1
|
Shalbi F, Ali AR. A mini-review on integrase inhibitors: The cornerstone of next-generation HIV treatment. Eur J Med Chem 2024; 279:116900. [PMID: 39332384 DOI: 10.1016/j.ejmech.2024.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Integrase inhibitors represent one of the most remarkable and effective advances in the treatment of HIV-1 infection. Their lack of human cellular equivalence has established integrase as a unique and ideal target for HIV-1 treatment. Over the last two decades, a variety of drugs and small molecule inhibitors have been developed to control or treat HIV infection. Many of these FDA-approved drugs are considered first-line options for AIDS patients. Unfortunately, resistance to these drugs has dictated the development of novel and more efficacious antiretroviral drugs. In this review article, we illustrate the key classes of antiretroviral integrase inhibitors available. We provide a comprehensive analysis of recent advancements in the development of integrase inhibitors, focusing on novel compounds and their distinct mechanisms of action. Our literature review highlights emerging allosteric integrase inhibitors that offer improved efficacy, resistance profiles, and pharmacokinetics. By integrating these recent advancements and clinical insights, this review aims to provide a thorough and updated understanding of integrase inhibitors, emphasizing their evolving role in HIV treatment.
Collapse
Affiliation(s)
- Fathi Shalbi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed R Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
2
|
Singh I, Srivastava R, Shukla VK, Pathak SK, Burman T, Al-Mutairi AA, El-Emam AA, Prasad O, Sinha L. Spectroscopic, electronic structure, molecular docking, and molecular dynamics simulation study of 7-Trifluoromethyl-1H-indole-2-carboxylic acid as an aromatase inhibitor. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121530. [PMID: 35752037 DOI: 10.1016/j.saa.2022.121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 10/31/2022]
Abstract
The present work encompasses a combined experimental and theoretical investigation of the molecular structure, vibrational wavenumbers, electronic structure at the ground and electronic excited states, molecular electrostatic potential surface of 7-(Trifluoromethyl)-1H-indole-2-carboxylic acid (TICA) and possibility of the title molecule as an aromatase inhibitor using molecular docking and molecular dynamic simulations. A stable conformer has been obtained using potential energy scans by varying appropriate dihedral angles. The obtained minimum energy conformer was further optimized at the 6-311++G (d, p) basis set by applying the most accepted B3LYP functional. A good agreement between experimental and calculated normal modes of vibration has been observed. The hydrogen-bonded interaction between two monomeric units of TICA has been investigated using NBO,QTAIM, and NCI (noncovalent interactions) analysis. Molecular docking of TICA with human placental aromatase (PDB ID: 3S79) reveals the formation of polar hydrogen bonds as well as hydrophobic interactions between the ligand and the protein, right in the binding cavity. TICA satisfies all pharmacokinetic filters (Lipinski rule of five, the Veber rule, Ghose rule, Egan rule, as well as the Muegge rule) and has a high bioavailability score of 0.85. Dynamic stability of the ligand within the binding pocket of the target protein has been confirmed by 100 ns molecular dynamics simulation results. The present study provides an excellent starting point for additional in vivo research, and TICA may eventually serve as a significant therapeutic candidate for the treatment of breast cancer.
Collapse
Affiliation(s)
- Isha Singh
- Department of Physics, University of Lucknow, 226007 Lucknow, India
| | - Ruchi Srivastava
- Department of Physics, University of Lucknow, 226007 Lucknow, India
| | - Vikas K Shukla
- Department of Physics, Maharishi University of Information Technology Lucknow, Uttar Pradesh, India
| | - Shilendra K Pathak
- Department of Physics, M. M. M. P. G. College, Bhatpar Rani, Deoria, India
| | | | - Aamal A Al-Mutairi
- Department of Chemistry, College of Sciences, Imam Mohammad lbn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Ali A El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Onkar Prasad
- Department of Physics, University of Lucknow, 226007 Lucknow, India
| | - Leena Sinha
- Department of Physics, University of Lucknow, 226007 Lucknow, India.
