rimegepant and ubrogepant have been developed for acute migraine treatment, while atogepant is studied for migraine prophylaxis. Of these drugs targeting CGRP signaling directly, eptinezumab, erenumab, fremanezumab, galcanezumab, rimegepant and ubrogepant have been approved for clinical use, while atogepant is in the last stage before approval. Although all of these drugs seem highly promising for migraine treatment, their safety should be investigated in the long-term. Moreover, the exact mechanism(s) of action of these drugs need to be elucidated further, to increase both safety and efficacy and to increase the number of responders to the different treatments, so that all migraine patients can satisfactorily be treated.
Collapse
Affiliation(s)
- Tessa de Vries
- Division of Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, PO Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Carlos M Villalón
- Deptartment de Farmacobiología, Cinvestav-Coapa, C.P. 14330 Ciudad de México, Mexico
| | - Antoinette MaassenVanDenBrink
- Division of Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, PO Box 2040, 3000, CA, Rotterdam, the Netherlands.
| |
Collapse
|
35
|
Edvinsson JCA, Viganò A, Alekseeva A, Alieva E, Arruda R, De Luca C, D'Ettore N, Frattale I, Kurnukhina M, Macerola N, Malenkova E, Maiorova M, Novikova A, Řehulka P, Rapaccini V, Roshchina O, Vanderschueren G, Zvaune L, Andreou AP, Haanes KA. The fifth cranial nerve in headaches. J Headache Pain 2020; 21:65. [PMID: 32503421 PMCID: PMC7275328 DOI: 10.1186/s10194-020-01134-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022] Open
Abstract
The fifth cranial nerve is the common denominator for many headaches and facial pain pathologies currently known. Projecting from the trigeminal ganglion, in a bipolar manner, it connects to the brainstem and supplies various parts of the head and face with sensory innervation. In this review, we describe the neuroanatomical structures and pathways implicated in the sensation of the trigeminal system. Furthermore, we present the current understanding of several primary headaches, painful neuropathies and their pharmacological treatments. We hope that this overview can elucidate the complex field of headache pathologies, and their link to the trigeminal nerve, to a broader field of young scientists.
Collapse
Affiliation(s)
- J C A Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, 2600, Glostrup, Denmark. .,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - A Viganò
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - A Alekseeva
- Department of Neurology, First Pavlov State Medical University of St.Petersburg, St.Petersburg, Russia
| | - E Alieva
- GBUZ Regional Clinical Hospital № 2, Krasnodar, Russia
| | - R Arruda
- Department of Neuroscience, University of Sao Paulo, Ribeirao Preto, Brazil
| | - C De Luca
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, 56126, Pisa, Italy.,Department of Public Medicine, Laboratory of Morphology of Neuronal Network, University of Campania-Luigi Vanvitelli, Naples, Italy
| | - N D'Ettore
- Department of Neurology, University of Rome, Tor Vergata, Rome, Italy
| | - I Frattale
- Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - M Kurnukhina
- Department of Neurosurgery, First Pavlov State Medical University of St.Petersburg, Lev Tolstoy Street 6-8, St.Petersburg, Russia.,The Leningrad Regional State Budgetary Institution of health care "Children's clinical hospital", St.Petersburg, Russia
| | - N Macerola
- Department of Internal Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS Università Cattolica del Sacro Cuore, Rome, Italy
| | - E Malenkova
- Pain Department, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - M Maiorova
- Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - A Novikova
- F.F. Erisman Federal Research Center for Hygiene, Mytishchy, Russia
| | - P Řehulka
- Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - V Rapaccini
- Child Neurology and Psychiatry Unit, Systems Medicine Department, University Hospital Tor Vergata, Viale Oxford 81, 00133, Rome, Italy.,Unità Sanitaria Locale (USL) Umbria 2, Viale VIII Marzo, 05100, Terni, Italy.,Department of Neurology, Headache Center, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - O Roshchina
- Department of Neurology, First Pavlov State Medical University of St.Petersburg, St.Petersburg, Russia
| | - G Vanderschueren
- Department of Neurology, ZNA Middelheim, Lindendreef 1, 2020, Antwerp, Belgium
| | - L Zvaune
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Riga Stradins University, Riga, Latvia.,Department of Pain Medicine, Hospital Jurmala, Jurmala, Latvia.,Headache Centre Vivendi, Riga, Latvia
