1
|
Smolko NA, Valiev RI, Kabdesh IM, Fayzullina RA, Mukhamedshina YO. Eating disorder in children: Impact on quality of life, with a spotlight on autism spectrum disorder. Nutr Res 2024; 123:38-52. [PMID: 38241984 DOI: 10.1016/j.nutres.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024]
Abstract
Eating behavior, which includes eating habits and preferences, frequency of eating, and other features related to diet, is a major characteristic not only of a person's nutritional status, but also of health in general. In recent years, the prevalence of eating disorders in children has tended to increase; they also require cross-system approaches in diagnosis by a variety of specialists and correction requires appropriate selection of optimal methods. Maladaptive eating attitudes formed at an early age can contribute to the formation of eating disorders, which can lead to or worsen various neuropsychiatric diseases, digestive diseases, and other related conditions. In children with autism spectrum disorder (ASD), eating disorders often appear earlier than other major symptoms of the condition. However, the clinical manifestations of eating disorders in children with ASD are varied and differ in severity and duration, whereas these disorders in neurotypical children might present as short-lived and may not lead to serious consequences. Nevertheless, cases of progressive eating disorders accompanied by a child presenting as under- or overweight and/or with macronutrient and micronutrient deficiencies cannot be excluded. Given the high prevalence of eating disorders in children, many researchers have highlighted the lack of a valid and universally accepted instruments to assess atypical eating behaviors in this population. Therefore, in this review, we wanted to highlight the problems and causes of eating disorders in children, and also to analyze the existing approaches to the validation of these problems, taking into account the existing behavioral features in children with ASD.
Collapse
Affiliation(s)
- Natalia A Smolko
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Department of Propaedeutics of Pediatric Diseases and Faculty Pediatrics, Kazan State Medical University, Kazan, Russia
| | - Rushan I Valiev
- Department of General Hygiene, Kazan State Medical University, Kazan, Russia
| | - Ilyas M Kabdesh
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| | - Rezeda A Fayzullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Department of Propaedeutics of Pediatric Diseases and Faculty Pediatrics, Kazan State Medical University, Kazan, Russia
| | - Yana O Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| |
Collapse
|
2
|
Ardalan M, Chumak T, Quist A, Hermans E, Hoseinpoor Rafati A, Gravina G, Jabbari Shiadeh SM, Svedin P, Alabaf S, Hansen B, Wegener G, Westberg L, Mallard C. Reelin cells and sex-dependent synaptopathology in autism following postnatal immune activation. Br J Pharmacol 2022; 179:4400-4422. [PMID: 35474185 PMCID: PMC9545289 DOI: 10.1111/bph.15859] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Autism spectrum disorders (ASD) are heterogeneous neurodevelopmental disorders with considerably increased risk in male infants born preterm and with neonatal infection. Here, we investigated the role of postnatal immune activation on hippocampal synaptopathology by targeting Reelin+ cells in mice with ASD-like behaviours. EXPERIMENTAL APPROACH C57/Bl6 mouse pups of both sexes received lipopolysaccharide (LPS, 1 mg·kg-1 ) on postnatal day (P) 5. At P45, animal behaviour was examined by marble burying and sociability test, followed by ex vivo brain MRI diffusion kurtosis imaging (DKI). Hippocampal synaptogenesis, number and morphology of Reelin+ cells, and mRNA expression of trans-synaptic genes, including neurexin-3, neuroligin-1, and cell-adhesion molecule nectin-1, were analysed at P12 and P45. KEY RESULTS Social withdrawal and increased stereotypic activities in males were related to increased mean diffusivity on MRI-DKI and overgrowth in hippocampus together with retention of long-thin immature synapses on apical dendrites, decreased volume and number of Reelin+ cells as well as reduced expression of trans-synaptic and cell-adhesion molecules. CONCLUSION AND IMPLICATIONS The study provides new insights into sex-dependent mechanisms that may underlie ASD-like behaviour in males following postnatal immune activation. We identify GABAergic interneurons as core components of dysmaturation of excitatory synapses in the hippocampus following postnatal infection and provide cellular and molecular substrates for the MRI findings with translational value.
