1
|
Rewers M, Lojko A, Olszewska D, Niklas A, Jedrzejczyk I. Diversity of genome size, endopolyploidy and SCoT markers in 20 Trigonella (Fabaceae) species. J Appl Genet 2024; 65:693-703. [PMID: 38922510 PMCID: PMC11561077 DOI: 10.1007/s13353-024-00886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
The Trigonella species possess medicinal, nutraceutical and pharmaceutical properties due to the presence of many bioactive compounds. Its therapeutic effects are mostly valuable in medicine, cosmetics and the functional food industry. Correct genetic characterisation of plant material is needed to increase the potential of Trigonella species by breeding and conservation programs. The aim of this study was to develop a reliable marker system to support the morphological and phytochemical analysis in Trigonella taxonomic research, species identification and characterization as well as determination of the interspecific variation within this genus along with relationships between species. For this purpose, flow cytometry and SCoT molecular markers were combined. Flow cytometric analyses revealed that Trigonella species possess very small and small genomes. The range of genome sizes was from 1.10 to 5.76 pg/2C, with most species possessing very small genomes (< 2.8 pg/2C). In seeds of 14 species endopolyploid nuclei were detected. Flow cytometric analysis of genome size enabled quick identification of four out of 20 species, while combined with endopolyploidy detection in seeds, facilitated distinction of the next seven species. ScoT molecular markers helped to identify closely related species with similar genome size and cell cycle activity. Therefore, flow cytometry was proposed as the first-choice method for quick accession screening, while the more detailed genetic classification was obtained using SCoT molecular markers.
Collapse
Affiliation(s)
- Monika Rewers
- Department of Biotechnology, Bydgoszcz University of Science and Technology, Kaliskiego Ave. 7, 85-796, Bydgoszcz, Poland.
| | - Agnieszka Lojko
- Department of Biotechnology, Bydgoszcz University of Science and Technology, Kaliskiego Ave. 7, 85-796, Bydgoszcz, Poland
| | - Dorota Olszewska
- Department of Biotechnology, Bydgoszcz University of Science and Technology, Kaliskiego Ave. 7, 85-796, Bydgoszcz, Poland
| | - Aleksandra Niklas
- Department of Biotechnology, Bydgoszcz University of Science and Technology, Kaliskiego Ave. 7, 85-796, Bydgoszcz, Poland
| | - Iwona Jedrzejczyk
- Department of Biotechnology, Bydgoszcz University of Science and Technology, Kaliskiego Ave. 7, 85-796, Bydgoszcz, Poland
| |
Collapse
|
2
|
Hachouf M, Aouacheri O, Saka S, Marzocchi A, Carlo Tenore G. Phenolic Profiling, In Vitro Antiglycation, Antioxidant Activities, and Antidiabetic Effect of Algerian Trigonella Foenum-Graecum L. in Rats Administered a β-Cell Toxicant. Chem Biodivers 2024:e202401183. [PMID: 39269990 DOI: 10.1002/cbdv.202401183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
This study sought to quantitatively assess individual and total polyphenols, mineral composition, antioxidant and antiglycation activities of Algerian fenugreek seeds (AFS) as well as the antidiabetic effect of its supplementation on streptozotocin-induced diabetic rats. Forty rats were divided into four groups (i) non diabetic rats, (ii) non diabetic rats +10 % AFS, (iii) diabetic rats, (iv) diabetic rats +10 % AFS. Flame-SAA analysis revealed a rich content in micro-elements, HPLC DAD-FLD analysis revealed twenty components with rutin and ferulic acid being the major compounds in AFS hydro-methanolic extract while spectrophotometric assays scrutinized moderate contents in total phenolics and flavonoids. The extract was potent in scavenging ABTS⋅+ and DPPH+ (42.06±2.14 and 55.84±4.14 mg TE/g), reducing Fe3+ and Mo6+ (35.12±2.45 and 29.89±3.12 mg TE/g) and inhibiting AGEs (IC50=1.03±0.02 mg/ml). In vivo, 10 %AFS- supplemented diet (w/w) was found to elicit a significant reduction in glycemia (66.74 %), TNF α (9.4 %), IL-6 (23.74 %), CRP (31.10 %), liver enzymes, lipid peroxidation (MDA) (47.24 %;30 %), protein carbonyl (PCO) (28.35 %; 27.15 %), improvement in insulin level (79.74 %), reduced glutathione amount (GSH) (41.01 %; 16.55 %), glutathione peroxidase (GPx) (45.80 %; 56.37 %), catalase (CAT) (24.44 %; 35.42 %) and glutathione-S-transferase (GST) (22.78 %; 22.90 %) activities, in liver and pancreas respectively, along with a rejuvenation of hepatic and pancreatic histological features. These outcomes disclosed that AFS is endowed with biologically effective components which could be decent applicant to attain the objective of mitigating glycation, oxidative stress and diabetes-related complications.
Collapse
Affiliation(s)
- Maram Hachouf
- Applied Biochemistry and Microbiology Laboratory, Department of biochemistry, Faculty of Sciences, Badji Mokhtar University, BP 12, Sidi Amar, 23000 Annaba, Algeria
| | - Ouassila Aouacheri
- Animal Ecophysiology Laboratory, Department of biology, Faculty of Sciences, Badji Mokhtar University, BP 12, Sidi Amar, 23000 Annaba, Algeria
| | - Saad Saka
- Animal Ecophysiology Laboratory, Department of biology, Faculty of Sciences, Badji Mokhtar University, BP 12, Sidi Amar, 23000 Annaba, Algeria
| | - Adua Marzocchi
- ChimNutra labs, Department of Pharmacy, University of Naples "Federico II", 80131 Napoli, Italy
| | - Gian Carlo Tenore
- ChimNutra labs, Department of Pharmacy, University of Naples "Federico II", 80131 Napoli, Italy
| |
Collapse
|
3
|
Sinha V, Shrivastava S. Cypermethrin: An Emerging Pollutant and Its Adverse Effect on Fish Health and some Preventive Approach-A Review. Indian J Microbiol 2024; 64:48-58. [PMID: 38468737 PMCID: PMC10924887 DOI: 10.1007/s12088-023-01153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 11/16/2023] [Indexed: 03/13/2024] Open
Abstract
Pesticides are substance that are used to manage pests, such as aquatic weeds, plant diseases and insects. It has been shown that these substances are highly hazardous to fish as well as other organisms that are part of the food chain. The presence of cypermethrin in food and groundwater has raised environmental concerns, there is a need to develop economical, rapid, and reliable techniques that can be used for field applications Many studies have shown that Cypermethrin (CYP) can cause toxic effect in various animals including fishes. But the molecular mechanism behind the toxicity mediated Cypermethrin (CYP) at genome levels and proteome levels is still need to be studied. However, there is a gap in emerging and undeveloped nations to begin to use these methods and several other recently developed approaches to inhibit the negative consequences and enhance health which may be profitable. The toxicological information currently available might be used to gain a clear understanding of the possibilities of these synthetic pyrethroid insecticides causing various health hazards to environmental and provides insight for future research evaluating the toxic effects of pyrethroid insecticides. This present review article is concerned with the toxicological effects of pesticides and a brief overview of sources, classification of pesticides with an emphasis on the effects of Cypermethrin (CYP) on fish as well mode of toxicity and the mechanism of action (CYP) and toxicity signs in several fish species have been illustrated. The primary controls and appropriate preventive measures that must be adopted are also discussed.
