1
|
Wang H, Wu J, Yang L, Liu S, Sui X, Guo Q, Chen M. Surgical Therapy and Tissue Engineering for Meniscal Repair. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39083434 DOI: 10.1089/ten.teb.2024.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Meniscal damage is one of the prevalent causes of knee pain, swelling, instability, and functional compromise, frequently culminating in osteoarthritis (OA). Timely and appropriate interventions are crucial to relieve symptoms and prevent or delay the onset of OA. Contemporary surgical treatments include total or partial meniscectomy, meniscal repair, allograft meniscal transplantation, and synthetic meniscal implants, but each presents its specific limitations. Recently, regenerative medicine and tissue engineering have emerged as promising fields, offering innovative prospects for meniscal regeneration and repair. This review delineates current surgical methods, elucidating their specific indications, advantages, and disadvantages. Concurrently, it delves into state-of-the-art tissue engineering techniques aimed at the functional regenerative repair of meniscus. Recommendations for future research and clinical practice are also provided.
Collapse
Affiliation(s)
- Hao Wang
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- Chinese PLA General Hospital, Institute of Orthopedics, The First Medical Center, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Jie Wu
- Department of Orthopedics, General Hospital of Chinese PLA, Eighth Medical Center, Beijing, China
| | - Liupu Yang
- Chinese PLA General Hospital, Institute of Orthopedics, The First Medical Center, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Shuyun Liu
- Chinese PLA General Hospital, Institute of Orthopedics, The First Medical Center, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Xiang Sui
- Chinese PLA General Hospital, Institute of Orthopedics, The First Medical Center, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Quanyi Guo
- Chinese PLA General Hospital, Institute of Orthopedics, The First Medical Center, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Mingxue Chen
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Demmer W, Schinacher J, Wiggenhauser PS, Giunta RE. Use of Acellular Matrices as Scaffolds in Cartilage Regeneration: A Systematic Review. Adv Wound Care (New Rochelle) 2024. [PMID: 38775424 DOI: 10.1089/wound.2024.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Significance: Cartilage regeneration remains a significant challenge in the field of regenerative medicine. Acellular matrix (AM)-based cartilage tissue regeneration offers an innovative approach to repairing cartilage defects by providing a scaffold for new tissue growth. Its significance lies in its potential to restore joint function, mitigate pain, and improve the quality of life for patients suffering from cartilage-related injuries and conditions. Recent Advances: Recent advances in AM-based cartilage regeneration have focused on enhancing scaffold properties for improved cell adhesion, proliferation, and differentiation. Moreover, several scaffold techniques such as combining acellular dermal matrix (ADM) and acellular cartilage matrix (ACM) with cartilage tissue, as well as biphasic scaffolding, enjoy rising research activity. Incorporating bioactive factors and advanced manufacturing techniques holds promise for producing more biomimetic scaffolds, advancing efficient cartilage repair and regeneration. Critical Issues: Obstacles in AM-based cartilage regeneration include achieving proper integration with the surrounding tissue and ensuring long-term durability of the regenerated cartilage. Furthermore, issues such as high costs and limited availability of suitable cells for scaffold seeding must be considered. The heterogeneity and limited regenerative capabilities of cartilage need to be addressed for successful clinical translation. Future Directions: Research should focus on exploring advanced biomaterials and developing new techniques, regarding easily reproducible scaffolds, ideally constructed from clinically validated and readily available commercial products. Findings underline the potential of AM-based approaches, especially the rising exploration of tissue-derived ADM and ACM. In future, the primary objective should not only be the regeneration of small cartilage defects but rather focus on fully regenerating a joint or larger cartilage defect.
Collapse
|
3
|
Bandyopadhyay A, Ghibhela B, Shome S, Hoque S, Nandi SK, Mandal BB. Photo-Polymerizable Autologous Growth-Factor Loaded Silk-Based Biomaterial-Inks toward 3D Printing-Based Regeneration of Meniscus Tears. Adv Biol (Weinh) 2024; 8:e2300710. [PMID: 38402426 DOI: 10.1002/adbi.202300710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Meniscus tears in the avascular region undergoing partial or full meniscectomy lead to knee osteoarthritis and concurrent lifestyle hindrances in the young and aged alike. Here they reported ingenious photo-polymerizable autologous growth factor loaded 3D printed scaffolds to potentially treat meniscal defects . A shear-thinning photo-crosslinkable silk fibroin methacrylate-gelatin methacrylate-polyethylene glycol dimethacrylate biomaterial-ink is formulated and loaded with freeze-dried growth factor rich plasma (GFRP) . The biomaterial-ink exhibits optimal rheological properties and shape fidelity for 3D printing. Initial evaluation revealed that the 3D printed scaffolds mimic mechanical characteristics of meniscus, possess favourable porosity and swelling characteristics, and demonstrate sustained GFRP release. GFRP laden 3D scaffolds are screened with human neo-natal stem cells in vitro and biomaterial-ink comprising of 25 mg mL-1 of GFRP (GFRP25) is found to be amicable for meniscus tissue engineering. GFRP25 ink demonstrated rigorous rheological compliance, and printed constructs demonstrated long term degradability (>6 weeks), GFRP release (>5 weeks), and mechanical durability (3 weeks). GFRP25 scaffolds aided in proliferation of seeded human neo-natal stem cellsand their meniscus-specific fibrochondrogenic differentiation . GFRP25 constructs show amenable inflammatory response in vitro and in vivo. GFRP25 biomaterial-ink and printed GFRP25 scaffolds could be potential patient-specific treatment modalities for meniscal defects.
Collapse
Affiliation(s)
- Ashutosh Bandyopadhyay
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Baishali Ghibhela
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sayanti Shome
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Samsamul Hoque
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, 700037, India
| | - Samit K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, 700037, India
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
4
|
Gadre M, Kasturi M, Agarwal P, Vasanthan KS. Decellularization and Their Significance for Tissue Regeneration in the Era of 3D Bioprinting. ACS OMEGA 2024; 9:7375-7392. [PMID: 38405516 PMCID: PMC10883024 DOI: 10.1021/acsomega.3c08930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024]
Abstract
Three-dimensional bioprinting is an emerging technology that has high potential application in tissue engineering and regenerative medicine. Increasing advancement and improvement in the decellularization process have led to an increase in the demand for using a decellularized extracellular matrix (dECM) to fabricate tissue engineered products. Decellularization is the process of retaining the extracellular matrix (ECM) while the cellular components are completely removed to harvest the ECM for the regeneration of various tissues and across different sources. Post decellularization of tissues and organs, they act as natural biomaterials to provide the biochemical and structural support to establish cell communication. Selection of an effective method for decellularization is crucial, and various factors like tissue density, geometric organization, and ECM composition affect the regenerative potential which has an impact on the end product. The dECM is a versatile material which is added as an important ingredient to formulate the bioink component for constructing tissue and organs for various significant studies. Bioink consisting of dECM from various sources is used to generate tissue-specific bioink that is unique and to mimic different biometric microenvironments. At present, there are many different techniques applied for decellularization, and the process is not standardized and regulated due to broad application. This review aims to provide an overview of different decellularization procedures, and we also emphasize the different dECM-derived bioinks present in the current global market and the major clinical outcomes. We have also highlighted an overview of benefits and limitations of different decellularization methods and various characteristic validations of decellularization and dECM-derived bioinks.
Collapse
Affiliation(s)
- Mrunmayi Gadre
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Meghana Kasturi
- Department
of Mechanical Engineering, University of
Michigan, Dearborn, Michigan 48128, United States
| | - Prachi Agarwal
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kirthanashri S. Vasanthan
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
5
|
Zhou Z, Wang J, Jiang C, Xu K, Xu T, Yu X, Fang J, Yang Y, Dai X. Advances in Hydrogels for Meniscus Tissue Engineering: A Focus on Biomaterials, Crosslinking, Therapeutic Additives. Gels 2024; 10:114. [PMID: 38391445 PMCID: PMC10887778 DOI: 10.3390/gels10020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Meniscus tissue engineering (MTE) has emerged as a promising strategy for meniscus repair and regeneration. As versatile platforms, hydrogels have gained significant attention in this field, as they possess tunable properties that allow them to mimic native extracellular matrices and provide a suitable microenvironment. Additionally, hydrogels can be minimally invasively injected and can be adjusted to match the shape of the implant site. They can conveniently and effectively deliver bioactive additives and demonstrate good compatibility with other functional materials. These inherent qualities have made hydrogel a promising candidate for therapeutic approaches in meniscus repair and regeneration. This article provides a comprehensive review of the advancements made in the research on hydrogel application for meniscus tissue engineering. Firstly, the biomaterials and crosslinking strategies used in the formation of hydrogels are summarized and analyzed. Subsequently, the role of therapeutic additives, including cells, growth factors, and other active products, in facilitating meniscus repair and regeneration is thoroughly discussed. Furthermore, we summarize the key issues for designing hydrogels used in MTE. Finally, we conclude with the current challenges encountered by hydrogel applications and suggest potential solutions for addressing these challenges in the field of MTE. We hope this review provides a resource for researchers and practitioners interested in this field, thereby facilitating the exploration of new design possibilities.
Collapse
Affiliation(s)
- Zhuxing Zhou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Jiajie Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Chaoqian Jiang
- School of Materials and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Kaiwang Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Tengjing Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Xinning Yu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Jinghua Fang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Yanyu Yang
- School of Materials and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xuesong Dai
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| |
Collapse
|
6
|
Zhang T, Shi X, Li M, Hu J, Lu H. Optimized Allogenic Decellularized Meniscal Scaffold Modified by Collagen Affinity Stromal Cell-Derived Factor SDF1α for Meniscal Regeneration: A 6- and 12-Week Animal Study in a Rabbit Model. Am J Sports Med 2024; 52:124-139. [PMID: 38164676 DOI: 10.1177/03635465231210950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND Total meniscectomy for treating massive meniscal tears may lead to joint instability, cartilage degeneration, and even progressive osteoarthritis. The meniscal substitution strategies for advancing reconstruction of the meniscus deserve further investigation. HYPOTHESIS A decellularized meniscal scaffold (DMS) modified with collagen affinity stromal cell-derived factor (C-SDF1α) may facilitate meniscal regeneration and protect cartilage from abrasion. STUDY DESIGN Controlled laboratory study. METHODS The authors first modified DMS with C-SDF1α to fabricate a new meniscal graft (DMS-CBD [collagen-binding domain]). Second, they performed in vitro studies to evaluate the release dynamics, biocompatibility, and differentiation inducibility (osteogenic, chondrogenic, and tenogenic differentiation) on human bone marrow mesenchymal stem cells. Using in vivo studies, they subjected rabbits that received medial meniscectomy to a transplantation procedure to implement their meniscal graft. At postoperative weeks 6 and 12, the meniscal regeneration outcomes and chondroprotective efficacy of the new meniscal graft were evaluated by macroscopic observation, histology, micromechanics, and immunohistochemistry tests. RESULTS In in vitro studies, the optimized DMS-CBD graft showed notable biocompatibility, releasing efficiency, and chondrogenic inducibility. In in vivo studies, the implanted DMS-CBD graft after total meniscectomy promoted the migration of cells and extracellular matrix deposition in transplantation and further facilitated meniscal regeneration and protected articular cartilage from degeneration. CONCLUSION The new meniscal graft (DMS-CBD) accelerated extracellular matrix deposition and meniscal regeneration and protected articular cartilage from degeneration. CLINICAL RELEVANCE The results demonstrate that the DMS-CBD graft can serve as a potential meniscal substitution after meniscectomy.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Xin Shi
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Muzhi Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Jianzhong Hu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
7
|
Li X, Li D, Li J, Wang G, Yan L, Liu H, Jiu J, Li JJ, Wang B. Preclinical Studies and Clinical Trials on Cell-Based Treatments for Meniscus Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:634-670. [PMID: 37212339 DOI: 10.1089/ten.teb.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study aims at performing a thorough review of cell-based treatment strategies for meniscus regeneration in preclinical and clinical studies. The PubMed, Embase, and Web of Science databases were searched for relevant studies (both preclinical and clinical) published from the time of database construction to December 2022. Data related to cell-based therapies for in situ regeneration of the meniscus were extracted independently by two researchers. Assessment of risk of bias was performed according to the Cochrane Handbook for Systematic Reviews of Interventions. Statistical analyses based on the classification of different treatment strategies were performed. A total of 5730 articles were retrieved, of which 72 preclinical studies and 6 clinical studies were included in this review. Mesenchymal stem cells (MSCs), especially bone marrow MSCs (BMSCs), were the most commonly used cell type. Among preclinical studies, rabbit was the most commonly used animal species, partial meniscectomy was the most commonly adopted injury pattern, and 12 weeks was the most frequently chosen final time point for assessing repair outcomes. A range of natural and synthetic materials were used to aid cell delivery as scaffolds, hydrogels, or other morphologies. In clinical trials, there was large variation in the dose of cells, ranging from 16 × 106 to 150 × 106 cells with an average of 41.52 × 106 cells. The selection of treatment strategy for meniscus repair should be based on the nature of the injury. Cell-based therapies incorporating various "combination" strategies such as co-culture, composite materials, and extra stimulation may offer greater promise than single strategies for effective meniscal tissue regeneration, restoring natural meniscal anisotropy, and eventually achieving clinical translation. Impact Statement This review provides an up-to-date and comprehensive overview of preclinical and clinical studies that tested cell-based treatments for meniscus regeneration. It presents novel perspectives on studies published in the past 30 years, giving consideration to the cell sources and dose selection, delivery methods, extra stimulation, animal models and injury patterns, timing of outcome assessment, and histological and biomechanical outcomes, as well as a summary of findings for individual studies. These unique insights will help to shape future research on the repair of meniscus lesions and inform the clinical translation of new cell-based tissue engineering strategies.