Collapse
Affiliation(s)
- Maryam Ardalan
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Clinical Medicine, Translational Neuropsychiatry UnitAarhus UniversityAarhusDenmark
| | - Tetyana Chumak
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Alexandra Quist
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Eva Hermans
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Developmental Origins of Disease, Utrecht Brain Center and Wilhelmina Children's HospitalUtrecht UniversityUtrechtNetherlands
| | - Ali Hoseinpoor Rafati
- Department of Clinical Medicine, Translational Neuropsychiatry UnitAarhus UniversityAarhusDenmark
| | - Giacomo Gravina
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Seyedeh Marziyeh Jabbari Shiadeh
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Clinical Medicine, Translational Neuropsychiatry UnitAarhus UniversityAarhusDenmark
| | - Pernilla Svedin
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Setareh Alabaf
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Brian Hansen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience‐SKSAarhus UniversityAarhusDenmark
| | - Gregers Wegener
- Department of Clinical Medicine, Translational Neuropsychiatry UnitAarhus UniversityAarhusDenmark
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
3
|
Kissoondoyal A, Rai-Bhogal R, Crawford DA. Abnormal dendritic morphology in the cerebellum of cyclooxygenase-2 - knockin mice. Eur J Neurosci 2021; 54:6355-6373. [PMID: 34510613 DOI: 10.1111/ejn.15454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/02/2021] [Indexed: 11/28/2022]
Abstract
Prostaglandin E2 (PGE2) is a bioactive signalling molecule metabolized from the phospholipid membranes by the enzymatic activity of cycloxygenase-2 (COX-2). In the developing brain, COX-2 constitutively regulates the production of PGE2, which is important in neuronal development. However, abnormal COX-2/PGE2 signalling has been linked to neurodevelopmental disorders including autism spectrum disorders (ASDs). We have previously demonstrated that COX-2- -KI mice show autism-related behaviours including social deficits, repetitive behaviours and anxious behaviours. COX-2-deficient mice also have deficits in pathways involved in synaptic transmission and dendritic spine formation. In this study, we use a Golgi-COX staining method to examine sex-dependent differences in dendritic and dendritic spine morphology in neurons of COX-2- -KI mice cerebellum compared with wild-type (WT) matched controls at postnatal day 25 (P25). We show that COX-2- -KI mice have increased dendritic arborization closer to the cell soma and increased dendritic looping. We also observed a sex-dependent effect of the COX-2- -KI on dendritic thickness, dendritic spine density, dendritic spine morphology, and the expression of β-actin and the actin-binding protein spinophilin. Our findings show that changes in COX-2/PGE2 signalling lead to impaired morphology of dendrites and dendritic spines in a sex-dependant manner and may contribute the pathology of the cerebellum seen in individuals with ASD. This study provides further evidence that the COX-2- -KI mouse model can be used to study a subset of ASD pathologies.
Collapse
Affiliation(s)
- Ashby Kissoondoyal
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.,Neuroscience Graduate Diploma Program, York University, Toronto, Ontario, Canada
| | - Ravneet Rai-Bhogal
- Neuroscience Graduate Diploma Program, York University, Toronto, Ontario, Canada.,Department of Biology, York University, Toronto, Ontario, Canada
| | - Dorota A Crawford
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.,Neuroscience Graduate Diploma Program, York University, Toronto, Ontario, Canada.,Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
4
|
The Reeler Mouse: A Translational Model of Human Neurological Conditions, or Simply a Good Tool for Better Understanding Neurodevelopment? J Clin Med 2019; 8:jcm8122088. [PMID: 31805691 PMCID: PMC6947477 DOI: 10.3390/jcm8122088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022] Open
Abstract
The first description of the Reeler mutation in mouse dates to more than fifty years ago, and later, its causative gene (reln) was discovered in mouse, and its human orthologue (RELN) was demonstrated to be causative of lissencephaly 2 (LIS2) and about 20% of the cases of autosomal-dominant lateral temporal epilepsy (ADLTE). In both human and mice, the gene encodes for a glycoprotein referred to as reelin (Reln) that plays a primary function in neuronal migration during development and synaptic stabilization in adulthood. Besides LIS2 and ADLTE, RELN and/or other genes coding for the proteins of the Reln intracellular cascade have been associated substantially to other conditions such as spinocerebellar ataxia type 7 and 37, VLDLR-associated cerebellar hypoplasia, PAFAH1B1-associated lissencephaly, autism, and schizophrenia. According to their modalities of inheritances and with significant differences among each other, these neuropsychiatric disorders can be modeled in the homozygous (reln−/−) or heterozygous (reln+/−) Reeler mouse. The worth of these mice as translational models is discussed, with focus on their construct and face validity. Description of face validity, i.e., the resemblance of phenotypes between the two species, centers onto the histological, neurochemical, and functional observations in the cerebral cortex, hippocampus, and cerebellum of Reeler mice and their human counterparts.