| |
Collapse
|
3
|
Esposito F, Sechi M, Pala N, Sanna A, Koneru PC, Kvaratskhelia M, Naesens L, Corona A, Grandi N, di Santo R, D'Amore VM, Di Leva FS, Novellino E, Cosconati S, Tramontano E. Discovery of dihydroxyindole-2-carboxylic acid derivatives as dual allosteric HIV-1 Integrase and Reverse Transcriptase associated Ribonuclease H inhibitors. Antiviral Res 2019; 174:104671. [PMID: 31812637 DOI: 10.1016/j.antiviral.2019.104671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
The management of Human Immunodeficiency Virus type 1 (HIV-1) infection requires life-long treatment that is associated with chronic toxicity and possible selection of drug-resistant strains. A new opportunity for drug intervention is offered by antivirals that act as allosteric inhibitors targeting two viral functions (dual inhibitors). In this work, we investigated the effects of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) derivatives on both HIV-1 Integrase (IN) and Reverse Transcriptase associated Ribonuclease H (RNase H) activities. Among the tested compounds, the dihydroxyindole-carboxamide 5 was able to inhibit in the low micromolar range (1-18 μM) multiple functions of IN, including functional IN-IN interactions, IN-LEDGF/p75 binding and IN catalytic activity. Docking and site-directed mutagenesis studies have suggested that compound 5 binds to a previously described HIV-1 IN allosteric pocket. These observations indicate that 5 is structurally and mechanistically distinct from the published allosteric HIV-1 IN inhibitors. Moreover, compound 5 also inhibited HIV-1 RNase H function, classifying this molecule as a dual HIV-1 IN and RNase H inhibitor able to impair the HIV-1 virus replication in cell culture. Overall, we identified a new scaffold as a suitable platform for the development of novel dual HIV-1 inhibitors.
Collapse
Affiliation(s)
- Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042, Monserrato (CA), Italy.
| | - Mario Sechi
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Nicolino Pala
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Adele Sanna
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Pratibha Chowdary Koneru
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven, B-3000, Leuven, Belgium
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042, Monserrato (CA), Italy
| | - Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042, Monserrato (CA), Italy
| | - Roberto di Santo
- Department of Drug Chemistry and Technologies, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, Roma, Italy
| | - Vincenzo Maria D'Amore
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | | | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Sandro Cosconati
- DiSTABiF, University of Campania Luigi Vanvitelli, Via Vivaldi, 43, 81100, Caserta, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042, Monserrato (CA), Italy
| |
Collapse
|
4
|
Caffeates and Caffeamides: Synthetic Methodologies and Their Antioxidant Properties. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2019; 2019:2592609. [PMID: 31815016 PMCID: PMC6877993 DOI: 10.1155/2019/2592609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
Polyphenols are secondary metabolites of plants and include a variety of chemical structures, from simple molecules such as phenolic acids to condensed tannins and highly polymerized compounds. Caffeic acid (3,4-dihydroxycinnamic acid) is one of the hydroxycinnamate metabolites more widely distributed in plant tissues. It is present in many food sources, including coffee drinks, blueberries, apples, and cider, and also in several medications of popular use, mainly those based on propolis. Its derivatives are also known to possess anti-inflammatory, antioxidant, antitumor, and antibacterial activities, and can contribute to the prevention of atherosclerosis and other cardiovascular diseases. This review is an overview of the available information about the chemical synthesis and antioxidant activity of caffeic acid derivatives. Considering the relevance of these compounds in human health, many of them have been the focus of reviews, taking as a center their obtaining from the plants. There are few revisions that compile the chemical synthesis methods, in this way, we consider that this review does an important contribution.