Collapse
Affiliation(s)
- Xiaoke Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Dijun Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Guishan Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Lei Yan
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Haifeng Liu
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jingwei Jiu
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Barceló X, Eichholz K, Gonçalves I, Kronemberger GS, Dufour A, Garcia O, Kelly DJ. Bioprinting of scaled-up meniscal grafts by spatially patterning phenotypically distinct meniscus progenitor cells within melt electrowritten scaffolds. Biofabrication 2023; 16:015013. [PMID: 37939395 DOI: 10.1088/1758-5090/ad0ab9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023]
Abstract
Meniscus injuries are a common problem in orthopedic medicine and are associated with a significantly increased risk of developing osteoarthritis. While developments have been made in the field of meniscus regeneration, the engineering of cell-laden constructs that mimic the complex structure, composition and biomechanics of the native tissue remains a significant challenge. This can be linked to the use of cells that are not phenotypically representative of the different zones of the meniscus, and an inability to direct the spatial organization of engineered meniscal tissues. In this study we investigated the potential of zone-specific meniscus progenitor cells (MPCs) to generate functional meniscal tissue following their deposition into melt electrowritten (MEW) scaffolds. We first confirmed that fibronectin selected MPCs from the inner and outer regions of the meniscus maintain their differentiation capacity with prolonged monolayer expansion, opening their use within advanced biofabrication strategies. By depositing MPCs within MEW scaffolds with elongated pore shapes, which functioned as physical boundaries to direct cell growth and extracellular matrix production, we were able to bioprint anisotropic fibrocartilaginous tissues with preferentially aligned collagen networks. Furthermore, by using MPCs isolated from the inner (iMPCs) and outer (oMPCs) zone of the meniscus, we were able to bioprint phenotypically distinct constructs mimicking aspects of the native tissue. An iterative MEW process was then implemented to print scaffolds with a similar wedged-shaped profile to that of the native meniscus, into which we deposited iMPCs and oMPCs in a spatially controlled manner. This process allowed us to engineer sulfated glycosaminoglycan and collagen rich constructs mimicking the geometry of the meniscus, with MPCs generating a more fibrocartilage-like tissue compared to the mesenchymal stromal/stem cells. Taken together, these results demonstrate how the convergence of emerging biofabrication platforms with tissue-specific progenitor cells can enable the engineering of complex tissues such as the meniscus.
Collapse
Affiliation(s)
- Xavier Barceló
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Kian Eichholz
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Inês Gonçalves
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Gabriela S Kronemberger
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Alexandre Dufour
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Orquidea Garcia
- Johnson & Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services, Inc, Dublin D02 R590, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| |
Collapse
|
9
|
Jiang H, Lu J, Li J, Liu Z, Chen F, Wu R, Xu X, Liu Y, Jiang Y, Shi D. A novel allogeneic acellular matrix scaffold for porcine cartilage regeneration. BMC Biotechnol 2023; 23:38. [PMID: 37710212 PMCID: PMC10500917 DOI: 10.1186/s12896-023-00800-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Cartilage defects are common sports injuries without significant treatment. Articular cartilage with inferior regenerative potential resulted in the poor formation of hyaline cartilage in defects. Acellular matrix scaffolds provide a microenvironment and biochemical properties similar to those of native tissues and are widely used for tissue regeneration. Therefore, we aimed to design a novel acellular cartilage matrix scaffold (ACS) for cartilage regeneration and hyaline-like cartilage formation. METHODS Four types of cartilage injury models, including full-thickness cartilage defects (6.5 and 8.5 mm in diameter and 2.5 mm in depth) and osteochondral defects (6.5 and 8.5 mm in diameter and 5 mm in depth), were constructed in the trochlear groove of the right femurs of pigs (n = 32, female, 25-40 kg). The pigs were divided into 8 groups (4 in each group) based on post-surgery treatment differences. was assessed by macroscopic appearance, magnetic resonance imaging (MRI), micro-computed tomography (micro-CT), and histologic and immunohistochemistry tests. RESULTS At 6 months, the ACS-implanted group exhibited better defect filling and a greater number of chondrocyte-like cells in the defect area than the blank groups. MRI and micro-CT imaging evaluations revealed that ACS implantation was an effective treatment for cartilage regeneration. The immunohistochemistry results suggested that more hyaline-like cartilage was generated in the defects of the ACS-implanted group. CONCLUSIONS ACS implantation promoted cartilage repair in full-thickness cartilage defects and osteochondral defects with increased hyaline-like cartilage formation at the 6-month follow-up.
Collapse
Affiliation(s)
- Huiming Jiang
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, PR China
| | - Jun Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Jiawei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Zizheng Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Fufei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Rui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Yuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Yiqiu Jiang
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, PR China.
| | - Dongquan Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, PR China.
| |
Collapse
|
10
|
Li Q, Yu H, Zhao F, Cao C, Wu T, Fan Y, Ao Y, Hu X. 3D Printing of Microenvironment-Specific Bioinspired and Exosome-Reinforced Hydrogel Scaffolds for Efficient Cartilage and Subchondral Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303650. [PMID: 37424038 PMCID: PMC10502685 DOI: 10.1002/advs.202303650] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Indexed: 07/11/2023]
Abstract
In clinical practice, repairing osteochondral defects presents a challenge due to the varying biological properties of articular cartilages and subchondral bones. Thus, elucidating how spatial microenvironment-specific biomimetic scaffolds can be used to simultaneously regenerate osteochondral tissue is an important research topic. Herein, a novel bioinspired double-network hydrogel scaffold produced via 3D printing with tissue-specific decellularized extracellular matrix (dECM) and human adipose mesenchymal stem cell (MSC)-derived exosomes is described. The bionic hydrogel scaffolds promote rat bone marrow MSC attachment, spread, migration, proliferation, and chondrogenic and osteogenic differentiation in vitro, as determined based on the sustained release of bioactive exosomes. Furthermore, the 3D-printed microenvironment-specific heterogeneous bilayer scaffolds efficiently accelerate the simultaneous regeneration of cartilage and subchondral bone tissues in a rat preclinical model. In conclusion, 3D dECM-based microenvironment-specific biomimetics encapsulated with bioactive exosomes can serve as a novel cell-free recipe for stem cell therapy when treating injured or degenerative joints. This strategy provides a promising platform for complex zonal tissue regeneration whilst holding attractive clinical translation potential.
Collapse
Affiliation(s)
- Qi Li
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
- Center of Foot and Ankle SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijing100730China
| | - Huilei Yu
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Fengyuan Zhao
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Chenxi Cao
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Tong Wu
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Yifei Fan
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Yingfang Ao
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Xiaoqing Hu
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| |
Collapse
|
11
|
Sun J, Chan YT, Ho KWK, Zhang L, Bian L, Tuan RS, Jiang Y. "Slow walk" mimetic tensile loading maintains human meniscus tissue resident progenitor cells homeostasis in photocrosslinked gelatin hydrogel. Bioact Mater 2023; 25:256-272. [PMID: 36825224 PMCID: PMC9941420 DOI: 10.1016/j.bioactmat.2023.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/14/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Meniscus, the cushion in knee joint, is a load-bearing tissue that transfers mechanical forces to extracellular matrix (ECM) and tissue resident cells. The mechanoresponse of human tissue resident stem/progenitor cells in meniscus (hMeSPCs) is significant to tissue homeostasis and regeneration but is not well understood. This study reports that a mild cyclic tensile loading regimen of ∼1800 loads/day on hMeSPCs seeded in 3-dimensional (3D) photocrosslinked gelatin methacryloyl (GelMA) hydrogel is critical in maintaining cellular homeostasis. Experimentally, a "slow walk" biomimetic cyclic loading regimen (10% tensile strain, 0.5 Hz, 1 h/day, up to 15 days) is applied to hMeSPCs encapsulated in GelMA hydrogel with a magnetic force-controlled loading actuator. The loading significantly increases cell differentiation and fibrocartilage-like ECM deposition without affecting cell viability. Transcriptomic analysis reveals 332 mechanoresponsive genes, clustered into cell senescence, mechanical sensitivity, and ECM dynamics, associated with interleukins, integrins, and collagens/matrix metalloproteinase pathways. The cell-GelMA constructs show active ECM remodeling, traced using a green fluorescence tagged (GFT)-GelMA hydrogel. Loading enhances nascent pericellular matrix production by the encapsulated hMeSPCs, which gradually compensates for the hydrogel loss in the cultures. These findings demonstrate the strong tissue-forming ability of hMeSPCs, and the importance of mechanical factors in maintaining meniscus homeostasis.
Collapse
Key Words
- 3D cell-based constructs
- 3D, Three-dimensional
- BMSCs, Bone marrow derived mesenchymal stem cells
- Biomimetic cyclic loading
- CFUs, Colony forming units
- Col I, Collagen type I
- Col II, Collagen type II
- DS, Degree of substitution
- ECM, Extracellular matrix
- Extracellular matrix
- GAGs, Glycosaminoglycans
- GFT-GelMA, Green fluorescence-tagged GelMA
- GelMA hydrogel
- GelMA, Gelatin methacryloyl
- Human meniscus progenitor cells
- MeHA, Methacrylated hyaluronic acid
- PCM, Pericellular matrix
- PI, Propidium iodide
- PPI, Protein-protein interaction
- hMeSPCs, Human meniscus stem/progenitor cells
Collapse
Affiliation(s)
- Jing Sun
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Yau Tsz Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Ki Wai Kevin Ho
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, And Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region of China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Liming Bian
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Rocky S. Tuan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China,Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China,Corresponding author. Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China.
| | - Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China,Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China,Corresponding author. Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China.
| |
Collapse
|
12
|
Jin P, Liu L, Chen X, Cheng L, Zhang W, Zhong G. Applications and prospects of different functional hydrogels in meniscus repair. Front Bioeng Biotechnol 2022; 10:1082499. [PMID: 36568293 PMCID: PMC9773848 DOI: 10.3389/fbioe.2022.1082499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
The meniscus is a kind of fibrous cartilage structure that serves as a cushion in the knee joint to alleviate the mechanical load. It is commonly injured, but it cannot heal spontaneously. Traditional meniscectomy is not currently recommended as this treatment tends to cause osteoarthritis. Due to their good biocompatibility and versatile regulation, hydrogels are emerging biomaterials in tissue engineering. Hydrogels are excellent candidates in meniscus rehabilitation and regeneration because they are fine-tunable, easily modified, and capable of delivering exogenous drugs, cells, proteins, and cytokines. Various hydrogels have been reported to work well in meniscus-damaged animals, but few hydrogels are effective in the clinic, indicating that hydrogels possess many overlooked problems. In this review, we summarize the applications and problems of hydrogels in extrinsic substance delivery, meniscus rehabilitation, and meniscus regeneration. This study will provide theoretical guidance for new therapeutic strategies for meniscus repair.