Collapse
|
5
|
Kim JH, Yu DH, Kim HJ, Huh YH, Cho SW, Lee JK, Kim HG, Kim HR. Exposure to 835 MHz radiofrequency electromagnetic field induces autophagy in hippocampus but not in brain stem of mice. Toxicol Ind Health 2017; 34:23-35. [DOI: 10.1177/0748233717740066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The exploding popularity of mobile phones and their close proximity to the brain when in use has raised public concern regarding possible adverse effects from exposure to radiofrequency electromagnetic fields (RF-EMF) on the central nervous system. Numerous studies have suggested that RF-EMF emitted by mobile phones can influence neuronal functions in the brain. Currently, there is still very limited information on what biological mechanisms influence neuronal cells of the brain. In the present study, we explored whether autophagy is triggered in the hippocampus or brain stem after RF-EMF exposure. C57BL/6 mice were exposed to 835 MHz RF-EMF with specific absorption rates (SAR) of 4.0 W/kg for 12 weeks; afterward, the hippocampus and brain stem of mice were dissected and analyzed. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that several autophagic genes, which play key roles in autophagy regulation, were significantly upregulated only in the hippocampus and not in the brain stem. Expression levels of LC3B-II protein and p62, crucial autophagic regulatory proteins, were significantly changed only in the hippocampus. In parallel, transmission electron microscopy (TEM) revealed an increase in the number of autophagosomes and autolysosomes in the hippocampal neurons of RF-EMF-exposed mice. The present study revealed that autophagy was induced in the hippocampus, not in the brain stem, in 835 MHz RF-EMF with an SAR of 4.0 W/kg for 12 weeks. These results could suggest that among the various adaptation processes to the RF-EMF exposure environment, autophagic degradation is one possible mechanism in specific brain regions.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, South Korea
| | - Da-Hyeon Yu
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, South Korea
| | - Hyo-Jeong Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, South Korea
- Center for Electron Microscopy Research, Korea Basic Science Institute, Ochang, Chungbuk, South Korea
| | - Yang Hoon Huh
- Center for Electron Microscopy Research, Korea Basic Science Institute, Ochang, Chungbuk, South Korea
| | - Seong-Wan Cho
- Department of Pharmaceutical Engineering, Konyang University, Nonsan, Chungnam, South Korea
| | - Jin-Koo Lee
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, South Korea
| | - Hyung-Gun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, South Korea
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, South Korea
| |
Collapse
|
6
|
Varghese M, Keshav N, Jacot-Descombes S, Warda T, Wicinski B, Dickstein DL, Harony-Nicolas H, De Rubeis S, Drapeau E, Buxbaum JD, Hof PR. Autism spectrum disorder: neuropathology and animal models. Acta Neuropathol 2017; 134:537-566. [PMID: 28584888 PMCID: PMC5693718 DOI: 10.1007/s00401-017-1736-4] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) has a major impact on the development and social integration of affected individuals and is the most heritable of psychiatric disorders. An increase in the incidence of ASD cases has prompted a surge in research efforts on the underlying neuropathologic processes. We present an overview of current findings in neuropathology studies of ASD using two investigational approaches, postmortem human brains and ASD animal models, and discuss the overlap, limitations, and significance of each. Postmortem examination of ASD brains has revealed global changes including disorganized gray and white matter, increased number of neurons, decreased volume of neuronal soma, and increased neuropil, the last