Collapse
|
5
|
Boraei AT, Singh PK, Sechi M, Satta S. Discovery of novel functionalized 1,2,4-triazoles as PARP-1 inhibitors in breast cancer: Design, synthesis and antitumor activity evaluation. Eur J Med Chem 2019; 182:111621. [DOI: 10.1016/j.ejmech.2019.111621] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022]
|
6
|
Hasan P, Pillalamarri VK, Aneja B, Irfan M, Azam M, Perwez A, Maguire R, Yadava U, Kavanagh K, Daniliuc CG, Ahmad MB, Rizvi MMA, Rizwanul Haq QM, Addlagatta A, Abid M. Synthesis and mechanistic studies of diketo acids and their bioisosteres as potential antibacterial agents. Eur J Med Chem 2018; 163:67-82. [PMID: 30503944 DOI: 10.1016/j.ejmech.2018.11.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/13/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022]
Abstract
A series of diketo esters and their pertinent bioisosteres were designed and synthesized as potent antibacterial agents by targeting methionine amino peptidases (MetAPs). In the biochemical assay against purified MetAPs from Streptococcus pneumoniae (SpMetAP1a), Mycobacterium tuberculosis (MtMetAP1c), Enterococcus faecalis (EfMetAP1a) and human (HsMetAP1b), compounds 3a, 4a and 5a showed more than 85% inhibition of all the tested MetAPs at 100 μM concentration. Compounds 4a and 5a also exhibited antibacterial potential with MIC values 62.5 μg/mL (S. pneumoniae), 31.25 μg/mL (E. faecalis), 62.5 μg/mL (Escherichia coli) and 62.5 μg/mL (S. pneumoniae), 62.5 μg/mL (E. coli), respectively. Moreover, 5a also significantly inhibited the growth of multidrug resistant E. coli strains at 512 μg/mL conc., while showing no cytotoxic effect towards healthy CHO cells and thus being selected. Growth kinetics study showed significant inhibition of bacterial growth when treated with different conc. of 5a. TEM analysis also displayed vital damage to bacterial cells by 5a at MIC conc. Moreover, significant inhibition of biofilm formation was observed in bacterial cells treated with MIC conc. of 5a as visualized by SEM micrographs. Interestingly, 5a did not cause an alteration in the hemocyte density in Galleria mellonella larvae which is considered in vivo model for antimicrobial studies and was non-toxic up to a conc. of 2.5 mg/mL.
Collapse
Affiliation(s)
- Phool Hasan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India; Department of Chemistry, TNB College, TM Bhagalpur University, Bhagalpur, 812007, India
| | - Vijay K Pillalamarri
- Centre for Chemical Biology, Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500607, India
| | - Babita Aneja
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohammad Irfan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mudsser Azam
- Microbiology Research Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Ahmad Perwez
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Ronan Maguire
- Department of Biology, Maynooth University, Co. Kildare, W23 F2H6, Ireland
| | - Umesh Yadava
- Department of Physics, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Co. Kildare, W23 F2H6, Ireland
| | | | - Md Belal Ahmad
- Department of Chemistry, TNB College, TM Bhagalpur University, Bhagalpur, 812007, India
| | - M Moshahid A Rizvi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Qazi Mohd Rizwanul Haq
- Microbiology Research Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Anthony Addlagatta
- Centre for Chemical Biology, Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500607, India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
7
|
Aebly AH, Levy J, Steger BJ, Quirke JC, Belitsky JM. Expedient synthesis of eumelanin-inspired 5,6-dihydroxyindole-2-carboxylate ethyl ester derivatives. RSC Adv 2018; 8:28323-28328. [PMID: 35542496 PMCID: PMC9083952 DOI: 10.1039/c8ra06148c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/03/2019] [Accepted: 07/28/2018] [Indexed: 11/21/2022] Open
Abstract
Dihydroxyindoles such as 5,6-dihydroxyindole-2-carboxylic acid (DHICA) are the main monomer units of eumelanin, the black to brown pigment in humans, and have emerging biological roles beyond melanin. Elaboration of commercially available 5,6-dimethoxy-2-carboxylate ethyl ester provides ready access to DHICA-inspired small molecules, including 3-(hetero)aryl-indoles and 4,7-di-(hetero)aryl-indoles. Two concise syntheses of novel aryl- and heteroaryl-substituted 5,6-dimethoxyindole-2-carboxylate ethyl esters utilizing regioselective halogenation/dehalogenation and Suzuki coupling are presented.![]()
Collapse
Affiliation(s)
- Andrew H. Aebly
- Department of Chemistry and Biochemistry
- Oberlin College
- Oberlin
- USA
| | - Jeffrey N. Levy
- Department of Chemistry and Biochemistry
- Oberlin College
- Oberlin
- USA
| | | | | | | |
Collapse
|
8
|
Pala N, Stevaert A, Dallocchio R, Dessì A, Rogolino D, Carcelli M, Sanna V, Sechi M, Naesens L. Virtual Screening and Biological Validation of Novel Influenza Virus PA Endonuclease Inhibitors. ACS Med Chem Lett 2015; 6:866-71. [PMID: 26288686 DOI: 10.1021/acsmedchemlett.5b00109] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/18/2015] [Indexed: 01/01/2023] Open
Abstract
The influenza virus RNA-dependent RNA polymerase complex (RdRp), a heterotrimeric protein complex responsible for viral RNA transcription and replication, represents a primary target for antiviral drug development. One particularly attractive approach is interference with the endonucleolytic "cap-snatching" reaction by the RdRp subunit PA, more precisely by inhibiting its metal-dependent catalytic activity which resides in the N-terminal part of PA (PA-Nter). Almost all PA inhibitors (PAIs) thus far discovered bear pharmacophoric fragments with chelating motifs able to bind the bivalent metal ions in the catalytic core of PA-Nter. More recently, the availability of crystallographic structures of PA-Nter has enabled rational design of original PAIs with improved binding properties and antiviral potency. We here present a coupled pharmacophore/docking virtual screening approach that allowed us to identify PAIs with interesting inhibitory activity in a PA-Nter enzymatic assay. Moreover, antiviral activity in the low micromolar range was observed in cell-based influenza virus assays.