Collapse
Affiliation(s)
- Pan Jin
- Health Science Center, Yangtze University, Jingzhou, China,Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China,*Correspondence: Pan Jin, ; Gang Zhong,
| | - Lei Liu
- Articular Surgery, The Second Nanning People’s Hospital (Third Affiliated Hospital of Guangxi Medical University), Nanning, China
| | - Xichi Chen
- Health Science Center, Yangtze University, Jingzhou, China
| | - Lin Cheng
- Health Science Center, Yangtze University, Jingzhou, China
| | - Weining Zhang
- Health Science Center, Yangtze University, Jingzhou, China
| | - Gang Zhong
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,*Correspondence: Pan Jin, ; Gang Zhong,
| |
Collapse
|
13
|
Peng Y, Lu M, Zhou Z, Wang C, Liu E, Zhang Y, Liu T, Zuo J. Natural biopolymer scaffold for meniscus tissue engineering. Front Bioeng Biotechnol 2022; 10:1003484. [PMID: 36246362 PMCID: PMC9561892 DOI: 10.3389/fbioe.2022.1003484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
Meniscal injuries caused by trauma, degeneration, osteoarthritis, or other diseases always result in severe joint pain and motor dysfunction. Due to the unique anatomy of the human meniscus, the damaged meniscus lacks the ability to repair itself. Moreover, current clinical treatments for meniscal injuries, including meniscal suturing or resection, have significant limitations and drawbacks. With developments in tissue engineering, biopolymer scaffolds have shown promise in meniscal injury repair. They act as templates for tissue repair and regeneration, interacting with surrounding cells and providing structural support for newly formed meniscal tissue. Biomaterials offer tremendous advantages in terms of biocompatibility, bioactivity, and modifiable mechanical and degradation kinetics. In this study, the preparation and composition of meniscal biopolymer scaffolds, as well as their properties, are summarized. The current status of research and future research prospects for meniscal biopolymer scaffolds are reviewed in terms of collagen, silk, hyaluronic acid, chitosan, and extracellular matrix (ECM) materials. Overall, such a comprehensive summary provides constructive suggestions for the development of meniscal biopolymer scaffolds in tissue engineering.
Collapse
Affiliation(s)
- Yachen Peng
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meng Lu
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Zhongsheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chenyu Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Enbo Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yanbo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yanbo Zhang, ; Tong Liu, ; Jianlin Zuo,
| | - Tong Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yanbo Zhang, ; Tong Liu, ; Jianlin Zuo,
| | - Jianlin Zuo
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yanbo Zhang, ; Tong Liu, ; Jianlin Zuo,
| |
Collapse
|
14
|
Li H, Zhao T, Cao F, Deng H, He S, Li J, Liu S, Yang Z, Yuan Z, Guo Q. Integrated bioactive scaffold with aptamer-targeted stem cell recruitment and growth factor-induced pro-differentiation effects for anisotropic meniscal regeneration. Bioeng Transl Med 2022; 7:e10302. [PMID: 36176622 PMCID: PMC9472018 DOI: 10.1002/btm2.10302] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 12/24/2022] Open
Abstract
Reconstruction of the knee meniscus remains a significant clinical challenge owing to its complex anisotropic tissue organization, complex functions, and limited healing capacity in the inner region. The development of in situ tissue-engineered meniscal scaffolds, which provide biochemical signaling to direct endogenous stem/progenitor cell (ESPC) behavior, has the potential to revolutionize meniscal tissue engineering. In this study, a fiber-reinforced porous scaffold was developed based on aptamer Apt19S-mediated mesenchymal stem cell (MSC)-specific recruitment and dual growth factor (GF)-enhanced meniscal differentiation. The aptamer, which can specifically recognize and recruit MSCs, was first chemically conjugated to the decellularized meniscus extracellular matrix (MECM) and then mixed with gelatin methacrylate (GelMA) to form a photocrosslinkable hydrogel. Second, connective tissue growth factor (CTGF)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and transforming growth factor-β3 (TGF-β3)-loaded PLGA microparticles (MPs) were mixed with aptamer-conjugated MECM to simulate anisotropic meniscal regeneration. These three bioactive molecules were delivered sequentially. Apt19S, which exhibited high binding affinity to synovium-derived MSCs (SMSCs), was quickly released to facilitate the mobilization of ESPCs. CTGF incorporated within PLGA NPs was released rapidly, inducing profibrogenic differentiation, while sustained release of TGF-β3 in PLGA MPs remodeled the fibrous matrix into fibrocartilaginous matrix. The in vitro results showed that the sequential release of Apt19S/GFs promoted cell migration, proliferation, and fibrocartilaginous differentiation. The in vivo results demonstrated that the sequential release system of Apt/GF-scaffolds increased neomeniscal formation in rabbit critical-sized meniscectomies. Thus, the novel delivery system shows potential for guiding meniscal regeneration in situ.
Collapse
Affiliation(s)
- Hao Li
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Tianyuan Zhao
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Fuyang Cao
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- Department of Orthopedicsthe First Affiliated Hospital of Zhengzhou UniversityEqi DistrictZhengzhouChina
| | - Haoyuan Deng
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Songlin He
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Jianwei Li
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Shuyun Liu
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Zhen Yang
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
- Arthritis Clinic & Research Center, Peking University People's HospitalPeking UniversityBeijingChina
| | - Zhiguo Yuan
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- Department of Bone and Joint Surgery, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Quanyi Guo
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
| |
Collapse
|
15
|
Abpeikar Z, Javdani M, Alizadeh A, Khosravian P, Tayebi L, Asadpour S. Development of meniscus cartilage using polycaprolactone and decellularized meniscus surface modified by gelatin, hyaluronic acid biomacromolecules: A rabbit model. Int J Biol Macromol 2022; 213:498-515. [PMID: 35623463 PMCID: PMC9297736 DOI: 10.1016/j.ijbiomac.2022.05.140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022]
Abstract
The lack of vascularization in the white-red and white zone of the meniscus causes these zones of tissue to have low self-healing capacity in case of injury and accelerate osteoarthritis (OA). In this study, we have developed hybrid constructs using polycaprolactone (PCL) and decellularized meniscus extracellular matrix (DMECM) surface modified by gelatin (G), hyaluronic acid (HU) and selenium (Se) nanoparticles (PCL/DMECM/G/HU/Se), following by the cross-linking of the bio-polymeric surface. Material characterization has been performed on the fabricated scaffold using scanning electron microscopy (SEM), Fourier transforms infrared (FTIR) spectroscopy, swelling and degradation analyses, and mechanical tests. In Vitro, investigations have been conducted by C28/I2 human chondrocyte culture into the scaffold and evaluated the cytotoxicity and cell/scaffold interaction. For the in vivo study, the scaffolds were transplanted into the defect sites of female New Zealand white rabbits. Good regeneration was observed after two months. We have concluded that the designed PCL/DMECM/G/HU construct can be a promising candidate as a meniscus tissue engineering scaffold to facilitate healing.
Collapse
Affiliation(s)
- Zahra Abpeikar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Moosa Javdani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Akram Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Pegah Khosravian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Lobat Tayebi
- Marquett University School of Dentistry, Milwaukee, WI 53233, USA
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
16
|
Zhou S, Maleitzke T, Geissler S, Hildebrandt A, Fleckenstein FN, Niemann M, Fischer H, Perka C, Duda GN, Winkler T. Source and hub of inflammation: The infrapatellar fat pad and its interactions with articular tissues during knee osteoarthritis. J Orthop Res 2022; 40:1492-1504. [PMID: 35451170 DOI: 10.1002/jor.25347] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Knee osteoarthritis, the most prevalent degenerative joint disorder worldwide, is driven by chronic low-grade inflammation and subsequent cartilage degradation. Clinical data on the role of the Hoffa or infrapatellar fat pad in knee osteoarthritis are, however, scarce. The infrapatellar fat pad is a richly innervated intracapsular, extrasynovial adipose tissue, and an abundant source of adipokines and proinflammatory and catabolic cytokines, which may contribute to chronic synovial inflammation, cartilage destruction, and subchondral bone remodeling during knee osteoarthritis. How the infrapatellar fat pad interacts with neighboring tissues is poorly understood. Here, we review available literature with regard to the infrapatellar fat pad's interactions with cartilage, synovium, bone, menisci, ligaments, and nervous tissue during the development and progression of knee osteoarthritis. Signaling cascades are described with a focus on immune cell populations, pro- and anti-inflammatory cytokines, adipokines, mesenchymal stromal cells, and molecules derived from conditioned media from the infrapatellar fat pad. Understanding the complex interplay between the infrapatellar fat pad and its neighboring articular tissues may help to better understand and treat the multifactorial pathogenesis of osteoarthritis.
Collapse
Affiliation(s)
- Sijia Zhou
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Tazio Maleitzke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Sven Geissler
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Alexander Hildebrandt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Florian Nima Fleckenstein
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Diagnostic and Interventional Radiology, Berlin, Germany
| | - Marcel Niemann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Heilwig Fischer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Carsten Perka
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
| | - Georg N Duda
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Tobias Winkler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
17
|
Wang L, Jiang J, Lin H, Zhu T, Cai J, Su W, Chen J, Xu J, Li Y, Wang J, Zhang K, Zhao J. Advances in Regenerative Sports Medicine Research. Front Bioeng Biotechnol 2022; 10:908751. [PMID: 35646865 PMCID: PMC9136559 DOI: 10.3389/fbioe.2022.908751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/21/2022] [Indexed: 01/08/2023] Open
Abstract
Regenerative sports medicine aims to address sports and aging-related conditions in the locomotor system using techniques that induce tissue regeneration. It also involves the treatment of meniscus and ligament injuries in the knee, Achilles’ tendon ruptures, rotator cuff tears, and cartilage and bone defects in various joints, as well as the regeneration of tendon–bone and cartilage–bone interfaces. There has been considerable progress in this field in recent years, resulting in promising steps toward the development of improved treatments as well as the identification of conundrums that require further targeted research. In this review the regeneration techniques currently considered optimal for each area of regenerative sports medicine have been reviewed and the time required for feasible clinical translation has been assessed. This review also provides insights into the direction of future efforts to minimize the gap between basic research and clinical applications.
Collapse
Affiliation(s)
- Liren Wang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’ Hospital, Shanghai, China
| | - Hai Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Tonghe Zhu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-Coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
| | - Jiangyu Cai
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Wei Su
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jiebo Chen
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Junjie Xu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yamin Li
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jing Wang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
- *Correspondence: Kai Zhang, ; Jinzhong Zhao,
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’ Hospital, Shanghai, China
- *Correspondence: Kai Zhang, ; Jinzhong Zhao,
| |
Collapse
|
18
|
Ding G, Du J, Hu X, Ao Y. Mesenchymal Stem Cells From Different Sources in Meniscus Repair and Regeneration. Front Bioeng Biotechnol 2022; 10:796367. [PMID: 35573249 PMCID: PMC9091333 DOI: 10.3389/fbioe.2022.796367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/11/2022] [Indexed: 01/22/2023] Open
Abstract
Meniscus damage is a common trauma that often arises from sports injuries or menisci tissue degeneration. Current treatment methods focus on the repair, replacement, and regeneration of the meniscus to restore its original function. The advance of tissue engineering provides a novel approach to restore the unique structure of the meniscus. Recently, mesenchymal stem cells found in tissues including bone marrow, peripheral blood, fat, and articular cavity synovium have shown specific advantages in meniscus repair. Although various studies explore the use of stem cells in repairing meniscal injuries from different sources and demonstrate their potential for chondrogenic differentiation, their meniscal cartilage-forming properties are yet to be systematically compared. Therefore, this review aims to summarize and compare different sources of mesenchymal stem cells for meniscal repair and regeneration.