reflecting changes in densities of dendritic spines, cerebral vasculature and glia. Both cortical and non-cortical areas show region-specific abnormalities in neuronal morphology and cytoarchitectural organization, with consistent findings reported from the prefrontal cortex, fusiform gyrus, frontoinsular cortex, cingulate cortex, hippocampus, amygdala, cerebellum and brainstem. The paucity of postmortem human studies linking neuropathology to the underlying etiology has been partly addressed using animal models to explore the impact of genetic and non-genetic factors clinically relevant for the ASD phenotype. Genetically modified models include those based on well-studied monogenic ASD genes (NLGN3, NLGN4, NRXN1, CNTNAP2, SHANK3, MECP2, FMR1, TSC1/2), emerging risk genes (CHD8, SCN2A, SYNGAP1, ARID1B, GRIN2B, DSCAM, TBR1), and copy number variants (15q11-q13 deletion, 15q13.3 microdeletion, 15q11-13 duplication, 16p11.2 deletion and duplication, 22q11.2 deletion). Models of idiopathic ASD include inbred rodent strains that mimic ASD behaviors as well as models developed by environmental interventions such as prenatal exposure to sodium valproate, maternal autoantibodies, and maternal immune activation. In addition to replicating some of the neuropathologic features seen in postmortem studies, a common finding in several animal models of ASD is altered density of dendritic spines, with the direction of the change depending on the specific genetic modification, age and brain region. Overall, postmortem neuropathologic studies with larger sample sizes representative of the various ASD risk genes and diverse clinical phenotypes are warranted to clarify putative etiopathogenic pathways further and to promote the emergence of clinically relevant diagnostic and therapeutic tools. In addition, as genetic alterations may render certain individuals more vulnerable to developing the pathological changes at the synapse underlying the behavioral manifestations of ASD, neuropathologic investigation using genetically modified animal models will help to improve our understanding of the disease mechanisms and enhance the development of targeted treatments.
Collapse
Affiliation(s)
- Merina Varghese
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Neha Keshav
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah Jacot-Descombes
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Unit of Psychiatry, Department of Children and Teenagers, University Hospitals and School of Medicine, Geneva, CH-1205, Switzerland
| | - Tahia Warda
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bridget Wicinski
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dara L Dickstein
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Hala Harony-Nicolas
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elodie Drapeau
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joseph D Buxbaum
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
7
|
Casanova MF, Sokhadze E, Opris I, Wang Y, Li X. Autism spectrum disorders: linking neuropathological findings to treatment with transcranial magnetic stimulation. Acta Paediatr 2015; 104:346-55. [PMID: 25626149 DOI: 10.1111/apa.12943] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 01/09/2023]
Abstract
UNLABELLED Postmortem studies in autism spectrum disorder (ASD) individuals indicate the presence of abnormalities within the peripheral neuropil space (PNS) of cortical minicolumns. The geometrical orientation of inhibitory elements within the PNS suggests using repetitive transcranial magnetic stimulation (rTMS) to up-regulate their activity. Several rTMS trials in ASD have shown marked improvements in motor symptomatology, attention and perceptual binding. CONCLUSION rTMS is the first therapeutic attempt at ASD aimed at correcting some of its core pathology.