Collapse
Affiliation(s)
- Nicolino Pala
- Dipartimento
di Chimica e Farmacia, Università di Sassari, Via Vienna
2, 07100 Sassari, Italy
| | - Annelies Stevaert
- Rega
Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Roberto Dallocchio
- Istituto
di Chimica Biomolecolare, CNR−Consiglio Nazionale delle Ricerche, Sassari, 07100 Li Punti Italy
| | - Alessandro Dessì
- Istituto
di Chimica Biomolecolare, CNR−Consiglio Nazionale delle Ricerche, Sassari, 07100 Li Punti Italy
| | - Dominga Rogolino
- Dipartimento
di Chimica, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Mauro Carcelli
- Dipartimento
di Chimica, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Vanna Sanna
- Dipartimento
di Chimica e Farmacia, Università di Sassari, Via Vienna
2, 07100 Sassari, Italy
| | - Mario Sechi
- Dipartimento
di Chimica e Farmacia, Università di Sassari, Via Vienna
2, 07100 Sassari, Italy
| | - Lieve Naesens
- Rega
Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|
9
|
Mutational analysis of the binding pockets of the diketo acid inhibitor L-742,001 in the influenza virus PA endonuclease. J Virol 2013; 87:10524-38. [PMID: 23824822 DOI: 10.1128/jvi.00832-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influenza virus PA endonuclease, which cleaves capped host pre-mRNAs to initiate synthesis of viral mRNA, is a prime target for antiviral therapy. The diketo acid compound L-742,001 was previously identified as a potent inhibitor of the influenza virus endonuclease reaction, but information on its precise binding mode to PA or potential resistance profile is limited. Computer-assisted docking of L-742,001 into the crystal structure of inhibitor-free N-terminal PA (PA-Nter) indicated a binding orientation distinct from that seen in a recent crystallographic study with L-742,001-bound PA-Nter (R. M. DuBois et al., PLoS Pathog. 8:e1002830, 2012). A comprehensive mutational analysis was performed to determine which amino acid changes within the catalytic center of PA or its surrounding hydrophobic pockets alter the antiviral sensitivity to L-742,001 in cell culture. Marked (up to 20-fold) resistance to L-742,001 was observed for the H41A, I120T, and G81F/V/T mutant forms of PA. Two- to 3-fold resistance was seen for the T20A, L42T, and V122T mutants, and the R124Q and Y130A mutants were 3-fold more sensitive to L-742,001. Several mutations situated at noncatalytic sites in PA had no or only marginal impact on the enzymatic functionality of viral ribonucleoprotein complexes reconstituted in cell culture, consistent with the less conserved nature of these PA residues. Our data provide relevant insights into the binding mode of L-742,001 in the PA endonuclease active site. In addition, we predict some potential resistance sites that should be taken into account during optimization of PA endonuclease inhibitors toward tight binding in any of the hydrophobic pockets surrounding the catalytic center of the enzyme.