| | - A P Andreou
- Headache Research, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,The Headache Centre, Guy's and St Thomas, NHS Foundation Trust, London, UK
| | - K A Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, 2600, Glostrup, Denmark
| | | |
Collapse
|
36
|
Gingell JJ, Rees TA, Hendrikse ER, Siow A, Rennison D, Scotter J, Harris PWR, Brimble MA, Walker CS, Hay DL. Distinct Patterns of Internalization of Different Calcitonin Gene-Related Peptide Receptors. ACS Pharmacol Transl Sci 2020; 3:296-304. [PMID: 32296769 DOI: 10.1021/acsptsci.9b00089] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 02/06/2023]
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide that is involved in the transmission of pain. Drugs targeting CGRP or a CGRP receptor are efficacious in the treatment of migraine. The canonical CGRP receptor is a complex of a G protein-coupled receptor, the calcitonin-like receptor (CLR), with an accessory protein, receptor activity-modifying protein 1 (RAMP1). A second receptor, the AMY1 receptor, a complex of the calcitonin receptor with RAMP1, is a dual high-affinity receptor for CGRP and amylin. Receptor regulatory processes, such as internalization, are crucial for controlling peptide and drug responsiveness. Given the importance of CGRP receptor activity in migraine we compared the internalization profiles of both receptors for CGRP using novel fluorescent probes and a combination of live cell imaging, fixed cell imaging, and ELISA. This revealed stark differences in the regulation of each receptor with the AMY1 receptor unexpectedly showing little internalization.
Collapse
Affiliation(s)
- Joseph J Gingell
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| | - Tayla A Rees
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| | - Erica R Hendrikse
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| | - Andrew Siow
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand.,School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - David Rennison
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand.,School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - John Scotter
- Liggins Institute, University of Auckland, Auckland 1023, New Zealand
| | - Paul W R Harris
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand.,School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Margaret A Brimble
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand.,School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| | - Debbie L Hay
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand.,Centre for Brain Research, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
37
|
Cross-talk signaling in the trigeminal ganglion: role of neuropeptides and other mediators. J Neural Transm (Vienna) 2020; 127:431-444. [PMID: 32088764 PMCID: PMC7148261 DOI: 10.1007/s00702-020-02161-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/12/2020] [Indexed: 11/08/2022]
Abstract
The trigeminal ganglion with its three trigeminal nerve tracts consists mainly of clusters of sensory neurons with their peripheral and central processes. Most neurons are surrounded by satellite glial cells and the axons are wrapped by myelinating and non-myelinating Schwann cells. Trigeminal neurons express various neuropeptides, most notably, calcitonin gene-related peptide (CGRP), substance P, and pituitary adenylate cyclase-activating polypeptide (PACAP). Two types of CGRP receptors are expressed in neurons and satellite glia. A variety of other signal molecules like ATP, nitric oxide, cytokines, and neurotrophic factors are released from trigeminal ganglion neurons and signal to neighboring neurons or satellite glial cells, which can signal back to neurons with same or other mediators. This potential cross-talk of signals involves intracellular mechanisms, including gene expression, that can modulate mediators of sensory information, such as neuropeptides, receptors, and neurotrophic factors. From the ganglia cell bodies, which are outside the blood–brain barrier, the mediators are further distributed to peripheral sites and/or to the spinal trigeminal nucleus in the brainstem, where they can affect neural transmission. A major question is how the sensory neurons in the trigeminal ganglion differ from those in the dorsal root ganglion. Despite their functional overlap, there are distinct differences in their ontogeny, gene expression, signaling pathways, and responses to anti-migraine drugs. Consequently, drugs that modulate cross-talk in the trigeminal ganglion can modulate both peripheral and central sensitization, which may potentially be distinct from sensitization mediated in the dorsal root ganglion.
