1
|
Yamaguchi Y, Maekawa Y, Kabashima K, Mizuno T, Tainaka M, Suzuki T, Dojo K, Tominaga T, Kuroiwa S, Masubuchi S, Doi M, Tominaga K, Kobayashi K, Yamagata S, Itoi K, Abe M, Schwartz WJ, Sakimura K, Okamura H. An intact pituitary vasopressin system is critical for building a robust circadian clock in the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 2023; 120:e2308489120. [PMID: 37844254 PMCID: PMC10614613 DOI: 10.1073/pnas.2308489120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023] Open
Abstract
The circadian clock is a biological timekeeping system that oscillates with a circa-24-h period, reset by environmental timing cues, especially light, to the 24-h day-night cycle. In mammals, a "central" clock in the hypothalamic suprachiasmatic nucleus (SCN) synchronizes "peripheral" clocks throughout the body to regulate behavior, metabolism, and physiology. A key feature of the clock's oscillation is resistance to abrupt perturbations, but the mechanisms underlying such robustness are not well understood. Here, we probe clock robustness to unexpected photic perturbation by measuring the speed of reentrainment of the murine locomotor rhythm after an abrupt advance of the light-dark cycle. Using an intersectional genetic approach, we implicate a critical role for arginine vasopressin pathways, both central within the SCN and peripheral from the anterior pituitary.
Collapse
Grants
- 18H04015 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 15H05642 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22K06594 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22K18384 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20K20864 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 18002016 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 16H06276 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JPMJCR14W3 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- BR220401 MEXT | Japan Society for the Promotion of Science (JSPS)
Collapse
Affiliation(s)
- Yoshiaki Yamaguchi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita564-8680, Japan
| | - Yota Maekawa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Kyohei Kabashima
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Takanobu Mizuno
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Motomi Tainaka
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Toru Suzuki
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Kumiko Dojo
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Takeichiro Tominaga
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Sayaka Kuroiwa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Satoru Masubuchi
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute480-1195, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Keiko Tominaga
- Graduate School of Frontier Biosciences, Osaka University, Suita565-0871, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima960-1295, Japan
| | - Satoshi Yamagata
- Graduate School of Information Sciences, Tohoku University, Sendai980-0845, Japan
| | - Keiichi Itoi
- Graduate School of Information Sciences, Tohoku University, Sendai980-0845, Japan
- Department of Nursing, Faculty of Health Sciences, Tohoku Fukushi University, Sendai981-8522, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata951-8585, Japan
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata951-8585, Japan
| | - William J. Schwartz
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX78712
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata951-8585, Japan
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata951-8585, Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| |
Collapse
|
2
|
Kong X, Luxwolda M, Hut RA, Meerlo P. Adrenalectomy prevents the effects of social defeat stress on PER2 rhythms in some peripheral tissues in male mice. Horm Behav 2023; 150:105326. [PMID: 36764158 DOI: 10.1016/j.yhbeh.2023.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
While stress does not affect the phase or period of the central pacemaker in the suprachiasmatic nucleus, it can shift clocks in peripheral tissues. Our previous studies showed significant delays of the PER2 rhythms in lung and kidney following social defeat stress. The mechanism underlying these effects is not fully understood, but might involve glucocorticoids (GC) released during the stressor. In the present study, we performed social defeat stress in adrenalectomized (ADX) mice to see if the induction of endogenous GC is necessary for the stress-induced phase shifts of peripheral clocks. We used mice that carry a luciferase reporter gene fused to the circadian clock gene Period2 (PER2::LUC) to examine daily rhythms of PER2 expression in various peripheral tissues. Mice were exposed to 5 consecutive daily social defeat stress in the late dark phase (ZT21-22). Running wheel rotations were recorded during 7 baseline and 5 social defeat days, which showed that social defeat stress suppressed locomotor activity without affecting the phase of the rhythm. This suppression of activity was not prevented by ADX. One hour after the last stressor, tissue samples from the liver, kidney and lung were collected and cultured for ex vivo bioluminescence recordings. In the liver, PER2 rhythms were not affected by social defeat stress or ADX. In the kidney, social defeat stress caused a > 4 h phase delay of the PER2 rhythm, which was prevented by ADX, supporting the hypothesis of a crucial role of GC in this stress effect. In the lung, social defeat stress caused an 8 h phase delay, but, surprisingly, a similar phase delay was seen in ADX animals independent of defeat. The latter indicates complex effects of stress and stress hormones on the lung clock. In conclusion, the findings show that repeated social defeat stress in the dark phase can shift PER2 rhythms in some tissues (lung, kidney) and not others (liver). Moreover, the social defeat stress effect in some tissues appears to be mediated by glucocorticoids (kidney) whereas the mechanism in other tissues is more complex (lung).
Collapse
Affiliation(s)
- Xiangpan Kong
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands; School of Medicine, Hunan Normal University, Changsha, PR China
| | - Michelle Luxwolda
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Roelof A Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Peter Meerlo
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands.
| |
Collapse
|
3
|
Guan Q, Li Y, Wang Z, Cao J, Dong Y, Ren F, Chen Y. Monochromatic Light Pollution Exacerbates High-Fat Diet-Induced Adipocytic Hypertrophy in Mice. Cells 2022; 11:cells11233808. [PMID: 36497068 PMCID: PMC9737108 DOI: 10.3390/cells11233808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Light pollution worldwide promotes the progression of obesity, which is widely considered a consequence of circadian rhythm disruptions. However, the role of environmental light wavelength in mammalian obesity is not fully understood. Herein, mice fed a normal chow diet (NCD) or a high-fat diet (HFD) were exposed to daytime white (WL), blue (BL), green (GL), and red light (RL) for 8 weeks. Compared with WL and RL, BL significantly increased weight gain and white adipose tissue (WAT) weight, and it disrupted glucose homeostasis in mice fed with HFD but not NCD. The analysis of WAT found that BL significantly aggravated HFD-induced WAT hypertrophy, with a decrease in IL-10 and an increase in NLRP3, p-P65, p-IκB, TLR4, Cd36, Chrebp, Srebp-1c, Fasn, and Cpt1β relative to WL or RL. More interestingly, BL upregulated the expression of circadian clocks in the WAT, including Clock, Bmal1, Per1, Cry1, Cry2, Rorα, Rev-erbα, and Rev-erbβ compared with WL or RL. However, most of the changes had no statistical difference between BL and GL. Mechanistically, BL significantly increased plasma corticosterone (CORT) levels and glucocorticoid receptors in the WAT, which may account for the changes in circadian clocks. Further, in vitro study confirmed that CORT treatment did promote the expression of circadian clocks in 3T3-L1 cells, accompanied by an increase in Chrebp, Cd36, Hsp90, P23, NLRP3, and p-P65. Thus, daily BL, rather than RL exposure-induced CORT elevation, may drive changes in the WAT circadian clocks, ultimately exacerbating lipid dysmetabolism and adipocytic hypertrophy in the HFD-fed mice.
Collapse
Affiliation(s)
- Qingyun Guan
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Zixu Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Yaoxing Chen
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Correspondence: ; Tel.: +86-10-62733778; Fax: +86-10-62733199
| |
Collapse
|
4
|
Yao Y, Silver R. Mutual Shaping of Circadian Body-Wide Synchronization by the Suprachiasmatic Nucleus and Circulating Steroids. Front Behav Neurosci 2022; 16:877256. [PMID: 35722187 PMCID: PMC9200072 DOI: 10.3389/fnbeh.2022.877256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Background Steroids are lipid hormones that reach bodily tissues through the systemic circulation, and play a major role in reproduction, metabolism, and homeostasis. All of these functions and steroids themselves are under the regulation of the circadian timing system (CTS) and its cellular/molecular underpinnings. In health, cells throughout the body coordinate their daily activities to optimize responses to signals from the CTS and steroids. Misalignment of responses to these signals produces dysfunction and underlies many pathologies. Questions Addressed To explore relationships between the CTS and circulating steroids, we examine the brain clock located in the suprachiasmatic nucleus (SCN), the daily fluctuations in plasma steroids, the mechanisms producing regularly recurring fluctuations, and the actions of steroids on their receptors within the SCN. The goal is to understand the relationship between temporal control of steroid secretion and how rhythmic changes in steroids impact the SCN, which in turn modulate behavior and physiology. Evidence Surveyed The CTS is a multi-level organization producing recurrent feedback loops that operate on several time scales. We review the evidence showing that the CTS modulates the timing of secretions from the level of the hypothalamus to the steroidogenic gonadal and adrenal glands, and at specific sites within steroidogenic pathways. The SCN determines the timing of steroid hormones that then act on their cognate receptors within the brain clock. In addition, some compartments of the body-wide CTS are impacted by signals derived from food, stress, exercise etc. These in turn act on steroidogenesis to either align or misalign CTS oscillators. Finally this review provides a comprehensive exploration of the broad contribution of steroid receptors in the SCN and how these receptors in turn impact peripheral responses. Conclusion The hypothesis emerging from the recognition of steroid receptors in the SCN is that mutual shaping of responses occurs between the brain clock and fluctuating plasma steroid levels.