Collapse
Affiliation(s)
- Vishakha Sinha
- Department of Zoology, Patna University, Patna, Bihar 800005 India
| | | |
Collapse
|
4
|
Ileriturk M, Kandemir O, Kandemir FM. Evaluation of protective effects of quercetin against cypermethrin-induced lung toxicity in rats via oxidative stress, inflammation, apoptosis, autophagy, and endoplasmic reticulum stress pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2639-2650. [PMID: 35876585 DOI: 10.1002/tox.23624] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 05/27/2023]
Abstract
Cypermethrin (CYP), a type II synthetic pyrethroid, is the most widely used insecticide worldwide. Inhalation of it may cause side effects. This study is aimed to examine potential protection of quercetin (QUE) which is a well-known antioxidant in CYP-induced lung toxicity. Accordingly, 35 Spraque Dawley male rats were divided into five equal groups as follows: I-Control group, II-QUE group (50 mg/kg/b.w. QUE), III-CYP group (25 mg/kg/b.w. CYP), IV-CYP + QUE 25 (25 mg/kg/b.w. CYP + 25 mg/kg/b.w. QUE), V-CYP + QUE (25 mg/kg/b.w. CYP + 50 mg/kg/b.w. QUE) were treated with oral gavage throughout 28 days. CYP intoxication was associated with increased malondialdehyde level while glutathione concentration, activities of glutathione peroxidase, superoxide dismutase, and catalase reduced. CYP adminisitration caused of apoptosis in the lung by up-regulating caspase-3 and Bax levels and down-regulating Bcl-2. CYP also caused of endoplasmic reticulum (ER) stress by increasing mRNA transcript levels of PERK, IRE1, ATF6, and GRP78. Additionally, it was observed that CYP administration activated IL-6/JAK2/STAT3/MAPK14 signaling pathway and levels of IL-1β, NF-κB, TNF-α, and iNOS in the lung tissue. Therefore, it was determined that CYP administration triggered autophagy by upregulating LC3A and LC3B mRNA transcript levels. Moreover, the protein levels of NF-κB, caspase-3, Bax, Bcl-2, and cytochorme-c were examined by Western blot analysis. However, co-treatment with QUE at a dose of 25 and 50 mg/kg considerably protective oxidative stress, inflammation, apoptosis, ER stress, autophagy, and IL-6/JAK2/STAT3/MAPK14 signaling pathway in lung tissue. Overall, the findings of this study suggest that lung damage associated with CYP toxicity could be protected by QUE administration.
Collapse
Affiliation(s)
- Mustafa Ileriturk
- Department of Animal Science, Horasan Vocational College, Ataturk University, Erzurum, Turkey
| | - Ozge Kandemir
- Aksaray Technical Sciences Vocational School, Aksaray University, Aksaray, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
5
|
He S, Yi Y, Hou D, Fu X, Zhang J, Ru X, Xie J, Wang J. Identification of hepatoprotective traditional Chinese medicines based on the structure–activity relationship, molecular network, and machine learning techniques. Front Pharmacol 2022; 13:969979. [PMID: 36105213 PMCID: PMC9465166 DOI: 10.3389/fphar.2022.969979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
The efforts focused on discovering potential hepatoprotective drugs are critical for relieving the burdens caused by liver diseases. Traditional Chinese medicine (TCM) is an important resource for discovering hepatoprotective agents. Currently, there are hundreds of hepatoprotective products derived from TCM available in the literature, providing crucial clues to discover novel potential hepatoprotectants from TCMs based on predictive research. In the current study, a large-scale dataset focused on TCM-induced hepatoprotection was established, including 676 hepatoprotective ingredients and 205 hepatoprotective TCMs. Then, a comprehensive analysis based on the structure–activity relationship, molecular network, and machine learning techniques was performed at molecular and holistic TCM levels, respectively. As a result, we developed an in silico model for predicting the hepatoprotective activity of ingredients derived from TCMs, in which the accuracy exceeded 85%. In addition, we originally proposed a material basis and a drug property-based approach to identify potential hepatoprotective TCMs. Consequently, a total of 12 TCMs were predicted to hold potential hepatoprotective activity, nine of which have been proven to be beneficial to the liver in previous publications. The high rate of consistency between our predictive results and the literature reports demonstrated that our methods were technically sound and reliable. In summary, systematical predictive research focused on the hepatoprotection of TCM was conducted in this work, which would not only assist screening of potential hepatoprotectants from TCMs but also provide a novel research mode for discovering the potential activities of TCMs.
Collapse
Affiliation(s)
- Shuaibing He
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Yanfeng Yi
- Department of Life Sciences and Health, School of Science and Engineering, Huzhou College, Huzhou, China
| | - Diandong Hou
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Xuyan Fu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Juan Zhang
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, China
| | - Xiaochen Ru
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Jinlu Xie
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou Central Hospital, Huzhou, China
- *Correspondence: Jinlu Xie, ; Juan Wang,
| | - Juan Wang
- School of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, China
- *Correspondence: Jinlu Xie, ; Juan Wang,
| |
Collapse
|
6
|
Hossain MS, Kader MA, Goh KW, Islam M, Khan MS, Harun-Ar Rashid M, Ooi DJ, Melo Coutinho HD, Al-Worafi YM, Moshawih S, Lim YC, Kibria KMK, Ming LC. Herb and Spices in Colorectal Cancer Prevention and Treatment: A Narrative Review. Front Pharmacol 2022; 13:865801. [PMID: 35846992 PMCID: PMC9280164 DOI: 10.3389/fphar.2022.865801] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/02/2022] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is the second most deadly cancer worldwide. CRC management is challenging due to late detection, high recurrence rate, and multi-drug resistance. Herbs and spices used in cooking, practised for generations, have been shown to contain CRC protective effect or even be useful as an anti-CRC adjuvant therapy when used in high doses. Herbs and spices contain many bioactive compounds and possess many beneficial health effects. The chemopreventive properties of these herbs and spices are mainly mediated by the BCL-2, K-ras, and MMP pathways, caspase activation, the extrinsic apoptotic pathway, and the regulation of ER-stress-induced apoptosis. As a safer natural alternative, these herbs and spices could be good candidates for chemopreventive or chemotherapeutic agents for CRC management because of their antiproliferative action on colorectal carcinoma cells and inhibitory activity on angiogenesis. Therefore, in this narrative review, six different spices and herbs: ginger (Zingiber officinale Roscoe), turmeric (Curcuma longa L.), garlic (Allium sativum L.), fenugreek (Trigonella foenum-graecum L.), sesame (Sesamum indicum L.), and flaxseed (Linum usitatissimum L.) used in daily cuisine were selected for this study and analyzed for their chemoprotective or chemotherapeutic roles in CRC management with underlying molecular mechanisms of actions. Initially, this study comprehensively discussed the molecular basis of CRC development, followed by culinary and traditional uses, current scientific research, and publications of selected herbs and spices on cancers. Lead compounds have been discussed comprehensively for each herb and spice, including anti-CRC phytoconstituents, antioxidant activities, anti-inflammatory properties, and finally, anti-CRC effects with treatment mechanisms. Future possible works have been suggested where applicable.
Collapse
Affiliation(s)
- Md. Sanower Hossain
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Malaysia
- Faculty of Science, Sristy College of Tangail, Tangail, Bangladesh
- *Correspondence: Md. Sanower Hossain, ; Long Chiau Ming,
| | - Md. Abdul Kader
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | | | - Md. Sharif Khan
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md. Harun-Ar Rashid
- Department of Nutrition and Food Engineering, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Der Jiun Ooi
- Department of Oral Biology & Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom, Malaysia
| | - Henrique Douglas Melo Coutinho
- Departamento de Química Biológica, Laboratório de Microbiologia E Biologia Molecular—LMBM, Universidade Regional Do Cariri, URCA, Crato, Brazil
| | - Yaser Mohammed Al-Worafi
- College of Medical Sciences, Azal University for Human Development, Amran, Yemen
- College of Pharmacy, University of Science and Technology of Fujairah, Fujairah, United Arab Emirates
| | - Said Moshawih
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| | - Ya Chee Lim
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| | - K. M. Kaderi Kibria
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
- *Correspondence: Md. Sanower Hossain, ; Long Chiau Ming,
| |
Collapse
|
7
|
Selmi S, Alimi D, Rtibi K, Jedidi S, Grami D, Marzouki L, Hosni K, Sebai H. Gastroprotective and Antioxidant Properties of Trigonella foenum graecum Seeds Aqueous Extract (Fenugreek) and Omeprazole Against Ethanol-Induced Peptic Ulcer. J Med Food 2022; 25:513-522. [PMID: 35561273 DOI: 10.1089/jmf.2020.0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Trigonella foenum graecum (Fenugreek) is used in traditional phytomedicine for its anti-inflammatory, antiseptic, antidiabetic, and several other therapeutic virtues. The current study was intended to investigate the protecting effects of fenugreek seeds' aqueous extract (FSAE) using experimentally ethanol (EtOH)-induced gastric peptic ulcer in rats, as immense alcohol consumption can lead to gastric ulcer. Sixty adult male Wistar rats were divided into 6 groups of 10 each: control, EtOH (4 g/kg body weight [b.w.]), EtOH + several doses of FSAE (50, 100, and 200 mg/kg b.w.), and EtOH + Omeprazole (OM, 20 mg/kg orally [p.o.]). Animals were p.o. pretreated with FSAE for 21 days and exposed to a single oral administration of EtOH (4 g/kg b.w.) for 2 h. Gastric ulcer in rats was induced with a single dose of EtOH. Ulcer index, malondialdehyde (MDA), hydrogen peroxide (H2O2), and thiol groups (-SH) content in stomach, and antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were measured. Our recorded results showed that EtOH induced gastric damage, evidenced by the level of oxidative stress markers such as MDA and H2O2 in rats exposed to EtOH. However, significant increases in the activities of antioxidant enzymes were recorded, such as SOD, CAT, and GPx, and a decrease in nonenzymatic antioxidants, such as (-SH). Moreover, histopathological examinations showed the presence of lesions associated with severe tissue damage in the untreated rats. Interestingly, FSAE meaningfully protects against all gastric damages caused by EtOH. We propose that FSAE exhibits protective effects in EtOH-induced peptic ulcer in rats. This protection might be related to its antioxidant and anti-inflammatory properties as well as its opposite effects on some studied intracellular mediators.