Collapse
|
38
|
Edvinsson JCA, Warfvinge K, Krause DN, Blixt FW, Sheykhzade M, Edvinsson L, Haanes KA. C-fibers may modulate adjacent Aδ-fibers through axon-axon CGRP signaling at nodes of Ranvier in the trigeminal system. J Headache Pain 2019; 20:105. [PMID: 31718551 PMCID: PMC6852900 DOI: 10.1186/s10194-019-1055-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 10/29/2019] [Indexed: 02/01/2023] Open
Abstract
Background Monoclonal antibodies (mAbs) towards CGRP or the CGRP receptor show good prophylactic antimigraine efficacy. However, their site of action is still elusive. Due to lack of passage of mAbs across the blood-brain barrier the trigeminal system has been suggested a possible site of action because it lacks blood-brain barrier and hence is available to circulating molecules. The trigeminal ganglion (TG) harbors two types of neurons; half of which store CGRP and the rest that express CGRP receptor elements (CLR/RAMP1). Methods With specific immunohistochemistry methods, we demonstrated the localization of CGRP, CLR, RAMP1, and their locations related to expression of the paranodal marker contactin-associated protein 1 (CASPR). Furthermore, we studied functional CGRP release separately from the neuron soma and the part with only nerve fibers of the trigeminal ganglion, using an enzyme-linked immunosorbent assay. Results Antibodies towards CGRP and CLR/RAMP1 bind to two different populations of neurons in the TG and are found in the C- and the myelinated Aδ-fibers, respectively, within the dura mater and in trigeminal ganglion (TG). CASPR staining revealed paranodal areas of the different myelinated fibers inhabiting the TG and dura mater. Double immunostaining with CASPR and RAMP1 or the functional CGRP receptor antibody (AA58) revealed co-localization of the two peptides in the paranodal region which suggests the presence of the CGRP-receptor. Double immunostaining with CGRP and CASPR revealed that thin C-fibers have CGRP-positive boutons which often localize in close proximity to the nodal areas of the CGRP-receptor positive Aδ-fibers. These boutons are pearl-like synaptic structures, and we show CGRP release from fibers dissociated from their neuronal bodies. In addition, we found that adjacent to the CGRP receptor localization in the node of Ranvier there was PKA immunoreactivity (kinase stimulated by cAMP), providing structural possibility to modify conduction activity within the Aδ-fibers. Conclusion We observed a close relationship between the CGRP containing C-fibers and the Aδ-fibers containing the CGRP-receptor elements, suggesting a point of axon-axon interaction for the released CGRP and a site of action for gepants and the novel mAbs to alleviate migraine.
Collapse
Affiliation(s)
- Jacob C A Edvinsson
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences,
- University of Copenhagen, Copenhagen, Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark.,Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden
| | - Diana N Krause
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.,Department of Pharmacology, School of Medicine, University of California at Irvine, Irvine, CA, USA
| | - Frank W Blixt
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences,
- University of Copenhagen, Copenhagen, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark. .,Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark
| |
Collapse
|
39
|
Edvinsson L, Haanes KA, Warfvinge K. Does inflammation have a role in migraine? Nat Rev Neurol 2019; 15:483-490. [DOI: 10.1038/s41582-019-0216-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2019] [Indexed: 01/13/2023]
|
40
|
Lionetto L, Curto M, Cisale GY, Capi M, Cipolla F, Guglielmetti M, Martelletti P. Fremanezumab for the preventive treatment of migraine in adults. Expert Rev Clin Pharmacol 2019; 12:741-748. [PMID: 31220963 DOI: 10.1080/17512433.2019.1635452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: The Calcitonin Gene-Related Peptide (CGRP) has been implicated in migraine pathophysiology due to its role in neurogenic inflammation and transmission of trigeminovascular nociceptive signal. New molecules targeting CGRP and its receptor have been developed as migraine-specific preventative treatments. Fremanezumab (or TEV-48,125, LBR-101), a human monoclonal antibody against CGRP, has been recently approved for clinical use by FDA and EMA. Areas covered: This paper briefly discusses the calcitonin family of neurotransmitters and resultant activation pathways and in-depth the chemical properties, pharmacodynamics, pharmacokinetics, clinical efficacy and safety of Fremanezumab for the prophylactic treatment of migraine. Expert opinion: Fremanezumab, a migraine-specific drug, is effective and safe as a prophylactic treatment of chronic and episodic migraine. As a monoclonal antibody, it was not associated to liver toxicity and is not expected to interact with other drugs. The long half-life might improve patients' compliance. Long-term effects of CGRP block in cardiovascular, grastrointestinal and bone functions should be evaluated in ongoing trials, since CGRP is involved in multiple biological activities in the human body. Nevertheless, targeting CGRP itself allows the receptor binding with other ligands involved in several physiological functions. Thus, the long-term treatment with Fremanezumab is expected to be associated with a lower risk of severe adverse effects.