Collapse
Affiliation(s)
- Yifan Yao
- Department of Psychology, Columbia University, New York City, NY, United States
- *Correspondence: Yifan Yao,
| | - Rae Silver
- Department of Psychology, Columbia University, New York City, NY, United States
- Department of Neuroscience, Barnard College, New York City, NY, United States
- Department of Psychology, Barnard College, New York City, NY, United States
- Department of Pathology and Cell Biology, Graduate School, Columbia University Irving Medical Center, New York City, NY, United States
| |
Collapse
|
5
|
Caputo R, Poirel VJ, Challet E, Meijer JH, Raison S. Bimodal serotonin synthesis in the diurnal rodent, Arvicanthis ansorgei. FASEB J 2022; 36:e22255. [PMID: 35294080 DOI: 10.1096/fj.202101726r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/05/2022] [Accepted: 03/04/2022] [Indexed: 11/11/2022]
Abstract
In mammals, behavioral activity is regulated both by the circadian system, orchestrated by the suprachiasmatic nucleus (SCN), and by arousal structures, including the serotonergic system. While the SCN is active at the same astronomical time in diurnal and nocturnal species, little data are available concerning the serotonergic (5HT) system in diurnal mammals. In this study, we investigated the functioning of the 5HT system, which is involved both in regulating the sleep/wake cycle and in synchronizing the SCN, in a diurnal rodent, Arvicanthis ansorgei. Using in situ hybridization, we characterized the anatomical extension of the raphe nuclei and we investigated 24 h mRNA levels of the serotonin rate-limiting enzyme, tryptophan hydroxylase 2 (tph2). Under both 12 h:12 h light/dark (LD) and constant darkness (DD) conditions, tph2 mRNA expression varies significantly over 24 h, displaying a bimodal profile with higher values around the (projected) light transitions. Furthermore, we considered several SCN outputs, namely melatonin, corticosterone, and locomotor activity. In both LD and DD, melatonin profiles display peak levels during the biological night. Corticosterone plasma levels show a bimodal rhythmic profile in both conditions, with higher levels preceding the two peaks of Arvicanthis locomotor activity, occurring at dawn and dusk. These data demonstrate that serotonin synthesis in Arvicanthis is rhythmic and reflects its bimodal behavioral phenotype, but differs from what has been previously described in nocturnal species.
Collapse
Affiliation(s)
- Rosanna Caputo
- Institute of Cellular and Integrative Neurosciences, CNRS and University of Strasbourg, Strasbourg, France.,Department of Molecular Cell Biology, Division of Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Vincent-Joseph Poirel
- Institute of Cellular and Integrative Neurosciences, CNRS and University of Strasbourg, Strasbourg, France
| | - Etienne Challet
- Institute of Cellular and Integrative Neurosciences, CNRS and University of Strasbourg, Strasbourg, France
| | - Johanna H Meijer
- Department of Molecular Cell Biology, Division of Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sylvie Raison
- Institute of Cellular and Integrative Neurosciences, CNRS and University of Strasbourg, Strasbourg, France
| |
Collapse
|
6
|
Kim S, Gacek SA, Mocchi MM, Redei EE. Sex-Specific Behavioral Response to Early Adolescent Stress in the Genetically More Stress-Reactive Wistar Kyoto More Immobile, and Its Nearly Isogenic Wistar Kyoto Less Immobile Control Strain. Front Behav Neurosci 2022; 15:779036. [PMID: 34970127 PMCID: PMC8713037 DOI: 10.3389/fnbeh.2021.779036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic predisposition and environmental stress are known etiologies of stress-related psychiatric disorders. Environmental stress during adolescence is assumed to be particularly detrimental for adult affective behaviors. To investigate how genetic stress-reactivity differences modify the effects of stress during adolescence on adult affective behaviors we employed two inbred strains with differing stress reactivity. The Wistar Kyoto More Immobile (WMI) rat strain show increased stress-reactivity and despair-like behaviors as well as passive coping compared to the nearly isogenic control strain, the Wistar Kyoto Less Immobile (WLI). Males and females of these strains were exposed to contextual fear conditioning (CFC) during early adolescence (EA), between 32 and 34 postnatal days (PND), and were tested for the consequences of this mild EA stress in adulthood. Early adolescent stress significantly decreased anxiety-like behavior, measured in the open field test (OFT) and increased social interaction and recognition in adult males of both strains compared to controls. In contrast, no significant effects of EA stress were observed in adult females in these behaviors. Both males and females of the genetically less stress-reactive WLI strain showed significantly increased immobility in the forced swim test (FST) after EA stress compared to controls. In contrast, immobility was significantly attenuated by EA stress in adult WMI females compared to controls. Transcriptomic changes of the glucocorticoid receptor (Nr3c1, GR) and the brain-derived neurotrophic factor (Bdnf) illuminate primarily strain and stress-dependent changes, respectively, in the prefrontal cortex and hippocampus of adults. These results suggest that contrary to expectations, limited adolescent stress is beneficial to males thru decreasing anxiety and enhancing social behaviors, and to the stress more-reactive WMI females by way of decreasing passive coping.
Collapse
Affiliation(s)
- Sarah Kim
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Stephanie A Gacek
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Madaline M Mocchi
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
7
|
Rickert D, Simon R, von Fersen L, Baumgartner K, Bertsch T, Kirschbaum C, Erhard M. Saliva and Blood Cortisol Measurement in Bottlenose Dolphins ( Tursiops truncatus): Methodology, Application, and Limitations. Animals (Basel) 2021; 12:ani12010022. [PMID: 35011127 PMCID: PMC8749515 DOI: 10.3390/ani12010022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Animal welfare assessments in zoological facilities are becoming increasingly important. Two main assessment tools are behavioral observations and stress hormone measurements. At our facility (Nuremberg Zoo), cortisol levels are routinely determined every time blood samples are taken. We can show that the blood cortisol content of bottlenose dolphins depends on the way in which sampling is performed. Cortisol levels are significantly lower when blood samples are taken during voluntary medical training compared to when dolphins are sampled on a lifting platform, which results in higher cortisol levels. For a subset of the blood cortisol data, we simultaneously sampled saliva cortisol. However, we did not find any correlation between saliva cortisol and blood cortisol values. We also tested whether saliva samples are contaminated by fodder fish or diluted by pool water, finding that some fish and squid species exhibit high cortisol values. Consequently, dolphin saliva is highly contaminated directly after feeding, and increased values can be measured up to 4 min after feeding. We recommend being very careful when sampling saliva, and interpreting saliva cortisol values with caution. Abstract A central task of zoos and aquaria is the frequent and accurate assessment of their animals’ welfare. Recently, important steps have been made, such as the introduction of animal welfare evaluation tools and welfare decision trees. To determine animal welfare, it is not only important to collect life history data, such as longevity and reproductive success, but also for experienced observers or caretakers to conduct behavioral observations on a regular basis to assess animals’ emotional state. To physiologically validate welfare observations, glucocorticoid levels are usually assessed, as they are a common indicator of stress. While, for many animals, these levels can be easily determined via fecal or hair samples, for cetaceans, the levels are usually determined via blood samples. As blood samples cannot be taken very frequently and the process may cause stress to the animals (if the samples are not taken following medical training), other techniques, such as the measurement of health biomarkers (especially cortisol, which can be measured in saliva), have become the focus of cetacean stress research. However, there are two problems associated with saliva measurements in cetaceans: saliva might either be diluted with pool water or be contaminated by fodder fish, as frozen fish usually contains high levels of cortisol. In our study, we investigated how saliva cortisol levels are connected to blood cortisol levels and how saliva cortisol can be influenced by fodder fish. We examined saliva and blood samples in eleven bottlenose dolphins (Tursiops truncatus) kept in an outdoor and indoor facility in Germany. Furthermore, we assessed the cortisol levels of different kinds of fodder fish. Our data show that, although saliva cortisol values are elevated under stress and arousal, they seem not to be correlated with blood cortisol values. We also show that, after feeding, saliva cortisol values are increased up to 100-fold. Our results suggest that saliva cortisol measurements in dolphins have to be conducted and considered with care, as they can easily be contaminated. Moreover, it is important to use the right laboratory method in order to specifically detect cortisol; in our study, we conducted reliable tests, using LC-MS/MS.
Collapse
Affiliation(s)
- Daniela Rickert
- Nuremberg Zoo, 90480 Nuremberg, Germany; (D.R.); (L.v.F.); (K.B.)
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute of Animal Welfare, Ethology and Animal Hygiene, Ludwig-Maximilians-University, 80637 Munich, Germany;
| | - Ralph Simon
- Nuremberg Zoo, 90480 Nuremberg, Germany; (D.R.); (L.v.F.); (K.B.)
- Correspondence:
| | | | | | - Thomas Bertsch
- Institute of Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, 90419 Nuremberg, Germany;
| | - Clemens Kirschbaum
- Department of Psychology, Faculty of Science, Institute of General Psychology, Biopsychology and Methods of Psychology, Technische Universität Dresden, 01069 Dresden, Germany;
| | - Michael Erhard
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute of Animal Welfare, Ethology and Animal Hygiene, Ludwig-Maximilians-University, 80637 Munich, Germany;
| |
Collapse
|
8
|
Schaack AK, Mocchi M, Przybyl KJ, Redei EE. Immediate stress alters social and object interaction and recognition memory in nearly isogenic rat strains with differing stress reactivity. Stress 2021; 24:911-919. [PMID: 34374625 DOI: 10.1080/10253890.2021.1958203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Stress prior to learning and recall is known to affect both processes depending on the learning paradigm, the sex of the animal, and their reactivity to stress. Male and female animals of the inbred Wistar-Kyoto More Immobile (WMI) and Less Immobile (WLI) strains were tested in the modified novel object and spatial recognition paradigm and in the social interaction-recognition paradigm immediately after a 30 min restraint stress. The WMI strain shows enhanced stress reactivity compared to its near isogenic WLI control and thus, represents a genetically stress-susceptible rodent model. Without stress, there were no strain differences in social or object recognition, but there were sex differences in both types of investigation. Immediate stress generally increased object investigation, but decreased social interaction in all groups, except the WMI males, who exhibited increased aggression toward the juveniles. While stress increased plasma corticosterone and decreased testosterone levels in WLI males as expected, it increased testosterone in the aggressive WMI males, despite elevated levels of corticosterone. Stress generally decreased recognition, except the spatial recognition of WMI females, which paradoxically improved after stress. The strain-specific effects of immediate stress indicate that stress unlocks the vulnerability encoded by the stable genetic differences between WLIs and WMIs to result in the observed phenotypes.