Collapse
Affiliation(s)
| | - Estate Sokhadze
- Department of Psychiatry; University of Louisville; Louisville KA USA
| | - Ioan Opris
- Department of Physiology and Pharmacology; Wake Forest University School of Medicine; Winston-Salem NA USA
| | - Yao Wang
- Department of Psychiatry; University of Louisville; Louisville KA USA
- State Key Laboratory of Cognitive Neuroscience and Learning; Beijing Normal University; Beijing China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning; Beijing Normal University; Beijing China
| |
Collapse
|
8
|
Casanova MF, El-Baz AS, Kamat SS, Dombroski BA, Khalifa F, Elnakib A, Soliman A, Allison-McNutt A, Switala AE. Focal cortical dysplasias in autism spectrum disorders. Acta Neuropathol Commun 2013; 1:67. [PMID: 24252498 PMCID: PMC3893372 DOI: 10.1186/2051-5960-1-67] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/22/2013] [Indexed: 01/13/2023] Open
Abstract
Background Previous reports indicate the presence of histological abnormalities in the brains of individuals with autism spectrum disorders (ASD) suggestive of a dysplastic process. In this study we identified areas of abnormal cortical thinning within the cerebral cortex of ASD individuals and examined the same for neuronal morphometric abnormalities by using computerized image analysis. Results The study analyzed celloidin-embedded and Nissl-stained serial full coronal brain sections of 7 autistic (ADI-R diagnosed) and 7 age/sex-matched neurotypicals. Sections were scanned and manually segmented before implementing an algorithm using Laplace’s equation to measure cortical width. Identified areas were then subjected to analysis for neuronal morphometry. Results of our study indicate the presence within our ASD population of circumscribed foci of diminished cortical width that varied among affected individuals both in terms of location and overall size with the frontal lobes being particularly involved. Spatial statistic indicated a reduction in size of neurons within affected areas. Granulometry confirmed the presence of smaller pyramidal cells and suggested a concomitant reduction in the total number of interneurons. Conclusions The neuropathology is consistent with a diagnosis of focal cortical dysplasia (FCD). Results from the medical literature (e.g., heterotopias) and our own study suggest that the genesis of this cortical malformation seemingly resides in the heterochronic divisions of periventricular germinal cells. The end result is that during corticogenesis radially migrating neuroblasts (future pyramidal cells) are desynchronized in their development from those that follow a tangential route (interneurons). The possible presence of a pathological mechanism in common among different conditions expressing an autism-like phenotype argue in favor of considering ASD a “sequence” rather than a syndrome. Focal cortical dysplasias in ASD may serve to explain the high prevalence of seizures and sensory abnormalities in this patient population.
Collapse
|
9
|
Zikopoulos B, Barbas H. Altered neural connectivity in excitatory and inhibitory cortical circuits in autism. Front Hum Neurosci 2013; 7:609. [PMID: 24098278 PMCID: PMC3784686 DOI: 10.3389/fnhum.2013.00609] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/06/2013] [Indexed: 12/12/2022] Open
Abstract
Converging evidence from diverse studies suggests that atypical brain connectivity in autism affects in distinct ways short- and long-range cortical pathways, disrupting neural communication and the balance of excitation and inhibition. This hypothesis is based mostly on functional non-invasive studies that show atypical synchronization and connectivity patterns between cortical areas in children and adults with autism. Indirect methods to study the course and integrity of major brain pathways at low resolution show changes in fractional anisotropy (FA) or diffusivity of the white matter in autism. Findings in post-mortem brains of adults with autism provide evidence of changes in the fine structure of axons below prefrontal cortices, which communicate over short- or long-range pathways with other cortices and subcortical structures. Here we focus on evidence of cellular and axon features that likely underlie the changes in short- and long-range communication in autism. We review recent findings of changes in the shape, thickness, and volume of brain areas, cytoarchitecture, neuronal morphology, cellular elements, and structural and neurochemical features of individual axons in the white matter, where pathology is evident even in gross images. We relate cellular and molecular features to imaging and genetic studies that highlight a variety of polymorphisms and epigenetic factors that primarily affect neurite growth and synapse formation and function in autism. We report preliminary findings of changes in autism in the ratio of distinct types of inhibitory neurons in prefrontal cortex, known to shape network dynamics and the balance of excitation and inhibition. Finally we present a model that synthesizes diverse findings by relating them to developmental events, with a goal to identify common processes that perturb development in autism and affect neural communication, reflected in altered patterns of attention, social interactions, and language.