Collapse
Affiliation(s)
- Luana Lionetto
- a Mass Spectrometry Laboratory Unit, Sant'Andrea University Hospital , Rome , Italy
| | - Martina Curto
- b Department of Human Neurosciences, Sapienza University of Rome , Rome , Italy.,c International Mood & Psychotic Disorders Research Consortium, Mailman Research Center , Belmont , MA , USA.,d Department of Mental Health , Colleferro (RM) , Italy
| | - Giusy Ylenia Cisale
- e Department of Physiology and Pharmacology, Sapienza University , Rome , Italy
| | - Matilde Capi
- a Mass Spectrometry Laboratory Unit, Sant'Andrea University Hospital , Rome , Italy
| | - Fabiola Cipolla
- f Department of Clinical and Molecular Medicine, Sapienza University of Rome , Rome , Italy
| | - Martina Guglielmetti
- g Department of Medical, Surgical and Experimental Sciences, University of Sassari , Sassari , Italy.,h Regional Referral Headache Center, Sant'Andrea University Hospital , Rome , Italy
| | - Paolo Martelletti
- f Department of Clinical and Molecular Medicine, Sapienza University of Rome , Rome , Italy.,h Regional Referral Headache Center, Sant'Andrea University Hospital , Rome , Italy
| |
Collapse
|
41
|
Abstract
Migraine is a strongly disabling disease characterized by a unilateral throbbing headache lasting for up to 72 h for each individual attack. There have been many theories on the pathophysiology of migraine throughout the years. Currently, the neurovascular theory dominates, suggesting clear involvement of the trigeminovascular system. The most recent data show that a migraine attack most likely originates in the hypothalamus and activates the trigeminal nucleus caudalis (TNC). Although the mechanisms are unknown, activation of the TNC leads to peripheral release of calcitonin gene-related protein (CGRP), most likely from C-fibers. During the past year monoclonal antibodies against CGRP or the CGRP receptor have emerged as the most promising targets for migraine therapy, and at the same time established the strong involvement of CGRP in the pathophysiology of migraine. The viewpoint presented here focuses further on the activation of the CGRP receptor on the sensory Aδ-fiber, leading to the sensation of pain. The CGRP receptor activates adenylate cyclase, which leads to an increase in cyclic adenosine monophosphate (cAMP). We hypothesize that cAMP activates the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, triggering an action potential sensed as pain. The mechanisms behind migraine pain on a molecular level, particularly their importance to cAMP, provide clues to potential new anti-migraine targets. In this article we focus on the development of targets related to the CGRP system, and further include novel targets such as the pituitary adenylate cyclase-activating peptide (PACAP) system, the serotonin 5-HT1F receptor, purinergic receptors, HCN channels, adenosine triphosphate-sensitive potassium channels (KATP), and the glutaminergic system.