Collapse
Affiliation(s)
- Alice K Schaack
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Chicago, IL, USA
| | - Madaline Mocchi
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Chicago, IL, USA
| | - Katherine J Przybyl
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Chicago, IL, USA
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
9
|
Chen R, Weitzner AS, McKennon LA, Fonken LK. Chronic circadian phase advance in male mice induces depressive-like responses and suppresses neuroimmune activation. Brain Behav Immun Health 2021; 17:100337. [PMID: 34589820 PMCID: PMC8474595 DOI: 10.1016/j.bbih.2021.100337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 12/26/2022] Open
Abstract
Altered working and sleeping schedules during the COVID-19 pandemic likely impact our circadian systems. At the molecular level, clock genes form feedback inhibition loops that control 24-hr oscillations throughout the body. Importantly, core clock genes also regulate microglia, the brain resident immune cell, suggesting circadian regulation of neuroimmune function. To assess whether circadian disruption induces neuroimmune and associated behavioral changes, we mimicked chronic jetlag with a chronic phase advance (CPA) model. 32 adult male C57BL/6J mice underwent 6-hr light phase advance shifts every 3 light/dark cycles (CPA) 14 times or were maintained in standard light/dark cycles (control). CPA mice showed higher behavioral despair but not anhedonia in forced swim and sucrose preferences tests, respectively. Changes in behavior were accompanied by altered hippocampal circadian genes in CPA mice. Further, CPA suppressed expression of brain-derived neurotrophic factor (BDNF) and pro-inflammatory cytokine interleukin-1 beta in the hippocampus. Plasma corticosterone concentrations were elevated by CPA, suggesting that CPA may suppress neuroimmune pathways via glucocorticoids. These results demonstrate that chronic circadian disruption alters mood and neuroimmune function, which may have implications for shift working populations such as frontline health workers.
Collapse
Affiliation(s)
- Ruizhuo Chen
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Aidan S. Weitzner
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Lara A. McKennon
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Laura K. Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
10
|
Secondi J, Mondy N, Gippet JMW, Touzot M, Gardette V, Guillard L, Lengagne T. Artificial light at night alters activity, body mass, and corticosterone level in a tropical anuran. Behav Ecol 2021. [DOI: 10.1093/beheco/arab044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Photoperiod is a major factor regulating biological rhythms in animals and plants. At low latitudes, annual variation in daylength is low and species are expected to strongly rely on photic cues to reset their circadian clocks. A corollary is that individuals should be strongly affected by sudden changes in the photic regime as those generated by artificial light at night (ALAN). We tested this hypothesis in an anuran in Costa Rica (10°N). Using an outdoor experimental design, we exposed adult cane toads Rhinella marina, a broadly distributed tropical anuran species to two ALAN intensities (0.04 and 5 lx). Locomotor activity was reduced at the lowest intensity, and the activity pattern shifted from crepuscular to nocturnal. Contrary to humans and mice in which ALAN favor obesity, toads from the two exposed groups did not gain mass whereas controls did. Corticosterone was reduced at the highest intensity, a possible consequence of the reduced activity of toads or the altered regulation of their circadian pattern. Thus, the behavioral and physiological disruption that we observed supports the hypothesis of the strong reliance on photic cues to regulate circadian rhythms and control homeostasis in this intertropical anuran. Furthermore, our results suggest that the negative effects of ALAN on physiology, in particular body mass regulation, may differ between vertebrate groups, thus preventing anticipated generalization before more comparative studies have been carried out. We stress the importance of considering the impact of the changing nocturnal environment in the intertropical zone which host the largest fraction of biodiversity.
Collapse
Affiliation(s)
- Jean Secondi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622, Villeurbanne,France
- Faculté des Sciences, Université d’Angers, 49045 Angers, France
| | - Nathalie Mondy
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622, Villeurbanne,France
| | - Jérôme Marcel Walter Gippet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622, Villeurbanne,France
- Department of Ecology and Evolution, University of Lausanne, Le Biophore, UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Morgane Touzot
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622, Villeurbanne,France
| | - Vanessa Gardette
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622, Villeurbanne,France
| | - Ludovic Guillard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622, Villeurbanne,France
| | - Thierry Lengagne
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622, Villeurbanne,France
| |
Collapse
|
11
|
Agorastos A, Olff M. Traumatic stress and the circadian system: neurobiology, timing and treatment of posttraumatic chronodisruption. Eur J Psychotraumatol 2020; 11:1833644. [PMID: 33408808 PMCID: PMC7747941 DOI: 10.1080/20008198.2020.1833644] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Humans have an evolutionary need for a well-preserved internal 'clock', adjusted to the 24-hour rotation period of our planet. This intrinsic circadian timing system enables the temporal organization of numerous physiologic processes, from gene expression to behaviour. The human circadian system is tightly and bidirectionally interconnected to the human stress system, as both systems regulate each other's activity along the anticipated diurnal challenges. The understanding of the temporal relationship between stressors and stress responses is critical in the molecular pathophysiology of stress-and trauma-related diseases, such as posttraumatic stress disorder (PTSD). Objectives/Methods: In this narrative review, we present the functional components of the stress and circadian system and their multilevel interactions and discuss how traumatic stress can affect the harmonious interplay between the two systems. Results: Circadian dysregulation after trauma exposure (posttraumatic chronodisruption) may represent a core feature of trauma-related disorders mediating enduring neurobiological correlates of traumatic stress through a loss of the temporal order at different organizational levels. Posttraumatic chronodisruption may, thus, affect fundamental properties of neuroendocrine, immune and autonomic systems, leading to a breakdown of biobehavioral adaptive mechanisms with increased stress sensitivity and vulnerability. Given that many traumatic events occur in the late evening or night hours, we also describe how the time of day of trauma exposure can differentially affect the stress system and, finally, discuss potential chronotherapeutic interventions. Conclusion: Understanding the stress-related mechanisms susceptible to chronodisruption and their role in PTSD could deliver new insights into stress pathophysiology, provide better psychochronobiological treatment alternatives and enhance preventive strategies in stress-exposed populations.
Collapse
Affiliation(s)
- Agorastos Agorastos
- II. Department of Psychiatry, Division of Neurosciences, School of Medicine, Faculty of Medical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,VA Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, USA
| | - Miranda Olff
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands.,ARQ Psychotrauma Expert Group, Diemen, The Netherlands
| |
Collapse
|
12
|
Pilorz V, Kolms B, Oster H. Rapid Jetlag Resetting of Behavioral, Physiological, and Molecular Rhythms in Proestrous Female Mice. J Biol Rhythms 2020; 35:612-627. [PMID: 33140660 DOI: 10.1177/0748730420965291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A gradual adaptation to a shifted light-dark (LD) cycle is a key element of the circadian clock system and believed to be controlled by the central circadian pacemaker, the suprachiasmatic nucleus (SCN). Endocrine factors have a strong influence on the regulation of the circadian clock network and alter acute photic responses of the SCN clock. In females, endocrine function depends on the stage of the ovarian cycle. So far, however, little is known about the effect of the estrous cycle on behavioral and molecular responses to shifts in the LD rhythm. Based on this, we investigated whether estrous state affects the kinetics of phase shift during jetlag in behavior, physiology, and molecular clock rhythms in the SCN and in peripheral tissues. Female mice exposed to an advanced LD phase at proestrous or metestrous showed different phase-shift kinetics, with proestrous females displaying accelerated adaptation in behavior and physiology. Constant darkness release experiments suggest that these fast phase shifts do not reflect resetting of the SCN pacemaker. Explant experiments on SCN, adrenal gland, and uterus confirmed this finding with proestrous females showing significantly faster clock phase shifts in peripheral tissues compared with the SCN. Together, these findings provide strong evidence for an accelerated adaptation of proestrous compared with metestrous females to new LD conditions that is accompanied by rapid behavioral, physiological, and molecular rhythm resetting. Not only do these findings open up a new avenue to understand the effect of estrous cycle on the clock network under changing environmental conditions but also imply a greater susceptibility in proestrous females.
Collapse
Affiliation(s)
- Violetta Pilorz
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Luebeck, Germany
| | - Beke Kolms
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Luebeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Luebeck, Germany
| |
Collapse
|
13
|
Stress & sleep: A relationship lasting a lifetime. Neurosci Biobehav Rev 2020; 117:65-77. [DOI: 10.1016/j.neubiorev.2019.08.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/28/2019] [Accepted: 08/31/2019] [Indexed: 12/29/2022]
|
14
|
Spulber S, Conti M, Elberling F, Raciti M, Borroto-Escuela DO, Fuxe K, Ceccatelli S. Desipramine restores the alterations in circadian entrainment induced by prenatal exposure to glucocorticoids. Transl Psychiatry 2019; 9:263. [PMID: 31624238 PMCID: PMC6797805 DOI: 10.1038/s41398-019-0594-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 11/16/2022] Open
Abstract
Alterations in circadian rhythms are closely linked to depression, and we have shown earlier that progressive alterations in circadian entrainment precede the onset of depression in mice exposed in utero to excess glucocorticoids. The aim of this study was to investigate whether treatment with the noradrenaline reuptake inhibitor desipramine (DMI) could restore the alterations in circadian entrainment and prevent the onset of depression-like behavior. C57Bl/6 mice were exposed to dexamethasone (DEX-synthetic glucocorticoid analog, 0.05 mg/kg/day) between gestational day 14 and delivery. Male offspring aged 6 months (mo) were treated with DMI (10 mg/kg/day in drinking water) for at least 21 days before behavioral testing. We recorded spontaneous activity using the TraffiCage™ system and found that DEX mice re-entrained faster than controls after an abrupt advance in light-dark cycle by 6 h, while DMI treatment significantly delayed re-entrainment. Next we assessed the synchronization of peripheral oscillators with the central clock (located in the suprachiasmatic nucleus-SCN), as well as the mechanisms required for entrainment. We found that photic entrainment of the SCN was apparently preserved in DEX mice, but the expression of clock genes in the hippocampus was not synchronized with the light-dark cycle. This was associated with downregulated mRNA expression for arginine vasopressin (AVP; the main molecular output entraining peripheral clocks) in the SCN, and for glucocorticoid receptor (GR; required for the negative feedback loop regulating glucocorticoid secretion) in the hippocampus. DMI treatment restored the mRNA expression of AVP in the SCN and enhanced GR-mediated signaling by upregulating GR expression and nuclear translocation in the hippocampus. Furthermore, DMI treatment at 6 mo prevented the onset of depression-like behavior and the associated alterations in neurogenesis in 12-mo-old DEX mice. Taken together, our data indicate that DMI treatment enhances GR-mediated signaling and restores the synchronization of peripheral clocks with the SCN and support the hypothesis that altered circadian entrainment is a modifiable risk factor for depression.