Collapse
Affiliation(s)
- Slimen Selmi
- Laboratory of Functional Physiology and Bio-resources Valorisation, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia.,Laboratory of Natural Substances, National Institute for Research and Physico-Chemical Analysis (INRAP), Technopole Sidi Thabet, Technological Pole, Ariana, Tunisia
| | - Dhouha Alimi
- Laboratory of Functional Physiology and Bio-resources Valorisation, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Kais Rtibi
- Laboratory of Functional Physiology and Bio-resources Valorisation, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Saber Jedidi
- Sylvo-Pastoral Resources Laboratory, Sylvo-Pastoral Institute of Tabarka, University of Jendouba, Tabarka, Tunisia
| | - Dhekra Grami
- Laboratory of Functional Physiology and Bio-resources Valorisation, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Lamjed Marzouki
- Laboratory of Functional Physiology and Bio-resources Valorisation, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Karim Hosni
- Laboratory of Natural Substances, National Institute for Research and Physico-Chemical Analysis (INRAP), Technopole Sidi Thabet, Technological Pole, Ariana, Tunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Bio-resources Valorisation, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| |
Collapse
|
8
|
Farshori NN. Hepatoprotective effect of Trigonella foenum graecum against ethanol-induced cell death in human liver cells (HepG2 and Huh7). Mol Biol Rep 2022; 49:2765-2776. [PMID: 35064405 DOI: 10.1007/s11033-021-07088-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND The plant Trigonella foenum graecum, also known as fenugreek, has been shown to have anticancer, antidiabetic, anti-inflammatory, and antioxidant properties. In this study, the hepatoprotective effect of fenugreek seed extract (FSE) against ethanol-induced cell death was investigated in human liver cells (HepG2 and Huh7). METHODS AND RESULTS The cytotoxic effect of FSE and ethanol on cells was evaluated by exposing the cells at different concentrations. Following that, the cells were pre-incubated with 5-25 μg/ml FSE, followed by a cytotoxic concentration (0.5 mM) of ethanol. MTT and neutral red uptake assays were performed in treated cells to assess the ability of FSE to protect cells from the cytotoxic effects of ethanol. When compared to controls, ethanol treatment significantly reduced the viability of HepG2 and Huh7 cells and altered the cell morphology, whereas treatment with FSE significantly increased cell viability and reversed ethanol-induced morphological changes. Furthermore, pretreatment with FSE dose-dependently reduced lactate dehydrogenate (LDH) leakage, lipid peroxidation (LPO) level, and catalase activities while increasing glutathione (GSH) level induced by ethanol. Pretreatment with FSE also reduced the generation of reactive oxygen species (ROS), caspase enzyme activities, and protein expression of caspase-3 and -9. In HepG2 cells, ethanol-induced apoptosis was observed, whereas FSE treatment reduced apoptosis by downregulating the expression of pro-apoptotic marker genes and upregulating the antiapoptotic gene. CONCLUSIONS In conclusion, this study reports on the mechanistic details of the hepatoprotective potential of FSE. The results also suggest that fenugreek seeds may be useful in preventing liver diseases caused by toxicants such as ethanol.
Collapse
Affiliation(s)
- Nida Nayyar Farshori
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
| |
Collapse
|
9
|
Effect of Ethanol Solvents on Total Phenolic Content and Antioxidant Properties of Seed Extracts of Fenugreek (Trigonella foenum-graecum L.) Varieties and Determination of Phenolic Composition by HPLC-ESI-MS. DIVERSITY 2021. [DOI: 10.3390/d14010007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fenugreek (Trigonella foenum-graecum L.) is one of the oldest cultivated plants grown for its leaves and seeds that are used for both culinary and medicinal purpose. This study aims to evaluate the effect of ethanol concentration (30, 50, 70 and 96% (v/v) of ethanol in water) as a solvent for the extraction of total phenolic content (TPC) and antioxidant properties (antiradical activity (ARA), transition metal reducing power (TMRP), iron chelating ability (ICA)) of seed extracts of spring variety Ovari 4 (FSV) and winter variety PSZ.G.SZ (FWV) fenugreek, and separate and identify the major phenolics of the extracts by HPLC-ESI-MS. The results indicated that 70% ethanol solution resulted in the maximum amount of TPC for both FSV and FWV seeds. The TPC decreased in the treatments in the following order: 70% ethanol > 96% ethanol > 50% ethanol > 30% ethanol, whereas extraction yield changed in a different manner: 30% ethanol > 50% ethanol > 70% ethanol > 96% ethanol. The extracts from seeds of both fenugreek varieties obtained with 70% and 96% ethanol showed equal high RSA while superior TMRP and ICA were observed in 70% ethanol extracts. The TMRP and ICA were strongly correlated with TPC for both varieties. The correlation between RSA and TPC was high, but not significant. Thus, the obtained data indicate the 70% ethanol solvent suitability for efficient extraction of phenolic compounds from seeds of the FWV and FSV. According to an HPLC-ESI-MS analysis, the polyphenolic profiles of fenugreek are presumably formed by flavone C-glycosides with apigenin or luteolin as aglycone linked with different glycones. High antioxidant activity of FWV seeds can be an adaptation to cold stress of the winter variety aimed at strengthening the antioxidant defense of the germinating seeds.
Collapse
|
10
|
Zhou L, Chang J, Zhao W, Gao Y. Proanthocyanidins regulate the Nrf2/ARE signaling pathway and protect neurons from cypermethrin-induced oxidative stress and apoptosis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 177:104898. [PMID: 34301360 DOI: 10.1016/j.pestbp.2021.104898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Cypermethrin, a type II pyrethroid pesticide, is one of the most widely used pesticides in agricultural and in household settings. The toxic effects of cypermethrin are a matter of concern, as humans are almost inevitably exposed to it in daily life. It is an urgent problem to seek natural substances from plants that can eliminate or relieve the effects of pesticide residues on human health. Proanthocyanidins are the most potent antioxidants and free radical scavengers in natural plants, and are widely available in fruits, vegetables, and seeds. We found that proanthocyanidins (1, 2.5, and 5 μg/mL) can decrease ROS generation, relieve mitochondrial membrane potential loss, repair nuclear morphology, reduce cell apoptosis, and protect neurons from cypermethrin-induced oxidative insult. The protective mechanism exerted by proanthocyanidins against cypermethrin-induced neurotoxicity is negatively regulate rather than activate the Nrf2/ARE signaling pathway to maintain intracellular homeostasis.
Collapse
Affiliation(s)
- Lihua Zhou
- School of Public Health, Bengbu Medical College, Bengbu, Anhui 233030, China.
| | - Jianrong Chang
- Scientific Research Center, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Wenhong Zhao
- School of Public Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Yangli Gao
- School of Public Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| |
Collapse
|
11
|
Zeng X, Du Z, Ding X, Jiang W. Protective effects of dietary flavonoids against pesticide-induced toxicity: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Chen L, Wang D, Zhou Z, Diao J. Comparing alpha-cypermethrin induced dose/gender-dependent responses of lizards in hepatotoxicity and nephrotoxicity in a food chain. CHEMOSPHERE 2020; 256:127069. [PMID: 32447111 DOI: 10.1016/j.chemosphere.2020.127069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 05/27/2023]
Abstract
Pesticides are proposed as one reason for the worldwide decline in the reptile. Effects of pesticides on food intake and organ toxicity could affect wildlife populations dynamics. To explore the hepatotoxicity of alpha-cypermethrin (ACP) in reptiles, we designed a tri-trophic food chain with three concentrations (0, 2, and 20 mg/kgwet weight). Although the enzymes changes were similar between male and female lizards, the significant variations in anti-oxidative enzymes' activities, lactic dehydrogenase activities and acetylcholine esterase activities in liver and kidney suggesting that oxidative stress, decreased metabolic ability and neurotoxicity on lizards. The results of hepatic metabolomics showed that ACP could affect amino acid, energy and lipid metabolism on lizards. Comparing with female lizards, there were more significant changes of metabolites in male lizards. The histopathology analysis in the liver (such as hepatic lobule congestion and hepatocyte vacuolation) and kidney (such as renal tubule necrosis and glomerulus necrosis), dose- and gender dependent changes of lesions suggested the functions of organ were damaged. In summary, the reduction of detoxification and elimination capacities of the liver and kidney showed dose/gender-dependent in lizards.