Collapse
|
42
|
Hargreaves R, Olesen J. Calcitonin Gene-Related Peptide Modulators - The History and Renaissance of a New Migraine Drug Class. Headache 2019; 59:951-970. [PMID: 31020659 DOI: 10.1111/head.13510] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2019] [Indexed: 01/31/2023]
Abstract
Several lines of evidence pointed to an important role for CGRP in migraine. These included the anatomic colocalization of CGRP and its receptor in sensory fibers innervating pain-producing meningeal blood vessels, its release by trigeminal stimulation, the observation of elevated CGRP in the cranial circulation during migraine with normalization concomitant with headache relief by sumatriptan, and translational studies with intravenous (IV) CGRP that evoked migraine only in migraineurs. The development of small molecule CGRP receptor antagonists (CGRP-RAs) that showed clinical antimigraine efficacy acutely and prophylactically in randomized placebo-controlled clinical trials subsequently gave definitive pharmacological proof of the importance of CGRP in migraine. More recently, CGRP target engagement imaging studies using a CGRP receptor PET ligand [11 C]MK-4232 demonstrated that there was no brain CGRP receptor occupancy at clinically effective antimigraine doses of telcagepant, a prototypic CGRP-RA. Taken together, these data indicated that (1) the therapeutic site of action of the CGRP-RAs was peripheral not central; (2) that IV CGRP had most likely evoked migraine through an action at sites outside the blood-brain barrier; and (3) that migraine pain was therefore, at least in part, peripheral in origin. The evolution of CGRP migraine science gave impetus to the development of peripherally acting drugs that could modulate CGRP chronically to prevent frequent episodic and chronic migraine. Large molecule biologic antibody (mAb) approaches that are given subcutaneously to neutralize circulating CGRP peptide (fremanezumab, galcanezumab) or block CGRP receptors (erenumab) have shown consistent efficacy and tolerability in multicenter migraine prevention trials and are now approved for clinical use. Eptinezumab, a CGRP neutralizing antibody given IV, shows promise in late stage clinical development. Recently, orally administered next-generation small molecule CGRP-RAs have been shown to have safety and efficacy in acute treatment (ubrogepant and rimegepant) and prevention (atogepant) of migraine, giving additional CGRP-based therapeutic options for migraine patients.
Collapse
Affiliation(s)
- Richard Hargreaves
- Center for Pain and the Brain, Harvard Medical School and Department of Anesthesia, Boston Children's Hospital, Boston, MA, USA
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
43
|
Abstract
The canonical CGRP receptor is a complex between calcitonin receptor-like receptor (CLR), a family B G-protein-coupled receptor (GPCR) and receptor activity-modifying protein 1 (RAMP1). A third protein, receptor component protein (RCP) is needed for coupling to Gs. CGRP can interact with other RAMP-receptor complexes, particularly the AMY1 receptor formed between the calcitonin receptor (CTR) and RAMP1. Crystal structures are available for the binding of CGRP27-37 [D31,P34,F35] to the extracellular domain (ECD) of CLR and RAMP1; these show that extreme C-terminal amide of CGRP interacts with W84 of RAMP1 but the rest of the analogue interacts with CLR. Comparison with the crystal structure of a fragment of the allied peptide adrenomedullin bound to the ECD of CLR/RAMP2 confirms the importance of the interaction of the ligand C-terminus and the RAMP in determining pharmacology specificity, although the RAMPs probably also have allosteric actions. A cryo-electron microscope structure of calcitonin bound to the full-length CTR associated with Gs gives important clues as to the structure of the complete receptor and suggests that the N-terminus of CGRP makes contact with His5.40b, high on TM5 of CLR. However, it is currently not known how the RAMPs interact with the TM bundle of any GPCR. Major challenges remain in understanding how the ECD and TM domains work together to determine ligand specificity, and how G-proteins influence this and the role of RCP. It seems likely that allosteric mechanisms are particularly important as are the dynamics of the receptors.