Collapse
Affiliation(s)
- Stefan Spulber
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Mirko Conti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Marilena Raciti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Budai Z, Balogh L, Sarang Z. Short-term high-fat meal intake alters the expression of circadian clock-, inflammation-, and oxidative stress-related genes in human skeletal muscle. Int J Food Sci Nutr 2019; 70:749-758. [PMID: 30764669 DOI: 10.1080/09637486.2018.1557607] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dietary food, depending on timing, amount and composition can influence gene expression in various tissues. Here, we investigated the effect of high-fat meal diets of different compositions on the gene expression pattern of human skeletal muscle. Gene expression data of skeletal muscle samples from human volunteers prior and 4 h after the consumption of high lipid-containing meal consisting of either saturated-, monounsaturated- or polyunsaturated fatty acids were downloaded from the public repository. List of 843 differently expressed genes (DEGs) was generated. Functional analysis revealed that circadian rhythm-, inflammation- and oxidative stress-related genes are highly overrepresented among the DEGs. The magnitude of gene expression changes significantly increases with the saturation level of the dietary fatty acids and the majority of the DEGs are upregulated. We propose that, by altering circadian clock gene expression and inducing inflammation and oxidative stress, high lipid intake can contribute to muscle function decay in the long run.
Collapse
Affiliation(s)
- Zsófia Budai
- a Department of Biochemistry and Molecular Biology Faculty of Medicine , University of Debrecen , Debrecen , Hungary
| | - László Balogh
- b Institute of Sport Sciences University of Debrecen , Debrecen , Hungary
| | - Zsolt Sarang
- a Department of Biochemistry and Molecular Biology Faculty of Medicine , University of Debrecen , Debrecen , Hungary
| |
Collapse
|
16
|
Agorastos A, Nicolaides NC, Bozikas VP, Chrousos GP, Pervanidou P. Multilevel Interactions of Stress and Circadian System: Implications for Traumatic Stress. Front Psychiatry 2019; 10:1003. [PMID: 32047446 PMCID: PMC6997541 DOI: 10.3389/fpsyt.2019.01003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
The dramatic fluctuations in energy demands by the rhythmic succession of night and day on our planet has prompted a geophysical evolutionary need for biological temporal organization across phylogeny. The intrinsic circadian timing system (CS) represents a highly conserved and sophisticated internal "clock," adjusted to the 24-h rotation period of the earth, enabling a nyctohemeral coordination of numerous physiologic processes, from gene expression to behavior. The human CS is tightly and bidirectionally interconnected to the stress system (SS). Both systems are fundamental for survival and regulate each other's activity in order to prepare the organism for the anticipated cyclic challenges. Thereby, the understanding of the temporal relationship between stressors and stress responses is critical for the comprehension of the molecular basis of physiology and pathogenesis of disease. A critical loss of the harmonious timed order at different organizational levels may affect the fundamental properties of neuroendocrine, immune, and autonomic systems, leading to a breakdown of biobehavioral adaptative mechanisms with increased stress sensitivity and vulnerability. In this review, following an overview of the functional components of the SS and CS, we present their multilevel interactions and discuss how traumatic stress can alter the interplay between the two systems. Circadian dysregulation after traumatic stress exposure may represent a core feature of trauma-related disorders mediating enduring neurobiological correlates of trauma through maladaptive stress regulation. Understanding the mechanisms susceptible to circadian dysregulation and their role in stress-related disorders could provide new insights into disease mechanisms, advancing psychochronobiological treatment possibilities and preventive strategies in stress-exposed populations.
Collapse
Affiliation(s)
- Agorastos Agorastos
- Department of Psychiatry, Division of Neurosciences, Faculty of Medical Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,VA Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, United States
| | - Nicolas C Nicolaides
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Vasilios P Bozikas
- Department of Psychiatry, Division of Neurosciences, Faculty of Medical Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George P Chrousos
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,Unit of Developmental & Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Panagiota Pervanidou
- Unit of Developmental & Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
17
|
Son GH, Cha HK, Chung S, Kim K. Multimodal Regulation of Circadian Glucocorticoid Rhythm by Central and Adrenal Clocks. J Endocr Soc 2018; 2:444-459. [PMID: 29713692 PMCID: PMC5915959 DOI: 10.1210/js.2018-00021] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/03/2018] [Indexed: 02/08/2023] Open
Abstract
Adrenal glucocorticoids (GCs) control a wide range of physiological processes, including metabolism, cardiovascular and pulmonary activities, immune and inflammatory responses, and various brain functions. During stress responses, GCs are secreted through activation of the hypothalamic-pituitary-adrenal axis, whereas circulating GC levels in unstressed states follow a robust circadian oscillation with a peak around the onset of the active period of a day. A recent advance in chronobiological research has revealed that multiple regulatory mechanisms, along with classical neuroendocrine regulation, underlie this GC circadian rhythm. The hierarchically organized circadian system, with a central pacemaker in the suprachiasmatic nucleus of the hypothalamus and local oscillators in peripheral tissues, including the adrenal gland, mediates periodicities in physiological processes in mammals. In this review, we primarily focus on our understanding of the circadian regulation of adrenal GC rhythm, with particular attention to the cooperative actions of the suprachiasmatic nucleus central and adrenal local clocks, and the clinical implications of this rhythm in human diseases.
Collapse
Affiliation(s)
- Gi Hoon Son
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Korea
| | - Hyo Kyeong Cha
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Korea
| | - Sooyoung Chung
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, Korea
| | - Kyungjin Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea.,Korea Brain Research Institute, Daegu, Korea
| |
Collapse
|
18
|
Spencer RL, Chun LE, Hartsock MJ, Woodruff ER. Glucocorticoid hormones are both a major circadian signal and major stress signal: How this shared signal contributes to a dynamic relationship between the circadian and stress systems. Front Neuroendocrinol 2018; 49:52-71. [PMID: 29288075 DOI: 10.1016/j.yfrne.2017.12.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/23/2017] [Accepted: 12/23/2017] [Indexed: 12/13/2022]
Abstract
Glucocorticoid hormones are a powerful mammalian systemic hormonal signal that exerts regulatory effects on almost every cell and system of the body. Glucocorticoids act in a circadian and stress-directed manner to aid in adaptation to an ever-changing environment. Circadian glucocorticoid secretion provides for a daily waxing and waning influence on target cell function. In addition, the daily circadian peak of glucocorticoid secretion serves as a timing signal that helps entrain intrinsic molecular clock phase in tissue cells distributed throughout the body. Stress-induced glucocorticoid secretion also modulates the state of these same cells in response to both physiological and psychological stressors. We review the strong functional interrelationships between glucocorticoids and the circadian system, and discuss how these interactions optimize the appropriate cellular and systems response to stress throughout the day. We also discuss clinical implications of this dual aspect of glucocorticoid signaling, especially for conditions of circadian and HPA axis dysregulation.
Collapse
Affiliation(s)
- Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Lauren E Chun
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Elizabeth R Woodruff
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
19
|
Abitbol K, Debiesse S, Molino F, Mesirca P, Bidaud I, Minami Y, Mangoni ME, Yagita K, Mollard P, Bonnefont X. Clock-dependent and system-driven oscillators interact in the suprachiasmatic nuclei to pace mammalian circadian rhythms. PLoS One 2017; 12:e0187001. [PMID: 29059248 PMCID: PMC5653358 DOI: 10.1371/journal.pone.0187001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/11/2017] [Indexed: 12/04/2022] Open
Abstract
Circadian clocks drive biological rhythms with a period of approximately 24 hours and keep in time with the outside world through daily resetting by environmental cues. While this external entrainment has been extensively investigated in the suprachiasmatic nuclei (SCN), the role of internal systemic rhythms, including daily fluctuations in core temperature or circulating hormones remains debated. Here, we show that lactating mice, which exhibit dampened systemic rhythms, possess normal molecular clockwork but impaired rhythms in both heat shock response gene expression and electrophysiological output in their SCN. This suggests that body rhythms regulate SCN activity downstream of the clock. Mathematical modeling predicts that systemic feedback upon the SCN functions as an internal oscillator that accounts for in vivo and ex vivo observations. Thus we are able to propose a new bottom-up hierarchical organization of circadian timekeeping in mammals, based on the interaction in the SCN between clock-dependent and system-driven oscillators.
Collapse
Affiliation(s)
- Karine Abitbol
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Montpellier, France
| | - Ségolène Debiesse
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Montpellier, France
| | - François Molino
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Montpellier, France
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS UMR 5221, Montpellier, France
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Montpellier, France
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Montpellier, France
| | - Yoichi Minami
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Matteo E. Mangoni
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Montpellier, France
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Patrice Mollard
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Montpellier, France
| | - Xavier Bonnefont
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Montpellier, France
| |
Collapse
|
20
|
Oster H, Challet E, Ott V, Arvat E, de Kloet ER, Dijk DJ, Lightman S, Vgontzas A, Van Cauter E. The Functional and Clinical Significance of the 24-Hour Rhythm of Circulating Glucocorticoids. Endocr Rev 2017; 38:3-45. [PMID: 27749086 PMCID: PMC5563520 DOI: 10.1210/er.2015-1080] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/21/2016] [Indexed: 02/07/2023]
Abstract
Adrenal glucocorticoids are major modulators of multiple functions, including energy metabolism, stress responses, immunity, and cognition. The endogenous secretion of glucocorticoids is normally characterized by a prominent and robust circadian (around 24 hours) oscillation, with a daily peak around the time of the habitual sleep-wake transition and minimal levels in the evening and early part of the night. It has long been recognized that this 24-hour rhythm partly reflects the activity of a master circadian pacemaker located in the suprachiasmatic nucleus of the hypothalamus. In the past decade, secondary circadian clocks based on the same molecular machinery as the central master pacemaker were found in other brain areas as well as in most peripheral tissues, including the adrenal glands. Evidence is rapidly accumulating to indicate that misalignment between central and peripheral clocks has a host of adverse effects. The robust rhythm in circulating glucocorticoid levels has been recognized as a major internal synchronizer of the circadian system. The present review examines the scientific foundation of these novel advances and their implications for health and disease prevention and treatment.