Collapse
Affiliation(s)
- Basilis Zikopoulos
- Neural Systems Laboratory, Department of Health Sciences, Boston University Boston, MA, USA
| | | |
Collapse
|
10
|
Zafeiriou DI, Ververi A, Dafoulis V, Kalyva E, Vargiami E. Autism spectrum disorders: the quest for genetic syndromes. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:327-66. [PMID: 23650212 DOI: 10.1002/ajmg.b.32152] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 03/01/2013] [Indexed: 11/10/2022]
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disabilities with various etiologies, but with a heritability estimate of more than 90%. Although the strong correlation between autism and genetic factors has been long established, the exact genetic background of ASD remains unclear. A number of genetic syndromes manifest ASD at higher than expected frequencies compared to the general population. These syndromes account for more than 10% of all ASD cases and include tuberous sclerosis, fragile X, Down, neurofibromatosis, Angelman, Prader-Willi, Williams, Duchenne, etc. Clinicians are increasingly required to recognize genetic disorders in individuals with ASD, in terms of providing proper care and prognosis to the patient, as well as genetic counseling to the family. Vice versa, it is equally essential to identify ASD in patients with genetic syndromes, in order to ensure correct management and appropriate educational placement. During investigation of genetic syndromes, a number of issues emerge: impact of intellectual disability in ASD diagnoses, identification of autistic subphenotypes and differences from idiopathic autism, validity of assessment tools designed for idiopathic autism, possible mechanisms for the association with ASD, etc. Findings from the study of genetic syndromes are incorporated into the ongoing research on autism etiology and pathogenesis; different syndromes converge upon common biological backgrounds (such as disrupted molecular pathways and brain circuitries), which probably account for their comorbidity with autism. This review paper critically examines the prevalence and characteristics of the main genetic syndromes, as well as the possible mechanisms for their association with ASD.
Collapse
|
11
|
Carpenter S, Soares H, Brandão O, Souto Moura C, Castro L, Rodrigues E, Cunha AL, Bartosch C. A novel type of familial proximal axonal dystrophy: three cases and a review of the axonal dystrophies. Eur J Paediatr Neurol 2012; 16:292-300. [PMID: 21925911 DOI: 10.1016/j.ejpn.2011.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/24/2011] [Accepted: 08/28/2011] [Indexed: 01/09/2023]
Abstract
Three related infants of Roma ancestry, two of them siblings, showed hypotonia, predominantly axial, from birth, difficulty swallowing, myoclonic seizures, and respiratory difficulty. Dysmorphic features, principally micrognathia were present. EEGs showed focal epileptiform abnormalities. All three died in their 5th month from respiratory insufficiency complicated by pneumonia. Autopsy showed small brains without malformation. Microscopy revealed numerous axonal spheroids involving particularly the brain stem and spinal cord, with especial prominence in the middle cerebellar peduncle, the anterior part of the thalamic reticular nuclei, and the anterior horns and columns of the spinal cord. Spheroids that appeared to be on axons of lower motor neurons were especially large. No spheroids were seen in peripheral nerves; electron microscopy did not show spheroids in skin. By electron microscopy spheroids contained neurofilaments, sparse mitochondria, and electron dense granules. The material did not allow identification of microtubules. Closely packed vesicles excluded neurofilamanets from the center of many spheroids, especially in the middle cerebellar peduncle. Sprouting of axons from the surface of many spheroids was seen. This disease is distinct from the well described type of infantile neuroaxonal dystrophy (Seitelberger's disease) in view of the distribution of spheroids, presence of spheroids on proximal rather than distal parts of axons, sparing of the peripheral nerves, lack of staining for synuclein, presence of sprouting, and lack of membranous profiles in the spheroids. A review of reported types of axonal dystrophy has not shown identical cases.
Collapse
Affiliation(s)
- Stirling Carpenter
- Department of Anatomic Pathology, Hospital São Joâo, Alameda Professor Hernani Monteiro, Porto 4200, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The symptoms of Autism Spectrum Disorder (ASD) have been suggested to manifest from atypical functioning of the autonomic nervous system (ANS), leading to altered arousal and atypical processing of salient stimuli. Coherent with this, persons with ASD show heightened autonomic activity, sleep difficulties, and structural and neurochemical alterations within the ANS. Recently, we observed decreased pupil responses to human faces in children with ASD. In the current study, we found differences in baseline (tonic) pupil size, with the ASD group exhibiting a larger pupil size than age-matched controls. Pupil responses are sensitive and reliable measures of ANS functioning, thus, this finding highlights the role of the ANS, and may provide clues about underlying neuropathology.