Collapse
|
10
|
Sechi M, Innocenti A, Pala N, Rogolino D, Carcelli M, Scozzafava A, Supuran CT. Inhibition of α-class cytosolic human carbonic anhydrases I, II, IX and XII, and β-class fungal enzymes by carboxylic acids and their derivatives: New isoform-I selective nanomolar inhibitors. Bioorg Med Chem Lett 2012; 22:5801-6. [DOI: 10.1016/j.bmcl.2012.07.094] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 01/11/2023]
|
11
|
d'Ischia M, Napolitano A, Pezzella A. 5,6‐Dihydroxyindole Chemistry: Unexplored Opportunities Beyond Eumelanin. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100796] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marco d'Ischia
- Department of Organic Chemistry and Biochemistry, University of Naples “Federico II”, Via Cintia 4, 80126 Naples, Italy
| | - Alessandra Napolitano
- Department of Organic Chemistry and Biochemistry, University of Naples “Federico II”, Via Cintia 4, 80126 Naples, Italy
| | - Alessandro Pezzella
- Department of Organic Chemistry and Biochemistry, University of Naples “Federico II”, Via Cintia 4, 80126 Naples, Italy
| |
Collapse
|
12
|
The 156KELK159 tetrapeptide of HIV-1 integrase is critical for lentiviral gene integration. Mol Biol Rep 2011; 39:343-9. [PMID: 21556766 DOI: 10.1007/s11033-011-0744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Abstract
HIV-1 integrase (HIV-1 IN), a key element of HIV-1-derived lentiviral vectors, is crucial for the stable maintenance of the vector gene by inserting them into host genome. HIV-1 IN has been found to have functions other than integration, such as involving in virion morphology, viral DNA synthesis and viral DNA nuclear import. In our study, the yeast two-hybrid assay identified a tetrapeptide 156KELK159 in HIV-1 IN that was crucial for HIV-1 IN and Daxx interaction. To investigate the functions of the tetrapeptide 156KELK159 of the HIV-1 IN, both the wild type HIV-1 IN and a mutant without 156KELK159 were used to package the EGFP reporter gene contained lentivirus. p24 based titer assay revealed that deleting the tetrapeptide did not affect virus packaging. The result was verified by quantitative real time PCR with viral specific primers. But the 156KELK159 was crucial for lentiviral gene integration. Deleting the tetrapeptide made the percentage of cells expressing the reporter gene significantly decreased and did not affect the level of DNA entered into the cells or nucleus. Real time reverse transcription PCR and FACS were used to detect the lentiviral report gene expression in infection maintaining cells and revealed 156KELK159 did not affect lentiviral vector gene expression. Our results may shed light on the regulatory mechanism of gene integration of lentivirus.
Collapse
|
13
|
Pala N, Dallocchio R, Dessì A, Brancale A, Carta F, Ihm S, Maresca A, Sechi M, Supuran CT. Virtual screening-driven identification of human carbonic anhydrase inhibitors incorporating an original, new pharmacophore. Bioorg Med Chem Lett 2011; 21:2515-20. [DOI: 10.1016/j.bmcl.2011.02.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/10/2011] [Accepted: 02/12/2011] [Indexed: 11/16/2022]
|
14
|
Marchand C, Maddali K, Métifiot M, Pommier Y. HIV-1 IN inhibitors: 2010 update and perspectives. Curr Top Med Chem 2010; 9:1016-37. [PMID: 19747122 DOI: 10.2174/156802609789630910] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 06/13/2009] [Indexed: 12/29/2022]
Abstract
Integrase (IN) is the newest validated target against AIDS and retroviral infections. The remarkable activity of raltegravir (Isentress((R))) led to its rapid approval by the FDA in 2007 as the first IN inhibitor. Several other IN strand transfer inhibitors (STIs) are in development with the primary goal to overcome resistance due to the rapid occurrence of IN mutations in raltegravir-treated patients. Thus, many scientists and drug companies are actively pursuing clinically useful IN inhibitors. The objective of this review is to provide an update on the IN inhibitors reported in the last two years, including second generation STI, recently developed hydroxylated aromatics, natural products, peptide, antibody and oligonucleotide inhibitors. Additionally, the targeting of IN cofactors such as LEDGF and Vpr will be discussed as novel strategies for the treatment of AIDS.
Collapse
Affiliation(s)
- Christophe Marchand
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
15
|
Design, synthesis, molecular modeling, and anti-HIV-1 integrase activity of a series of photoactivatable diketo acid-containing inhibitors as affinity probes. Antiviral Res 2009; 81:267-76. [PMID: 19135482 DOI: 10.1016/j.antiviral.2008.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 12/06/2008] [Accepted: 12/11/2008] [Indexed: 11/23/2022]
Abstract
The diketo acid (DKA) class of HIV-1 integrase (IN) inhibitors is thought to function by chelating divalent metal ions on the enzyme catalytic site. However, differences in mutations conferring resistance to various DKA inhibitors suggest that multiple binding orientations may exist. In order to facilitate identification of DKA binding sites, a series of photoactivable analogues of two potent DKAs was prepared as novel photoaffinity probes. In cross-linking assays designed to measure disruption of substrate DNA binding, the photoprobes behaved similarly to a reference DKA inhibitor. Molecular modeling studies suggest that such photoprobes interact within the IN active site in a manner similar to that of the parent DKAs. Analogues Ia-c are novel photoaffinity ligands useful in clarifying the HIV-1 binding interactions of DKA inhibitors.