Collapse
Affiliation(s)
- Henrik Oster
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Etienne Challet
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Volker Ott
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Emanuela Arvat
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - E Ronald de Kloet
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Derk-Jan Dijk
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Stafford Lightman
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Alexandros Vgontzas
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Eve Van Cauter
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
21
|
Differences in Photic Entrainment of Circadian Locomotor Activity Between Lean and Obese Volcano Mice ( Neotomodon alstoni). J Circadian Rhythms 2017; 15:1. [PMID: 30210555 PMCID: PMC5356206 DOI: 10.5334/jcr.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Obesity is a growing problem worldwide with a clear impact on health status. It is also a condition that negatively affects circadian rhythms. When the mouse Neotomodon alstoni is fed a regular rodent chow, some individuals develop obesity, representing an opportunity to compare the effects of spontaneous obesity upon the circadian organization in this species with that observed in other rodents with induced obesity. We report differences in the free running circadian locomotor activity rhythm and in the effects of light pulses between lean and obese mice. Also, the photo-induced expression of the c-Fos protein and vasoactive intestinal peptide (VIP) in the suprachiasmatic nucleus (SCN) were examined at circadian time (CT) 14 and 22. We show that obese mice have a larger dispersion of the period of circadian locomotor rhythm in constant darkness. Photic induced phase shifts are nearly 50% shorter at CT 14, and 50% larger at CT 22 than in lean mice. The photoinduction of VIP in the SCN at CT 22 was larger in obese mice, which may be related to the differences observed in photic phase shifting. Our work indicates that the obesity in Neotomodon has effects on the neural mechanisms that regulate the circadian system.
Collapse
|
22
|
Van Dycke KCG, Rodenburg W, van Oostrom CTM, van Kerkhof LWM, Pennings JLA, Roenneberg T, van Steeg H, van der Horst GTJ. Chronically Alternating Light Cycles Increase Breast Cancer Risk in Mice. Curr Biol 2016. [PMID: 26196479 DOI: 10.1016/j.cub.2015.06.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although epidemiological studies in shift workers and flight attendants have associated chronic circadian rhythm disturbance (CRD) with increased breast cancer risk, causal evidence for this association is lacking. Several scenarios have been proposed to contribute to the shift work-cancer connection: (1) internal desynchronization, (2) light at night (resulting in melatonin suppression), (3) sleep disruption, (4) lifestyle disturbances, and (5) decreased vitamin D levels due to lack of sunlight. The confounders inherent in human field studies are less problematic in animal studies, which are therefore a good approach to assess the causal relation between circadian disturbance and cancer. However, the experimental conditions of many of these animal studies were far from the reality of human shift workers. For example, some involved xenografts (addressing tumor growth rather than cancer initiation and/or progression), chemically induced tumor models, or continuous bright light exposure, which can lead to suppression of circadian rhythmicity. Here, we have exposed breast cancer-prone p53(R270H/+)WAPCre conditional mutant mice (in a FVB genetic background) to chronic CRD by subjecting them to a weekly alternating light-dark (LD) cycle throughout their life. Animals exposed to the weekly LD inversions showed a decrease in tumor suppression. In addition, these animals showed an increase in body weight. Importantly, this study provides the first experimental proof that CRD increases breast cancer development. Finally, our data suggest internal desynchronization and sleep disturbance as mechanisms linking shift work with cancer development and obesity.
Collapse
Affiliation(s)
- Kirsten C G Van Dycke
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720 BA, the Netherlands; Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Wendy Rodenburg
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720 BA, the Netherlands
| | - Conny T M van Oostrom
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720 BA, the Netherlands
| | - Linda W M van Kerkhof
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720 BA, the Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720 BA, the Netherlands
| | - Till Roenneberg
- Institute for Medical Psychology, Ludwig-Maximilian University, Munich 80336, Germany
| | - Harry van Steeg
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720 BA, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, the Netherlands.
| | - Gijsbertus T J van der Horst
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam 3000 CA, the Netherlands.
| |
Collapse
|
23
|
Woodruff ER, Chun LE, Hinds LR, Spencer RL. Diurnal Corticosterone Presence and Phase Modulate Clock Gene Expression in the Male Rat Prefrontal Cortex. Endocrinology 2016; 157:1522-34. [PMID: 26901093 PMCID: PMC4816727 DOI: 10.1210/en.2015-1884] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mood disorders are associated with dysregulation of prefrontal cortex (PFC) function, circadian rhythms, and diurnal glucocorticoid (corticosterone [CORT]) circulation. Entrainment of clock gene expression in some peripheral tissues depends on CORT. In this study, we characterized over the course of the day the mRNA expression pattern of the core clock genes Per1, Per2, and Bmal1 in the male rat PFC and suprachiasmatic nucleus (SCN) under different diurnal CORT conditions. In experiment 1, rats were left adrenal-intact (sham) or were adrenalectomized (ADX) followed by 10 daily antiphasic (opposite time of day of the endogenous CORT peak) ip injections of either vehicle or 2.5 mg/kg CORT. In experiment 2, all rats received ADX surgery followed by 13 daily injections of vehicle or CORT either antiphasic or in-phase with the endogenous CORT peak. In sham rats clock gene mRNA levels displayed a diurnal pattern of expression in the PFC and the SCN, but the phase differed between the 2 structures. ADX substantially altered clock gene expression patterns in the PFC. This alteration was normalized by in-phase CORT treatment, whereas antiphasic CORT treatment appears to have eliminated a diurnal pattern (Per1 and Bmal1) or dampened/inverted its phase (Per2). There was very little effect of CORT condition on clock gene expression in the SCN. These experiments suggest that an important component of glucocorticoid circadian physiology entails CORT regulation of the molecular clock in the PFC. Consequently, they also point to a possible mechanism that contributes to PFC disrupted function in disorders associated with abnormal CORT circulation.
Collapse
Affiliation(s)
- Elizabeth R Woodruff
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| | - Lauren E Chun
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| | - Laura R Hinds
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| | - Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| |
Collapse
|
24
|
Feillet C, Guérin S, Lonchampt M, Dacquet C, Gustafsson JÅ, Delaunay F, Teboul M. Sexual Dimorphism in Circadian Physiology Is Altered in LXRα Deficient Mice. PLoS One 2016; 11:e0150665. [PMID: 26938655 PMCID: PMC4777295 DOI: 10.1371/journal.pone.0150665] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/16/2016] [Indexed: 11/28/2022] Open
Abstract
The mammalian circadian timing system coordinates key molecular, cellular and physiological processes along the 24-h cycle. Accumulating evidence suggests that many clock-controlled processes display a sexual dimorphism. In mammals this is well exemplified by the difference between the male and female circadian patterns of glucocorticoid hormone secretion and clock gene expression. Here we show that the non-circadian nuclear receptor and metabolic sensor Liver X Receptor alpha (LXRα) which is known to regulate glucocorticoid production in mice modulates the sex specific circadian pattern of plasma corticosterone. Lxrα-/- males display a blunted corticosterone profile while females show higher amplitude as compared to wild type animals. Wild type males are significantly slower than females to resynchronize their locomotor activity rhythm after an 8 h phase advance but this difference is abrogated in Lxrα-/- males which display a female-like phenotype. We also show that circadian expression patterns of liver 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and Phosphoenolpyruvate carboxykinase (Pepck) differ between sexes and are differentially altered in Lxrα-/- animals. These changes are associated with a damped profile of plasma glucose oscillation in males but not in females. Sex specific alteration of the insulin and leptin circadian profiles were observed in Lxα-/- females and could be explained by the change in corticosterone profile. Together this data indicates that LXRα is a determinant of sexually dimorphic circadian patterns of key physiological parameters. The discovery of this unanticipated role for LXRα in circadian physiology underscores the importance of addressing sex differences in chronobiology studies and future LXRα targeted therapies.
Collapse
Affiliation(s)
- Céline Feillet
- University Nice Sophia Antipolis, Institute of Biology Valrose, 06108, Nice, France
- CNRS UMR 7277, 06108, Nice, France
- INSERM UMR 1091, 06108, Nice, France
| | - Sophie Guérin
- University Nice Sophia Antipolis, Institute of Biology Valrose, 06108, Nice, France
- CNRS UMR 7277, 06108, Nice, France
- INSERM UMR 1091, 06108, Nice, France
| | - Michel Lonchampt
- Metabolic Diseases Research, Institut de Recherches Servier, 92284, Suresnes, France
| | - Catherine Dacquet
- Metabolic Diseases Research, Institut de Recherches Servier, 92284, Suresnes, France
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204–5056, United States of America
| | - Franck Delaunay
- University Nice Sophia Antipolis, Institute of Biology Valrose, 06108, Nice, France
- CNRS UMR 7277, 06108, Nice, France
- INSERM UMR 1091, 06108, Nice, France
| | - Michèle Teboul
- University Nice Sophia Antipolis, Institute of Biology Valrose, 06108, Nice, France
- CNRS UMR 7277, 06108, Nice, France
- INSERM UMR 1091, 06108, Nice, France
- * E-mail:
| |
Collapse
|
25
|
Abstract
There is a growing recognition that the coordinated timing of behavioral, physiologic, and metabolic circadian rhythms is a requirement for a healthy body and mind. In mammals, the primary circadian oscillator is the hypothalamic suprachiasmatic nucleus (SCN), which is responsible for circadian coordination throughout the organism. Temporal homeostasis is recognized as a complex interplay between rhythmic clock gene expression in brain regions outside the SCN and in peripheral organs. Abnormalities in this intricate circadian orchestration may alter sleep patterns and contribute to the pathophysiology of affective disorders.