Collapse
Affiliation(s)
- Guocheng Ding
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jianing Du
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Yingfang Ao
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
19
|
Kahraman E, Ribeiro R, Lamghari M, Neto E. Cutting-Edge Technologies for Inflamed Joints on Chip: How Close Are We? Front Immunol 2022; 13:802440. [PMID: 35359987 PMCID: PMC8960235 DOI: 10.3389/fimmu.2022.802440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis (OA) is a painful and disabling musculoskeletal disorder, with a large impact on the global population, resulting in several limitations on daily activities. In OA, inflammation is frequent and mainly controlled through inflammatory cytokines released by immune cells. These outbalanced inflammatory cytokines cause cartilage extracellular matrix (ECM) degradation and possible growth of neuronal fibers into subchondral bone triggering pain. Even though pain is the major symptom of musculoskeletal diseases, there are still no effective treatments to counteract it and the mechanisms behind these pathologies are not fully understood. Thus, there is an urgent need to establish reliable models for assessing the molecular mechanisms and consequently new therapeutic targets. Models have been established to support this research field by providing reliable tools to replicate the joint tissue in vitro. Studies firstly started with simple 2D culture setups, followed by 3D culture focusing mainly on cell-cell interactions to mimic healthy and inflamed cartilage. Cellular approaches were improved by scaffold-based strategies to enhance cell-matrix interactions as well as contribute to developing mechanically more stable in vitro models. The progression of the cartilage tissue engineering would then profit from the integration of 3D bioprinting technologies as these provide 3D constructs with versatile structural arrangements of the 3D constructs. The upgrade of the available tools with dynamic conditions was then achieved using bioreactors and fluid systems. Finally, the organ-on-a-chip encloses all the state of the art on cartilage tissue engineering by incorporation of different microenvironments, cells and stimuli and pave the way to potentially simulate crucial biological, chemical, and mechanical features of arthritic joint. In this review, we describe the several available tools ranging from simple cartilage pellets to complex organ-on-a-chip platforms, including 3D tissue-engineered constructs and bioprinting tools. Moreover, we provide a fruitful discussion on the possible upgrades to enhance the in vitro systems making them more robust regarding the physiological and pathological modeling of the joint tissue/OA.
Collapse
Affiliation(s)
- Emine Kahraman
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, Porto, Portugal
| | - Ricardo Ribeiro
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Meriem Lamghari
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Estrela Neto
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| |
Collapse
|
20
|
Recent strategies of collagen-based biomaterials for cartilage repair: from structure cognition to function endowment. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00085-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractCollagen, characteristic in biomimetic composition and hierarchical structure, boasts a huge potential in repairing cartilage defect due to its extraordinary bioactivities and regulated physicochemical properties, such as low immunogenicity, biocompatibility and controllable degradation, which promotes the cell adhesion, migration and proliferation. Therefore, collagen-based biomaterial has been explored as porous scaffolds or functional coatings in cell-free scaffold and tissue engineering strategy for cartilage repairing. Among those forming technologies, freeze-dry is frequently used with special modifications while 3D-printing and electrospinning serve as the structure-controller in a more precise way. Besides, appropriate cross-linking treatment and incorporation with bioactive substance generally help the collagen-based biomaterials to meet the physicochemical requirement in the defect site and strengthen the repairing performance. Furthermore, comprehensive evaluations on the repair effects of biomaterials are sorted out in terms of in vitro, in vivo and clinical assessments, focusing on the morphology observation, characteristic production and critical gene expression. Finally, the challenge of biomaterial-based therapy for cartilage defect repairing was summarized, which is, the adaption to the highly complex structure and functional difference of cartilage.
Graphical abstract
Collapse
|
21
|
Zhou YF, Zhang D, Yan WT, Lian K, Zhang ZZ. Meniscus Regeneration With Multipotent Stromal Cell Therapies. Front Bioeng Biotechnol 2022; 10:796408. [PMID: 35237572 PMCID: PMC8883323 DOI: 10.3389/fbioe.2022.796408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
Meniscus is a semilunar wedge-shaped structure with fibrocartilaginous tissue, which plays an essential role in preventing the deterioration and degeneration of articular cartilage. Lesions or degenerations of it can lead to the change of biomechanical properties in the joints, which ultimately accelerate the degeneration of articular cartilage. Even with the manual intervention, lesions in the avascular region are difficult to be healed. Recent development in regenerative medicine of multipotent stromal cells (MSCs) has been investigated for the significant therapeutic potential in the repair of meniscal injuries. In this review, we provide a summary of the sources of MSCs involved in repairing and regenerative techniques, as well as the discussion of the avenues to utilizing these cells in MSC therapies. Finally, current progress on biomaterial implants was reviewed.
Collapse
Affiliation(s)
- Yun-Feng Zhou
- Department of Orthopedics, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Di Zhang
- Department of Obstetrics-Gynecology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Wan-Ting Yan
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Kai Lian
- Department of Orthopedics, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- *Correspondence: Zheng-Zheng Zhang, ; Kai Lian,
| | - Zheng-Zheng Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Zheng-Zheng Zhang, ; Kai Lian,
| |
Collapse
|
22
|
Wu J, Xu J, Huang Y, Tang L, Hong Y. Regional-specific meniscal extracellular matrix hydrogels and their effects on cell-matrix interactions of fibrochondrocytes. Biomed Mater 2021; 17. [PMID: 34883474 DOI: 10.1088/1748-605x/ac4178] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023]
Abstract
Decellularized meniscal extracellular matrix (ECM) material holds great potential for meniscus repair and regeneration. Particularly, injectable ECM hydrogel is highly desirable for the minimally invasive treatment of irregularly shaped defects. Although regional-specific variations of the meniscus are well documented, no ECM hydrogel has been reported to simulate zonally specific microenvironments of the native meniscus. To fill the gap, different (outer, middle, and inner) zones of porcine menisci were separately decellularized. Then the regionally decellularized meniscal ECMs were solubilized by pepsin digestion, neutralized, and then form injectable hydrogels. The hydrogels were characterized in gelation behaviors and mechanical properties and seeded with bovine fibrochondrocytes to evaluate the regionally biochemical effects on the cell-matrix interactions. Our results showed that the decellularized inner meniscal ECM (IM) contained the greatest glycosaminoglycan (GAG) content and the least collagen content compared with the decellularized outer meniscal ECM (OM) and middle meniscal ECM (MM). The IM hydrogel showed lower compressive strength than the OM hydrogel. When encapsulated with fibrochondrocytes, the IM hydrogel accumulated more GAG, contracted to a greater extent and reached higher compressive strength than that of the OM hydrogel at 28 days. Our findings demonstrate that the regionally specific meniscal ECMs present biochemical variation and show various effects on the cell behaviors, thus providing information on how meniscal ECM hydrogels may be utilized to reconstruct the microenvironments of the native meniscus.
Collapse
Affiliation(s)
- Jinglei Wu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Jiazhu Xu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Yihui Huang
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Liping Tang
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Yi Hong
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| |
Collapse
|
23
|
Wang X, Ding Y, Li H, Mo X, Wu J. Advances in electrospun scaffolds for meniscus tissue engineering and regeneration. J Biomed Mater Res B Appl Biomater 2021; 110:923-949. [PMID: 34619021 DOI: 10.1002/jbm.b.34952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 01/14/2023]
Abstract
The meniscus plays a critical role in maintaining the homeostasis, biomechanics, and structural stability of the knee joint. Unfortunately, it is predisposed to damages either from sports-related trauma or age-related degeneration. The meniscus has an inherently limited capacity for tissue regeneration. Self-healing of injured adult menisci only occurs in the peripheral vascularized portion, while the spontaneous repair of the inner avascular region seems never happens. Repair, replacement, and regeneration of menisci through tissue engineering strategies are promising to address this problem. Recently, many scaffolds for meniscus tissue engineering have been proposed for both experimental and preclinical investigations. Electrospinning is a feasible and versatile technique to produce nano- to micro-scale fibers that mimic the microarchitecture of native extracellular matrix and is an effective approach to prepare nanofibrous scaffolds for constructing engineered meniscus. Electrospun scaffolds are reported to be capable of inducing colonization of meniscus cells by modulating local extracellular density and stimulating endogenous regeneration by driving reprogramming of meniscus wound microenvironment. Electrospun nanofibrous scaffolds with tunable mechanical properties, controllable anisotropy, and various porosities have shown promises for meniscus repair and regeneration and will undoubtedly inspire more efforts in exploring effective therapeutic approaches towards clinical applications. In this article, we review the current advances in the use of electrospun nanofibrous scaffolds for meniscus tissue engineering and repair and discuss prospects for future studies.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Yangfan Ding
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Haiyan Li
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xiumei Mo
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Jinglei Wu
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China.,Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Yun HW, Song BR, Shin DI, Yin XY, Truong MD, Noh S, Jin YJ, Kwon HJ, Min BH, Park DY. Fabrication of decellularized meniscus extracellular matrix according to inner cartilaginous, middle transitional, and outer fibrous zones result in zone-specific protein expression useful for precise replication of meniscus zones. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112312. [PMID: 34474863 DOI: 10.1016/j.msec.2021.112312] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 11/15/2022]
Abstract
Meniscus is a fibrocartilage composite tissue with three different microstructual zones, inner fibrocartilage, middle transitional, and outer fibrous zone. We hypothesized that decellularized meniscus extracellular matrix (DMECM) would have different characteristics according to zone of origin. We aimed to compare zone-specific DMECM in terms of biochemical characteristics and cellular interactions associated with tissue engineering. Micronized DMECM was fabricated from porcine meniscus divided into three microstructural zones. Characterization of DMECM was done by biochemical and proteomic analysis. Inner DMECM showed the highest glycosaminoglycan content, while middle DMECM showed the highest collagen content among groups. Proteomic analysis showed significant differences among DMECM groups. Inner DMECM showed better adhesion and migration potential to meniscus cells compared to other groups. DMECM resulted in expression of zone-specific differentiation markers when co-cultured with synovial mesenchymal stem cells (SMSCs). SMSCs combined with inner DMECM showed the highest glycosaminoglycan in vivo. Outer DMECM constructs, on the other hand, showed more fibrous tissue features, while middle DMECM constructs showed both inner and outer zone characteristics. In conclusion, DMECM showed different characteristics according to microstructural zones, and such material may be useful for zone-specific tissue engineering of meniscus.
Collapse
Affiliation(s)
- Hee-Woong Yun
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Bo Ram Song
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Dong Il Shin
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Xiang Yun Yin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Minh-Dung Truong
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Sujin Noh
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Young Jun Jin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Hyeon Jae Kwon
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Byoung-Hyun Min
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Do Young Park
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea.
| |
Collapse
|
25
|
Klarmann GJ, Gaston J, Ho VB. A review of strategies for development of tissue engineered meniscal implants. BIOMATERIALS AND BIOSYSTEMS 2021; 4:100026. [PMID: 36824574 PMCID: PMC9934480 DOI: 10.1016/j.bbiosy.2021.100026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 12/09/2022] Open
Abstract
The meniscus is a key stabilizing tissue of the knee that facilitates proper tracking and movement of the knee joint and absorbs stresses related to physical activity. This review article describes the biology, structure, and functions of the human knee meniscus, common tears and repair approaches, and current research and development approaches using modern methods to fabricate a scaffold or tissue engineered meniscal replacement. Meniscal tears are quite common, often resulting from sports or physical training, though injury can result without specific contact during normal physical activity such as bending or squatting. Meniscal injuries often require surgical intervention to repair, restore basic functionality and relieve pain, and severe damage may warrant reconstruction using allograft transplants or commercial implant devices. Ongoing research is attempting to develop alternative scaffold and tissue engineered devices using modern fabrication techniques including three-dimensional (3D) printing which can fabricate a patient-specific meniscus replacement. An ideal meniscal substitute should have mechanical properties that are close to that of natural human meniscus, and also be easily adapted for surgical procedures and fixation. A better understanding of the organization and structure of the meniscus as well as its potential points of failure will lead to improved design approaches to generate a suitable and functional replacement.