Collapse
Affiliation(s)
- Li Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; College of Education and Human Ecology, Department of Human Sciences, The Ohio State University, 400W 12th Ave, Columbus, OH, 43210, USA
| | - Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Jinling Diao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China.
| |
Collapse
|
13
|
Alalwani AD. Nephrotoxicity of cypermethrin in rats. Histopathological aspects. Histol Histopathol 2020; 35:1437-1448. [PMID: 32969486 DOI: 10.14670/hh-18-263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cypermethrin (CYP) is an important type II pyrethroid pesticide widely used to protect crops against pests and insect infestations. However, its toxicity is a risk to both human health and the surrounding environment. The present study was conducted to investigate the nephrotoxic effect and histopathological changes caused by Cypermethrin in the kidney tissues of adult Wistar rats. In this study, 30 Wistar rats were equally divided into three groups. G1, control animals; G2 and G3 treated with various sub lethal doses of CYP for 30 days as follows: G2, administered low dose (1/100 of LD50) of CYP; G3, administered high dose (1/50 of LD50) of CYP. The damage to different organelles of renal proximal and distal cells was observed using transmission electron microscopy. Histopathological damage in kidney samples was confirmed using morphological and histological measures. The results showed that CYP caused significant histopathological damage to the renal proximal and distal tubules of treated rats. Compared to control samples, CYP caused marked alterations in the dimensions of nucleus, ovoid and filamentous mitochondria of the treated cells. In conclusion, Cypermethrin is found to be toxic to mammals. It caused marked ultrastructural damage to the renal proximal and distal tubules of Wistar rats and the intensity of nephrotoxicity correlated with the dose of oral administration.
Collapse
Affiliation(s)
- Aisha D Alalwani
- Department of Biology, Science College, University of Jeddah, Jeddah, Saudi Arabia.
| |
Collapse
|
14
|
Sheweita SA, ElHady SA, Hammoda HM. Trigonella stellata reduced the deleterious effects of diabetes mellitus through alleviation of oxidative stress, antioxidant- and drug-metabolizing enzymes activities. JOURNAL OF ETHNOPHARMACOLOGY 2020; 256:112821. [PMID: 32251758 DOI: 10.1016/j.jep.2020.112821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Genus Trigonella has a history of folkloric medicinal uses in China, Japan, Egypt and India. There are a variety of therapeutic actions of Trigonella including hypocholesterolemia, hypoglycemia, antibacterial, antiviral, anti-inflammatory activities, antioxidants and appetite stimulant. AIM OF THE STUDY The prevalence of diabetes mellitus is increasing annually. The present study aims at investigating the protective effects of Trigonella stellata against the adverse effects of diabetes mellitus through investigation of the changes in phase I & II drug-metabolizing enzyme activities, protein expression of cytochrome P450 isoenzymes [CYP2E1 & 3A4], oxidative stress, antioxidant enzymes as well as histopathology of both liver and kidney tissues. METHODS GC-MS and MALDI-TOF were used to analyze the main constituents of the aqueous and the ethanolic extract of Trigonella stellata. Western immunoblotting technique used to show the protein expression of CYP450 isozymes in different groups. Spectrophotometric- and fluorophotometric techniques were also used for assessment of different hepatic integrity enzymes. Histopathological techniques used to illustrate the changes in the tissues of both livers and kidneys after different treatments. RESULTS Trigonelline was found to be the main constituent of both aqueous and ethanolic extract of Trigonella stellata. Administration of the aqueous and/or the ethanolic extracts of Trigonella stellata to the diabetic rats was found to decrease the blood glucose level, the biochemical markers of both liver (transaminases activities, Lactate dehydrogenase, gamma-glutamyl transferase) and the renal functions (urea, creatinine and bilirubin) which were increased in diabetic-treated rats relative to their normal levels. Diabetes mellitus potentially induced the oxidative stress, and also activities of dimethylnitrosamine N-demethylase I, cytochrome c-reductase, ethoxyresourfin O-deethylase, and the total hepatic content of cytochrome P450. On the other hand, the activity of catalase [CAT], superoxide dismutase [SOD], glutathione S-transferase [GST], glutathione reductase [GR], glutathione peroxidase [GPx] and levels of reduced glutathione [GSH] were potentially inhibited in diabetic rats compared to the control rats. However, treatments of diabetic rats with either aqueous and/or ethanolic extracts of Trigonella stellata restored such changes caused by diabetes almost nearly to their normal levels compared to the control group. Supporting the activity of dimethyl nitrosamine N-demethylase I activity, the protein expression of CYP2E1 was also induced in diabetic rats. However, the aqueous extract of Trigonella stellata was more effective than ethanolic extract in restoring the changes in the protein expression of CYP2E. On the other hand, the protein expression of CYP3A4 was markedly decreased in diabetic rats, and this decrease was partially restored to its normal level after treatment of diabetic rats with aqueous and/or ethanolic extracts. In addition, Trigonella stellata extracts alleviated the histopathological changes in livers and kidneys caused by diabetes mellitus. CONCLUSION It is concluded that diabetes mellitus induced changes in oxidative stress, phase I & II drug-metabolizing enzymes, and antioxidant enzymes activities, whereas both extracts of Trigonella stellata alleviated such changes. Alterations in cytochrome P450 system should be considered when therapeutic drugs are administered to diabetic patients since most of xenobiotic are mainly metabolized by this system.
Collapse
Affiliation(s)
- Salah A Sheweita
- Department of Clinical Biochemistry, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia; Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Sara A ElHady
- Department of Biochemistry, Faculty of Pharmacy, Pharos University, Egypt
| | - Hala M Hammoda
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
15
|
Ranjani TS, Pitchika GK, Yedukondalu K, Gunavathi Y, Daveedu T, Sainath SB, Philip GH, Pradeepkiran JA. Phenotypic and transcriptomic changes in zebrafish (Danio rerio) embryos/larvae following cypermethrin exposure. CHEMOSPHERE 2020; 249:126148. [PMID: 32062212 DOI: 10.1016/j.chemosphere.2020.126148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Cypermethrin is one of the widely used type-II pyrethroid and the indiscriminate use of this pesticide leads to life threatening effects and in particular showed developmental effects in sensitive populations such as children and pregnant woman. However, the molecular mechanisms underlying cypermethrin-induced development toxicity is not well defined. To address this gap, the present study was designed to investigate the phenotypic and transcriptomic (next generation RNA-Seq method) impact of cypermethrin in zebrafish embryos as a model system. Zebrafish embryos at two time points, 24 h postfertilization (hpf) and 48 hpf were exposed to cypermethrin at a concentration of 10 μg/L. Respective control groups were maintained. Cypermethrin induced both phenotypic and transcriptomic changes in zebrafish embryos at 48 hpf. The phenotypic anomalies such as delayed hatching rate, increased heartbeat rate and deformed axial spinal curvature in cypermethrin exposed zebrafish embryos at 48 hpf as compared to its respective controls. Transcriptomic analysis indicated that cypermethrin exposure altered genes associated with visual/eye development and gene functional profiling also revealed that cypermethrin stress over a period of 48 h disrupts phototransduction pathway in zebrafish embryos. Interestingly, cypermethrin exposure resulted in up regulation of only one gene, tnnt3b, fast muscle troponin isoform 3T in 24 hpf embryos as compared to its respective controls. The present model system, cypermethrin exposed zebrafish embryos elaborates the toxic consequences of cypermethrin exposure during developmental stages, especially in fishes. The present findings paves a way to understand the visual impairment in sensitive populations such as children exposed to cypermethrin during their embryonic period and further research is warranted.
