1
|
Holland JG, O'Donnell AJ, Herbert-Mainero A, Reece SE. Phenotypic and fitness consequences of plasticity in the rhythmic replication of malaria parasites. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230340. [PMID: 39842485 DOI: 10.1098/rstb.2023.0340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/21/2024] [Accepted: 08/28/2024] [Indexed: 01/24/2025] Open
Abstract
The environments that parasites experience within hosts change dramatically over 24 h. How rhythms shape host-parasite-vector interactions is poorly understood owing to the challenges of disentangling the roles of rhythms of multiple interacting species in the context of the complex lifecycles of parasites. Using canonical circadian clock-disrupted hosts, we probe the limits of flexibility in the rhythmic replication of malaria (Plasmodium) parasites and quantify the consequences for fitness proxies of both parasite and host. We reveal that parasites alter the duration of their replication rhythm to resonate with host rhythms that have short (21 h) daily T-cycles as accurately as when infecting hosts with 24 h cycles, but appear less capable of extending their replication rhythm in hosts with long (27 h) cycles. Despite matching the period of short T-cycle hosts, parasites are unable to lock to the correct phase, likely leading to lower within-host productivity and a reduction in transmission potential. However, parasites in long T-cycle hosts do not experience substantial fitness costs. Furthermore, T-cycle duration does not affect disease severity in clock-disrupted hosts. Understanding the rhythmic replication of malaria parasites offers the opportunity to interfere with parasite timing to improve health and reduce transmission.This article is part of the Theo Murphy meeting issue issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Jacob G Holland
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Aidan J O'Donnell
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Alejandra Herbert-Mainero
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Sarah E Reece
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
2
|
Ma C, Shen B, Chen L, Yang G. Impacts of circadian disruptions on behavioral rhythms in mice. FASEB J 2024; 38:e70183. [PMID: 39570004 DOI: 10.1096/fj.202401536r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Circadian rhythms are fundamental biological processes that recur approximately every 24 h, with the sleep-wake cycle or circadian behavior being a well-known example. In the field of chronobiology, mice serve as valuable model animals for studying mammalian circadian rhythms due to their genetic similarity to humans and the availability of various genetic tools for manipulation. Monitoring locomotor activity in mice provides valuable insights into the impact of various conditions or disturbances on circadian behavior. In this review, we summarized the effects of disturbance of biological rhythms on circadian behavior in mice. External factors, especially light exert a significant impact on circadian behavior. Additionally, feeding timing, food composition, ambient temperature, and physical exercise contribute to variations in the behavior of the mouse. Internal factors, including gender, age, genetic background, and clock gene mutation or deletion, are effective as well. Understanding the effects of circadian disturbances on murine behavior is essential for gaining insights into the underlying mechanisms of circadian regulation and developing potential therapeutic interventions for circadian-related disorders in humans.
Collapse
Affiliation(s)
- Changxiao Ma
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bingyi Shen
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lihong Chen
- Health Science Center, East China Normal University, Shanghai, China
| | - Guangrui Yang
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
3
|
McManus D, Patton AP, Smyllie NJ, Chin JW, Hastings MH. PERfect Day: reversible and dose-dependent control of circadian time-keeping in the mouse suprachiasmatic nucleus by translational switching of PERIOD2 protein expression. Eur J Neurosci 2024; 60:5537-5552. [PMID: 39300693 PMCID: PMC7617102 DOI: 10.1111/ejn.16537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
The biological clock of the suprachiasmatic nucleus (SCN) orchestrates circadian (approximately daily) rhythms of behaviour and physiology that underpin health. SCN cell-autonomous time-keeping revolves around a transcriptional/translational feedback loop (TTFL) within which PERIOD (PER1,2) and CRYPTOCHROME (CRY1,2) proteins heterodimerise and suppress trans-activation of their encoding genes (Per1,2; Cry1,2). To explore its contribution to SCN time-keeping, we used adeno-associated virus-mediated translational switching to express PER2 (tsPER2) in organotypic SCN slices carrying bioluminescent TTFL circadian reporters. Translational switching requires provision of the non-canonical amino acid, alkyne lysine (AlkK), for protein expression. Correspondingly, AlkK, but not vehicle, induced constitutive expression of tsPER2 in SCN neurons and reversibly and dose-dependently suppressed pPer1-driven transcription in PER-deficient (Per1,2-null) SCN, illustrating the potency of PER2 in negative regulation within the TTFL. Constitutive expression of tsPER2, however, failed to initiate circadian oscillations in arrhythmic PER-deficient SCN. In rhythmic, PER-competent SCN, AlkK dose-dependently reduced the amplitude of PER2-reported oscillations as inhibition by tsPER2 progressively damped the TTFL. tsPER2 also dose-dependently lengthened the period of the SCN TTFL and neuronal calcium rhythms. Following wash-out of AlkK to remove tsPER2, the SCN regained TTFL amplitude and period. Furthermore, SCN retained their pre-washout phase: the removal of tsPER2 did not phase-shift the TTFL. Given that constitutive tsCRY1 can regulate TTFL amplitude and period, but also reset TTFL phase and initiate rhythms in CRY-deficient SCN, these results reveal overlapping and distinct properties of PER2 and CRY1 within the SCN, and emphasise the utility of translational switching to explore the functions of circadian proteins.
Collapse
Affiliation(s)
- David McManus
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Andrew P Patton
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Nicola J Smyllie
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Michael H Hastings
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
4
|
Stephan M, Papiol S, Zhang M, Song J, Frommeyer SM, Haupt H, Jensen N, Kannaiyan N, Gupta R, Schuler P, Picklmann P, McCarthy M, Schulte E, Landen M, Falkai P, Scheuss V, Schulze T, Zhang W, Rossner MJ. Modulation of Neuronal Excitability and Plasticity by BHLHE41 Conveys Lithium Non-Responsiveness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605130. [PMID: 39372797 PMCID: PMC11451663 DOI: 10.1101/2024.07.25.605130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Many bipolar disorder (BD) patients are non-responsive to lithium. The mechanisms underlying lithium (non-)responsiveness are largely unknown. By using gene-set enrichment analysis methods, we found that core clock gene-sets are significantly associated with lithium response. Among the top hits was BHLHE41, a modulator of the molecular clock and homeostatic sleep. Since BHLHE41 and its paralog BHLHE40 are functionally redundant, we assessed chronic lithium response in double-knockout mutant mice (DKO). We demonstrated that DKOs are non-responsive to lithium's effect in various behavioral tasks. Cellular assays and patch clamp recordings revealed lowered excitability and reduced lithium-response in prefrontal cortical layer 2/3 DKO neurons and on hippocampal long-term potentiation. Single-cell RNA sequencing identified that lithium deregulated mitochondrial respiration, cation channel and postsynapse associated gene-sets specifically in upper layer excitatory neurons. Our findings show that lithium acts in a highly cell-specific way on neuronal metabolism and excitability and modulates synaptic plasticity depending on BHLHE40/41.