Collapse
Affiliation(s)
- George J. Klarmann
- 4D Bio³ Center, Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA,The Geneva Foundation, 917 Pacific Ave., Tacoma, WA 98402, USA,Corresponding author at: USU-4D Bio³ Center, 9410 Key West Ave., Rockville, MD 20850, USA.
| | - Joel Gaston
- 4D Bio³ Center, Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA,The Geneva Foundation, 917 Pacific Ave., Tacoma, WA 98402, USA
| | - Vincent B. Ho
- 4D Bio³ Center, Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| |
Collapse
|
26
|
Asgarpour R, Masaeli E, Kermani S. Development of meniscus‐inspired 3D‐printed PCL scaffolds engineered with chitosan/extracellular matrix hydrogel. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rahil Asgarpour
- Department of Tissue Engineering, Najafabad Branch Islamic Azad University Najafabad Iran
| | - Elahe Masaeli
- Department of Animal Biotechnology, Cell Science Research Center Royan Institute for Biotechnology, ACECR Isfahan Iran
| | - Shabnam Kermani
- Department of Tissue Engineering, Najafabad Branch Islamic Azad University Najafabad Iran
| |
Collapse
|
27
|
Development of a decellularized meniscus matrix-based nanofibrous scaffold for meniscus tissue engineering. Acta Biomater 2021; 128:175-185. [PMID: 33823327 DOI: 10.1016/j.actbio.2021.03.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/25/2022]
Abstract
The meniscus plays a critical role in knee mechanical function but is commonly injured given its central load bearing role. In the adult, meniscus repair is limited, given the low number of endogenous cells, the density of the matrix, and the limited vascularity. Menisci are fibrocartilaginous tissues composed of a micro-/nano- fibrous extracellular matrix (ECM) and a mixture of chondrocyte-like and fibroblast-like cells. Here, we developed a fibrous scaffold system that consists of bioactive components (decellularized meniscus ECM (dME) within a poly(e-caprolactone) material) fashioned into a biomimetic morphology (via electrospinning) to support and enhance meniscus cell function and matrix production. This work supports that the incorporation of dME into synthetic nanofibers increased hydrophilicity of the scaffold, leading to enhanced meniscus cell spreading, proliferation, and fibrochondrogenic gene expression. This work identifies a new biomimetic scaffold for therapeutic strategies to substitute or replace injured meniscus tissue. STATEMENT OF SIGNIFICANCE: In this study, we show that a scaffold electrospun from a combination of synthetic materials and bovine decellularized meniscus ECM provides appropriate signals and a suitable template for meniscus fibrochondrocyte spreading, proliferation, and secretion of collagen and proteoglycans. Material characterization and in vitro cell studies support that this new bioactive material is susceptible to enzymatic digestion and supports meniscus-like tissue formation.
Collapse
|
28
|
Lee KI, Gamini R, Olmer M, Ikuta Y, Hasei J, Baek J, Alvarez-Garcia O, Grogan SP, D'Lima DD, Asahara H, Su AI, Lotz MK. Mohawk is a transcription factor that promotes meniscus cell phenotype and tissue repair and reduces osteoarthritis severity. Sci Transl Med 2021; 12:12/567/eaan7967. [PMID: 33115953 DOI: 10.1126/scitranslmed.aan7967] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/06/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Meniscus tears are common knee injuries and a major osteoarthritis (OA) risk factor. Knowledge gaps that limit the development of therapies for meniscus injury and degeneration concern transcription factors that control the meniscus cell phenotype. Analysis of RNA sequencing data from 37 human tissues in the Genotype-Tissue Expression database and RNA sequencing data from meniscus and articular cartilage showed that transcription factor Mohawk (MKX) is highly enriched in meniscus. In human meniscus cells, MKX regulates the expression of meniscus marker genes, OA-related genes, and other transcription factors, including Scleraxis (SCX), SRY Box 5 (SOX5), and Runt domain-related transcription factor 2 (RUNX2). In mesenchymal stem cells (MSCs), the combination of adenoviral MKX (Ad-MKX) and transforming growth factor-β3 (TGF-β3) induced a meniscus cell phenotype. When Ad-MKX-transduced MSCs were seeded on TGF-β3-conjugated decellularized meniscus scaffold (DMS) and inserted into experimental tears in meniscus explants, they increased glycosaminoglycan content, extracellular matrix interconnectivity, cell infiltration into the DMS, and improved biomechanical properties. Ad-MKX injection into mouse knee joints with experimental OA induced by surgical destabilization of the meniscus suppressed meniscus and cartilage damage, reducing OA severity. Ad-MKX injection into human OA meniscus tissue explants corrected pathogenic gene expression. These results identify MKX as a previously unidentified key transcription factor that regulates the meniscus cell phenotype. The combination of Ad-MKX with TGF-β3 is effective for differentiation of MSCs to a meniscus cell phenotype and useful for meniscus repair. MKX is a promising therapeutic target for meniscus tissue engineering, repair, and prevention of OA.
Collapse
Affiliation(s)
- Kwang Il Lee
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Ramya Gamini
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Merissa Olmer
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Yasunari Ikuta
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Joe Hasei
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Jihye Baek
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA.,Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA 92037, USA
| | | | - Shawn P Grogan
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA.,Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA 92037, USA
| | - Darryl D D'Lima
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA.,Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA 92037, USA
| | - Hiroshi Asahara
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Andrew I Su
- Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Martin K Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
29
|
Xu H, Huang H, Zou X, Xia P, Foon WALS, Wang J. A novel bio-active microsphere for meniscus regeneration via inducing cell migration and chondrocyte differentiation. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00118-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Abdollahiyan P, Oroojalian F, Hejazi M, de la Guardia M, Mokhtarzadeh A. Nanotechnology, and scaffold implantation for the effective repair of injured organs: An overview on hard tissue engineering. J Control Release 2021; 333:391-417. [DOI: 10.1016/j.jconrel.2021.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022]
|
31
|
Guo W, Chen M, Wang Z, Tian Y, Zheng J, Gao S, Li Y, Zheng Y, Li X, Huang J, Niu W, Jiang S, Hao C, Yuan Z, Zhang Y, Wang M, Wang Z, Peng J, Wang A, Wang Y, Sui X, Xu W, Hao L, Zheng X, Liu S, Guo Q. 3D-printed cell-free PCL-MECM scaffold with biomimetic micro-structure and micro-environment to enhance in situ meniscus regeneration. Bioact Mater 2021; 6:3620-3633. [PMID: 33869902 PMCID: PMC8039774 DOI: 10.1016/j.bioactmat.2021.02.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
Despite intensive effort was made to regenerate injured meniscus by cell-free strategies through recruiting endogenous stem/progenitor cells, meniscus regeneration remains a great challenge in clinic. In this study, we found decellularized meniscal extracellular matrix (MECM) preserved native meniscal collagen and glycosaminoglycans which could be a good endogenous regeneration guider for stem cells. Moreover, MECM significantly promoted meniscal fibrochondrocytes viability and proliferation, increased the expression of type II collagen and proteoglycans in vitro. Meanwhile, we designed 3D-printed polycaprolactone (PCL) scaffolds which mimic the circumferential and radial collagen orientation in native meniscus. Taken these two advantages together, a micro-structure and micro-environment dually biomimetic cell-free scaffold was manipulated. This cell-free PCL-MECM scaffold displayed superior biocompatibility and yielded favorable biomechanical capacities closely to native meniscus. Strikingly, neo-menisci were regenerated within PCL-MECM scaffolds which were transplanted into knee joints underwent medial meniscectomy in rabbits and sheep models. Histological staining confirmed neo-menisci showed meniscus-like heterogeneous staining. Mankin scores showed PCL-MECM scaffold could protect articular cartilage well, and knee X-ray examination revealed same results. Knee magnetic resonance imaging (MRI) scanning also showed some neo-menisci in PCL-MECM scaffold group. In conclusion, PCL-MECM scaffold appears to optimize meniscus regeneration. This could represent a promising approach worthy of further investigation in preclinical applications. 3D-printed PCL scaffolds could mimic the circumferential and radial collagen orientation in native meniscus. PCL-MECM scaffold displayed superior biocompatibility and yielded favorable biomechanical capacities. PCL-MECM scaffold appears to optimize meniscus regeneration in both rabbit and sheep meniscus repairing model. PCL-MECM scaffold may represent a promising approach worthy of further investigation in preclinical applications.
Collapse
Affiliation(s)
- Weimin Guo
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA. No.28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Mingxue Chen
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA. No.28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China.,Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, No. 31 Xinjiekou East Street, Xicheng District, Beijing, 100035, People's Republic of China
| | - Zhenyong Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA. No.28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Yue Tian
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA. No.28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Jinxuan Zheng
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No.56 Linyuan Xi Road, Yuexiu District, Guangzhou, Guangdong 510055, People's Republic of China
| | - Shuang Gao
- Center for Biomaterial and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
| | - Yangyang Li
- Center for Biomaterial and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Xu Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA. No.28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China.,Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Jingxiang Huang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA. No.28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Wei Niu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA. No.28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Shuangpeng Jiang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA. No.28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Chunxiang Hao
- Institute of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Zhiguo Yuan
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA. No.28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Yu Zhang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA. No.28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Mingjie Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA. No.28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Zehao Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA. No.28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Jiang Peng
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA. No.28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Aiyuan Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA. No.28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Yu Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA. No.28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Xiang Sui
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA. No.28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Wenjing Xu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA. No.28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Libo Hao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA. No.28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Xifu Zheng
- Department of Orthopedic Surgery, First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Xigang District, Dalian 116011, China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA. No.28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA. No.28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| |
Collapse
|
32
|
Hanai H, Jacob G, Nakagawa S, Tuan RS, Nakamura N, Shimomura K. Potential of Soluble Decellularized Extracellular Matrix for Musculoskeletal Tissue Engineering - Comparison of Various Mesenchymal Tissues. Front Cell Dev Biol 2020; 8:581972. [PMID: 33330460 PMCID: PMC7732506 DOI: 10.3389/fcell.2020.581972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background It is well studied that preparations of decellularized extracellular matrix (ECM) obtained from mesenchymal tissues can function as biological scaffolds to regenerate injured musculoskeletal tissues. Previously, we reported that soluble decellularized ECMs derived from meniscal tissue demonstrated excellent biocompatibility and produced meniscal regenerate with native meniscal anatomy and biochemical characteristics. We therefore hypothesized that decellularized mesenchymal tissue ECMs from various mesenchymal tissues should exhibit tissue-specific bioactivity. The purpose of this study was to test this hypothesis using porcine tissues, for potential applications in musculoskeletal tissue engineering. Methods Nine types of porcine tissue, including cartilage, meniscus, ligament, tendon, muscle, synovium, fat pad, fat, and bone, were decellularized using established methods and solubilized. Although the current trend is to develop tissue specific decellularization protocols, we selected a simple standard protocol across all tissues using Triton X-100 and DNase/RNase after mincing to compare the outcome. The content of sulfated glycosaminoglycan (sGAG) and hydroxyproline were quantified to determine the biochemical composition of each tissue. Along with the concentration of several growth factors, known to be involved in tissue repair and/or maturation, including bFGF, IGF-1, VEGF, and TGF-β1. The effect of soluble ECMs on cell differentiation was explored by combining them with 3D collagen scaffold culturing human synovium derived mesenchymal stem cells (hSMSCs). Results The decellularization of each tissue was performed and confirmed both histologically [hematoxylin and eosin (H&E) and 4’,6-diamidino-2-phenylindole (DAPI) staining] and on the basis of dsDNA quantification. The content of hydroxyproline of each tissue was relatively unchanged during the decellularization process when comparing the native and decellularized tissue. Cartilage and meniscus exhibited a significant decrease in sGAG content. The content of hydroxyproline in meniscus-derived ECM was the highest when compared with other tissues, while sGAG content in cartilage was the highest. Interestingly, a tissue-specific composition of most of the growth factors was measured in each soluble decellularized ECM and specific differentiation potential was particularly evident in cartilage, ligament and bone derived ECMs. Conclusion In this study, soluble decellularized ECMs exhibited differences based on their tissue of origin and the present results are important going forward in the field of musculoskeletal regeneration therapy.