Collapse
|
26
|
Abstract
Daily variations of metabolism, physiology and behaviour are controlled by a network of coupled circadian clocks, comprising a master clock in the suprachiasmatic nuclei of the hypothalamus and a multitude of secondary clocks in the brain and peripheral organs. Light cues synchronize the master clock that conveys temporal cues to other body clocks via neuronal and hormonal signals. Feeding at unusual times can reset the phase of most peripheral clocks. While the neuroendocrine aspect of circadian regulation has been underappreciated, this review aims at showing that the role of hormonal rhythms as internal time-givers is the rule rather than the exception. Adrenal glucocorticoids, pineal melatonin and adipocyte-derived leptin participate in internal synchronization (coupling) within the multi-oscillatory network. Furthermore, pancreatic insulin is involved in food synchronization of peripheral clocks, while stomach ghrelin provides temporal signals modulating behavioural anticipation of mealtime. Circadian desynchronization induced by shift work or chronic jet lag has harmful effects on metabolic regulation, thus favouring diabetes and obesity. Circadian deregulation of hormonal rhythms may participate in internal desynchronization and associated increase in metabolic risks. Conversely, adequate timing of endocrine therapies can promote phase-adjustment of the master clock (e.g. via melatonin agonists) and peripheral clocks (e.g. via glucocorticoid agonists).
Collapse
Affiliation(s)
- E Challet
- Institute of Cellular and Integrative Neurosciences, UPR3212 Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| |
Collapse
|
27
|
Bosler O, Girardet C, Franc JL, Becquet D, François-Bellan AM. Structural plasticity of the circadian timing system. An overview from flies to mammals. Front Neuroendocrinol 2015; 38:50-64. [PMID: 25703789 DOI: 10.1016/j.yfrne.2015.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/22/2022]
Abstract
The circadian timing system orchestrates daily variations in physiology and behavior through coordination of multioscillatory cell networks that are highly plastic in responding to environmental changes. Over the last decade, it has become clear that this plasticity involves structural changes and that the changes may be observed not only in central brain regions where the master clock cells reside but also in clock-controlled structures. This review considers experimental data in invertebrate and vertebrate model systems, mainly flies and mammals, illustrating various forms of structural circadian plasticity from cellular to circuit-based levels. It highlights the importance of these plastic events in the functional adaptation of the clock to the changing environment.
Collapse
Affiliation(s)
- Olivier Bosler
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France.
| | - Clémence Girardet
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France.
| | - Jean-Louis Franc
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France
| | - Denis Becquet
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France
| | - Anne-Marie François-Bellan
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France
| |
Collapse
|
28
|
Spulber S, Conti M, DuPont C, Raciti M, Bose R, Onishchenko N, Ceccatelli S. Alterations in circadian entrainment precede the onset of depression-like behavior that does not respond to fluoxetine. Transl Psychiatry 2015; 5:e603. [PMID: 26171984 PMCID: PMC5068723 DOI: 10.1038/tp.2015.94] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 12/17/2022] Open
Abstract
Growing evidence links adverse prenatal conditions to mood disorders. We investigated the long-term behavioral alterations induced by prenatal exposure to excess glucocorticoids (dexamethasone--DEX). At 12 months, but not earlier, DEX-exposed mice displayed depression-like behavior and impaired hippocampal neurogenesis, not reversible by the antidepressant fluoxetine (FLX). Concomitantly, we observed arrhythmic glucocorticoid secretion and absent circadian oscillations in hippocampal clock gene expression. Analysis of spontaneous activity showed progressive alterations in circadian entrainment preceding depression. Circadian oscillations in clock gene expression (measured by means of quantitative PCR) were also attenuated in skin fibroblasts before the appearance of depression. Interestingly, circadian entrainment is not altered in a model of depression (induced by methylmercury prenatal exposure) that responds to FLX. Altogether, our results suggest that alterations in circadian entrainment of spontaneous activity, and possibly clock gene expression in fibroblasts, may predict the onset of depression and the response to FLX in patients.
Collapse
Affiliation(s)
- S Spulber
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden,Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden. E-mail: or
| | - M Conti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - C DuPont
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - M Raciti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - R Bose
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - N Onishchenko
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - S Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden,Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden. E-mail: or
| |
Collapse
|
29
|
Leliavski A, Dumbell R, Ott V, Oster H. Adrenal Clocks and the Role of Adrenal Hormones in the Regulation of Circadian Physiology. J Biol Rhythms 2014; 30:20-34. [DOI: 10.1177/0748730414553971] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The mammalian circadian timing system consists of a master pacemaker in the suprachiasmatic nucleus (SCN) and subordinate clocks that disseminate time information to various central and peripheral tissues. While the function of the SCN in circadian rhythm regulation has been extensively studied, we still have limited understanding of how peripheral tissue clock function contributes to the regulation of physiological processes. The adrenal gland plays a special role in this context as adrenal hormones show strong circadian secretion rhythms affecting downstream physiological processes. At the same time, they have been shown to affect clock gene expression in various other tissues, thus mediating systemic entrainment to external zeitgebers and promoting internal circadian alignment. In this review, we discuss the function of circadian clocks in the adrenal gland, how they are reset by the SCN and may further relay time-of-day information to other tissues. Focusing on glucocorticoids, we conclude by outlining the impact of adrenal rhythm disruption on neuropsychiatric, metabolic, immune, and malignant disorders.
Collapse
Affiliation(s)
- Alexei Leliavski
- Chronophysiology Group, Medical Department, University of Lübeck, Germany
| | - Rebecca Dumbell
- Chronophysiology Group, Medical Department, University of Lübeck, Germany
| | - Volker Ott
- Institute of Neuroendocrinology, University of Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department, University of Lübeck, Germany
| |
Collapse
|
30
|
Matsuo H, Iwamoto A, Otsuka T, Hishida Y, Akiduki S, Aoki M, Furuse M, Yasuo S. Effects of time ofl-ornithine administration on the diurnal rhythms of plasma growth hormone, melatonin, and corticosterone levels in mice. Chronobiol Int 2014; 32:225-34. [DOI: 10.3109/07420528.2014.965312] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Su Y, van der Spek R, Foppen E, Kwakkel J, Fliers E, Kalsbeek A. Effects of adrenalectomy on daily gene expression rhythms in the rat suprachiasmatic and paraventricular hypothalamic nuclei and in white adipose tissue. Chronobiol Int 2014; 32:211-24. [DOI: 10.3109/07420528.2014.963198] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Abstract
Most organisms display endogenously produced ∼ 24-hour fluctuations in physiology and behavior, termed circadian rhythms. Circadian rhythms are driven by a transcriptional-translational feedback loop that is hierarchically expressed throughout the brain and body, with the suprachiasmatic nucleus of the hypothalamus serving as the master circadian oscillator at the top of the hierarchy. Appropriate circadian regulation is important for many homeostatic functions including energy regulation. Multiple genes involved in nutrient metabolism display rhythmic oscillations, and metabolically related hormones such as glucagon, insulin, ghrelin, leptin, and corticosterone are released in a circadian fashion. Mice harboring mutations in circadian clock genes alter feeding behavior, endocrine signaling, and dietary fat absorption. Moreover, misalignment between behavioral and molecular circadian clocks can result in obesity in both rodents and humans. Importantly, circadian rhythms are most potently synchronized to the external environment by light information and exposure to light at night potentially disrupts circadian system function. Since the advent of electric lights around the turn of the 20th century, exposure to artificial and irregular light schedules has become commonplace. The increase in exposure to light at night parallels the global increase in the prevalence of obesity and metabolic disorders. In this review, we propose that exposure to light at night alters metabolic function through disruption of the circadian system. We first provide an introduction to the circadian system, with a specific emphasis on the effects of light on circadian rhythms. Next we address interactions between the circadian system and metabolism. Finally, we review current experimental and epidemiological work directly associating exposure to light at night and metabolism.
Collapse
Affiliation(s)
- Laura K Fonken
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | | |
Collapse
|
33
|
Castanho A, Bothorel B, Seguin L, Mocaër E, Pévet P. Like melatonin, agomelatine (S20098) increases the amplitude of oscillations of two clock outputs: melatonin and temperature rhythms. Chronobiol Int 2013; 31:371-81. [DOI: 10.3109/07420528.2013.860457] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Dickmeis T, Weger BD, Weger M. The circadian clock and glucocorticoids--interactions across many time scales. Mol Cell Endocrinol 2013; 380:2-15. [PMID: 23707790 DOI: 10.1016/j.mce.2013.05.012] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 12/20/2022]
Abstract
Glucocorticoids are steroid hormones of the adrenal gland that are an integral component of the stress response and regulate many physiological processes, including metabolism and immune response. Their release into the blood is highly dynamic and occurs in about hourly pulses, the amplitude of which is modulated in a daytime dependent fashion. In addition, in many species seasonal changes in basal glucocorticoid levels have been reported. In their target tissues, glucocorticoids bind to cytoplasmic receptors of the nuclear receptor superfamily. Upon binding, these receptors regulate transcription in a highly dynamic fashion, which involves stochastic binding to regulatory DNA elements on a time scale of seconds and heat shock protein mediated receptor-ligand complex recycling within minutes. The glucocorticoid hormone system interacts with another highly dynamic system, the circadian clock. The circadian clock is an endogenous biological timing mechanism that allows organisms to anticipate regular daily changes in their environment. It regulates daily rhythms of glucocorticoid release by a variety of mechanisms, modulates glucocorticoid signaling and is itself influenced by glucocorticoids. Here, we discuss mechanisms, functions and interactions of the circadian and glucocorticoid systems across time scales ranging from seconds (DNA binding by transcriptional regulators) to years (seasonal rhythms).