Collapse
Affiliation(s)
- Marius Stephan
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Sergi Papiol
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
| | - Mingyue Zhang
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Muenster, Germany
| | - Jie Song
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Samuel M Frommeyer
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Muenster, Germany
| | - Helen Haupt
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Muenster, Germany
| | - Niels Jensen
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
| | | | - Rajinder Gupta
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
| | - Philipp Schuler
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
| | - Pia Picklmann
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
| | - Michael McCarthy
- VA San Diego Healthcare System, CA, USA
- Department of Psychiatry, Center for Circadian Biology, University of California San Diego, San Diego, CA, USA
| | - Eva Schulte
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany
- Institute of Human Genetics, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany
- Department of Psychiatry, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Mikael Landen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
| | - Volker Scheuss
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
- MSH Medical School, Hamburg, Germany
| | - Thomas Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, United States
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Weiqi Zhang
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Muenster, Germany
| | - Moritz J Rossner
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
- Systasy Bioscience GmbH, Munich, Germany
| |
Collapse
|
5
|
Holland JG, Prior KF, O'Donnell AJ, Reece SE. Testing the evolutionary drivers of malaria parasite rhythms and their consequences for host-parasite interactions. Evol Appl 2024; 17:e13752. [PMID: 39006006 PMCID: PMC11246599 DOI: 10.1111/eva.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Undertaking certain activities at the time of day that maximises fitness is assumed to explain the evolution of circadian clocks. Organisms often use daily environmental cues such as light and food availability to set the timing of their clocks. These cues may be the environmental rhythms that ultimately determine fitness, act as proxies for the timing of less tractable ultimate drivers, or are used simply to maintain internal synchrony. While many pathogens/parasites undertake rhythmic activities, both the proximate and ultimate drivers of their rhythms are poorly understood. Explaining the roles of rhythms in infections offers avenues for novel interventions to interfere with parasite fitness and reduce the severity and spread of disease. Here, we perturb several rhythms in the hosts of malaria parasites to investigate why parasites align their rhythmic replication to the host's feeding-fasting rhythm. We manipulated host rhythms governed by light, food or both, and assessed the fitness implications for parasites, and the consequences for hosts, to test which host rhythms represent ultimate drivers of the parasite's rhythm. We found that alignment with the host's light-driven rhythms did not affect parasite fitness metrics. In contrast, aligning with the timing of feeding-fasting rhythms may be beneficial for the parasite, but only when the host possess a functional canonical circadian clock. Because parasites in clock-disrupted hosts align with the host's feeding-fasting rhythms and yet derive no apparent benefit, our results suggest cue(s) from host food act as a proxy rather than being a key selective driver of the parasite's rhythm. Alternatively, parasite rhythmicity may only be beneficial because it promotes synchrony between parasite cells and/or allows parasites to align to the biting rhythms of vectors. Our results also suggest that interventions can disrupt parasite rhythms by targeting the proxies or the selective factors driving them without impacting host health.
Collapse
Affiliation(s)
- Jacob G. Holland
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| | | | | | - Sarah E. Reece
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
- Institute of Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
| |
Collapse
|
6
|
Manoogian ENC, Bahiru MS, Wang EJ, Holder M, Bittman EL. Neuroendocrine effects of the duper mutation in Syrian hamsters: a role for Cryptochrome 1. Front Physiol 2024; 15:1351682. [PMID: 38444761 PMCID: PMC10912188 DOI: 10.3389/fphys.2024.1351682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Molecular and physiological determinants of the timing of reproductive events, including the pre-ovulatory LH surge and seasonal fluctuations in fertility, are incompletely understood. We used the Cryptochrome 1-deficient duper mutant to examine the role of this core circadian clock gene in Syrian hamsters. We find that the phase of the LH surge and its stability upon shifts of the light: dark cycle are altered in duper mutants. The intensity of immunoreactive PER1 in GnRH cells of the preoptic area peaks earlier in the day in duper than wild type hamsters. We note that GnRH fibers coursing through the suprachiasmatic nucleus (SCN) contact vasopressin- and VIP-immunoreactive cells, suggesting a possible locus of circadian control of the LH surge. Unlike wild types, duper hamsters do not regress their gonads within 8 weeks of constant darkness, despite evidence of melatonin secretion during the subjective night. In light of the finding that the duper allele is a stop codon in Cryptochrome 1, our results suggest important neuroendocrine functions of this core circadian clock gene.
Collapse
Affiliation(s)
| | | | | | | | - Eric L. Bittman
- Department of Biology and Program in Neuroscience, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
7
|
Barone I, Gilette NM, Hawks-Mayer H, Handy J, Zhang KJ, Chifamba FF, Mostafa E, Johnson-Venkatesh EM, Sun Y, Gibson JM, Rotenberg A, Umemori H, Tsai PT, Lipton JO. Synaptic BMAL1 phosphorylation controls circadian hippocampal plasticity. SCIENCE ADVANCES 2023; 9:eadj1010. [PMID: 37878694 PMCID: PMC10599629 DOI: 10.1126/sciadv.adj1010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
The time of day strongly influences adaptive behaviors like long-term memory, but the correlating synaptic and molecular mechanisms remain unclear. The circadian clock comprises a canonical transcription-translation feedback loop (TTFL) strictly dependent on the BMAL1 transcription factor. We report that BMAL1 rhythmically localizes to hippocampal synapses in a manner dependent on its phosphorylation at Ser42 [pBMAL1(S42)]. pBMAL1(S42) regulates the autophosphorylation of synaptic CaMKIIα and circadian rhythms of CaMKIIα-dependent molecular interactions and LTP but not global rest/activity behavior. Therefore, our results suggest a model in which repurposing of the clock protein BMAL1 to synapses locally gates the circadian timing of plasticity.
Collapse
Affiliation(s)
- Ilaria Barone
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Nicole M. Gilette
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Hannah Hawks-Mayer
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Jonathan Handy
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Kevin J. Zhang
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Fortunate F. Chifamba
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Engie Mostafa
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Erin M. Johnson-Venkatesh
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Yan Sun
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Jennifer M. Gibson
- Departments of Neurology, Neuroscience, Pediatrics, and Psychiatry, University of Texas at Southwestern, Dallas, TX 75390, USA
| | - Alexander Rotenberg
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Hisashi Umemori
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Peter T. Tsai
- Departments of Neurology, Neuroscience, Pediatrics, and Psychiatry, University of Texas at Southwestern, Dallas, TX 75390, USA
| | - Jonathan O. Lipton
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Schurhoff N, Toborek M. Circadian rhythms in the blood-brain barrier: impact on neurological disorders and stress responses. Mol Brain 2023; 16:5. [PMID: 36635730 PMCID: PMC9835375 DOI: 10.1186/s13041-023-00997-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Circadian disruption has become more prevalent in society due to the increase in shift work, sleep disruption, blue light exposure, and travel via different time zones. The circadian rhythm is a timed transcription-translation feedback loop with positive regulators, BMAL1 and CLOCK, that interact with negative regulators, CRY and PER, to regulate both the central and peripheral clocks. This review highlights the functions of the circadian rhythm, specifically in the blood-brain barrier (BBB), during both healthy and pathological states. The BBB is a highly selective dynamic interface composed of CNS endothelial cells, astrocytes, pericytes, neurons, and microglia that form the neurovascular unit (NVU). Circadian rhythms modulate BBB integrity through regulating oscillations of tight junction proteins, assisting in functions of the NVU, and modulating transporter functions. Circadian disruptions within the BBB have been observed in stress responses and several neurological disorders, including brain metastasis, epilepsy, Alzheimer's disease, and Parkinson's disease. Further understanding of these interactions may facilitate the development of improved treatment options and preventative measures.
Collapse
Affiliation(s)
- Nicolette Schurhoff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33155, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33155, USA.
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065, Katowice, Poland.
| |
Collapse
|
9
|
McManus D, Polidarova L, Smyllie NJ, Patton AP, Chesham JE, Maywood ES, Chin JW, Hastings MH. Cryptochrome 1 as a state variable of the circadian clockwork of the suprachiasmatic nucleus: Evidence from translational switching. Proc Natl Acad Sci U S A 2022; 119:e2203563119. [PMID: 35976881 PMCID: PMC9407638 DOI: 10.1073/pnas.2203563119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus is the principal clock driving circadian rhythms of physiology and behavior that adapt mammals to environmental cycles. Disruption of SCN-dependent rhythms compromises health, and so understanding SCN time keeping will inform management of diseases associated with modern lifestyles. SCN time keeping is a self-sustaining transcriptional/translational delayed feedback loop (TTFL), whereby negative regulators inhibit their own transcription. Formally, the SCN clock is viewed as a limit-cycle oscillator, the simplest being a trajectory of successive phases that progresses through two-dimensional space defined by two state variables mapped along their respective axes. The TTFL motif is readily compatible with limit-cycle models, and in Neurospora and Drosophila the negative regulators Frequency (FRQ) and Period (Per) have been identified as state variables of their respective TTFLs. The identity of state variables of the SCN oscillator is, however, less clear. Experimental identification of state variables requires reversible and temporally specific control over their abundance. Translational switching (ts) provides this, the expression of a protein of interest relying on the provision of a noncanonical amino acid. We show that the negative regulator Cryptochrome 1 (CRY1) fulfills criteria defining a state variable: ts-CRY1 dose-dependently and reversibly suppresses the baseline, amplitude, and period of SCN rhythms, and its acute withdrawal releases the TTFL to oscillate from a defined phase. Its effect also depends on its temporal pattern of expression, although constitutive ts-CRY1 sustained (albeit less stable) oscillations. We conclude that CRY1 has properties of a state variable, but may operate among several state variables within a multidimensional limit cycle.