Collapse
|
16
|
Sechi M, Azzena U, Delussu MP, Dallocchio R, Dessì A, Cosseddu A, Pala N, Neamati N. Design and synthesis of bis-amide and hydrazide-containing derivatives of malonic acid as potential HIV-1 integrase inhibitors. Molecules 2008; 13:2442-61. [PMID: 18830166 PMCID: PMC6245433 DOI: 10.3390/molecules13102442] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 09/19/2008] [Accepted: 09/19/2008] [Indexed: 12/03/2022] Open
Abstract
HIV-1 integrase (IN) is an attractive and validated target for the development of novel therapeutics against AIDS. In the search for new IN inhibitors, we designed and synthesized three series of bis-amide and hydrazide-containing derivatives of malonic acid. We performed a docking study to investigate the potential interactions of the title compounds with essential amino acids on the IN active site.
Collapse
Affiliation(s)
- Mario Sechi
- Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy; E-mails: (M-P. D.); (N. P.)
- Authors to whom correspondence should be addressed; E-mail: (M. S.); (N. N.); Tel.: +39 079228 753 (M. S.); Tel.: +1 323-442-2341 (N. N.); Fax: +39 079 228 720 (M. S.); Fax: +1 323-442-1390 (N. N.)
| | - Ugo Azzena
- Dipartimento di Chimica, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy; E-mail:
| | - Maria Paola Delussu
- Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy; E-mails: (M-P. D.); (N. P.)
| | - Roberto Dallocchio
- CNR-Istituto di Chimica Biomolecolare, Sassari, 07040 Li Punti, Italy; E-mails: (R. D.); (A. D.)
| | - Alessandro Dessì
- CNR-Istituto di Chimica Biomolecolare, Sassari, 07040 Li Punti, Italy; E-mails: (R. D.); (A. D.)
| | - Alessia Cosseddu
- Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via A. Moro, 53100 Siena, Italy; E-mail:
| | - Nicolino Pala
- Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy; E-mails: (M-P. D.); (N. P.)
| | - Nouri Neamati
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, PSC 304, Los Angeles, California, 90089, USA
- Authors to whom correspondence should be addressed; E-mail: (M. S.); (N. N.); Tel.: +39 079228 753 (M. S.); Tel.: +1 323-442-2341 (N. N.); Fax: +39 079 228 720 (M. S.); Fax: +1 323-442-1390 (N. N.)
| |
Collapse
|
17
|
Huleatt PB, Choo SS, Chua S, Chai CL. Expedient routes to valuable bromo-5,6-dimethoxyindole building blocks. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.06.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Dubey S, Satyanarayana YD, Lavania H. Development of integrase inhibitors for treatment of AIDS: An overview. Eur J Med Chem 2007; 42:1159-68. [PMID: 17367896 DOI: 10.1016/j.ejmech.2007.01.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 01/18/2007] [Accepted: 01/19/2007] [Indexed: 11/22/2022]
Abstract
HIV-1 integrase (IN) is an essential enzyme for retroviral replication. It is involved in the integration of HIV DNA into host chromosomal DNA. The unique properties of IN makes it an ideal target for drug design. First, there appears to have no functional equivalent in human cells and the reactions catalyzed by IN are unique. Second, IN is absolutely required for viral replication and mutations in a number of key residues block the viral replication. Third, IN has been validated as a legitimate target and the results from the molecules like S-1,360, JKT-303 which are under phase II/III clinical trials suggest synergistic effect with reverse transcriptase (RT) and protease (PR) inhibitors. During the past 10 years a plethora of inhibitors have been identified and some were shown to be selective against IN and block viral replication. The classes under which inhibitors of integrase can be classified are catechol-containing hydroxylated aromatics, diketoacid-containing aromatics, quninolines and others (non-catechol containing). In the present article we review all the recent small molecules reported to inhibit recombinant HIV-1 IN under these heads. It seems likely that the efficient use of HIV IN as target for rational design can give potent anti-HIV agents, which can be used alone or in combination regimens with other classes of anti-HIV drugs.