Collapse
Affiliation(s)
- Thomas Dickmeis
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Campus Nord, Postfach 3640, D-76021 Karlsruhe, Germany.
| | | | | |
Collapse
|
35
|
Girardet C, Lebrun B, Cabirol-Pol MJ, Tardivel C, François-Bellan AM, Becquet D, Bosler O. Brain-derived neurotrophic factor/TrkB signaling regulates daily astroglial plasticity in the suprachiasmatic nucleus: electron-microscopic evidence in mouse. Glia 2013; 61:1172-7. [PMID: 23640807 DOI: 10.1002/glia.22509] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/20/2013] [Indexed: 11/07/2022]
Abstract
Synchronization of circadian rhythms to the 24-h light/dark (L/D) cycle is associated with daily rearrangements of the neuronal-glial network of the suprachiasmatic nucleus of the hypothalamus (SCN), the central master clock orchestrating biological functions in mammals. These anatomical plastic events involve neurons synthesizing vasoactive intestinal peptide (VIP), known as major integrators of photic signals in the retinorecipient region of the SCN. Using an analog-sensitive kinase allele murine model (TrkB(F616A) ), we presently show that the pharmacological blockade of the tropomyosin-related kinase receptor type B (TrkB), the high-affinity receptor of brain-derived neurotrophic factor (BDNF), abolished day/night changes in the dendrite enwrapping of VIP neurons by astrocytic processes (glial coverage), used as an index of SCN plasticity on electron-microscopic sections. Therefore, the BDNF/TrkB signaling pathway exerts a permissive role on the ultrastructural rearrangements that occur in SCN under L/D alternance, an action that could be a critical determinant of the well-established role played by BDNF in the photic regulation of the SCN. In contrast, the extent of glial coverage of non-VIP neighboring dendrites was not different at daytime and nighttime in TrkB(F616A) mice submitted to TrkB inactivation or not receiving any pharmacological treatment. These data not only show that BDNF regulates SCN structural plasticity across the 24-h cycle but also reinforce the view that the daily changes in SCN architecture subserve the light synchronization process.
Collapse
Affiliation(s)
- Clémence Girardet
- Aix Marseille Université, CNRS, CRN2M UMR7286, Faculté de Médecine, 13344 cedex 15, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Golombek DA, Casiraghi LP, Agostino PV, Paladino N, Duhart JM, Plano SA, Chiesa JJ. The times they're a-changing: effects of circadian desynchronization on physiology and disease. ACTA ACUST UNITED AC 2013; 107:310-22. [PMID: 23545147 DOI: 10.1016/j.jphysparis.2013.03.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Circadian rhythms are endogenous and need to be continuously entrained (synchronized) with the environment. Entrainment includes both coupling internal oscillators to external periodic changes as well as synchrony between the central clock and peripheral oscillators, which have been shown to exhibit different phases and resynchronization speed. Temporal desynchronization induces diverse physiological alterations that ultimately decrease quality of life and induces pathological situations. Indeed, there is a considerable amount of evidence regarding the deleterious effect of circadian dysfunction on overall health or on disease onset and progression, both in human studies and in animal models. In this review we discuss the general features of circadian entrainment and introduce diverse experimental models of desynchronization. In addition, we focus on metabolic, immune and cognitive alterations under situations of acute or chronic circadian desynchronization, as exemplified by jet-lag and shiftwork schedules. Moreover, such situations might lead to an enhanced susceptibility to diverse cancer types. Possible interventions (including light exposure, scheduled timing for meals and use of chronobiotics) are also discussed.
Collapse
Affiliation(s)
- Diego A Golombek
- Laboratory of Chronobiology, National University of Quilmes/CONICET, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
37
|
Pezük P, Mohawk JA, Wang LA, Menaker M. Glucocorticoids as entraining signals for peripheral circadian oscillators. Endocrinology 2012; 153:4775-83. [PMID: 22893723 PMCID: PMC3512018 DOI: 10.1210/en.2012-1486] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mammalian circadian organization is governed by pacemaker neurons in the brain that communicate with oscillators in peripheral tissues. Adrenal glucocorticoids are important time-giving signals to peripheral circadian oscillators. We investigated the rhythm of Per1-luc expression in pineal, pituitary, salivary glands, liver, lung, kidney, cornea as well as suprachiasmatic nucleus from adrenalectomized and sham-operated rats kept under light-dark cycles, or exposed to single 6-h phase delays or advances of their light cycles. Adrenalectomy shifted the phases of Per1-luc in liver, kidney, and cornea and caused phase desynchrony and significant dampening in the rhythmicity of cornea. Treatment with hydrocortisone shifted the phases of Per1-luc in most of the tissues examined, even those that were not affected by adrenalectomy. The rhythm in cornea recovered in animals given hydrocortisone in vivo or when corneas were treated with dexamethasone in vitro. Adrenalectomy increased the rate of reentrainment after phase shifts in liver, kidney, cornea, pineal, lung, and suprachiasmatic nucleus but not in pituitary and salivary glands. Our data show that glucocorticoids act as strong entraining signals for peripheral circadian oscillators and may feed back on central oscillators as well.
Collapse
Affiliation(s)
- Pinar Pezük
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904-4328, USA
| | | | | | | |
Collapse
|
38
|
Kalsbeek A, van der Spek R, Lei J, Endert E, Buijs RM, Fliers E. Circadian rhythms in the hypothalamo-pituitary-adrenal (HPA) axis. Mol Cell Endocrinol 2012; 349:20-9. [PMID: 21782883 DOI: 10.1016/j.mce.2011.06.042] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 01/06/2023]
Abstract
The pronounced daily variation in the release of adrenal hormones has been at the heart of the deciphering and understanding of the circadian timing system. Indeed, the first demonstration of an endocrine day/night rhythm was provided by Pincus (1943), by showing a daily pattern of 17-keto-steroid excretion in the urine of 7 healthy males. Twenty years later the adrenal gland was one of the very first organs to show, in vitro, that circadian rhythmicity was maintained. In the seventies, experimental manipulation of the daily corticosterone rhythm served as evidence for the identification of respectively the light- and food-entrainable oscillator. Another 20 years later the hypothalamo-pituitary-adrenal (HPA)-axis was key in furthering our understanding of the way in which rhythmic signals generated by the central pacemaker in the hypothalamic suprachiasmatic nuclei (SCN) are forwarded to the rest of the brain and to the organism as a whole. To date, the adrenal gland is still of prime importance for understanding how the oscillations of clock genes in peripheral tissues result in functional rhythms of these tissues, whereas it has become even more evident that adrenal glucocorticoids are key in the resetting of the circadian system after a phase-shift. The HPA-axis thus still is an excellent model for studying the transmission of circadian information in the body.
Collapse
Affiliation(s)
- A Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
39
|
Girardet C, Bosler O. [Structural plasticity of the adult central nervous system: insights from the neuroendocrine hypothalamus]. Biol Aujourdhui 2011; 205:179-97. [PMID: 21982406 DOI: 10.1051/jbio/2011018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Indexed: 01/26/2023]
Abstract
Accumulating evidence renders the dogma obsolete according to which the structural organization of the brain would remain essentially stable in adulthood, changing only in response to a need for compensatory processes during increasing age and degeneration. It has indeed become clear from investigations on various models that the adult nervous system can adapt to physiological demands by altering reversibly its synaptic circuits. This potential for structural and functional modifications results not only from the plastic properties of neurons but also from the inherent capacity of the glial cellular components to undergo remodeling as well. This is currently known for astrocytes, the major glial cells in brain which are well-recognized as dynamic partners in the mechanisms of synaptic transmission, and for the tanycytes and pituicytes which contribute to the regulation of neurosecretory processes in neurohemal regions of the hypothalamus. Studies on the neuroendocrine hypothalamus, whose role is central in homeostatic regulations, have gained good insights into the spectacular neuronal-glial rearrangements that may subserve functional plasticity in the adult brain. Following pioneering works on the morphological reorganizations taking place in the hypothalamo-neurohypophyseal system under certain physiological conditions such as dehydration and lactation, studies on the gonadotropic system that orchestrates reproductive functions have re-emphasized the dynamic interplay between neurons and glia in brain structural plasticity processes. This review summarizes the major contributions provided by these researches in the field and also addresses the question of the morphological rearrangements that occur on a 24-h basis in the central component of the circadian clock responsible for the temporal aspects of endocrine regulations. Taken together, the reviewed data highlight the close cooperation between neurons and glia in developing strategies for functional adaptation of the brain to the changing conditions of the internal and external environment.
Collapse
Affiliation(s)
- Clémence Girardet
- Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille, France.
| | | |
Collapse
|
40
|
Son GH, Chung S, Kim K. The adrenal peripheral clock: glucocorticoid and the circadian timing system. Front Neuroendocrinol 2011; 32:451-65. [PMID: 21802440 DOI: 10.1016/j.yfrne.2011.07.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 04/25/2011] [Accepted: 07/06/2011] [Indexed: 12/27/2022]
Abstract
The mammalian circadian timing system is organized in a hierarchy, with the master clock residing in the suprachiasmatic nucleus (SCN) of the hypothalamus and subsidiary peripheral clocks in other brain regions as well as peripheral tissues. Since the local oscillators in most cells contain a similar molecular makeup to that in the central pacemaker, determining the role of the peripheral clocks in the regulation of rhythmic physiology and behavior is an important issue. Glucocorticoids (GCs) are a class of multi-functional adrenal steroid hormones, which exhibit a robust circadian rhythm, with a peak linked with the onset of the daily activity phase. It has long been believed that the production and secretion of GC is primarily governed through the hypothalamus-pituitary-adrenal (HPA) neuroendocrine axis in mammals. Growing evidence, however, strongly supports the notion that the periodicity of GC involves the integrated activity of multiple regulatory mechanisms related to circadian timing system along with the classical HPA neuroendocrine regulation. The adrenal-intrinsic oscillator as well as the central pacemaker plays a pivotal role in its rhythmicity. GC influences numerous biological processes, such as metabolic, cardiovascular, immune and even higher brain functions, and also acts as a resetting signal for the ubiquitous peripheral clocks, suggesting its importance in harmonizing circadian physiology and behavior. In this review, we will therefore focus on the recent advances in our understanding of the circadian regulation of adrenal GC and its functional relevance.