Collapse
Affiliation(s)
- David McManus
- aNeurobiology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Lenka Polidarova
- aNeurobiology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Nicola J. Smyllie
- aNeurobiology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Andrew P. Patton
- aNeurobiology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Johanna E. Chesham
- aNeurobiology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Elizabeth S. Maywood
- aNeurobiology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Jason W. Chin
- bPNAC Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Michael H. Hastings
- aNeurobiology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- 1To whom correspondence may be addressed.
| |
Collapse
|
10
|
rs2253820 Variant Controls Blood Pressure Dip After Stroke by Increasing CLOCK–BMAL1 Expression. Transl Stroke Res 2022:10.1007/s12975-022-01063-y. [DOI: 10.1007/s12975-022-01063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 10/16/2022]
|
11
|
Vijaya Shankara J, Horsley KG, Cheng N, Rho JM, Antle MC. Circadian Responses to Light in the BTBR Mouse. J Biol Rhythms 2022; 37:498-515. [PMID: 35722987 PMCID: PMC9452857 DOI: 10.1177/07487304221102279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Animals with altered freerunning periods are valuable in understanding properties of the circadian clock. Understanding the relationship between endogenous clock properties, entrainment, and influence of light in terms of parametric and non-parametric models can help us better understand how different populations adapt to external light cycles. Many clinical populations often show significant changes in circadian properties that in turn cause sleep and circadian problems, possibly exacerbating their underlying clinical condition. BTBR T+Itpr3tf/J (BTBR) mice are a model commonly used for the study of autism spectrum disorders (ASD). Adults and adolescents with ASD frequently exhibit profound sleep and circadian disruptions, including increased latency to sleep, insomnia, advanced and delayed sleep phase disorders, and sleep fragmentation. Here, we investigated the circadian phenotype of BTBR mice in freerunning and light-entrained conditions and found that this strain of mice showed noticeably short freerunning periods (~22.75 h). In addition, when compared to C57BL/6J controls, BTBR mice also showed higher levels of activity even though this activity was compressed into a shorter active phase. Phase delays and phase advances to light were significantly larger in BTBR mice. Despite the short freerunning period, BTBR mice exhibited normal entrainment in light-dark cycles and accelerated entrainment to both advanced and delayed light cycles. Their ability to entrain to skeleton photoperiods of 1 min suggests that this entrainment cannot be attributed to masking. Period differences were also correlated with differences in the number of vasoactive intestinal polypeptide–expressing cells in the suprachiasmatic nucleus (SCN). Overall, the BTBR model, with their unique freerunning and entrainment properties, makes an interesting model to understand the underlying circadian clock.
Collapse
Affiliation(s)
- Jhenkruthi Vijaya Shankara
- Department of Psychology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Katelyn G Horsley
- Department of Psychology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ning Cheng
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jong M Rho
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Departments of Neurosciences and Pediatrics, University of California, San Diego and Rady Children's Hospital, San Diego, California, USA
| | - Michael C Antle
- Department of Psychology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
Cryptochrome proteins regulate the circadian intracellular behavior and localization of PER2 in mouse suprachiasmatic nucleus neurons. Proc Natl Acad Sci U S A 2022; 119:2113845119. [PMID: 35046033 PMCID: PMC8795536 DOI: 10.1073/pnas.2113845119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
The suprachiasmatic nucleus (SCN), the master circadian clock of the mammalian brain, coordinates cellular clocks across the organism to regulate daily rhythms of physiology and behavior. SCN timekeeping pivots around transcriptional/translational feedback loops whereby PERIOD (PER) and CRYPTOCHROME (CRY) proteins associate and enter the nucleus to inhibit their own expression. The individual and interactive behaviors of PER and CRY and the mechanisms that regulate them are poorly understood. We combined fluorescence imaging of endogenous PER2 and viral vector–expressed CRY in SCN slices and show how CRYs, acting via their C terminus, control nuclear localization and mobility of PER2 to dose-dependently initiate SCN timekeeping and control its period. Our results reveal PER and CRY interactions central to the SCN clockwork. The ∼20,000 cells of the suprachiasmatic nucleus (SCN), the master circadian clock of the mammalian brain, coordinate subordinate cellular clocks across the organism, driving adaptive daily rhythms of physiology and behavior. The canonical model for SCN timekeeping pivots around transcriptional/translational feedback loops (TTFL) whereby PERIOD (PER) and CRYPTOCHROME (CRY) clock proteins associate and translocate to the nucleus to inhibit their own expression. The fundamental individual and interactive behaviors of PER and CRY in the SCN cellular environment and the mechanisms that regulate them are poorly understood. We therefore used confocal imaging to explore the behavior of endogenous PER2 in the SCN of PER2::Venus reporter mice, transduced with viral vectors expressing various forms of CRY1 and CRY2. In contrast to nuclear localization in wild-type SCN, in the absence of CRY proteins, PER2 was predominantly cytoplasmic and more mobile, as measured by fluorescence recovery after photobleaching. Virally expressed CRY1 or CRY2 relocalized PER2 to the nucleus, initiated SCN circadian rhythms, and determined their period. We used translational switching to control CRY1 cellular abundance and found that low levels of CRY1 resulted in minimal relocalization of PER2, but yet, remarkably, were sufficient to initiate and maintain circadian rhythmicity. Importantly, the C-terminal tail was necessary for CRY1 to localize PER2 to the nucleus and to initiate SCN rhythms. In CRY1-null SCN, CRY1Δtail opposed PER2 nuclear localization and correspondingly shortened SCN period. Through manipulation of CRY proteins, we have obtained insights into the spatiotemporal behaviors of PER and CRY sitting at the heart of the TTFL molecular mechanism.
Collapse
|
13
|
O'Donnell AJ, Greischar MA, Reece SE. Mistimed malaria parasites re-synchronize with host feeding-fasting rhythms by shortening the duration of intra-erythrocytic development. Parasite Immunol 2021; 44:e12898. [PMID: 34778983 PMCID: PMC9285586 DOI: 10.1111/pim.12898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022]
Abstract
AIMS Malaria parasites exhibit daily rhythms in the intra-erythrocytic development cycle (IDC) that underpins asexual replication in the blood. The IDC schedule is aligned with the timing of host feeding-fasting rhythms. When the IDC schedule is perturbed to become mismatched to host rhythms, it readily reschedules but it is not known how. METHODS We intensively follow four groups of infections that have different temporal alignments between host rhythms and the IDC schedule for 10 days, before and after the peak in asexual densities. We compare how the duration, synchrony and timing of the IDC differs between parasites in control infections and those forced to reschedule by 12 hours and ask whether the density of parasites affects the rescheduling process. RESULTS AND CONCLUSIONS Our experiments reveal parasites shorten the IDC duration by 2-3 hours to become realigned to host feeding-fasting rhythms with 5-6 days, in a density-independent manner. Furthermore, parasites are able to reschedule without significant fitness costs for them or their hosts. Understanding the extent of, and limits on, plasticity in the IDC schedule may reveal targets for novel interventions, such as drugs to disrupt IDC regulation and preventing IDC dormancy conferring tolerance to existing drugs.
Collapse
Affiliation(s)
- Aidan J O'Donnell
- Institute of Evolutionary Biology, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Megan A Greischar
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Sarah E Reece
- Institute of Evolutionary Biology, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Adlanmerini M, Krusen BM, Nguyen HCB, Teng CW, Woodie LN, Tackenberg MC, Geisler CE, Gaisinsky J, Peed LC, Carpenter BJ, Hayes MR, Lazar MA. REV-ERB nuclear receptors in the suprachiasmatic nucleus control circadian period and restrict diet-induced obesity. SCIENCE ADVANCES 2021; 7:eabh2007. [PMID: 34705514 PMCID: PMC8550249 DOI: 10.1126/sciadv.abh2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/07/2021] [Indexed: 05/28/2023]
Abstract
Circadian disruption, as occurs in shift work, is associated with metabolic diseases often attributed to a discordance between internal clocks and environmental timekeepers. REV-ERB nuclear receptors are key components of the molecular clock, but their specific role in the SCN master clock is unknown. We report here that mice lacking circadian REV-ERB nuclear receptors in the SCN maintain free-running locomotor and metabolic rhythms, but these rhythms are notably shortened by 3 hours. When housed under a 24-hour light:dark cycle and fed an obesogenic diet, these mice gained excess weight and accrued more liver fat than controls. These metabolic disturbances were corrected by matching environmental lighting to the shortened endogenous 21-hour clock period, which decreased food consumption. Thus, SCN REV-ERBs are not required for rhythmicity but determine the free-running period length. Moreover, these results support the concept that dissonance between environmental conditions and endogenous time periods causes metabolic disruption.