Collapse
Affiliation(s)
- T Sri Ranjani
- Department of Zoology, Sri Krishnadevaraya University, Anantapuramu, 515003, India; Department of Zoology, D.K. Govt. Degree College for Women (Autonomous), Dargamitta, Nellore, 524003, India
| | - Gopi Krishna Pitchika
- Department of Zoology, Vikrama Simhapuri University Post-Graduation Centre, Kavali, 524201, India
| | - K Yedukondalu
- Department of Zoology, Vikrama Simhapuri University Post-Graduation Centre, Kavali, 524201, India
| | - Y Gunavathi
- Department of Zoology, Vikrama Simhapuri University Post-Graduation Centre, Kavali, 524201, India
| | - T Daveedu
- Department of Biotechnology, Vikrama Sihapuri University, Nellore, 524320, India
| | - S B Sainath
- Department of Biotechnology, Vikrama Sihapuri University, Nellore, 524320, India.
| | - G H Philip
- Department of Zoology, Sri Krishnadevaraya University, Anantapuramu, 515003, India.
| | | |
Collapse
|
16
|
Anwar M, Muhammad F, Akhtar B, Ur Rehman S, Saleemi MK. Nephroprotective effects of curcumin loaded chitosan nanoparticles in cypermethrin induced renal toxicity in rabbits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14771-14779. [PMID: 32056099 DOI: 10.1007/s11356-020-08051-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Cypermethrin, a pyrethroid insecticide, may cause several adverse effects including nephrotoxicity. Curcumin is a nutraceutical with many pharmacological effects including nephroprotective effects. But its effective clinical use is limited due to poor bioavailability, physicochemical instability, low bioactive absorption, quick metabolization, less penetration, and targeting efficacy. To resolve these issues, curcumin is incorporated in chitosan nanoparticles. The focus of the study was to prepare and characterize curcumin loaded chitosan nanoparticles and evaluate their nephroprotective activity in a cypermethrin induced renal toxicity. The curcumin loaded chitosan nanoparticles were prepared by using solvent displacement method and characterized by particle size, zeta potential, polydispersity index, entrapment efficiency, and FTIR. The prepared formulation was stable and lies within nanometer range (264.8 nm), and possessed high drug loading capacity (84.64%). Cypermethrin (24 mg/kg body weight) and Curcumin loaded chitosan nanoparticles (15 mg/kg and 30 mg/kg body weight) were orally administered to 20 rabbits (4 groups) for 28 days. It was found that cypermethrin significantly increased the serum levels of creatinine, urea, and BUN and decreased glutathione S-transferase and superoxide dismutase. Co-administration of curcumin loaded chitosan nanoparticles provided pronounced beneficial effects against cypermethrin-induced biochemical alterations and oxidative damage in the kidneys of rabbits. 30 mg/kg body weight of curcumin loaded chitosan nanoparticles have better nephroprotective effects as compared to 15 mg/kg body weight.
Collapse
Affiliation(s)
- Maira Anwar
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Faqir Muhammad
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan.
| | - Bushra Akhtar
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Sajjad Ur Rehman
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
17
|
Nithyananthan S, Sushmaa D, Myrthong I, Valluru L, Guha S, Hassan Mir I, Behera J, Thirunavukkarasu C. Curcuma longa and Trigonella foenum graecum-enriched nutrient mixture from germinated Macrotyloma uniflorum and Vigna radiate ameliorate nonalcoholic fatty liver diseases in rats. J Food Biochem 2020; 44:e13159. [PMID: 32017151 DOI: 10.1111/jfbc.13159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
The prevalence of nonalcoholic fatty liver is increasing due to modern lifestyle. Germinated and dehulled Macrotyloma uniflorum and Vigna radiate were shown to have enhanced nutrients. Curcuma longa and Trigonella foenum graecum were proven hepatoprotective.The supplementation of the nutrient herbal mixture to the MCD diet-induced steatosis shows reduced hepatic fat accumulation and lipid profile, and liver injury markers in serum also reserved in normal. Increased serum albumin in the treatment group indicates that the liver function is enhanced than that of steatosis. The supplementation of the herbal mixture has preserved the hepatic antioxidant. Zymographic analysis of matrix metalloproteinase, western blot determination of α-SMA, and histological evolution (H&E, Sirius red) depicted reduced fibrosis and reveled management of hepatic stellate cells in quiescent form. The present study concludes that the herbal mixture has reduced hepatocyte fat accumulation in steatotic animals, and curtailed the oxidative stress, further it prevents the progression of steatohepatitis. PRACTICAL APPLICATIONS: Fatty liver diseases can be treated by modulating the diet composition such as consuming food rich in the nutrient herbal mixture. In this study, the nutrient mixture was made with dynamic food processing techniques such as germination, dehulling, and milling to augment the nutritional contents. Besides, Macrotyloma uniflorum, Vigna radiate, Curcuma longa, and Trigonella foenum graecum were used to improve the medicinal value and antioxidant. This formulation could target the various stages of NAFLD. This study revealed that the nutrient herbal mixture reduces the steatosis of the liver and curtailed the progression of steatohepatitis from hepatic steatosis. Since the edible foodstuff was used to make the nutrient mixture, it has excellent clinical application.
Collapse
Affiliation(s)
| | - Dangudubiyyam Sushmaa
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Ibansiewdor Myrthong
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | | - Shreyoshi Guha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Ishfaq Hassan Mir
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Jajnasenee Behera
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | |
Collapse
|
18
|
Abdou RH, Sayed N. Antioxidant and Anti-Inflammatory Effects of Nano-Selenium against Cypermethrin-Induced Liver Toxicity. Cell 2019. [DOI: 10.4236/cellbio.2019.84004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Experimental evaluation of a polyherbal formulation (Tetraherbs): antidiabetic efficacy in rats. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s00580-018-2755-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Chen Z, Lei YL, Wang WP, Lei YY, Liu YH, Hei J, Hu J, Sui H. Effects of Saponin from Trigonella Foenum-Graecum Seeds on Dyslipidemia. IRANIAN JOURNAL OF MEDICAL SCIENCES 2017; 42:577-585. [PMID: 29184266 PMCID: PMC5684379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Saponins identified from fenugreek (Trigonella foenum-graecum) seeds are reported effective on dyslipidemia. However, the definite mechanism is still not elucidated systematically. In this study, we evaluate the effects of saponin extract on cholesterol absorption, metabolism, synthesis, and reverse cholesterol transport in vivo. METHODS Saponin extract was prepared according to a craft established in our previous study. After the establishment of dyslipidemia model, 40 male Sprague-Dawley rats were divided into five groups, namely the control group (normal diet plus normal saline), HFD group (high fat diet plus normal saline), Lipitor group (high fat diet plus Lipitor (2 mg/kg)), and L, M, and H-saponin groups (high fat diet plus saponin in dosages of 6, 12, and 24 mg/kg, respectively). Rats were sacrificed at the end of the 9th week after treatment. Biochemical characteristics of rats were tested, histopathological sections of liver tissue were observed, and the protein and mRNA expression of related factors of cholesterol in the intestine and liver were determined. One-way ANOVA test (SPSS software version 11.5, Chicago, IL, USA) was used to determine statistically significant differences between the HFD and other groups. RESULTS In saponin groups, the serum lipid, bile acid efflux, anti-peroxide activities, and lipid area of liver tissue improved. Cholesterol 7alpha-hydroxylase and scavenger receptor class B type I elevated in the liver. 3-hydroxy-3-methylglutaryl coenzyme A reductase levels were suppressed in both the serum and liver. However, significant cholesterol efflux was not found and Niemann-Pick C1-Like 1 levels elevated in the intestine. CONCLUSION The mechanisms of saponin in Fenugreek effect on ameliorating dyslipidemia are probably related to accelerated cholesterol metabolism, inhibited cholesterol synthesis, and facilitated reverse cholesterol transport, but not cholesterol absorption.