Collapse
Affiliation(s)
- Hiroto Hanai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - George Jacob
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Orthopaedics, Tejasvini Hospital, Mangalore, India
| | - Shinichi Nakagawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Norimasa Nakamura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan.,Institute for Medical Science in Sports, Osaka Health Science University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
| | - Kazunori Shimomura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
33
|
Winkler PW, Rothrauff BB, Buerba RA, Shah N, Zaffagnini S, Alexander P, Musahl V. Meniscal substitution, a developing and long-awaited demand. J Exp Orthop 2020; 7:55. [PMID: 32712722 PMCID: PMC7382673 DOI: 10.1186/s40634-020-00270-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
The menisci represent indispensable intraarticular components of a well-functioning knee joint. Sports activities, traumatic incidents, or simply degenerative conditions can cause meniscal injuries, which often require surgical intervention. Efforts in biomechanical and clinical research have led to the recommendation of a meniscus-preserving rather than a meniscus-resecting treatment approach. Nevertheless, partial or even total meniscal resection is sometimes inevitable. In such circumstances, techniques of meniscal substitution are required. Autologous, allogenic, and artificial meniscal substitutes are available which have evolved in recent years. Basic anatomical and biomechanical knowledge, clinical application, radiological and clinical outcomes as well as future perspectives of meniscal substitutes are presented in this article. A comprehensive knowledge of the different approaches to meniscal substitution is required in order to integrate these evolving techniques in daily clinical practice to prevent the devastating effects of lost meniscal tissue.
Collapse
Affiliation(s)
- Philipp W Winkler
- Department of Orthopaedic Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh, 3200 S. Water St, Pittsburgh, PA, 15203, USA.,Department for Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Benjamin B Rothrauff
- Department of Orthopaedic Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh, 3200 S. Water St, Pittsburgh, PA, 15203, USA.,Center for Cellular and Molecular Engineering, University of Pittsburgh, 450 Technology Drive, Suite 239, Pittsburgh, PA, 15219, USA
| | - Rafael A Buerba
- Department of Orthopaedic Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh, 3200 S. Water St, Pittsburgh, PA, 15203, USA
| | - Neha Shah
- Department of Orthopaedic Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh, 3200 S. Water St, Pittsburgh, PA, 15203, USA
| | - Stefano Zaffagnini
- 2° Clinica Ortopedica e Traumatologica, Istituto Ortopedico Rizzoli, IRCCS, University of Bologna, Bologna, Italy
| | - Peter Alexander
- Center for Cellular and Molecular Engineering, University of Pittsburgh, 450 Technology Drive, Suite 239, Pittsburgh, PA, 15219, USA
| | - Volker Musahl
- Department of Orthopaedic Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh, 3200 S. Water St, Pittsburgh, PA, 15203, USA.
| |
Collapse
|
34
|
Tajima K, Kuroda K, Otaka Y, Kinoshita R, Kita M, Oyamada T, Kanai K. Decellularization of canine kidney for three-dimensional organ regeneration. Vet World 2020; 13:452-457. [PMID: 32367949 PMCID: PMC7183470 DOI: 10.14202/vetworld.2020.452-457] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/04/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Kidney regeneration is required for dogs with end-stage renal failure. Decellularization is one of the bioengineering techniques, which involves the removal of all tissue cells and cellular components and conservation of the extracellular matrix (ECM). Studies in rats have shown that decellularized kidney has regenerative potential; however, there are no reports on renal decellularization in dogs. Here, we showed the decellularization of the canine kidney. MATERIALS AND METHODS The renal artery of the cadaveric canine kidney was cannulated and the whole kidney was frozen at -80°C. After completely thawing, it was perfused with physiological saline and sodium dodecyl sulfate (0.5%, 6 h) through the cannulated renal artery to achieve decellularization. To assess the efficiency of the decellularization protocol, histological and immunohistochemical analysis of decellularized kidney was performed. RESULTS The results of hematoxylin and eosin (H and E) staining revealed that the decellularized canine kidney had no apparent cellular components. In addition, 4',6-diamidino-2-phenylindole (DAPI) staining showed no visible nuclear components within the whole decellularized kidney. Therefore, both H and E and DAPI staining showed decellularization of the canine kidney. Our decellularization protocol also preserved the basement membrane of glomerulus, shown by periodic acid methenamine silver, periodic acid-Schiff, fibronectin, and collagen type IV stain. CONCLUSION Our decellularization protocol could eliminate cellular components and remaining native ECM structures of canine kidney. These results could promote further research into canine kidney regeneration, which may be the first small step to regenerate the canine kidney waiting for renal transplantation.
Collapse
Affiliation(s)
- Kazuki Tajima
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, Towada, Japan
- Department of Surgery, Keio University School of Medicine, Shinjuku, Japan
| | - Kohei Kuroda
- Department of Surgery, Keio University School of Medicine, Shinjuku, Japan
| | - Yuya Otaka
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Rie Kinoshita
- Department of Surgery, Keio University School of Medicine, Shinjuku, Japan
| | - Mizuki Kita
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Toshifumi Oyamada
- Department of Veterinary Pathology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Kazutaka Kanai
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, Towada, Japan
| |
Collapse
|
35
|
Liang Y, Szojka ARA, Idrees E, Kunze M, Mulet-Sierra A, Adesida AB. Re-Differentiation of Human Meniscus Fibrochondrocytes Differs in Three-Dimensional Cell Aggregates and Decellularized Human Meniscus Matrix Scaffolds. Ann Biomed Eng 2020; 48:968-979. [PMID: 31147805 DOI: 10.1007/s10439-019-02272-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
Decellularized matrix (DCM) derived from native tissues may be a promising supporting material to induce cellular differentiation by sequestered bioactive factors. However, no previous study has investigated the use of human meniscus-derived DCM to re-differentiate human meniscus fibrochondrocytes (MFCs) to form meniscus-like extracellular matrix (ECM). We expanded human MFCs and seeded them upon a cadaveric meniscus-derived DCM prepared by physical homogenization under hypoxia. To assess the bioactivity of the DCM, we used conditions with and without chondrogenic factor TGF-β3 and set up a cell pellet culture model as a biomaterial-free control. We found that the DCM supported chondrogenic re-differentiation and ECM formation of MFCs only in the presence of exogenous TGF-β3. Chondrogenic re-differentiation was more robust at the protein level in the pellet model as MFCs on the DCM appeared to favour a more proliferative phenotype. Interestingly, without growth factors, the DCM tended to promote expression of hypertrophic differentiation markers relative to the pellet model. Therefore, the human meniscus-derived DCM prepared by physical homogenization contained insufficient bioactive factors to induce appreciable ECM formation by human MFCs.
Collapse
Affiliation(s)
- Yan Liang
- Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, Li Ka Shing Centre for Health Research Innovation (3.002E), Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, T6G 2E1, Canada
- Division of Burn and Reconstructive Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Alexander R A Szojka
- Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, Li Ka Shing Centre for Health Research Innovation (3.002E), Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Enaam Idrees
- Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, Li Ka Shing Centre for Health Research Innovation (3.002E), Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Melanie Kunze
- Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, Li Ka Shing Centre for Health Research Innovation (3.002E), Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Aillette Mulet-Sierra
- Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, Li Ka Shing Centre for Health Research Innovation (3.002E), Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Adetola B Adesida
- Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, Li Ka Shing Centre for Health Research Innovation (3.002E), Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, T6G 2E1, Canada.
| |
Collapse
|
36
|
Tang Y, Chen C, Liu F, Xie S, Qu J, Li M, Li Z, Li X, Shi Q, Li S, Li X, Hu J, Lu H. Structure and ingredient-based biomimetic scaffolds combining with autologous bone marrow-derived mesenchymal stem cell sheets for bone-tendon healing. Biomaterials 2020; 241:119837. [PMID: 32109704 DOI: 10.1016/j.biomaterials.2020.119837] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/10/2020] [Accepted: 01/30/2020] [Indexed: 12/21/2022]
Abstract
Tendon attaches to bone across a robust fibrocartilaginous tissue termed the bone-tendon interface (BTI), commonly injured in the field of sports medicine and orthopedics with poor prognosis. So far, there is still a lack of effective clinical interventions to achieve functional healing post BTI injury. However, tissue-engineering may be a promising treatment strategy. In this study, a gradient book-type triphasic (bone-fibrocartilage-tendon) scaffold is fabricated based on the heterogeneous structure and ingredient of BTI. After decellularization, the scaffold exhibits no residual cells, while the characteristic extracellular matrix of the original bone, fibrocartilage and tendon is well preserved. Meanwhile, the bone, fibrocartilage and tendon regions of the acellular scaffold are superior in osteogenic, chondrogenic and tenogenic inducibility, respectively. Furthermore, autologous bone marrow mesenchymal stem cell (BMSC) sheets (CS) combined with the acellular scaffolds is transplanted into the lesion site of a rabbit BTI injury model to investigate the therapeutic effects. Our results show that the CS modified scaffold not only successfully achieves triple biomimetic of BTI in structure, ingredient and cell distribution, but also effectively accelerates bone-tendon (B-T) healing. In general, this work demonstrates book-type acellular triphasic scaffold combined with autologous BMSCs sheets is a promising graft for repairing BTI injury.
Collapse
Affiliation(s)
- Yifu Tang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China
| | - Can Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Fei Liu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, People's Republic of China
| | - Shanshan Xie
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China; Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, People's Republic of China
| | - Jin Qu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Muzhi Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China
| | - Zan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China
| | - Xiaoning Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Qiang Shi
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China
| | - Shengcan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China
| | - Xing Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China
| | - Jianzhong Hu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China; Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China; Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, People's Republic of China.
| |
Collapse
|
37
|
Hidalgo Perea S, Lyons LP, Nishimuta JF, Weinberg JB, McNulty AL. Evaluation of culture conditions for in vitro meniscus repair model systems using bone marrow-derived mesenchymal stem cells. Connect Tissue Res 2020; 61:322-337. [PMID: 31661326 PMCID: PMC7188595 DOI: 10.1080/03008207.2019.1680656] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Meniscal injury and loss of meniscus tissue lead to osteoarthritis development. Therefore, novel biologic strategies are needed to enhance meniscus tissue repair. The purpose of this study was to identify a favorable culture medium for both bone marrow-derived mesenchymal stem cells (MSCs) and meniscal tissue, and to establish a novel meniscus tissue defect model that could be utilized for in vitro screening of biologics to promote meniscus repair.Materials and Methods: In parallel, we analyzed the biochemical properties of MSC - seeded meniscus-derived matrix (MDM) scaffolds and meniscus repair model explants cultured in different combinations of serum, dexamethasone (Dex), and TGF-β. Next, we combined meniscus tissue and MSC-seeded MDM scaffolds into a novel meniscus tissue defect model to evaluate the effects of chondrogenic and meniscal media on the tissue biochemical properties and repair strength.Results: Serum-free medium containing TGF-β and Dex was the most promising formulation for experiments with MSC-seeded scaffolds, whereas serum-containing medium was the most effective for meniscus tissue composition and integrative repair. When meniscus tissue and MSC-seeded MDM scaffolds were combined into a defect model, the chondrogenic medium (serum-free with TGF-β and Dex) enhanced the production of proteoglycans and promoted integrative repair of meniscus tissue. As well, cross-linked scaffolds improved repair over the MDM slurry.Conclusions: The meniscal tissue defect model established in this paper can be used to perform in vitro screening to identify and optimize biological treatments to enhance meniscus tissue repair prior to conducting preclinical animal studies.