Collapse
Affiliation(s)
- Marine Adlanmerini
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Brianna M. Krusen
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hoang C. B. Nguyen
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Clare W. Teng
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lauren N. Woodie
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael C. Tackenberg
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Caroline E. Geisler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jane Gaisinsky
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lindsey C. Peed
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bryce J. Carpenter
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew R. Hayes
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mitchell A. Lazar
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Prior KF, Middleton B, Owolabi AT, Westwood ML, Holland J, O'Donnell AJ, Blackman MJ, Skene DJ, Reece SE. Synchrony between daily rhythms of malaria parasites and hosts is driven by an essential amino acid. Wellcome Open Res 2021; 6:186. [PMID: 34805551 PMCID: PMC8577053.2 DOI: 10.12688/wellcomeopenres.16894.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Rapid asexual replication of blood stage malaria parasites is responsible for the severity of disease symptoms and fuels the production of transmission forms. Here, we demonstrate that a Plasmodium chabaudi's schedule for asexual replication can be orchestrated by isoleucine, a metabolite provided to the parasite in a periodic manner due to the host's rhythmic intake of food. Methods: We infect female C57BL/6 and Per1/2-null mice which have a disrupted canonical (transcription translation feedback loop, TTFL) clock with 1×10 5 red blood cells containing P. chabaudi (DK genotype). We perturb the timing of rhythms in asexual replication and host feeding-fasting cycles to identify nutrients with rhythms that match all combinations of host and parasite rhythms. We then test whether perturbing the availability of the best candidate nutrient in vitro changes the schedule for asexual development. Results: Our large-scale metabolomics experiment and follow up experiments reveal that only one metabolite - the amino acid isoleucine - fits criteria for a time-of-day cue used by parasites to set the schedule for replication. The response to isoleucine is a parasite strategy rather than solely the consequences of a constraint imposed by host rhythms, because unlike when parasites are deprived of other essential nutrients, they suffer no apparent costs from isoleucine withdrawal. Conclusions: Overall, our data suggest parasites can use the daily rhythmicity of blood-isoleucine concentration to synchronise asexual development with the availability of isoleucine, and potentially other resources, that arrive in the blood in a periodic manner due to the host's daily feeding-fasting cycle. Identifying both how and why parasites keep time opens avenues for interventions; interfering with the parasite's time-keeping mechanism may stall replication, increasing the efficacy of drugs and immune responses, and could also prevent parasites from entering dormancy to tolerate drugs.
Collapse
Affiliation(s)
- Kimberley F. Prior
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK,Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, UK,
| | - Benita Middleton
- School of Biosciences and Medicine, University of Surrey, Surrey, UK
| | - Alíz T.Y. Owolabi
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK,Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, UK
| | - Mary L. Westwood
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK,Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, UK
| | - Jacob Holland
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK,Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, UK
| | - Aidan J. O'Donnell
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK,Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, UK
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, Francis Crick Institute, London, UK,Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Debra J. Skene
- School of Biosciences and Medicine, University of Surrey, Surrey, UK
| | - Sarah E. Reece
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK,Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Prior KF, Middleton B, Owolabi AT, Westwood ML, Holland J, O'Donnell AJ, Blackman MJ, Skene DJ, Reece SE. Synchrony between daily rhythms of malaria parasites and hosts is driven by an essential amino acid. Wellcome Open Res 2021; 6:186. [PMID: 34805551 PMCID: PMC8577053 DOI: 10.12688/wellcomeopenres.16894.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Rapid asexual replication of blood stage malaria parasites is responsible for the severity of disease symptoms and fuels the production of transmission forms. Here, we demonstrate that the Plasmodium chabaudi's schedule for asexual replication can be orchestrated by isoleucine, a metabolite provided to the parasite in periodic manner due to the host's rhythmic intake of food. Methods: We infect female C57BL/6 and Per1/2-null TTFL clock-disrupted mice with 1×10 5 red blood cells containing P. chabaudi (DK genotype). We perturb the timing of rhythms in asexual replication and host feeding-fasting cycles to identify nutrients with rhythms that match all combinations of host and parasite rhythms. We then test whether perturbing the availability of the best candidate nutrient in vitro elicits changes their schedule for asexual development. Results: Our large-scale metabolomics experiment and follow up experiments reveal that only one metabolite - the amino acid isoleucine - fits criteria for a time-of-day cue used by parasites to set the schedule for replication. The response to isoleucine is a parasite strategy rather than solely the consequences of a constraint imposed by host rhythms, because unlike when parasites are deprived of other essential nutrients, they suffer no apparent costs from isoleucine withdrawal. Conclusions: Overall, our data suggest parasites can use the daily rhythmicity of blood-isoleucine concentration to synchronise asexual development with the availability of isoleucine, and potentially other resources, that arrive in the blood in a periodic manner due to the host's daily feeding-fasting cycle. Identifying both how and why parasites keep time opens avenues for interventions; interfering with the parasite's time-keeping mechanism may stall replication, increasing the efficacy of drugs and immune responses, and could also prevent parasites from entering dormancy to tolerate drugs.
Collapse
Affiliation(s)
- Kimberley F. Prior
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK,Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, UK,
| | - Benita Middleton
- School of Biosciences and Medicine, University of Surrey, Surrey, UK
| | - Alíz T.Y. Owolabi
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK,Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, UK
| | - Mary L. Westwood
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK,Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, UK
| | - Jacob Holland
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK,Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, UK
| | - Aidan J. O'Donnell
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK,Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, UK
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, Francis Crick Institute, London, UK,Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Debra J. Skene
- School of Biosciences and Medicine, University of Surrey, Surrey, UK
| | - Sarah E. Reece
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK,Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
O'Donnell AJ, Reece SE. Ecology of asynchronous asexual replication: the intraerythrocytic development cycle of Plasmodium berghei is resistant to host rhythms. Malar J 2021; 20:105. [PMID: 33608011 PMCID: PMC7893937 DOI: 10.1186/s12936-021-03643-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Daily periodicity in the diverse activities of parasites occurs across a broad taxonomic range. The rhythms exhibited by parasites are thought to be adaptations that allow parasites to cope with, or exploit, the consequences of host activities that follow daily rhythms. Malaria parasites (Plasmodium) are well-known for their synchronized cycles of replication within host red blood cells. Whilst most species of Plasmodium appear sensitive to the timing of the daily rhythms of hosts, and even vectors, some species present no detectable rhythms in blood-stage replication. Why the intraerythrocytic development cycle (IDC) of, for example Plasmodium chabaudi, is governed by host rhythms, yet seems completely independent of host rhythms in Plasmodium berghei, another rodent malaria species, is mysterious. METHODS This study reports a series of five experiments probing the relationships between the asynchronous IDC schedule of P. berghei and the rhythms of hosts and vectors by manipulating host time-of-day, photoperiod and feeding rhythms. RESULTS The results reveal that: (i) a lack coordination between host and parasite rhythms does not impose appreciable fitness costs on P. berghei; (ii) the IDC schedule of P. berghei is impervious to host rhythms, including altered photoperiod and host-feeding-related rhythms; (iii) there is weak evidence for daily rhythms in the density and activities of transmission stages; but (iv), these rhythms have little consequence for successful transmission to mosquitoes. CONCLUSIONS Overall, host rhythms do not affect the performance of P. berghei and its asynchronous IDC is resistant to the scheduling forces that underpin synchronous replication in closely related parasites. This suggests that natural variation in the IDC schedule across species represents different parasite strategies that maximize fitness. Thus, subtle differences in the ecological interactions between parasites and their hosts/vectors may select for the evolution of very different IDC schedules.