Collapse
Affiliation(s)
- Zhi Chen
- Faculty of Medicine, Shimane University, Shimane, Japan,School of Pharmacy, Ningxia Medical University, Yinchuan Ningxia, China
| | - Yan-Li Lei
- School of Pharmacy, Ningxia Medical University, Yinchuan Ningxia, China
| | - Wen-Ping Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan Ningxia, China,Ningxia Engineering and Technology Research Center, Modernization of Hui Medicine, Yinchuan Ningxia, China,Key Lab of Hui Ethnic Medicine Modernization, Ministry of Education, Yinchuan Ningxia, China
| | - Ya-Ya Lei
- School of Pharmacy, Ningxia Medical University, Yinchuan Ningxia, China,General Hospital of Ningxia Medical University, Yinchuan Ningxia, China
| | - Yan-Hua Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan Ningxia, China,Ningxia Engineering and Technology Research Center, Modernization of Hui Medicine, Yinchuan Ningxia, China,Key Lab of Hui Ethnic Medicine Modernization, Ministry of Education, Yinchuan Ningxia, China
| | - Jing Hei
- School of Pharmacy, Ningxia Medical University, Yinchuan Ningxia, China,General Hospital of Ningxia Medical University, Yinchuan Ningxia, China
| | - Jin Hu
- School of Pharmacy, Ningxia Medical University, Yinchuan Ningxia, China,General Hospital of Ningxia Medical University, Yinchuan Ningxia, China
| | - Hong Sui
- School of Pharmacy, Ningxia Medical University, Yinchuan Ningxia, China,Ningxia Engineering and Technology Research Center, Modernization of Hui Medicine, Yinchuan Ningxia, China,Key Lab of Hui Ethnic Medicine Modernization, Ministry of Education, Yinchuan Ningxia, China,Correspondence: Hong Sui, PhD; School of Pharmacy, Ningxia Medical University, Yinchuan Ningxia 750001, China Tel: +86 139 95113086 Fax: +86 951 6880693
| |
Collapse
|
21
|
Nagulapalli Venkata KC, Swaroop A, Bagchi D, Bishayee A. A small plant with big benefits: Fenugreek (Trigonella foenum-graecum Linn.) for disease prevention and health promotion. Mol Nutr Food Res 2017; 61. [PMID: 28266134 DOI: 10.1002/mnfr.201600950] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/22/2017] [Accepted: 02/28/2017] [Indexed: 11/06/2022]
Abstract
Plant-derived natural products have long-standing utility toward treating degenerative diseases. It is estimated that about two-thirds of world population depend on traditional medicine for primary medical needs. Fenugreek (Trigonella foenum-graecum Linn.), a short-living annual medicinal plant belonging to Fabaceae family, is used extensively in various parts of the world as herb, food, spice, and traditional medicine. Fenugreek is considered as one of the oldest medicinal plants and its health-promoting effects have been cited in Ayurveda and traditional Chinese medicine. The investigations into the chemical composition and pharmacological actions have seen a renaissance in recent years. Extensive preclinical and clinical research have outlined the pharmaceutical uses of fenugreek as antidiabetic, antihyperlipidemic, antiobesity, anticancer, anti-inflammatory, antioxidant, antifungal, antibacterial, galactogogue and for miscellaneous pharmacological effects, including improving women's health. The pharmacological actions of fenugreek are attributed to diverse array of phytoconstituents. The phytochemical analysis reveals the presence of steroids, alkaloids, saponins, polyphenols, flavonoids, lipids, carbohydrates, amino acids, and hydrocarbons. This review aims to summarize and critically analyze the current available literature to understand the potential of fenugreek for disease prevention and health improvement with special emphasis on cellular and molecular mechanisms. Current challenges and new directions of research on fenugreek are also discussed.
Collapse
Affiliation(s)
| | | | - Debasis Bagchi
- Cepham Research Center, Piscataway, NJ, USA.,Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, USA
| |
Collapse
|
22
|
Kanbur M, Siliğ Y, Eraslan G, Karabacak M, Soyer Sarıca Z, Şahin S. The toxic effect of cypermethrin, amitraz and combinations of cypermethrin-amitraz in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:5232-42. [PMID: 26561326 DOI: 10.1007/s11356-015-5720-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/29/2015] [Indexed: 05/27/2023]
Abstract
In this study, the effects of cypermethrin (CYP), amitraz (AMT) and combined cypermethrin-amitraz (CYP-AMT) on some serum biochemical, oxidative stress and drug-metabolising parameters were investigated in male Wistar albino rats. CYP, AMT and combined CYP-AMT were administered at doses of 80 mg kg(-1) bw(-1) of CYP and 170 mg kg(-1) bw(-1) of AMT for 1 day (single dose), and at doses of 12 mg kg(-1) bw(-1) of CYP and 25 mg kg(-1) bw(-1) of AMT for 40 days by oral gavage. Oxidative stress (malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glucose-6-phosphate dehydrogenase (G6PD)), serum biochemical (glucose, triglyceride, cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), blood urea nitrogen (BUN), creatinine, asparatate amino transferase (AST), alanine amino transferase (ALT), alkaline phosphatase (ALP), total protein, albumin) in blood/tissues (liver, kidney, brain, spleen and testis) and hepatic drug-metabolising (cytochrome P450 2E1 (CYP2E1), NADH-cytochrome b5 reductase (CYPb5), NADPH-cytochrome c reductase/NADPH cytocrome P450 reductase (CYTC), glutathione S-transferase (GST), glutathione (GSH)) parameters were measured in liver samples taken on days 1 and 40. In result, it was determined that CYP, AMT and their combinations led to significant changes in the parameters investigated, and it was ascertained that long-term exposure to insecticides and the administration of insecticide combinations produced greater toxic effects in comparison with the administration of insecticides alone.
Collapse
Affiliation(s)
- Murat Kanbur
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Erciyes University, Kayseri, Turkey
| | - Yavuz Siliğ
- Faculty of Medicine, Department of Biochemistry, Cumhuriyet University, Sivas, Turkey
| | - Gökhan Eraslan
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Erciyes University, Kayseri, Turkey.
| | - Mürsel Karabacak
- Safiye Çıkrıkcıoğlu Vacational Collage, Animal Health Department, Erciyes University, Kayseri, Turkey
| | - Zeynep Soyer Sarıca
- Hakan Çetinsaya Experimantal Animal Center, Erciyes University, Kayseri, Turkey
| | - Serap Şahin
- Faculty of Pharmacy, Department of Biochemistry, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
23
|
Hagos M, Chandravanshi BS. Levels of essential and toxic metals in fenugreek seeds (Trigonella Foenum-Graecum L.) cultivated in different parts of Ethiopia. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2016. [DOI: 10.1590/1981-6723.5915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Summary The levels of the major (Ca, K, Na, Mg), trace (Fe, Cr, Ni, Zn, Mn, Cu, Co), and toxic (Pb, Cd) metals in the seeds of fenugreek cultivated in different regions of Ethiopia were determined by flame atomic absorption spectrophotometry (FAAS). Wet ashing was used to digest 0.5 g of fenugreek seed flour using 1.5 mL of HNO3 and HClO4 acid mixtures (5:1 ratio), 30 min pre-digestion time, 45 min total digestion time and a temperature of 150 °C. Thirteen elements were determined, obtaining concentrations in the following ranges: Ca (15353-36771 mg kg-1) > Fe (6041-18584 mg kg-1) ≈ K (6789-11517 mg kg-1) > Pb (615-2624 mg kg-1) > Na (201-1559 mg kg-1) > Cd (285-464 mg kg-1) > Cr (3-552 mg kg-1) > Ni (31-108 mg kg-1) > Mg (31-102 mg kg-1) > Zn (15-33 mg kg-1) > Mn (16-28 mg kg-1) > Cu (ND-35 mg kg-1) > Co (4-15 mg kg-1). A statistical analysis of variance (ANOVA) at the 95% confidence level revealed there were significant differences between the mean metal contents of fourteen sample means, except for Zn. Pearson’s correlation revealed weak positive or negative linear relationships, which implies that the presence of one metal did not affect the presence of the other metals within the plant, except for a few metals. The study showed that fenugreek seeds were a good source of essential metals. However, they also contained large amounts of the toxic metals Cd and Pb and therefore should not be consumed daily.
Collapse
|
24
|
Kumar P, Bhandari U. Common medicinal plants with antiobesity potential: A special emphasis on fenugreek. Anc Sci Life 2015; 35:58-63. [PMID: 26600669 PMCID: PMC4623635 DOI: 10.4103/0257-7941.165629] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Parveen Kumar
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Uma Bhandari
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| |
Collapse
|
25
|
Arafa MH, Mohamed DA, Atteia HH. Ameliorative effect of N-acetyl cysteine on alpha-cypermethrin-induced pulmonary toxicity in male rats. ENVIRONMENTAL TOXICOLOGY 2015; 30:26-43. [PMID: 23900960 DOI: 10.1002/tox.21891] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/22/2013] [Accepted: 06/26/2013] [Indexed: 06/02/2023]
Abstract
Alpha-cypermethrin (α-CYP) is one of the most widely used insecticides. It may become an air pollutant and adversely affect the health. The present study was designed to determine whether treatment with N-acetyl cysteine (NAC), a well-known antioxidant, can be useful for the management of the deleterious effects of α-CYP on lung tissues. For this purpose, thirty two male rats were divided into four different groups (eight rats for each). Group (I) gavaged with corn oil (control group), group (II) gavaged daily with NAC (150 mg kg(-1) body weight), group (III) gavaged with α-CYP (14.5 mg kg(-1) body weight/day, dissolved in corn oil), group (IV) gavaged with NAC then with α-CYP 2 h later for 12 weeks. α-CYP significantly increased serum lactate dehydrogenase (LDH) and pulmonary malondialdehyde (MDA) levels, while decreased the activities of catalase (CAT) and superoxide dismutase (SOD) as well as reduced glutathione (GSH) content in lung. It also provoked higher levels of serum nitric oxide (NO), lung interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), hydroxyproline (Hyp) as well as heme oxygenase-1 (HO-1), inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-К B) gene expression in lung tissues. Histopathological alterations in lung with congestion, cellular infiltration, necrotic changes and thickening of inter-alveolar septa were observed following α-CYP administration. NAC reduced the adverse effects of α-CYP on lung tissues and improved the histological architecture of lung since it showed antioxidant, anti-inflammatory and antifibrotic effects on lung tissues. Our results indicate that NAC exerts a potent protective effect against α-CYP-induced oxidative damage and inflammation in lung tissues.