Collapse
Affiliation(s)
- Sofia Hidalgo Perea
- Department of Biology, Duke University, Durham, North
Carolina, USA,Department of Orthopaedic Surgery, Duke University School
of Medicine, Durham, North Carolina, USA
| | - Lucas P. Lyons
- Department of Orthopaedic Surgery, Duke University School
of Medicine, Durham, North Carolina, USA
| | - James F. Nishimuta
- Department of Orthopaedic Surgery, Duke University School
of Medicine, Durham, North Carolina, USA
| | - J. Brice Weinberg
- Department of Medicine, Duke University School of Medicine,
Durham, North Carolina, USA,VA Medical Center, Durham, NC, USA
| | - Amy L. McNulty
- Department of Orthopaedic Surgery, Duke University School
of Medicine, Durham, North Carolina, USA,Department of Pathology, Duke University School of
Medicine, Durham, North Carolina, USA,Corresponding Author: Amy L. McNulty,
PhD, Duke University School of Medicine, 355A Medical Sciences Research Building
1, DUMC Box 3093, Durham, NC 27710, Phone: 919-684-6882,
| |
Collapse
|
38
|
Lyons LP, Hidalgo Perea S, Weinberg JB, Wittstein JR, McNulty AL. Meniscus-Derived Matrix Bioscaffolds: Effects of Concentration and Cross-Linking on Meniscus Cellular Responses and Tissue Repair. Int J Mol Sci 2019; 21:ijms21010044. [PMID: 31861690 PMCID: PMC6981607 DOI: 10.3390/ijms21010044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 12/17/2022] Open
Abstract
Meniscal injuries, particularly in the avascular zone, have a low propensity for healing and are associated with the development of osteoarthritis. Current meniscal repair techniques are limited to specific tear types and have significant risk for failure. In previous work, we demonstrated the ability of meniscus-derived matrix (MDM) scaffolds to augment the integration and repair of an in vitro meniscus defect. The objective of this study was to determine the effects of percent composition and dehydrothermal (DHT) or genipin cross-linking of MDM bioscaffolds on primary meniscus cellular responses and integrative meniscus repair. In all scaffolds, the porous microenvironment allowed for exogenous cell infiltration and proliferation, as well as endogenous meniscus cell migration. The genipin cross-linked scaffolds promoted extracellular matrix (ECM) deposition and/or retention. The shear strength of integrative meniscus repair was improved with increasing percentages of MDM and genipin cross-linking. Overall, the 16% genipin cross-linked scaffolds were most effective at enhancing integrative meniscus repair. The ability of the genipin cross-linked scaffolds to attract endogenous meniscus cells, promote glycosaminoglycan and collagen deposition, and enhance integrative meniscus repair reveals that these MDM scaffolds are promising tools to augment meniscus healing.
Collapse
Affiliation(s)
- Lucas P. Lyons
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; (L.P.L.); (S.H.P.); (J.R.W.)
| | - Sofia Hidalgo Perea
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; (L.P.L.); (S.H.P.); (J.R.W.)
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - J. Brice Weinberg
- Department of Medicine, VA Medical Center, Durham, NC 27705, USA;
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jocelyn R. Wittstein
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; (L.P.L.); (S.H.P.); (J.R.W.)
| | - Amy L. McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; (L.P.L.); (S.H.P.); (J.R.W.)
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Correspondence: ; Tel.: +1-919-684-6882
| |
Collapse
|
39
|
Chen M, Feng Z, Guo W, Yang D, Gao S, Li Y, Shen S, Yuan Z, Huang B, Zhang Y, Wang M, Li X, Hao L, Peng J, Liu S, Zhou Y, Guo Q. PCL-MECM-Based Hydrogel Hybrid Scaffolds and Meniscal Fibrochondrocytes Promote Whole Meniscus Regeneration in a Rabbit Meniscectomy Model. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41626-41639. [PMID: 31596568 DOI: 10.1021/acsami.9b13611] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Regeneration of an injured meniscus continues to be a scientific challenge due to its poor self-healing potential. Tissue engineering provides an avenue for regenerating a severely damaged meniscus. In this study, we first investigated the superiority of five concentrations (0%, 0.5%, 1%, 2%, and 4%) of meniscus extracellular matrix (MECM)-based hydrogel in promoting cell proliferation and the matrix-forming phenotype of meniscal fibrochondrocytes (MFCs). We found that the 2% group strongly enhanced chondrogenic marker mRNA expression and cell proliferation compared to the other groups. Moreover, the 2% group showed the highest glycosaminoglycan (GAG) and collagen production by day 14. We then constructed a hybrid scaffold by 3D printing a wedge-shaped poly(ε-caprolactone) (PCL) scaffold as a backbone, followed by injection with the optimized MECM-based hydrogel (2%), which served as a cell delivery system. The hybrid scaffold (PCL-hydrogel) clearly yielded favorable biomechanical properties close to those of the native meniscus. Finally, PCL scaffold, PCL-hydrogel, and MFCs-loaded hybrid scaffold (PCL-hydrogel-MFCs) were implanted into the knee joints of New Zealand rabbits that underwent total medial meniscectomy. Six months postimplantation we found that the PCL-hydrogel-MFCs group exhibited markedly better gross appearance and cartilage protection than the PCL scaffold and PCL-hydrogel groups. Moreover, the regenerated menisci in the PCL-hydrogel-MFCs group had similar histological structures, biochemical contents, and biomechanical properties as the native menisci in the sham operation group. In conclusion, PCL-MECM-based hydrogel hybrid scaffold seeded with MFCs can successfully promote whole meniscus regeneration, and cell-loaded PCL-MECM-based hydrogel hybrid scaffold may be a promising strategy for meniscus regeneration in the future.
Collapse
Affiliation(s)
- Mingxue Chen
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital , Peking University Fourth School of Clinical Medicine , No. 31 Xinjiekou East Street, Xicheng District , Beijing 100035 , People's Republic of China
| | - Zhaoxuan Feng
- School of Material Science and Engineering , University of Science and Technology Beijing , No. 30 Xueyuan Road, Haidian District , Beijing 100083 , People's Republic of China
| | - Weimin Guo
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
- Department of Orthopaedic Surgery, First Affiliated Hospital , Sun Yat-sen University , No. 58 Zhongshan Second Road, Yuexiu District , Guangzhou , Guangdong 510080 , People's Republic of China
| | - Dejin Yang
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital , Peking University Fourth School of Clinical Medicine , No. 31 Xinjiekou East Street, Xicheng District , Beijing 100035 , People's Republic of China
| | - Shuang Gao
- Academy for Advanced Interdisciplinary Studies , Peking University , No. 5 Yiheyuan Road, Haidian District , Beijing 100871 , People's Republic of China
| | - Yangyang Li
- Academy for Advanced Interdisciplinary Studies , Peking University , No. 5 Yiheyuan Road, Haidian District , Beijing 100871 , People's Republic of China
| | - Shi Shen
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
- Department of Bone and Joint Surgery , The Affiliated Hospital of Southwest Medical University , No. 25 Taiping Road , Luzhou 646000 , People's Republic of China
| | - Zhiguo Yuan
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
| | - Bo Huang
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
- Department of Bone and Joint Surgery , The Affiliated Hospital of Southwest Medical University , No. 25 Taiping Road , Luzhou 646000 , People's Republic of China
| | - Yu Zhang
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
| | - Mingjie Wang
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
| | - Xu Li
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
| | - Libo Hao
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
| | - Jiang Peng
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
| | - Shuyun Liu
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
| | - Yixin Zhou
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital , Peking University Fourth School of Clinical Medicine , No. 31 Xinjiekou East Street, Xicheng District , Beijing 100035 , People's Republic of China
| | - Quanyi Guo
- Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA , Institute of Orthopedics , No. 28 Fuxing Road, Haidian District , Beijing 100853 , People's Republic of China
| |
Collapse
|
40
|
Kwon H, Brown WE, Lee CA, Wang D, Paschos N, Hu JC, Athanasiou KA. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat Rev Rheumatol 2019; 15:550-570. [PMID: 31296933 PMCID: PMC7192556 DOI: 10.1038/s41584-019-0255-1] [Citation(s) in RCA: 362] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 12/30/2022]
Abstract
Injuries to articular cartilage and menisci can lead to cartilage degeneration that ultimately results in arthritis. Different forms of arthritis affect ~50 million people in the USA alone, and it is therefore crucial to identify methods that will halt or slow the progression to arthritis, starting with the initiating events of cartilage and meniscus defects. The surgical approaches in current use have a limited capacity for tissue regeneration and yield only short-term relief of symptoms. Tissue engineering approaches are emerging as alternatives to current surgical methods for cartilage and meniscus repair. Several cell-based and tissue-engineered products are currently in clinical trials for cartilage lesions and meniscal tears, opening new avenues for cartilage and meniscus regeneration. This Review provides a summary of surgical techniques, including tissue-engineered products, that are currently in clinical use, as well as a discussion of state-of-the-art tissue engineering strategies and technologies that are being developed for use in articular cartilage and meniscus repair and regeneration. The obstacles to clinical translation of these strategies are also included to inform the development of innovative tissue engineering approaches.
Collapse
Affiliation(s)
- Heenam Kwon
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Wendy E Brown
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Cassandra A Lee
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA, USA
| | - Dean Wang
- Department of Orthopaedic Surgery, University of California Irvine Medical Center, Orange, CA, USA
| | - Nikolaos Paschos
- Division of Sports Medicine, Department of Orthopaedic Surgery, New England Baptist Hospital, Tufts University School of Medicine, Boston, MA, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
41
|
Ruprecht JC, Waanders TD, Rowland CR, Nishimuta JF, Glass KA, Stencel J, DeFrate LE, Guilak F, Weinberg JB, McNulty AL. Meniscus-Derived Matrix Scaffolds Promote the Integrative Repair of Meniscal Defects. Sci Rep 2019; 9:8719. [PMID: 31213610 PMCID: PMC6582057 DOI: 10.1038/s41598-019-44855-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/24/2019] [Indexed: 01/05/2023] Open
Abstract
Meniscal tears have a poor healing capacity, and damage to the meniscus is associated with significant pain, disability, and progressive degenerative changes in the knee joint that lead to osteoarthritis. Therefore, strategies to promote meniscus repair and improve meniscus function are needed. The objective of this study was to generate porcine meniscus-derived matrix (MDM) scaffolds and test their effectiveness in promoting meniscus repair via migration of endogenous meniscus cells from the surrounding meniscus or exogenously seeded human bone marrow-derived mesenchymal stem cells (MSCs). Both endogenous meniscal cells and MSCs infiltrated the MDM scaffolds. In the absence of exogenous cells, the 8% MDM scaffolds promoted the integrative repair of an in vitro meniscal defect. Dehydrothermal crosslinking and concentration of the MDM influenced the biochemical content and shear strength of repair, demonstrating that the MDM can be tailored to promote tissue repair. These findings indicate that native meniscus cells can enhance meniscus healing if a scaffold is provided that promotes cellular infiltration and tissue growth. The high affinity of cells for the MDM and the ability to remodel the scaffold reveals the potential of MDM to integrate with native meniscal tissue to promote long-term repair without necessarily requiring exogenous cells.