Collapse
Affiliation(s)
- Aidan J O'Donnell
- Institute of Evolutionary Biology, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Rd, Edinburgh, EH9 3FL, UK.
| | - Sarah E Reece
- Institute of Evolutionary Biology, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Rd, Edinburgh, EH9 3FL, UK
| |
Collapse
|
18
|
van Soest I, del Olmo M, Schmal C, Herzel H. Nonlinear phenomena in models of the circadian clock. J R Soc Interface 2020; 17:20200556. [PMID: 32993432 PMCID: PMC7536064 DOI: 10.1098/rsif.2020.0556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
The mammalian circadian clock is well-known to be important for our sleep-wake cycles, as well as other daily rhythms such as temperature regulation, hormone release or feeding-fasting cycles. Under normal conditions, these daily cyclic events follow 24 h limit cycle oscillations, but under some circumstances, more complex nonlinear phenomena, such as the emergence of chaos, or the splitting of physiological dynamics into oscillations with two different periods, can be observed. These nonlinear events have been described at the organismic and tissue level, but whether they occur at the cellular level is still unknown. Our results show that period-doubling, chaos and splitting appear in different models of the mammalian circadian clock with interlocked feedback loops and in the absence of external forcing. We find that changes in the degradation of clock genes and proteins greatly alter the dynamics of the system and can induce complex nonlinear events. Our findings highlight the role of degradation rates in determining the oscillatory behaviour of clock components, and can contribute to the understanding of molecular mechanisms of circadian dysregulation.
Collapse
Affiliation(s)
- Inge van Soest
- Institute for Theoretical Biology, Charité and Humboldt Universität zu Berlin, 10115 Berlin, Germany
- Master Program Neuroscience and Cognition, Utrecht University, Utrecht, The Netherlands
| | - Marta del Olmo
- Institute for Theoretical Biology, Charité and Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Christoph Schmal
- Institute for Theoretical Biology, Charité and Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Charité and Humboldt Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
19
|
O'Donnell AJ, Prior KF, Reece SE. Host circadian clocks do not set the schedule for the within-host replication of malaria parasites. Proc Biol Sci 2020; 287:20200347. [PMID: 32781954 PMCID: PMC7575513 DOI: 10.1098/rspb.2020.0347] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Circadian clocks coordinate organisms' activities with daily cycles in their environment. Parasites are subject to daily rhythms in the within-host environment, resulting from clock-control of host activities, including immune responses. Parasites also exhibit rhythms in their activities: the timing of within-host replication by malaria parasites is coordinated to host feeding rhythms. Precisely which host feeding-related rhythm(s) parasites align with and how this is achieved are unknown. Understanding rhythmic replication in malaria parasites matters because it underpins disease symptoms and fuels transmission investment. We test if rhythmicity in parasite replication is coordinated with the host's feeding-related rhythms and/or rhythms driven by the host's canonical circadian clock. We find that parasite rhythms coordinate with the time of day that hosts feed in both wild-type and clock-mutant hosts, whereas parasite rhythms become dampened in clock-mutant hosts that eat continuously. Our results hold whether infections are initiated with synchronous or with desynchronized parasites. We conclude that malaria parasite replication is coordinated to rhythmic host processes that are independent of the core-clock proteins PERIOD 1 and 2; most likely, a periodic nutrient made available when the host digests food. Thus, novel interventions could disrupt parasite rhythms to reduce their fitness, without interference by host clock-controlled homeostasis.
Collapse
Affiliation(s)
- Aidan J O'Donnell
- Institute of Evolutionary Biology, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Kimberley F Prior
- Institute of Evolutionary Biology, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Sarah E Reece
- Institute of Evolutionary Biology, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
20
|
Sueviriyapan N, Tso CF, Herzog ED, Henson MA. Astrocytic Modulation of Neuronal Activity in the Suprachiasmatic Nucleus: Insights from Mathematical Modeling. J Biol Rhythms 2020; 35:287-301. [PMID: 32285754 PMCID: PMC7401727 DOI: 10.1177/0748730420913672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus consists of a highly heterogeneous neuronal population networked together to allow precise and robust circadian timekeeping in mammals. While the critical importance of SCN neurons in regulating circadian rhythms has been extensively studied, the roles of SCN astrocytes in circadian system function are not well understood. Recent experiments have demonstrated that SCN astrocytes are circadian oscillators with the same functional clock genes as SCN neurons. Astrocytes generate rhythmic outputs that are thought to modulate neuronal activity through pre- and postsynaptic interactions. In this study, we developed an in silico multicellular model of the SCN clock to investigate the impact of astrocytes in modulating neuronal activity and affecting key clock properties such as circadian rhythmicity, period, and synchronization. The model predicted that astrocytes could alter the rhythmic activity of neurons via bidirectional interactions at tripartite synapses. Specifically, astrocyte-regulated extracellular glutamate was predicted to increase neuropeptide signaling from neurons. Consistent with experimental results, we found that astrocytes could increase the circadian period and enhance neural synchronization according to their endogenous circadian period. The impact of astrocytic modulation of circadian rhythm amplitude, period, and synchronization was predicted to be strongest when astrocytes had periods between 0 and 2 h longer than neurons. Increasing the number of neurons coupled to the astrocyte also increased its impact on period modulation and synchrony. These computational results suggest that signals that modulate astrocytic rhythms or signaling (e.g., as a function of season, age, or treatment) could cause disruptions in circadian rhythm or serve as putative therapeutic targets.
Collapse
Affiliation(s)
- Natthapong Sueviriyapan
- Department of Chemical Engineering and the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Chak Foon Tso
- Department of Biology, Washington University in St. Louis, Saint Louis, MO 63130, USA
- Current Affiliation: Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Erik D. Herzog
- Department of Biology, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Michael A. Henson
- Department of Chemical Engineering and the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
21
|
Abstract
The speed of the circadian clock is regulated by phosphorylation-regulated degradation of the PER protein. However, this model has recently been challenged by genetic studies in mice and fungi. Here, we provide definitive genetic and biochemical evidence that strongly supports the importance of the phosphoswitch-regulated proteolysis of PER2 in regulating the clock. We generated two independent mouse lines with a point mutation in a casein kinase 1-dependent phosphodegron in PER2. These mice have longer circadian rhythms, increased accumulation of circadian proteins, and perturbed temperature compensation. The findings strongly support the phosphoswitch model of regulated PER2 degradation as a central mechanism controlling the speed of the circadian clock. Casein kinase 1 (CK1) plays a central role in regulating the period of the circadian clock. In mammals, PER2 protein abundance is regulated by CK1-mediated phosphorylation and proteasomal degradation. On the other hand, recent studies have questioned whether the degradation of the core circadian machinery is a critical step in clock regulation. Prior cell-based studies found that CK1 phosphorylation of PER2 at Ser478 recruits the ubiquitin E3 ligase β-TrCP, leading to PER2 degradation. Creation of this phosphodegron is regulated by a phosphoswitch that is also implicated in temperature compensation. However, in vivo evidence that this phosphodegron influences circadian period is lacking. Here, we generated and analyzed PER2-Ser478Ala knock-in mice. The mice showed longer circadian period in behavioral analysis. Molecularly, mutant PER2 protein accumulated in both the nucleus and cytoplasm of the mouse liver, while Per2 messenger RNA (mRNA) levels were minimally affected. Nuclear PER1, CRY1, and CRY2 proteins also increased, probably due to stabilization of PER2-containing complexes. In mouse embryonic fibroblasts derived from PER2-Ser478Ala::LUC mice, three-phase decay and temperature compensation of the circadian period was perturbed. These data provide direct in vivo evidence for the importance of phosphorylation-regulated PER2 stability in the circadian clock and validate the phosphoswitch in a mouse model.
Collapse
|
22
|
Identification of the Repressive Domain of the Negative Circadian Clock Component CHRONO. Int J Mol Sci 2020; 21:ijms21072469. [PMID: 32252431 PMCID: PMC7177903 DOI: 10.3390/ijms21072469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 11/17/2022] Open
Abstract
Circadian rhythm is an endogenous, self-sustainable oscillation that participates in regulating organisms’ physiological activities. Key to this oscillation is a negative feedback by the main clock components Periods and Cryptochromes that repress the transcriptional activity of BMAL1/CLOCK (defined in the Abbreviations) complexes. In addition, a novel repressor, CHRONO, has been identified recently, but details of CHRONO’s function during repressing the circadian cycle remain unclear. Here we report that a domain of CHRONO mainly composed of α-helixes is critical to repression through the exploitation of protein–protein interactions according to luciferase reporter assays, co-immunoprecipitation, immunofluorescence, genome editing, and structural information analysis via circular dichroism spectroscopy. This repression is fulfilled by interactions between CHRONO and a region on the C-terminus of BMAL1 where Cryptochrome and CBP (defined in the Abbreviations) bind. Our resultsindicate that CHRONO and PER differentially function as BMAL1/CLOCK-dependent repressors. Besides, the N-terminus of CHRONO is important for its nuclear localization. We further develop a repression model of how PER, CRY, and CHRONO proteins associate with BMAL1, respectively.