Collapse
Affiliation(s)
- Gi Hoon Son
- Department of Biological Sciences, Seoul National University, Brain Research Center for the 21st Century Frontier Program in Neuroscience, Seoul 151-742, Republic of Korea
| | | | | |
Collapse
|
41
|
Ángeles-Castellanos M, Amaya JM, Salgado-Delgado R, Buijs RM, Escobar C. Scheduled Food Hastens Re-Entrainment More Than Melatonin Does after a 6-h Phase Advance of the Light-Dark Cycle in Rats. J Biol Rhythms 2011; 26:324-34. [DOI: 10.1177/0748730411409715] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Circadian desynchrony occurs when individuals are exposed to abrupt phase shifts of the light-dark cycle, as in jet lag. For reducing symptoms and for speeding up resynchronization, several strategies have been suggested, including scheduled exercise, exposure to bright light, drugs, and especially exogenous melatonin administration. Restricted feeding schedules have shown to be powerful entraining signals for metabolic and hormonal daily cycles, as well as for clock genes in tissues and organs of the periphery. This study explored in a rat model of jet lag the contribution of exogenous melatonin or scheduled feeding on the re-entrainment speed of spontaneous general activity and core temperature after a 6-h phase advance of the light-dark cycle. In a first phase, the treatment was scheduled for 5 days prior to the phase shift, while in a second stage, the treatment was simultaneous with the phase advance of the light-dark cycle. Melatonin administration and especially scheduled feeding simultaneous with the phase shift improved significantly the re-entrainment speed. The evaluation of the free-running activity and temperature following the 5-day treatment proved that both exogenous melatonin and specially scheduled feeding accelerated re-entrainment of the SCN-driven general activity and core temperature, respectively, with 7, 5 days ( p < 0.01) and 3, 3 days ( p < 0.001). The present results show the relevance of feeding schedules as entraining signals for the circadian system and highlight the importance of using them as a strategy for preventing internal desynchrony.
Collapse
Affiliation(s)
| | | | - R. Salgado-Delgado
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México DF, México
| | - R. M. Buijs
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México DF, México
| | - C. Escobar
- Departamento de Anatomía, Fac de Medicina
| |
Collapse
|
42
|
Chung S, Son GH, Kim K. Circadian rhythm of adrenal glucocorticoid: Its regulation and clinical implications. Biochim Biophys Acta Mol Basis Dis 2011; 1812:581-91. [DOI: 10.1016/j.bbadis.2011.02.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 01/31/2011] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
|
43
|
Chung S, Son GH, Kim K. Adrenal peripheral oscillator in generating the circadian glucocorticoid rhythm. Ann N Y Acad Sci 2011; 1220:71-81. [DOI: 10.1111/j.1749-6632.2010.05923.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
44
|
Nexon L, Sage D, Pévet P, Raison S. Glucocorticoid-mediated nycthemeral and photoperiodic regulation of tph2 expression. Eur J Neurosci 2011; 33:1308-17. [PMID: 21299657 DOI: 10.1111/j.1460-9568.2010.07586.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the Syrian hamster dorsal and median raphé nuclei, the tryptophan hydroxylase 2 gene (tph2), which codes the rate-limiting enzyme of serotonin synthesis, displays daily variations in its expression in animals entrained to a long but not to a short photoperiod. The present study aimed to assess the role of glucocorticoids in the nycthemeral and photoperiodic regulation of daily tph2 expression. In hamsters held in long photoperiod from birth, after adrenalectomy and glucocorticoid implants the suppression of glucocorticoid rhythms induced an abolition of the daily variations in tph2-mRNA concentrations, a decrease in the amplitude of body temperature rhythms and an increase in testosterone levels. All these effects were reversed after experimental restoration of a clear daily rhythm in the plasma glucocorticoid concentrations. We conclude that the photoperiod-dependent rhythm of glucocorticoids is the main regulator of tph2 daily expression.
Collapse
Affiliation(s)
- Laurent Nexon
- Département de Neu\robiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR-3212, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | | | | | | |
Collapse
|
45
|
Girardet C, Becquet D, Blanchard MP, François-Bellan AM, Bosler O. Neuroglial and synaptic rearrangements associated with photic entrainment of the circadian clock in the suprachiasmatic nucleus. Eur J Neurosci 2010; 32:2133-42. [DOI: 10.1111/j.1460-9568.2010.07520.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Jackson FR. Glial cell modulation of circadian rhythms. Glia 2010; 59:1341-50. [PMID: 21732426 DOI: 10.1002/glia.21097] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 09/22/2010] [Indexed: 11/09/2022]
Abstract
Studies of Drosophila and mammals have documented circadian changes in the morphology and biochemistry of glial cells. In addition, it is known that astrocytes of flies and mammals contain evolutionarily conserved circadian molecular oscillators that are similar to neuronal oscillators. In several sections of this review, I summarize the morphological and biochemical rhythms of glia that may contribute to circadian control. I also discuss the evidence suggesting that glia-neuron interactions may be critical for circadian timing in both flies and mammals. Throughout the review, I attempt to compare and contrast findings from these invertebrate and vertebrate models so as to provide a synthesis of current knowledge and indicate potential research avenues that may be useful for better understanding the roles of glial cells in the circadian system.
Collapse
Affiliation(s)
- F Rob Jackson
- Department of Neuroscience, Center for Neuroscience Research, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| |
Collapse
|
47
|
Atkinson HC, Leggett JD, Wood SA, Castrique ES, Kershaw YM, Lightman SL. Regulation of the hypothalamic-pituitary-adrenal axis circadian rhythm by endocannabinoids is sexually diergic. Endocrinology 2010; 151:3720-7. [PMID: 20534730 PMCID: PMC2964781 DOI: 10.1210/en.2010-0101] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
We have examined the effects of acute administration of the cannabinoid receptor type 1 (CB(1)) antagonist AM251 on the rat hypothalamic-pituitary-adrenal (HPA) axis with respect to both gender and time of day. Blood samples were collected from conscious male and female rats every 5 min using an automated blood sampling system, and corticosterone concentrations were determined. In male rats, there was a distinct diurnal effect of AM251 with a greater activation of the HPA axis in the morning (diurnal trough) compared with the evening (diurnal peak). At both times of the day, circulating corticosterone concentrations were elevated for approximately 4 h after AM251 administration. In female rats, there was also diurnal variation in the activation of the HPA axis; however, these effects were not as profound as those in males. Corticosterone concentrations were only slightly elevated at the diurnal trough and for a shorter time period than in males (2 compared with 4 h). Moreover, there was no effect of AM251 on corticosterone concentrations when administered at the diurnal peak. Subsequent studies, only in males, in which both ACTH and corticosterone were measured, confirmed that the effects of AM251 on corticosterone were mediated by ACTH. Moreover, the elevation of both ACTH and corticosterone could be replicated using another CB(1) antagonist, AM281. These data demonstrate that the extent and duration of HPA axis activation after CB(1) blockade are clearly dependent on both gender and time of day.
Collapse
Affiliation(s)
- Helen C Atkinson
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | | | | | | | | | | |
Collapse
|
48
|
Harrington M. Location, location, location: important for jet-lagged circadian loops. J Clin Invest 2010; 120:2265-7. [PMID: 20577055 DOI: 10.1172/jci43632] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
It is now believed that frequent jet lag or shifts of daily rhythms caused by rotating shift work can lead to deleterious health outcomes. Indeed, many serious health problems, including breast cancer, stroke, and cardiovascular disease, have been linked to an occupational history of shift work. This has heightened interest in better understanding the biological responses to jet lag and shift work, with the hope that this will pave the way to developing compounds that can help people avoid their negative health consequences. In this context, a report in this issue of the JCI takes us to a new level of understanding of the molecular control of the resetting of the multitude of internal biological clocks disrupted in a mouse model of jet lag.
Collapse
Affiliation(s)
- Mary Harrington
- Department of Psychology, Smith College, Northampton, Massachusetts 01063, USA.
| |
Collapse
|
49
|
Kiessling S, Eichele G, Oster H. Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag. J Clin Invest 2010; 120:2600-9. [PMID: 20577050 DOI: 10.1172/jci41192] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 05/05/2010] [Indexed: 12/19/2022] Open
Abstract
Jet lag encompasses a range of psycho- and physiopathological symptoms that arise from temporal misalignment of the endogenous circadian clock with external time. Repeated jet lag exposure, encountered by business travelers and airline personnel as well as shift workers, has been correlated with immune deficiency, mood disorders, elevated cancer risk, and anatomical anomalies of the forebrain. Here, we have characterized the molecular response of the mouse circadian system in an established experimental paradigm for jet lag whereby mice entrained to a 12-hour light/12-hour dark cycle undergo light phase advancement by 6 hours. Unexpectedly, strong heterogeneity of entrainment kinetics was found not only between different organs, but also within the molecular clockwork of each tissue. Manipulation of the adrenal circadian clock, in particular phase-shifting of adrenal glucocorticoid rhythms, regulated the speed of behavioral reentrainment. Blocking adrenal corticosterone either prolonged or shortened jet lag, depending on the time of administration. This key role of adrenal glucocorticoid phasing for resetting of the circadian system provides what we believe to be a novel mechanism-based approach for possible therapies for jet lag and jet lag-associated diseases.
Collapse
Affiliation(s)
- Silke Kiessling
- Department Genes and Behavior, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Hematopoiesis is tightly regulated in the bone marrow through the microenvironment, soluble factors from the circulation, and neural inputs from the autonomic nervous system. Most physiological processes are not uniform but rather vary according to the time of day. There is increasing evidence showing the impact of biological rhythms on the traffic of hematopoietic stem cells (HSCs) and their proliferation and differentiation capacities. RECENT FINDINGS Recent evidence supports the role of the sympathetic nervous system in the regulation of HSC behavior, both directly and through supporting stromal cells. In addition, the sympathetic nervous system transduces circadian information from the central pacemaker in the brain, the suprachiasmatic nucleus, to the bone marrow microenvironment, directing circadian oscillations in hematopoiesis and HSC migration. SUMMARY HSC traffic and hematopoiesis do not escape the circadian regulation that controls most physiological processes. Clinically, the timing of stem cell harvest or infusion may impact the yield or engraftment, respectively, and may result in better therapeutic outcomes.
Collapse
|