Collapse
Affiliation(s)
- Sonal Dubey
- K.L.E.S. College of Pharmacy, Rajajinagar II Block, Bangalore 560010, Karnataka, India.
| | | | | |
Collapse
|
19
|
Pezzella A, Palma A, Iadonisi A, Napolitano A, d’Ischia M. The first entry to 5,6-dihydroxy-3-mercaptoindole, 5-hydroxy-3-mercaptoindole and their 2-carbomethoxy derivatives by a mild thiocyanation/reduction methodology. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.03.141] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Al-Mawsawi LQ, Sechi M, Neamati N. Single amino acid substitution in HIV-1 integrase catalytic core causes a dramatic shift in inhibitor selectivity. FEBS Lett 2007; 581:1151-6. [PMID: 17328897 DOI: 10.1016/j.febslet.2007.02.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 01/23/2007] [Accepted: 02/12/2007] [Indexed: 11/16/2022]
Abstract
HIV-1 integrase (IN) mediates the insertion of viral cDNA into the cell genome, a vital process for replication. This step is catalyzed by two separate DNA reaction events, termed 3'-processing and strand transfer. Here, we show that six inhibitors from five structurally different classes of compounds display a selectivity shift towards preferential strand transfer inhibition over the 3'-processing activity of IN when a single serine is substituted at position C130. Even though IN utilizes the same active site for both reactions, this finding suggests a distinct conformational dissimilarity in the mechanistic details of each IN catalytic event.
Collapse
Affiliation(s)
- Laith Q Al-Mawsawi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
21
|
Hyperbranched molecular structures with potential antiviral activity: derivatives of 5,6-dihydroxyindole-2-carboxylic Acid. Molecules 2006; 11:968-77. [PMID: 18007401 DOI: 10.3390/11120968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 12/08/2006] [Accepted: 12/15/2006] [Indexed: 11/16/2022] Open
Abstract
In the search of new HIV-1 integrase (IN) inhibitors, we synthesized a series of multimeric 5,6-dihydroxyindole-2-carboxylic acid (DHICA) derivatives. Preliminary results indicate that hyperbranched architectures could represent a peculiar molecular requisite for the development of new antiviral lead compounds.
Collapse
|
22
|
Al-Mawsawi LQ, Fikkert V, Dayam R, Witvrouw M, Burke TR, Borchers CH, Neamati N. Discovery of a small-molecule HIV-1 integrase inhibitor-binding site. Proc Natl Acad Sci U S A 2006; 103:10080-5. [PMID: 16785440 PMCID: PMC1502509 DOI: 10.1073/pnas.0511254103] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herein, we report the identification of a unique HIV-1 integrase (IN) inhibitor-binding site using photoaffinity labeling and mass spectrometric analysis. We chemically incorporated a photo-activatable benzophenone moiety into a series of coumarin-containing IN inhibitors. A representative of this series was covalently photo-crosslinked with the IN core domain and subjected to HPLC purification. Fractions were subsequently analyzed by using MALDI-MS and electrospray ionization (ESI)-MS to identify photo-crosslinked products. In this fashion, a single binding site for an inhibitor located within the tryptic peptide (128)AACWWAGIK(136) was identified. Site-directed mutagenesis followed by in vitro inhibition assays resulted in the identification of two specific amino acid residues, C130 and W132, in which substitutions resulted in a marked resistance to the IN inhibitors. Docking studies suggested a specific disruption in functional oligomeric IN complex formation. The combined approach of photo-affinity labeling/MS analysis with site-directed mutagenesis/molecular modeling is a powerful approach for elucidating inhibitor-binding sites of proteins at the atomic level. This approach is especially important for the study of proteins that are not amenable to traditional x-ray crystallography and NMR techniques. This type of structural information can help illuminate processes of inhibitor resistance and thereby facilitate the design of more potent second-generation inhibitors.