Collapse
|
23
|
Hastings MH, Smyllie NJ, Patton AP. Molecular-genetic Manipulation of the Suprachiasmatic Nucleus Circadian Clock. J Mol Biol 2020; 432:3639-3660. [PMID: 31996314 DOI: 10.1016/j.jmb.2020.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 01/08/2023]
Abstract
Circadian (approximately daily) rhythms of physiology and behaviour adapt organisms to the alternating environments of day and night. The suprachiasmatic nucleus (SCN) of the hypothalamus is the principal circadian timekeeper of mammals. The mammalian cell-autonomous circadian clock is built around a self-sustaining transcriptional-translational negative feedback loop (TTFL) in which the negative regulators Per and Cry suppress their own expression, which is driven by the positive regulators Clock and Bmal1. Importantly, such TTFL-based clocks are present in all major tissues across the organism, and the SCN is their central co-ordinator. First, we analyse SCN timekeeping at the cell-autonomous and the circuit-based levels of organisation. We consider how molecular-genetic manipulations have been used to probe cell-autonomous timing in the SCN, identifying the integral components of the clock. Second, we consider new approaches that enable real-time monitoring of the activity of these clock components and clock-driven cellular outputs. Finally, we review how intersectional genetic manipulations of the cell-autonomous clockwork can be used to determine how SCN cells interact to generate an ensemble circadian signal. Critically, it is these network-level interactions that confer on the SCN its emergent properties of robustness, light-entrained phase and precision- properties that are essential for its role as the central co-ordinator. Remaining gaps in knowledge include an understanding of how the TTFL proteins behave individually and in complexes: whether particular SCN neuronal populations act as pacemakers, and if so, by which signalling mechanisms, and finally the nature of the recently discovered role of astrocytes within the SCN network.
Collapse
Affiliation(s)
- Michael H Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| | - Nicola J Smyllie
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Andrew P Patton
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| |
Collapse
|
24
|
Westwood ML, O'Donnell AJ, Schneider P, Albery GF, Prior KF, Reece SE. Testing possible causes of gametocyte reduction in temporally out-of-synch malaria infections. Malar J 2020; 19:17. [PMID: 31937300 PMCID: PMC6958767 DOI: 10.1186/s12936-020-3107-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/07/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The intraerythrocytic development cycle (IDC) of the rodent malaria Plasmodium chabaudi is coordinated with host circadian rhythms. When this coordination is disrupted, parasites suffer a 50% reduction in both asexual stages and sexual stage gametocytes over the acute phase of infection. Reduced gametocyte density may not simply follow from a loss of asexuals because investment into gametocytes ("conversion rate") is a plastic trait; furthermore, the densities of both asexuals and gametocytes are highly dynamic during infection. Hence, the reasons for the reduction of gametocytes in infections that are out-of-synch with host circadian rhythms remain unclear. Here, two explanations are tested: first, whether out-of-synch parasites reduce their conversion rate to prioritize asexual replication via reproductive restraint; second, whether out-of-synch gametocytes experience elevated clearance by the host's circadian immune responses. METHODS First, conversion rate data were analysed from a previous experiment comparing infections of P. chabaudi that were in-synch or 12 h out-of-synch with host circadian rhythms. Second, three new experiments examined whether the inflammatory cytokine TNF varies in its gametocytocidal efficacy according to host time-of-day and gametocyte age. RESULTS There was no evidence that parasites reduce conversion or that their gametocytes become more vulnerable to TNF when out-of-synch with host circadian rhythms. CONCLUSIONS The factors causing the reduction of gametocytes in out-of-synch infections remain mysterious. Candidates for future investigation include alternative rhythmic factors involved in innate immune responses and the rhythmicity in essential resources required for gametocyte development. Explaining why it matters for gametocytes to be synchronized to host circadian rhythms might suggest novel approaches to blocking transmission.
Collapse
Affiliation(s)
- Mary L Westwood
- Institute of Evolutionary Biology and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.
| | - Aidan J O'Donnell
- Institute of Evolutionary Biology and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Petra Schneider
- Institute of Evolutionary Biology and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Gregory F Albery
- Institute of Evolutionary Biology and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
- Department of Biology, Georgetown University, 37th and O Streets NW, Washington, DC, 20057, USA
| | - Kimberley F Prior
- Institute of Evolutionary Biology and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Sarah E Reece
- Institute of Evolutionary Biology and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|
25
|
Zhang D, Pollock DM. Diurnal Regulation of Renal Electrolyte Excretion: The Role of Paracrine Factors. Annu Rev Physiol 2019; 82:343-363. [PMID: 31635525 DOI: 10.1146/annurev-physiol-021119-034446] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many physiological processes, including most kidney-related functions, follow specific rhythms tied to a 24-h cycle. This is largely because circadian genes operate in virtually every cell type in the body. In addition, many noncanonical genes have intrinsic circadian rhythms, especially within the liver and kidney. This new level of complexity applies to the control of renal electrolyte excretion. Furthermore, there is growing evidence that paracrine and autocrine factors, especially the endothelin system, are regulated by clock genes. We have known for decades that excretion of electrolytes is dependent on time of day, which could play an important role in fluid volume balance and blood pressure control. Here, we review what is known about the interplay between paracrine and circadian control of electrolyte excretion. The hope is that recognition of paracrine and circadian factors can be considered more deeply in the future when integrating with well-established neuroendocrine control of excretion.
Collapse
Affiliation(s)
- Dingguo Zhang
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA; ,
| | - David M Pollock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA; ,
| |
Collapse
|
26
|
Xiong Y, Zhou L, Su Z, Song J, Sun Q, Liu SS, Xia Y, Wang Z, Lu D. Longdaysin inhibits Wnt/β-catenin signaling and exhibits antitumor activity against breast cancer. Onco Targets Ther 2019; 12:993-1005. [PMID: 30787621 PMCID: PMC6368421 DOI: 10.2147/ott.s193024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background CK1 is involved in regulating Wnt/β-catenin signaling and represents a promising target for the treatment of breast cancer. A purine derivative longdaysin has recently been identified as a novel modulator of cellular circadian rhythms through targeting the protein kinases CK1δ, CK1α, and ERK2. However, the antitumor activity of longdaysin and its underlying mechanisms remain unclear. Methods The inhibitory effect of longdaysin on Wnt/β-catenin signaling was investigated using the SuperTOPFlash reporter system. The levels of phosphorylated LRP6, total LRP6, DVL2, active β-catenin, and total β-catenin were examined by Western blot. The expression of Wnt target genes was determined using real-time PCR. The ability of colony formation of breast cancer cells was measured by colony formation assay. The effects of longdaysin on cancer cell migration and invasion were assessed using transwell assays. The effect of longdaysin on cancer stem cells was tested by sphere formation assay. The in vivo antitumor effect of longdaysin was evaluated using MDA-MB-231 breast cancer xenografts. Results Longdaysin suppressed Wnt/β-catenin signaling through inhibition of CK1δ and CK1ε in HEK293T cells. In breast cancer Hs578T and MDA-MB-231 cells, micromolar concentrations of longdaysin attenuated the phosphorylation of LRP6 and DVL2 and reduced the expression of active β-catenin and total β-catenin, leading to the downregulation of Wnt target genes Axin2, DKK1, LEF1, and Survivin. Furthermore, longdaysin inhibited the colony formation, migration, invasion, and sphere formation of breast cancer cells. In MDA-MB-231 breast cancer xenografts, treatment with longdaysin suppressed tumor growth in association with inhibition of Wnt/β-catenin signaling. Conclusion Longdaysin is a novel inhibitor of the Wnt/β-catenin signaling pathway. It exerts antitumor effect through blocking CK1δ/ε-dependent Wnt signaling.