Collapse
Affiliation(s)
- Manar Hamed Arafa
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Sharkia Government, Egypt
| | | | | |
Collapse
|
26
|
Hongsibsong S, Stuetz W, Sus N, Prapamontol T, Grune T, Frank J. Dietary exposure to continuous small doses of α-cypermethrin in the presence or absence of dietary curcumin does not induce oxidative stress in male Wistar rats. Toxicol Rep 2014; 1:1106-1114. [PMID: 28962322 PMCID: PMC5598094 DOI: 10.1016/j.toxrep.2014.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/16/2014] [Accepted: 10/27/2014] [Indexed: 11/24/2022] Open
Abstract
α-Cypermethrin induces toxicity in rats when administered at single high doses. In humans, exposure is primarily via contaminated food. Continuous dietary exposure does not cause oxidative stress or hepatotoxicity in rats. Single-dose gastric-intubation studies may have overestimated its toxicity in rats.
α-Cypermethrin is a widely used insecticide and, at high doses, induces oxidative stress in mammals. Curcumin is an antioxidant phytochemical commonly used for food coloring and flavoring. We aimed to investigate the effects of continuous dietary exposure to low doses of α-cypermethrin, as is the case in exposed humans, on oxidative stress and its potential prevention by dietary curcumin. Four groups of ten male Wistar rats were ad libitum-fed a control diet or identical diets fortified with α-cypermethrin (350 mg/kg diet), curcumin (1000 mg/kg diet), or α-cypermethrin and curcumin (350 and 1000 mg/kg diet, respectively) for 7 weeks. α-Cypermethrin accumulated in adipose tissues and was detectable in kidney, liver, and brains. Dietary α-cypermethrin did not alter concentrations of malondialdehyde, ascorbic and uric acid, retinol, liver damage markers, or the activities of CAT and SOD, but reduced vitamin E in blood. α-Cypermethrin did not affect malondialdehyde or reduced glutathione concentrations in any of the tissues, but significantly increased glutathione disulfide in kidney and subcutaneous adipose tissue. In conclusion, dietary exposure to small doses of α-cypermethrin did not induce oxidative stress in rats and may be less toxic than exposure to comparable quantities administered as single high doses by gastric intubation.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine transaminase
- AST, aspartate aminotransferase
- BW, bodyweight
- CAT, catalase
- Curcumin
- Food
- GSH, glutathione
- GSSG, glutathione disulfide
- LD50, median lethal dose
- MDA, malondialdehyde
- Oxidative stress
- Pesticide
- Rats
- SOD, superoxide dismutase
- α-Cypermethrin
Collapse
Affiliation(s)
- Surat Hongsibsong
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, D-70599 Stuttgart, Germany.,Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wolfgang Stuetz
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, D-70599 Stuttgart, Germany.,Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand.,Institute of Nutrition, Friedrich-Schiller-University Jena, D-07743 Jena, Germany
| | - Nadine Sus
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, D-70599 Stuttgart, Germany
| | - Tippawan Prapamontol
- Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tilman Grune
- Institute of Nutrition, Friedrich-Schiller-University Jena, D-07743 Jena, Germany
| | - Jan Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, D-70599 Stuttgart, Germany
| |
Collapse
|
27
|
Sharma P, Huq AU, Singh R. Cypermethrin-induced reproductive toxicity in the rat is prevented by resveratrol. J Hum Reprod Sci 2014; 7:99-106. [PMID: 25191022 PMCID: PMC4150150 DOI: 10.4103/0974-1208.138867] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 05/26/2014] [Accepted: 06/16/2014] [Indexed: 01/16/2023] Open
Abstract
AIMS The current study was to assess the protective role of resveratrol in cypermethrin-induced reproductive toxicity in male Wistar rats. MATERIALS AND METHODS Rats were exposed to cypermethrin (3.83 mg/kg bw) for 14 days. Pre- and post-treatment of resveratrol (20 mg/kg bw for 14 days) was given to cypermethrin exposed rats. At the end of the experiment, rats were sacrificed, testis and epididymis were removed, sperm characteristics, sex hormones, and various biochemical parameters were studied. RESULTS Cypermethrin exposure resulted in a significant decrease in weight of testis and epididymis, testicular sperm head counts, sperm motility and live sperm counts and increase in sperm abnormalities. Serum testosterone (T), follicle stimulating hormone (FSH), luteinizing hormone (LH), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and total protein (TP) content were decreased and lipid peroxidation (LPO) level was increased on cypermethrin exposure. Pre- and post-treatment of resveratrol increased sperm head counts, sperm motility, live sperm counts, T, FSH, LH, GSH, CAT, SOD, GST, GR, GPx and TP contents and decreased LPO. Treatment with resveratrol alone has improved sperm parameters and testicular antioxidant defence system. CONCLUSION The study concluded that resveratrol ameliorated cypermethrin-induced testicular damage by reducing oxidative stress and by enhancing the level of sex hormones.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Zoology, Bundelkhand University, Jhansi, Uttar Pradesh, India
| | - Amir Ul Huq
- Department of Zoology, Bundelkhand University, Jhansi, Uttar Pradesh, India
| | - Rambir Singh
- Department of Biomedical Sciences, Bundelkhand University, Jhansi, Uttar Pradesh, India
| |
Collapse
|
28
|
Belaïd-Nouira Y, Bakhta H, Haouas Z, Flehi-Slim I, Neffati F, Najjar MF, Cheikh HB. Fenugreek seeds, a hepatoprotector forage crop against chronic AlCl3 toxicity. BMC Vet Res 2013; 9:22. [PMID: 23363543 PMCID: PMC3568417 DOI: 10.1186/1746-6148-9-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/25/2013] [Indexed: 12/26/2022] Open
Abstract
Background Having considered how bioavailable aluminium (Al) may affect ecological systems and animals living there, especially cattle, and in search for a preventive dietary treatment against Al toxicity, we aimed to test the protective role of fenugreek seeds against chronic liver injury induced by aluminum chloride (AlCl3) in Wistar rats. Results Five months of AlCl3 oral exposure (500 mg/kg bw i.g for one month then 1600 ppm via drinking water) caused liver atrophy, an inhibition of aspartate transaminase (AST), alanine transaminase (ALT) and glutamyl transpeptidase (GGT), an enhancement of both lipid peroxidation and lactate dehydrogenase (LDH) activity and an increase of total protein level in liver. Moreover, histopathological and histochemical examinations revealed moderate alterations in the hepatic parenchyma in addition to a disrupted iron metabolism. Co-administration of fenugreek seed powder (FSP) at 5% in pellet diet during two months succeeded to antagonize the harmful effects of AlCl3 by restoring all tested parameters. Conclusion This study highlighted the hepatotoxicity of AlCl3 through biochemical and histological parameters in one hand and the hepatoprotective role of fenugreek seeds on the other hand. Thus this work could be a pilot study which will encourage farmers to use fenugreek seeds as a detoxifying diet supplement for domestic animals.