Collapse
Affiliation(s)
- John Simms
- School of Life and Health Science, Aston University, Birmingham, UK
- Coventry University, Coventry, UK
| | - Sarah Routledge
- School of Life and Health Science, Aston University, Birmingham, UK
| | - Romez Uddin
- School of Life and Health Science, Aston University, Birmingham, UK
| | - David Poyner
- School of Life and Health Science, Aston University, Birmingham, UK.
| |
Collapse
|
44
|
Abstract
Calcitonin gene-related peptide (CGRP) is a promiscuous peptide, similar to many other members of the calcitonin family of peptides. The potential of CGRP to act on many different receptors with differing affinities and efficacies makes deciphering the signalling from the CGRP receptor a challenging task for researchers.Although it is not a typical G protein-coupled receptor (GPCR), in that it is composed not just of a GPCR, the CGRP receptor activates many of the same signalling pathways common for other GPCRs. This includes the family of G proteins and a variety of protein kinases and transcription factors. It is now also clear that in addition to the initiation of cell-surface signalling, GPCRs, including the CGRP receptor, also activate distinct signalling pathways as the receptor is trafficking along the endocytic conduit.Given CGRP's characteristic of activating multiple GPCRs, we will first consider the complex of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1) as the CGRP receptor. We will discuss the discovery of the CGRP receptor components, the molecular mechanisms controlling its internalization and post-endocytic trafficking (recycling and degradation) and the diverse signalling cascades that are elicited by this receptor in model cell lines. We will then discuss CGRP-mediated signalling pathways in primary cells pertinent to migraine including neurons, glial cells and vascular smooth muscle cells.Investigation of all the CGRP- and CGRP receptor-mediated signalling cascades is vital if we are to fully understand CGRP's role in migraine and will no doubt unearth new targets for the treatment of migraine and other CGRP-driven diseases.
Collapse
|
45
|
Gingell JJ, Hendrikse ER, Hay DL. New Insights into the Regulation of CGRP-Family Receptors. Trends Pharmacol Sci 2019; 40:71-83. [DOI: 10.1016/j.tips.2018.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 11/29/2022]
|
46
|
Taylor FR. CGRP, Amylin, Immunology, and Headache Medicine. Headache 2018; 59:131-150. [DOI: 10.1111/head.13432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
|
47
|
Habay SA, Miller JM, Bowler MM, Manchak R, Thomas JZ. An efficient synthesis of the piperidinyl dihydroquinazolinone (PDQ) fragment of olcegepant. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
48
|
Williams ET, Harris PWR, Jamaluddin MA, Loomes KM, Hay DL, Brimble MA. Solid-Phase Thiol-Ene Lipidation of Peptides for the Synthesis of a Potent CGRP Receptor Antagonist. Angew Chem Int Ed Engl 2018; 57:11640-11643. [PMID: 29978532 DOI: 10.1002/anie.201805208] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Indexed: 12/11/2022]
Abstract
We report a new method herein coined SP-CLipPA (solid-phase cysteine lipidation of a peptide or amino acid) for the synthesis of mono-S-lipidated peptides. This technique utilizes thiol-ene chemistry for conjugation of a vinyl ester to a free thiol of a semiprotected, resin-bound peptide. Advantages of SP-CLipPA include: ease of handling, conversions of up to 91 %, by-product removal by simple filtration, and a single purification step. Additionally, the desired lipidated products show high chromatographic separation from impurities, thus facilitating RP-HPLC purification. To showcase the utility of SP-CLipPA, we synthesized a potent calcitonin gene-related peptide (CGRP) receptor antagonist peptide in excellent yield and purity. This peptide, selected from a series of lipidated analogues of CGRP8-37 and CGRP7-37 , has potential for the treatment of migraine.