Collapse
Affiliation(s)
- Jacob C Ruprecht
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Taylor D Waanders
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Christopher R Rowland
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - James F Nishimuta
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Katherine A Glass
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jennifer Stencel
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Louis E DeFrate
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.,Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children - St. Louis, St. Louis, MO, USA
| | - J Brice Weinberg
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,VA Medical Center, Durham, NC, USA
| | - Amy L McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA. .,Department of Pathology, Duke University, Durham, NC, USA.
| |
Collapse
|
42
|
Heath DE. A Review of Decellularized Extracellular Matrix Biomaterials for Regenerative Engineering Applications. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-018-0080-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
Cunniffe GM, Díaz-Payno PJ, Sheehy EJ, Critchley SE, Almeida HV, Pitacco P, Carroll SF, Mahon OR, Dunne A, Levingstone TJ, Moran CJ, Brady RT, O'Brien FJ, Brama PA, Kelly DJ. Tissue-specific extracellular matrix scaffolds for the regeneration of spatially complex musculoskeletal tissues. Biomaterials 2019; 188:63-73. [DOI: 10.1016/j.biomaterials.2018.09.044] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/18/2018] [Accepted: 09/28/2018] [Indexed: 01/09/2023]
|
44
|
Patel JM, Ghodbane SA, Brzezinski A, Gatt CJ, Dunn MG. Tissue-Engineered Total Meniscus Replacement With a Fiber-Reinforced Scaffold in a 2-Year Ovine Model. Am J Sports Med 2018; 46:1844-1856. [PMID: 29953287 DOI: 10.1177/0363546517752668] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Meniscus injuries and associated meniscectomies cause patients long-term pain and discomfort and can lead to joint deterioration. PURPOSE To evaluate a collagen-hyaluronan sponge reinforced with synthetic resorbable polymer fiber for total meniscus reconstruction in a long-term ovine model. STUDY DESIGN Controlled laboratory study. METHODS Eleven skeletally mature sheep were implanted with the total meniscus scaffold. At 2 years, explants were evaluated biologically (radial/circumferential histology, immunofluorescence) and mechanically (compression, tension), and articular surfaces were examined for damage. RESULTS The fiber-reinforced scaffold induced formation of functional neomeniscus tissue that was intact in 8 of 11 animals. The implant was remodeled into organized circumferentially aligned collagen bundles to resist meniscus hoop stresses. Moreover, type II collagen and proteoglycan deposition near the inner margin suggested a direct response to compressive stresses and confirmed fibrocartilage formation. Cartilage damage was observed, but end-stage (severe) joint deterioration associated with meniscectomy was avoided, even with limitations regarding the ovine surgical procedure and postoperative care. CONCLUSION A fiber-reinforced total meniscus replacement device induces formation of functional neomeniscus tissue that has the potential to prevent catastrophic joint deterioration associated with meniscectomy. CLINICAL RELEVANCE An off-the-shelf meniscus device that can be remodeled into functional tissue and thus prevent or delay the onset of osteoarthritis could address a widespread clinical need after meniscus injury.
Collapse
Affiliation(s)
- Jay M Patel
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.,Department of Biomedical Engineering, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA.,McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Salim A Ghodbane
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.,Department of Biomedical Engineering, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Andrzej Brzezinski
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Charles J Gatt
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.,Department of Biomedical Engineering, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Michael G Dunn
- Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.,Department of Biomedical Engineering, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
45
|
Bilgen B, Jayasuriya CT, Owens BD. Current Concepts in Meniscus Tissue Engineering and Repair. Adv Healthc Mater 2018; 7:e1701407. [PMID: 29542287 PMCID: PMC6176857 DOI: 10.1002/adhm.201701407] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/22/2018] [Indexed: 12/13/2022]
Abstract
The meniscus is the most commonly injured structure in the human knee. Meniscus deficiency has been shown to lead to advanced osteoarthritis (OA) due to abnormal mechanical forces, and replacement strategies for this structure have lagged behind other tissue engineering endeavors. The challenges include the complex 3D structure with individualized size parameters, the significant compressive, tensile and shear loads encountered, and the poor blood supply. In this progress report, a review of the current clinical treatments for different types of meniscal injury is provided. The state-of-the-art research in cellular therapies and novel cell sources for these therapies is discussed. The clinically available cell-free biomaterial implants and the current progress on cell-free biomaterial implants are reviewed. Cell-based tissue engineering strategies for the repair and replacement of meniscus are presented, and the current challenges are identified. Tissue-engineered meniscal biocomposite implants may provide an alternative solution for the treatment of meniscal injury to prevent OA in the long run, because of the limitations of the existing therapies.
Collapse
Affiliation(s)
- Bahar Bilgen
- Department of Orthopaedics, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, 1 Hoppin St, Providence, RI, 02903, USA
- Providence VA Medical Center, Providence, RI, 02908, USA
| | - Chathuraka T Jayasuriya
- Department of Orthopaedics, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, 1 Hoppin St, Providence, RI, 02903, USA
| | - Brett D Owens
- Department of Orthopaedics, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, 1 Hoppin St, Providence, RI, 02903, USA
| |
Collapse
|
46
|
O'Grady BJ, Wang JX, Faley SL, Balikov DA, Lippmann ES, Bellan LM. A Customizable, Low-Cost Perfusion System for Sustaining Tissue Constructs. SLAS Technol 2018; 23:592-598. [PMID: 29787331 DOI: 10.1177/2472630318775059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The fabrication of engineered vascularized tissues and organs requiring sustained, controlled perfusion has been facilitated by the development of several pump systems. Currently, researchers in the field of tissue engineering require the use of pump systems that are in general large, expensive, and generically designed. Overall, these pumps often fail to meet the unique demands of perfusing clinically useful tissue constructs. Here, we describe a pumping platform that overcomes these limitations and enables scalable perfusion of large, three-dimensional hydrogels. We demonstrate the ability to perfuse multiple separate channels inside hydrogel slabs using a preprogrammed schedule that dictates pumping speed and time. The use of this pump system to perfuse channels in large-scale engineered tissue scaffolds sustained cell viability over several weeks.
Collapse
Affiliation(s)
- Brian J O'Grady
- 1 Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.,2 Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA
| | - Jason X Wang
- 3 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Shannon L Faley
- 1 Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Daniel A Balikov
- 3 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ethan S Lippmann
- 3 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,4 Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Leon M Bellan
- 1 Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.,2 Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA.,3 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
47
|
Spang MT, Christman KL. Extracellular matrix hydrogel therapies: In vivo applications and development. Acta Biomater 2018; 68:1-14. [PMID: 29274480 DOI: 10.1016/j.actbio.2017.12.019] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/09/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022]
Abstract
Decellularized extracellular matrix (ECM) has been widely used for tissue engineering applications and is becoming increasingly versatile as it can take many forms, including patches, powders, and hydrogels. Following additional processing, decellularized ECM can form an inducible hydrogel that can be injected, providing for new minimally-invasive procedure opportunities. ECM hydrogels have been derived from numerous tissue sources and applied to treat many disease models, such as ischemic injuries and organ regeneration or replacement. This review will focus on in vivo applications of ECM hydrogels and functional outcomes in disease models, as well as discuss considerations for clinical translation. STATEMENT OF SIGNIFICANCE Extracellular matrix (ECM) hydrogel therapies are being developed to treat diseased or damaged tissues and organs throughout the body. Many ECM hydrogels are progressing from in vitro models to in vivo biocompatibility studies and functional models. There is significant potential for clinical translation of these therapies since one ECM hydrogel therapy is already in a Phase 1 clinical trial.
Collapse
|
48
|
Shimomura K, Hamamoto S, Hart DA, Yoshikawa H, Nakamura N. Meniscal repair and regeneration: Current strategies and future perspectives. J Clin Orthop Trauma 2018; 9:247-253. [PMID: 30202157 PMCID: PMC6128795 DOI: 10.1016/j.jcot.2018.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/30/2018] [Accepted: 07/14/2018] [Indexed: 01/01/2023] Open
Abstract
The management of meniscal injuries remains difficult and challenging. Although several clinical options exist for the treatment of such injuries, complete regeneration of the damaged meniscus has proved difficult due to the limited healing capacity of the tissue. With the advancements in tissue engineering and cell-based technologies, new therapeutic options for patients with currently incurable meniscal lesions now potentially exist. This review will discuss basic anatomy, current repair techniques and treatment options for loss of meniscal integrity. Specifically, we focus on the possibility and feasibility of the latest tissue engineering approaches, including 3D printing technologies. Therefore, this discussion will facilitate a better understanding of the latest trends in meniscal repair and regeneration, and contribute to the future application of such clinical therapies for patients with meniscal injuries.
Collapse
Affiliation(s)
- Kazunori Shimomura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Shuichi Hamamoto
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - David A. Hart
- McCaig Institute for Bone & Joint Health, University of Calgary, 3330 Hospital Drive Northwest, Calgary, Alberta, T2N 4N1, Canada
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Norimasa Nakamura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan,Institute for Medical Science in Sports, Osaka Health Science University, 1-9-27 Tenma, Kita-ku, Osaka City, Osaka, 530-0043, Japan,Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan,Corresponding author. Institute for Medical Science in Sports, Osaka Health Science University, 1-9-27, Tenma, Kita-ku, Osaka City, Osaka, 530-0043, Japan.
| |
Collapse
|
49
|
Romanazzo S, Vedicherla S, Moran C, Kelly DJ. Meniscus ECM-functionalised hydrogels containing infrapatellar fat pad-derived stem cells for bioprinting of regionally defined meniscal tissue. J Tissue Eng Regen Med 2017; 12:e1826-e1835. [PMID: 29105354 DOI: 10.1002/term.2602] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/23/2017] [Accepted: 10/19/2017] [Indexed: 01/22/2023]
Abstract
Injuries to the meniscus of the knee commonly lead to osteoarthritis. Current therapies for meniscus regeneration, including meniscectomies and scaffold implantation, fail to achieve complete functional regeneration of the tissue. This has led to increased interest in cell and gene therapies and tissue engineering approaches to meniscus regeneration. The implantation of a biomimetic implant, incorporating cells, growth factors, and extracellular matrix (ECM)-derived proteins, represents a promising approach to functional meniscus regeneration. The objective of this study was to develop a range of ECM-functionalised bioinks suitable for 3D bioprinting of meniscal tissue. To this end, alginate hydrogels were functionalised with ECM derived from the inner and outer regions of the meniscus and loaded with infrapatellar fat pad-derived stem cells. In the absence of exogenously supplied growth factors, inner meniscus ECM promoted chondrogenesis of fat pad-derived stem cells, whereas outer meniscus ECM promoted a more elongated cell morphology and the development of a more fibroblastic phenotype. With exogenous growth factors supplementation, a more fibrogenic phenotype was observed in outer ECM-functionalised hydrogels supplemented with connective tissue growth factor, whereas inner ECM-functionalised hydrogels supplemented with TGFβ3 supported the highest levels of Sox-9 and type II collagen gene expression and sulfated glycosaminoglycans (sGAG) deposition. The final phase of the study demonstrated the printability of these ECM-functionalised hydrogels, demonstrating that their codeposition with polycaprolactone microfibres dramatically improved the mechanical properties of the 3D bioprinted constructs with no noticeable loss in cell viability. These bioprinted constructs represent an exciting new approach to tissue engineering of functional meniscal grafts.
Collapse
Affiliation(s)
- S Romanazzo
- Trinity Centre for Bioengineering, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - S Vedicherla
- Trinity Centre for Bioengineering, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland.,Sports Surgery Clinic Dublin, Orthopaedics and Sports Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - C Moran
- Trinity Centre for Bioengineering, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin, Ireland.,Sports Surgery Clinic Dublin, Orthopaedics and Sports Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - D J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin, Ireland.,Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
50
|
Critchley SE, Kelly DJ. Bioinks for bioprinting functional meniscus and articular cartilage. ACTA ACUST UNITED AC 2017. [DOI: 10.2217/3dp-2017-0012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
3D bioprinting can potentially enable the engineering of biological constructs mimicking the complex geometry, composition, architecture and mechanical properties of different tissues and organs. Integral to the successful bioprinting of functional articular cartilage and meniscus is the identification of suitable bioinks and cell sources to support chondrogenesis or fibrochondrogenesis, respectively. Such bioinks must also possess the appropriate rheological properties to be printable and support the generation of complex geometries. This review will outline the parameters required to develop bioinks for such applications and the current recent advances in 3D bioprinting of functional meniscus and articular cartilage. The paper will conclude by discussing key scientific and technical hurdles in this field and by defining future research directions for cartilage and meniscus bioprinting.
Collapse
Affiliation(s)
- Susan E Critchley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical & Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical & Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, Ireland
| |
Collapse
|