Collapse
Affiliation(s)
- Yanpeng Xiong
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China, ;
| | - Liang Zhou
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China, ;
| | - Zijie Su
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China, ;
| | - Jiaxing Song
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China, ;
| | - Qi Sun
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China, ;
| | - Shan-Shan Liu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China, ;
| | - Yuqing Xia
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China, ;
| | - Zhongyuan Wang
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China, ;
| | - Desheng Lu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China, ;
| |
Collapse
|
27
|
Maywood ES. Synchronization and maintenance of circadian timing in the mammalian clockwork. Eur J Neurosci 2018; 51:229-240. [DOI: 10.1111/ejn.14279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/19/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Elizabeth S. Maywood
- Neurobiology DivisionMedical Research Council Laboratory of Molecular Biology Cambridge UK
| |
Collapse
|
28
|
Combined Pharmacological and Genetic Manipulations Unlock Unprecedented Temporal Elasticity and Reveal Phase-Specific Modulation of the Molecular Circadian Clock of the Mouse Suprachiasmatic Nucleus. J Neurosci 2017; 36:9326-41. [PMID: 27605609 DOI: 10.1523/jneurosci.0958-16.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/15/2016] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED The suprachiasmatic nucleus (SCN) is the master circadian oscillator encoding time-of-day information. SCN timekeeping is sustained by a cell-autonomous transcriptional-translational feedback loop, whereby expression of the Period and Cryptochrome genes is negatively regulated by their protein products. This loop in turn drives circadian oscillations in gene expression that direct SCN electrical activity and thence behavior. The robustness of SCN timekeeping is further enhanced by interneuronal, circuit-level coupling. The aim of this study was to combine pharmacological and genetic manipulations to push the SCN clockwork toward its limits and, by doing so, probe cell-autonomous and emergent, circuit-level properties. Circadian oscillation of mouse SCN organotypic slice cultures was monitored as PER2::LUC bioluminescence. SCN of three genetic backgrounds-wild-type, short-period CK1ε(Tau/Tau) mutant, and long-period Fbxl3(Afh/Afh) mutant-all responded reversibly to pharmacological manipulation with period-altering compounds: picrotoxin, PF-670462 (4-[1-Cyclohexyl-4-(4-fluorophenyl)-1H-imidazol-5-yl]-2-pyrimidinamine dihydrochloride), and KNK437 (N-Formyl-3,4-methylenedioxy-benzylidine-gamma-butyrolactam). This revealed a remarkably wide operating range of sustained periods extending across 25 h, from ≤17 h to >42 h. Moreover, this range was maintained at network and single-cell levels. Development of a new technique for formal analysis of circadian waveform, first derivative analysis (FDA), revealed internal phase patterning to the circadian oscillation at these extreme periods and differential phase sensitivity of the SCN to genetic and pharmacological manipulations. For example, FDA of the CK1ε(Tau/Tau) mutant SCN treated with the CK1ε-specific inhibitor PF-4800567 (3-[(3-Chlorophenoxy)methyl]-1-(tetrahydro-2H-pyran-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine hydrochloride) revealed that period acceleration in the mutant is due to inappropriately phased activity of the CK1ε isoform. In conclusion, extreme period manipulation reveals unprecedented elasticity and temporal structure of the SCN circadian oscillation. SIGNIFICANCE STATEMENT The master circadian clock of the suprachiasmatic nucleus (SCN) encodes time-of-day information that allows mammals to predict and thereby adapt to daily environmental cycles. Using combined genetic and pharmacological interventions, we assessed the temporal elasticity of the SCN network. Despite having evolved to generate a 24 h circadian period, we show that the molecular clock is surprisingly elastic, able to reversibly sustain coherent periods between ≤17 and >42 h at the levels of individual cells and the overall circuit. Using quantitative techniques to analyze these extreme periodicities, we reveal that the oscillator progresses as a sequence of distinct stages. These findings reveal new properties of how the SCN functions as a network and should inform biological and mathematical analyses of circadian timekeeping.
Collapse
|
29
|
Riddle M, Mezias E, Foley D, LeSauter J, Silver R. Differential localization of PER1 and PER2 in the brain master circadian clock. Eur J Neurosci 2016; 45:1357-1367. [PMID: 27740710 DOI: 10.1111/ejn.13441] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/15/2016] [Accepted: 10/10/2016] [Indexed: 01/13/2023]
Abstract
The hypothalamic suprachiasmatic nucleus (SCN), locus of the master circadian clock, bears many neuronal types. At the cellular-molecular level, the clock is comprised of feedback loops involving 'clock' genes including Period1 and Period2, and their protein products, PERIOD1 and PERIOD2 (PER1/2). In the canonical model of circadian oscillation, the PER1/2 proteins oscillate together. While their rhythmic expression in the SCN as a whole has been described, the possibility of regional differences remains unknown. To explore these clock proteins in distinct SCN regions, we assessed their expression through the rostro-caudal extent of the SCN in sagittal sections. We developed an automated method for tracking three fluorophores in digital images of sections triply labeled for PER1, PER2, and gastrin-releasing peptide (used to locate the core). In the SCN as a whole, neurons expressing high levels of PER2 were concentrated in the rostral, rostrodorsal, and caudal portions of the nucleus, and those expressing high levels of PER1 lay in a broad central area. Within these overall patterns, adjacent cells differed in expression levels of the two proteins. The results demonstrate spatially distinct localization of high PER1 vs. PER2 expression, raising the possibility that their distribution is functionally significant in encoding and communicating temporal information. The findings provoke the question of whether there are fundamental differences in PER1/2 levels among SCN neurons and/or whether topographical differences in protein expression are a product of SCN network organization rather than intrinsic differences among neurons.
Collapse
Affiliation(s)
- Malini Riddle
- Neuroscience Program, Barnard College of Columbia University, New York, NY, USA
| | - Erica Mezias
- Neuroscience Program, Barnard College of Columbia University, New York, NY, USA
| | - Duncan Foley
- Department of Economics, New School for Social Research, New York, NY, USA
| | - Joseph LeSauter
- Neuroscience Program, Barnard College of Columbia University, New York, NY, USA
| | - Rae Silver
- Neuroscience Program, Barnard College of Columbia University, New York, NY, USA.,Department of Psychology, Columbia University, Mail Code 5501, 1190 Amsterdam Avenue, 406 Schermerhorn Hall, New York, NY, 10027, USA.,Department of Pathology and Cell Biology, Columbia University Health Sciences, New York, NY, USA
| |
Collapse
|
30
|
Smyllie NJ, Pilorz V, Boyd J, Meng QJ, Saer B, Chesham JE, Maywood ES, Krogager TP, Spiller DG, Boot-Handford R, White MRH, Hastings MH, Loudon ASI. Visualizing and Quantifying Intracellular Behavior and Abundance of the Core Circadian Clock Protein PERIOD2. Curr Biol 2016; 26:1880-6. [PMID: 27374340 PMCID: PMC4963210 DOI: 10.1016/j.cub.2016.05.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 11/24/2022]
Abstract
Transcriptional-translational feedback loops (TTFLs) are a conserved molecular motif of circadian clocks. The principal clock in mammals is the suprachiasmatic nucleus (SCN) of the hypothalamus. In SCN neurons, auto-regulatory feedback on core clock genes Period (Per) and Cryptochrome (Cry) following nuclear entry of their protein products is the basis of circadian oscillation [1, 2]. In Drosophila clock neurons, the movement of dPer into the nucleus is subject to a circadian gate that generates a delay in the TTFL, and this delay is thought to be critical for oscillation [3, 4]. Analysis of the Drosophila clock has strongly influenced models of the mammalian clock, and such models typically infer complex spatiotemporal, intracellular behaviors of mammalian clock proteins. There are, however, no direct measures of the intracellular behavior of endogenous circadian proteins to support this: dynamic analyses have been limited and often have no circadian dimension [5, 6, 7]. We therefore generated a knockin mouse expressing a fluorescent fusion of native PER2 protein (PER2::VENUS) for live imaging. PER2::VENUS recapitulates the circadian functions of wild-type PER2 and, importantly, the behavior of PER2::VENUS runs counter to the Drosophila model: it does not exhibit circadian gating of nuclear entry. Using fluorescent imaging of PER2::VENUS, we acquired the first measures of mobility, molecular concentration, and localization of an endogenous circadian protein in individual mammalian cells, and we showed how the mobility and nuclear translocation of PER2 are regulated by casein kinase. These results provide new qualitative and quantitative insights into the cellular mechanism of the mammalian circadian clock. Reporter mouse is used for real-time fluorescent imaging of mammalian clock protein PER2 In contrast to Drosophila, localization of PER2 is not subject to circadian gating Circadian abundance, mobility, and intracellular dynamics of native PER2 are quantified Casein kinase1 controls nucleocytoplasmic mobility of PER2 alongside circadian period
Collapse
Affiliation(s)
- Nicola J Smyllie
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology (LMB), Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Violetta Pilorz
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - James Boyd
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Qing-Jun Meng
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Ben Saer
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Johanna E Chesham
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology (LMB), Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Elizabeth S Maywood
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology (LMB), Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Toke P Krogager
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology (LMB), Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David G Spiller
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Raymond Boot-Handford
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Michael R H White
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Michael H Hastings
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology (LMB), Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Andrew S I Loudon
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
31
|
Early doors (Edo) mutant mouse reveals the importance of period 2 (PER2) PAS domain structure for circadian pacemaking. Proc Natl Acad Sci U S A 2016; 113:2756-61. [PMID: 26903623 DOI: 10.1073/pnas.1517549113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) defines 24 h of time via a transcriptional/posttranslational feedback loop in which transactivation of Per (period) and Cry (cryptochrome) genes by BMAL1-CLOCK complexes is suppressed by PER-CRY complexes. The molecular/structural basis of how circadian protein complexes function is poorly understood. We describe a novel N-ethyl-N-nitrosourea (ENU)-induced mutation, early doors (Edo), in the PER-ARNT-SIM (PAS) domain dimerization region of period 2 (PER2) (I324N) that accelerates the circadian clock of Per2(Edo/Edo) mice by 1.5 h. Structural and biophysical analyses revealed that Edo alters the packing of the highly conserved interdomain linker of the PER2 PAS core such that, although PER2(Edo) complexes with clock proteins, its vulnerability to degradation mediated by casein kinase 1ε (CSNK1E) is increased. The functional relevance of this mutation is revealed by the ultrashort (<19 h) but robust circadian rhythms in Per2(Edo/Edo); Csnk1e(Tau/Tau) mice and the SCN. These periods are unprecedented in mice. Thus, Per2(Edo) reveals a direct causal link between the molecular structure of the PER2 PAS core and the pace of SCN circadian timekeeping.