Collapse
Affiliation(s)
- Christa J Anderson
- Department of Psychology Schiefelbusch, Institute for Life Span Studies, University of Kansas, Dole Human Development Center, 1000 Sunnyside Avenue, Room 1052, Lawrence, Kansas 66045-7555, USA.
| | | |
Collapse
|
13
|
Bigler ED, Mortensen S, Neeley ES, Ozonoff S, Krasny L, Johnson M, Lu J, Provencal SL, McMahon W, Lainhart JE. Superior temporal gyrus, language function, and autism. Dev Neuropsychol 2007; 31:217-38. [PMID: 17488217 DOI: 10.1080/87565640701190841] [Citation(s) in RCA: 297] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Deficits in language are a core feature of autism. The superior temporal gyrus (STG) is involved in auditory processing, including language, but also has been implicated as a critical structure in social cognition. It was hypothesized that subjects with autism would display different size-function relationships between the STG and intellectual-language-based abilities when compared to controls. Intellectual ability was assessed by either the Wechsler Intelligence Scale for Children-Third Edition (WISC-III) or Wechsler Adult Intelligence Scale-Third Edition (WAIS-III), where three intellectual quotients (IQ) were computed: verbal (VIQ), performance (PIQ), and full-scale (FSIQ). Language ability was assessed by the Clinical Evaluation of Language Fundamentals-Third Edition (CELF-3), also divided into three index scores: receptive, expressive, and total. Seven to 19-year-old rigorously diagnosed subjects with autism (n = 30) were compared to controls (n = 39; 13 of whom had a deficit in reading) of similar age who were matched on education, PIQ, and head circumference. STG volumes were computed based on 1.5 Tesla magnetic resonance imaging (MRI). IQ and CELF-3 performance were highly interrelated regardless of whether subjects had autism or were controls. Both IQ and CELF-3 ability were positively correlated with STG in controls, but a different pattern was observed in subjects with autism. In controls, left STG gray matter was significantly (r = .42, p < or = .05) related to receptive language on the CELF-3; in contrast, a zero order correlation was found with autism. When plotted by age, potential differences in growth trajectories related to language development associated with STG were observed between controls and those subjects with autism. Taken together, these findings suggest a possible failure in left hemisphere lateralization of language function involving the STG in autism.
Collapse
Affiliation(s)
- Erin D Bigler
- Departments of Psychology and Neuroscience, Brigham Young University, Provo, UT 84602, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zafeiriou DI, Ververi A, Vargiami E. Childhood autism and associated comorbidities. Brain Dev 2007; 29:257-72. [PMID: 17084999 DOI: 10.1016/j.braindev.2006.09.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 08/25/2006] [Accepted: 09/06/2006] [Indexed: 12/11/2022]
Abstract
Autism is a heterogeneous neurodevelopmental disorder with a variety of different etiologies, but with a heritability estimate of more than 90%. Although the strong correlation between autism and genetic factors has been long established, the exact genetic background of autism is still unclear. This review refers to all the genetic syndromes that have been described in children with pervasive developmental disorders (tuberous sclerosis, fragile X, Down, neurofibromatosis, Angelman, Prader-Willi, Gilles de la Tourette, Williams, etc.). Issues covered include prevalence and main characteristics of each syndrome, as well as the possible base of its association with autism in terms of contribution to the current knowledge on the etiology and genetic base of pervasive developmental disorders.
Collapse
Affiliation(s)
- Dimitrios I Zafeiriou
- 1st Department of Pediatrics, Aristotle University of Thessaloniki, Egnatia St. 106, 54622 Thessaloniki, Greece.
| | | | | |
Collapse
|
15
|
Mukaetova-Ladinska EB, Arnold H, Jaros E, Perry R, Perry E. Depletion of MAP2 expression and laminar cytoarchitectonic changes in dorsolateral prefrontal cortex in adult autistic individuals. Neuropathol Appl Neurobiol 2004; 30:615-23. [PMID: 15541002 DOI: 10.1111/j.1365-2990.2004.00574.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neuropathological substrates underlying the characteristic clinical phenotype of autism are unknown. Neuroimaging studies have identified a decrease in task-related activation in the dorsolateral prefrontal cortex in autism. In the current study, we have analysed the dorsolateral prefrontal cortex in two adult individuals with a clinical diagnosis of autism, using Nissl staining and MAP2 immunohistochemistry. There was unchanged density of both neuronal and glial cell pools, although the autistic individuals had ill-defined neocortical cellular layers, substantially depleted MAP2 neuronal expression, and reduced dendrite numbers. Further studies on a larger number of individuals with autism are needed to establish the clinical relevance of the described changes, especially to determine whether the loss of dendritic markers is age associated or disease specific.
Collapse
|