Collapse
Affiliation(s)
- Elyse T Williams
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Muhammad A Jamaluddin
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Kerry M Loomes
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Debbie L Hay
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, 1142, New Zealand
| |
Collapse
|
49
|
Williams ET, Harris PWR, Jamaluddin MA, Loomes KM, Hay DL, Brimble MA. Solid-Phase Thiol-Ene Lipidation of Peptides for the Synthesis of a Potent CGRP Receptor Antagonist. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Elyse T. Williams
- School of Chemical Sciences; The University of Auckland; 23 Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; School of Biological Sciences; The University of Auckland; Auckland 1142 New Zealand
| | - Paul W. R. Harris
- School of Chemical Sciences; The University of Auckland; 23 Symonds Street Auckland 1142 New Zealand
- School of Biological Sciences; The University of Auckland; 3A Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; School of Biological Sciences; The University of Auckland; Auckland 1142 New Zealand
| | - Muhammad A. Jamaluddin
- School of Biological Sciences; The University of Auckland; 3A Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; School of Biological Sciences; The University of Auckland; Auckland 1142 New Zealand
| | - Kerry M. Loomes
- School of Biological Sciences; The University of Auckland; 3A Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; School of Biological Sciences; The University of Auckland; Auckland 1142 New Zealand
| | - Debbie L. Hay
- School of Biological Sciences; The University of Auckland; 3A Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; School of Biological Sciences; The University of Auckland; Auckland 1142 New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences; The University of Auckland; 23 Symonds Street Auckland 1142 New Zealand
- School of Biological Sciences; The University of Auckland; 3A Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; School of Biological Sciences; The University of Auckland; Auckland 1142 New Zealand
| |
Collapse
|
50
|
Messlinger K, Russo AF. Current understanding of trigeminal ganglion structure and function in headache. Cephalalgia 2018; 39:1661-1674. [PMID: 29989427 DOI: 10.1177/0333102418786261] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The trigeminal ganglion is unique among the somatosensory ganglia regarding its topography, structure, composition and possibly some functional properties of its cellular components. Being mainly responsible for the sensory innervation of the anterior regions of the head, it is a major target for headache research. One intriguing question is if the trigeminal ganglion is merely a transition site for sensory information from the periphery to the central nervous system, or if intracellular modulatory mechanisms and intercellular signaling are capable of controlling sensory information relevant for the pathophysiology of headaches. METHODS An online search based on PubMed was made using the keyword "trigeminal ganglion" in combination with "anatomy", "headache", "migraine", "neuropeptides", "receptors" and "signaling". From the relevant literature, further references were selected in view of their relevance for headache mechanisms. The essential information was organized based on location and cell types of the trigeminal ganglion, neuropeptides, receptors for signaling molecules, signaling mechanisms, and their possible relevance for headache generation. RESULTS The trigeminal ganglion consists of clusters of sensory neurons and their peripheral and central axon processes, which are arranged according to the three trigeminal partitions V1-V3. The neurons are surrounded by satellite glial cells, the axons by Schwann cells. In addition, macrophage-like cells can be found in the trigeminal ganglion. Neurons express various neuropeptides, among which calcitonin gene-related peptide is the most prominent in terms of its prevalence and its role in primary headaches. The classical calcitonin gene-related peptide receptors are expressed in non-calcitonin gene-related peptide neurons and satellite glial cells, although the possibility of a second calcitonin gene-related peptide receptor in calcitonin gene-related peptide neurons remains to be investigated. A variety of other signal molecules like adenosine triphosphate, nitric oxide, cytokines, and neurotrophic factors are released from trigeminal ganglion cells and may act at receptors on adjacent neurons or satellite glial cells. CONCLUSIONS The trigeminal ganglion may act as an integrative organ. The morphological and functional arrangement of trigeminal ganglion cells suggests that intercellular and possibly also autocrine signaling mechanisms interact with intracellular mechanisms, including gene expression, to modulate sensory information. Receptors and neurotrophic factors delivered to the periphery or the trigeminal brainstem can contribute to peripheral and central sensitization, as in the case of primary headaches. The trigeminal ganglion as a target of drug action outside the blood-brain barrier should therefore be taken into account.
Collapse
Affiliation(s)
- Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Iowa VA Health Care System, Iowa City, IA, USA
| |
Collapse
|