Collapse
|
32
|
Martin-Fairey CA, Ramanathan C, Stowie A, Walaszczyk E, Smale L, Nunez AA. Plastic oscillators and fixed rhythms: changes in the phase of clock-gene rhythms in the PVN are not reflected in the phase of the melatonin rhythm of grass rats. Neuroscience 2015; 288:178-86. [PMID: 25575946 PMCID: PMC4323925 DOI: 10.1016/j.neuroscience.2014.12.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/31/2022]
Abstract
The same clock-genes, including Period (PER) 1 and 2, that show rhythmic expression in the suprachiasmatic nucleus (SCN) are also rhythmically expressed in other brain regions that serve as extra-SCN oscillators. Outside the hypothalamus, the phase of these extra-SCN oscillators appears to be reversed when diurnal and nocturnal mammals are compared. Based on mRNA data, PER1 protein is expected to peak in the late night in the paraventricular nucleus of the hypothalamus (PVN) of nocturnal laboratory rats, but comparable data are not available for a diurnal species. Here we use the diurnal grass rat (Arvicanthis niloticus) to describe rhythms of PER1 and 2 proteins in the PVN of animals that either show the species-typical day-active (DA) profile, or that adopt a night-active (NA) profile when given access to running wheels. For DA animals housed with or without wheels, significant rhythms of PER1 or PER2 protein expression featured peaks in the late morning; NA animals showed patterns similar to those expected from nocturnal laboratory rats. Since the PVN is part of the circuit that controls pineal rhythms, we also measured circulating levels of melatonin during the day and night in DA animals with and without wheels and in NA wheel runners. All three groups showed elevated levels of melatonin at night, with higher levels during both the day and night being associated with the levels of activity displayed by each group. The differential phase of rhythms in the clock-gene protein in the PVN of diurnal and nocturnal animals presents a possible mechanism for explaining species differences in the phase of autonomic rhythms controlled, in part, by the PVN. The present study suggests that the phase of the oscillator of the PVN does not determine that of the melatonin rhythm in diurnal and nocturnal species or in diurnal and nocturnal chronotypes within a species.
Collapse
Affiliation(s)
- C A Martin-Fairey
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| | - C Ramanathan
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| | - A Stowie
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| | - E Walaszczyk
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA.
| | - L Smale
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| | - A A Nunez
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
33
|
Frank E, Benabou M, Bentzley B, Bianchi M, Goldstein T, Konopka G, Maywood E, Pritchett D, Sheaves B, Thomas J. Influencing circadian and sleep-wake regulation for prevention and intervention in mood and anxiety disorders: what makes a good homeostat? Ann N Y Acad Sci 2014; 1334:1-25. [PMID: 25532787 PMCID: PMC4350368 DOI: 10.1111/nyas.12600] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
All living organisms depend on homeostasis, the complex set of interacting metabolic chemical reactions for maintaining life and well-being. This is no less true for psychiatric well-being than for physical well-being. Indeed, a focus on homeostasis forces us to see how inextricably linked mental and physical well-being are. This paper focuses on these linkages. In particular, it addresses the ways in which understanding of disturbed homeostasis may aid in creating classes of patients with mood and anxiety disorders based on such phenotypes. At the cellular level, we may be able to compensate for the inability to study living brain tissue through the study of homeostatic mechanisms in fibroblasts, pluripotent human cells, and mitochondria and determine how homeostasis is disturbed at the level of these peripheral tissues through exogenous stress. We also emphasize the remarkable opportunities for enhancing knowledge in this area that are offered by advances in technology. The study of human behavior, especially when combined with our greatly improved capacity to study unique but isolated populations, offers particularly clear windows into the relationships among genetic, environmental, and behavioral contributions to homeostasis.
Collapse
Affiliation(s)
- Ellen Frank
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marion Benabou
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | - Brandon Bentzley
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Matt Bianchi
- Department of Neurology, Sleep Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tina Goldstein
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elizabeth Maywood
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - David Pritchett
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Bryony Sheaves
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Jessica Thomas
- Molecular Sleep Laboratory, Glostrup University Hospital, Glostrup, Denmark
| |
Collapse
|
34
|
Knippschild U, Krüger M, Richter J, Xu P, García-Reyes B, Peifer C, Halekotte J, Bakulev V, Bischof J. The CK1 Family: Contribution to Cellular Stress Response and Its Role in Carcinogenesis. Front Oncol 2014; 4:96. [PMID: 24904820 PMCID: PMC4032983 DOI: 10.3389/fonc.2014.00096] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/18/2014] [Indexed: 12/19/2022] Open
Abstract
Members of the highly conserved and ubiquitously expressed pleiotropic CK1 family play major regulatory roles in many cellular processes including DNA-processing and repair, proliferation, cytoskeleton dynamics, vesicular trafficking, apoptosis, and cell differentiation. As a consequence of cellular stress conditions, interaction of CK1 with the mitotic spindle is manifold increased pointing to regulatory functions at the mitotic checkpoint. Furthermore, CK1 is able to alter the activity of key proteins in signal transduction and signal integration molecules. In line with this notion, CK1 is tightly connected to the regulation and degradation of β-catenin, p53, and MDM2. Considering the importance of CK1 for accurate cell division and regulation of tumor suppressor functions, it is not surprising that mutations and alterations in the expression and/or activity of CK1 isoforms are often detected in various tumor entities including cancer of the kidney, choriocarcinomas, breast carcinomas, oral cancer, adenocarcinomas of the pancreas, and ovarian cancer. Therefore, scientific effort has enormously increased (i) to understand the regulation of CK1 and its involvement in tumorigenesis- and tumor progression-related signal transduction pathways and (ii) to develop CK1-specific inhibitors for the use in personalized therapy concepts. In this review, we summarize the current knowledge regarding CK1 regulation, function, and interaction with cellular proteins playing central roles in cellular stress-responses and carcinogenesis.
Collapse
Affiliation(s)
- Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Marc Krüger
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Julia Richter
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Balbina García-Reyes
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Christian Peifer
- Institute for Pharmaceutical Chemistry, Christian Albrechts University , Kiel , Germany
| | - Jakob Halekotte
- Institute for Pharmaceutical Chemistry, Christian Albrechts University , Kiel , Germany
| | - Vasiliy Bakulev
- Department of Organic Synthesis, Ural Federal University , Ekaterinburg , Russia
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| |
Collapse
|