Collapse
Affiliation(s)
- Yosra Belaïd-Nouira
- Laboratory of Histology and Cytogenetic (Research unit of Genetic 02/UR/08-03), Faculty of Medicine, Avenue Ibnou Sina 5000, Monastir, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
29
|
Al-Daghri NM, Alokail MS, Alkharfy KM, Mohammed AK, Abd-Alrahman SH, Yakout SM, Amer OE, Krishnaswamy S. Fenugreek extract as an inducer of cellular death via autophagy in human T lymphoma Jurkat cells. Altern Ther Health Med 2012; 12:202. [PMID: 23110539 PMCID: PMC3520713 DOI: 10.1186/1472-6882-12-202] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 10/16/2012] [Indexed: 12/19/2022]
Abstract
Background Drugs used both in classical chemotherapy and the more recent targeted therapy do not have cancer cell specificity and, hence, cause severe systemic side effects. Tumors also develop resistance to such drugs due to heterogeneity of cell types and clonal selection. Several traditional dietary ingredients from plants, on the other hand, have been shown to act on multiple targets/pathways, and may overcome drug resistance. The dietary agents are safe and readily available. However, application of plant components for cancer treatment/prevention requires better understanding of anticancer functions and elucidation of their mechanisms of action. The current study focuses on the anticancer properties of fenugreek, a herb with proven anti-diabetic, antitumor and immune-stimulating functions. Method Jurkat cells were incubated with 30 to 1500 μg/mL concentrations of 50% ethanolic extract of dry fenugreek seeds and were followed for changes in viability (trypan blue assay), morphology (microscopic examination) and autophagic marker LC3 transcript level (RT-PCR). Results Incubation of Jurkat cells with fenugreek extract at concentrations ranging from 30 to 1500 μg/mL for up to 3 days resulted in cell death in a dose- and time-dependent manner. Jurkat cell death was preceded by the appearance of multiple large vacuoles, which coincided with transcriptional up-regulation of LC3. GC-MS analysis of fenugreek extract indicated the presence of several compounds with anticancer properties, including gingerol (4.82%), cedrene (2.91%), zingerone (16.5%), vanillin (1.52%) and eugenol (1.25%). Conclusions Distinct morphological changes involving appearance of large vacuoles, membrane disintegration and increased expression of LC3 transcripts indicated that fenugreek extract induced autophagy and autophagy-associated death of Jurkat cells. In addition to the already known apoptotic activation, induction of autophagy may be an additional mechanism underlying the anticancer properties of fenugreek. This is the first report showing fenugreek as an inducer of autophagy in human cells and further work is needed to define the various intermediates of the autophagic pathway.
Collapse
|
30
|
Arora S, L. Bodhank S, Mohan V, A. Thakurd P. Renoprotective Effects of Reconstructed Composition of Trigonella foenum-graecum L. Seeds in Animal Model of Diabetic Nephropathy with and without Renal Ischemia Reperfusion in Rats. INT J PHARMACOL 2012. [DOI: 10.3923/ijp.2012.321.332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Sakr SA, Abo-El-Yazid SM. Effect of fenugreek seed extract on adriamycin-induced hepatotoxicity and oxidative stress in albino rats. Toxicol Ind Health 2011; 28:876-85. [PMID: 22082829 DOI: 10.1177/0748233711425076] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this work was to evaluate the effect of aqueous extract of fenugreek seeds against hepatotoxicity induced in albino rats by the anticancer drug adriamycin (ADR). Animals were given single dose of ADR (10 mg/kg body weight) and were killed after 2 and 4 weeks. Liver of ADR-treated animals showed histopathological and biochemical alterations. The histopathological changes include hepatic tissue impairment, cytoplasmic vacuolization of the hepatocytes, congestion of blood vessels, leucocytic infiltrations and fatty infiltration. Moreover, the expression of proliferating cell nuclear antigen was increased in ADR-treated rats. The liver enzymes, aspartate aminotransferase (ALT) and alanine aminotransferase (AST) were increased in the sera of treated rats. Moreover, ADR significantly increased the concentration of malondialdehyde (MDA) and decreased the activities of superoxide dismutase (SOD) and catalase (CAT) in hepatic tissue. Treating animals with ADR and aqueous extract of fenugreek (0.4 g/kg body weight) seeds led to an improvement in histological and biochemical alterations induced by ADR. The biochemical results showed that AST and ALT appeared normal together with reduction in the level of MDA (lipid peroxidation marker) and increase in SOD and CAT activities. It was concluded from this study that the aqueous extract fenugreek seeds has a beneficial impact on ADR-induced hepatotoxicity due to its antioxidant effect in albino rats.
Collapse
Affiliation(s)
- Saber A Sakr
- Zoology Department, Menoufia University, Shebin El-kom, Egypt.
| | | |
Collapse
|
32
|
Sakr SA, El-shenawy SM, Al-Shabka AM. Aqueous Fenugreek Seed Extract Ameliorates Adriamycin-Induced Cytotoxicity and Testicular Alterations in Albino Rats. Reprod Sci 2011; 19:70-80. [DOI: 10.1177/1933719111413301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Saber A. Sakr
- Department of Zoology, Faculty of Science, Menoufia University, Shibin el-Kom, Egypt
| | - Salama M. El-shenawy
- Laboratory Department, Teaching Hospital, Menoufia University, Shebin el-Kom, Egypt
| | - Ahmed M. Al-Shabka
- Department of Zoology, Faculty of Science, Menoufia University, Shibin el-Kom, Egypt
| |
Collapse
|
33
|
Shi X, Gu A, Ji G, Li Y, Di J, Jin J, Hu F, Long Y, Xia Y, Lu C, Song L, Wang S, Wang X. Developmental toxicity of cypermethrin in embryo-larval stages of zebrafish. CHEMOSPHERE 2011; 85:1010-6. [PMID: 21840035 DOI: 10.1016/j.chemosphere.2011.07.024] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 06/27/2011] [Accepted: 07/18/2011] [Indexed: 05/18/2023]
Abstract
Cypermethrin, a type II pyrethroid insecticide, is widely used throughout the world in agriculture, forestry, horticulture and homes. Though the neurotoxicity of cypermethrin has been thoroughly studied in adult rodents, little is so far available regarding the developmental toxicity of cypermethrin to fish in early life stages. To explore the potential developmental toxicity of cypermethrin, 4-h post-fertilization (hpf) zebrafish embryos were exposed to various concentrations of cypermethrin (0, 25, 50, 100, 200 and 400 μg L⁻¹) until 96 h. Among a suite of morphological abnormalities, the unique phenotype curvature was observed at concentrations as low as 25 μg L⁻¹. Studies revealed that 400 μg L⁻¹ cypermethrin significantly increased malondialdehyde production. In addition, activity of antioxidative enzymes including superoxide dismutase and catalase were significantly induced in zebrafish larvae in a concentration-dependent manner. To further investigate the toxic effects of cypermethrin on fish, acridine orange (AO) staining was performed at 400 μg L⁻¹ cypermethrin and the result showed notable signs of apoptosis mainly in the nervous system. Cypermethrin also down-regulated ogg1 and increased p53 gene expression as well as the caspase-3 activity. Our results demonstrate that cypermethrin was able to induce oxidative stress and produce apoptosis through the involvement of caspases in zebrafish embryos. In this study, we investigated the developmental toxicity of cypermethrin using zebrafish embryos, which could be helpful in fully understanding the potential mechanisms of cypermethrin exposure during embryogenesis and also suggested that zebrafish could serve as an ideal model for studying developmental toxicity of environmental contaminants.
Collapse
Affiliation(s)
- Xiangguo Shi
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chargui I, Falcioni ML, Cheikh HB, Gabbianelli R. Erythrocyte antioxidants enzymes imbalance following subcutaneous pyrethroid treatments in rats of different sex. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 30:116-120. [PMID: 21787640 DOI: 10.1016/j.etap.2010.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Revised: 04/22/2010] [Accepted: 04/23/2010] [Indexed: 05/31/2023]
Abstract
Permethrin and deltamethrin are insecticides used all over the world in agriculture to control pests. The aim of this work is to investigate the effects of subcutaneous permethrin and/or deltamethrin treatments on erythrocyte antioxidant enzymes activity in rats of different sex. The results obtained show that permethrin decreases SOD and GPx activity in female rats, while it increases SOD activity in male rats. Deltamethrin treatment reduces GPx activity in male rats, while permethrin has a similar effect but only for short time treatments. A catalase activity decrease was observed in both sexes following pyrethroid treatment but when both the pyrethroids were administrated in male rats, the enzyme activity has increased. In conclusion, this study points out for the first time the importance of rat gender on erythrocyte antioxidant enzymes, which are influenced not only by the length and the type of insecticide treatment but importantly by sex.
Collapse
Affiliation(s)
- Issam Chargui
- Laboratory of Histology and Genetics, Faculty of Medicine of Monastir, Tunisia
| | | | | | | |
Collapse
|
35
|
Ghedira K, Goetz P, Le Jeune R. Fenugrec: Trigonella fœnum-græcum L. (Fabaceae ex. Leguminosae). ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s10298-010-0551-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|