Collapse
Affiliation(s)
- Laith Q. Al-Mawsawi
- *Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
| | - Valery Fikkert
- *Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
| | - Raveendra Dayam
- *Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
| | - Myriam Witvrouw
- Division of Molecular Medicine, Katholieke Universiteit Leuven and Interdisciplinary Research Center, Katholieke Universiteit Leuven–Campus Kortrijk, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | - Terrence R. Burke
- Laboratory of Medicinal Chemistry, Center for Cancer Research, National Institutes of Health, Frederick, MD 21702; and
| | - Christoph H. Borchers
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
- To whom correspondence may be addressed. E-mail:
or
| | - Nouri Neamati
- *Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
23
|
Abstract
The integration of viral cDNA into the host genome is an essential step in the HIV-1-life cycle and is mediated by the virally encoded enzyme, integrase (IN). Inhibition of this process provides an attractive strategy for antiviral drug design. The discovery of beta-diketo acid inhibitors played a major role in validating IN as a legitimate antiretroviral drug target. Over a decade of research, a plethora of IN inhibitors have been discovered and some showed antiviral activity consistent with their effect on IN. To date, at least two compounds have been tested in human but none are close to the FDA approval. In this review, we provide a comprehensive report of all small-molecule IN inhibitors discovered during the years 2003 and 2004. Compilation of such data will prove beneficial in developing QSAR, virtual screening, pharmacophore hypothesis generation, and validation.
Collapse
Affiliation(s)
- Raveendra Dayam
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, 90089, USA
| | | | | |
Collapse
|
24
|
Sechi M, Sannia L, Carta F, Palomba M, Dallocchio R, Dessì A, Derudas M, Zawahir Z, Neamati N. Design of novel bioisosteres of beta-diketo acid inhibitors of HIV-1 integrase. Antivir Chem Chemother 2005; 16:41-61. [PMID: 15739621 DOI: 10.1177/095632020501600105] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
HIV-1 integrase (IN) is an attractive and validated target for the development of novel therapeutics against AIDS. Significant efforts have been devoted to the identification of IN inhibitors using various methods. In this context, through virtual screening of the NCI database and structure-based drug design strategies, we identified several pharmacophoric fragments and incorporated them on various aromatic or heteroaromatic rings. In addition, we designed and synthesized a series of 5-aryl(heteroaryl)-isoxazole-3-carboxylic acids as biological isosteric analogues of beta-diketo acid containing inhibitors of HIV-1 IN and their derivatives. Further computational docking studies were performed to investigate the mode of interactions of the most active ligands with the IN active site. Results suggested that some of the tested compounds could be considered as lead compounds and suitable for further optimization.
Collapse
Affiliation(s)
- Mario Sechi
- Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Sassari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
d’Ischia M, Napolitano A, Pezzella A, Land EJ, Ramsden CA, Riley PA. 5,6-Dihydroxyindoles and Indole-5,6-diones. ADVANCES IN HETEROCYCLIC CHEMISTRY 2005. [DOI: 10.1016/s0065-2725(05)89001-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Sechi M, Derudas M, Dallocchio R, Dessì A, Bacchi A, Sannia L, Carta F, Palomba M, Ragab O, Chan C, Shoemaker R, Sei S, Dayam R, Neamati N. Design and Synthesis of Novel Indole β-Diketo Acid Derivatives as HIV-1 Integrase Inhibitors. J Med Chem 2004; 47:5298-310. [PMID: 15456274 DOI: 10.1021/jm049944f] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diketo acids such as S-1360 (1A) and L-731,988 (2) are potent and selective inhibitors of HIV-1 integrase (IN). A plethora of diketo acid-containing compounds have been claimed in patent literature without disclosing much biological activities and synthetic details (reviewed in Neamati, N. Exp. Opin. Ther. Pat. 2002, 12, 709-724). To establish a coherent structure-activity relationship among the substituted indole nucleus bearing a beta-diketo acid moiety, a series of substituted indole-beta-diketo acids (4a-f and 5a-e) were synthesized. All compounds tested showed anti-IN activity at low micromolar concentrations with varied selectivity against the strand transfer process. Three compounds, the indole-3-beta-diketo acids 5a and 5c, and the parent ester 9c, have shown an antiviral activity in cell-based assays. We further confirmed a keto-enolic structure in the 2,3-position of the diketo acid moiety of a representative compound (4c) using NMR and X-ray crystallographic analysis. Using this structure as a lead for all of our computational studies, we found that the title compounds extensively interact with the essential amino acids on the active site of IN.
Collapse
Affiliation(s)
- Mario Sechi
- Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|