1
|
Montano L, Baldini GM, Piscopo M, Liguori G, Lombardi R, Ricciardi M, Esposito G, Pinto G, Fontanarosa C, Spinelli M, Palmieri I, Sofia D, Brogna C, Carati C, Esposito M, Gallo P, Amoresano A, Motta O. Polycyclic Aromatic Hydrocarbons (PAHs) in the Environment: Occupational Exposure, Health Risks and Fertility Implications. TOXICS 2025; 13:151. [PMID: 40137477 PMCID: PMC11946043 DOI: 10.3390/toxics13030151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds with fused aromatic rings, primarily derived from combustion processes and environmental pollutants. This narrative review discusses the most relevant studies on PAHs, focusing on their sources, environmental and occupational exposure, and effects on human health, emphasizing their roles as carcinogenic, mutagenic, and teratogenic agents. The primary pathways for human exposure to PAHs are through the ingestion of contaminated food (mainly due to some food processing methods, such as smoking and high-temperature cooking techniques), the inhalation of ambient air, and the smoking of cigarettes. Coke oven workers are recognized as a high-risk occupational group for PAH exposure, highlighting the need for appropriate strategies to mitigate these risks and safeguard worker health. PAHs are metabolized into reactive intermediates in the body, which can lead to DNA damage and promote the development of various health conditions, particularly in environments with high exposure levels. Chronic PAH exposure has been linked to respiratory diseases, as well as cardiovascular problems and immune system suppression. Furthermore, this review underscores the significant impact of PAHs on reproductive health. The results of the reported studies suggest that both male and female fertility can be compromised due to oxidative stress, DNA damage, and endocrine disruption caused by PAH exposure. In males, PAHs impair sperm quality, while, in females, they disrupt ovarian function, potentially leading to infertility, miscarriage, and birth defects. Fetal exposure to PAHs is also associated with neurodevelopmental disorders. Given the extensive and detrimental health risks posed by PAHs, this review stresses the importance of stringent environmental regulations, occupational safety measures, and public health initiatives to mitigate exposure and safeguard reproductive and overall health.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in Uro-Andrology, Local Health Authority (ASL) Salerno, 84124 Salerno, Italy
- Coordination Unit of the Network for Environmental and Reproductive Health (Eco Food Fertility Project), Oliveto Citra Hospital, 84124 Salerno, Italy
| | - Giorgio Maria Baldini
- Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy;
| | - Giovanna Liguori
- Territorial Pharmaceutical Service, Local Health Authority (ASL), 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Renato Lombardi
- Territorial Pharmaceutical Service, Local Health Authority (ASL), 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Maria Ricciardi
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | | | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
- INBB-Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Carolina Fontanarosa
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
| | - Michele Spinelli
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
- INBB-Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Ilaria Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy;
| | - Daniele Sofia
- Research Department, Sense Square Srl, 84084 Salerno, Italy;
- Department of Computer Engineering, Modeling, Electronics and Systems, University of Calabria, Via P. Bucci, Cubo 44/a Rende, 87036 Arcavacata, Italy
| | - Carlo Brogna
- Department of Research, Craniomed Group Facility Srl, 20091 Bresso, Italy;
| | - Cosimo Carati
- Student of Department of Medicine Surger, University Cattolica Sacro Cuore, Largo Francesco Vito, 1, 00168 Roma, Italy;
| | - Mauro Esposito
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Dipartimento Coordinamento di Chimica, Via della Salute, 2, 80005 Portici, Italy; (M.E.); (P.G.)
| | - Pasquale Gallo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Dipartimento Coordinamento di Chimica, Via della Salute, 2, 80005 Portici, Italy; (M.E.); (P.G.)
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
- INBB-Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy;
| |
Collapse
|
2
|
Wang K, Xue Y, Liu Y, Su X, Wei L, Lv C, Zhang X, Zhang L, Jia L, Zheng S, Ma Y, Yan H, Jiang G, Song H, Wang F, Lin Q, Hou Y. The detoxification ability of sex-role reversed seahorses determines the sexual dimorphism in immune responses to benzo[a]pyrene exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173088. [PMID: 38735333 DOI: 10.1016/j.scitotenv.2024.173088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Sexual dimorphism in immune responses is an essential factor in environmental adaptation. However, the mechanisms involved remain obscure owing to the scarcity of data from sex-role-reversed species in stressed conditions. Benzo[a]pyrene (BaP) is one of the most pervasive and carcinogenic organic pollutants in coastal environments. In this study, we evaluated the potential effects on renal immunotoxicity of the sex-role-reversed lined seahorse (Hippocampus erectus) toward environmental concentrations BaP exposure. Our results discovered the presence of different energy-immunity trade-off strategies adopted by female and male seahorses during BaP exposure. BaP induced more severe renal damage in female seahorses in a concentration-dependent manner. BaP biotransformation and detoxification in seahorses resemble those in mammals. Benzo[a]pyrene-7,8-dihydrodiol-9,10-oxide (BPDE) and 9-hydroxybenzo[a]pyrene (9-OH-BaP) formed DNA adducts and disrupted Ca2+ homeostasis may together attribute the renal immunotoxicity. Sexual dimorphisms in detoxification of both BPDE and 9-OH-BaP, and in regulation of Ca2+, autophagy and inflammation, mainly determined the extent of renal damage. Moreover, the mechanism of sex hormones regulated sexual dimorphism in immune responses needs to be further elucidated. Collectively, these findings contribute to the understanding of sexual dimorphism in the immunotoxicity induced by BaP exposure in seahorses, which may attribute to the dramatic decline in the biodiversity of the genus.
Collapse
Affiliation(s)
- Kai Wang
- School of Agriculture, Ludong University, Yantai 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai 264025, China.
| | - Yuanyuan Xue
- School of Agriculture, Ludong University, Yantai 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai 264025, China
| | - Yali Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Xiaolei Su
- School of Agriculture, Ludong University, Yantai 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai 264025, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Chunhui Lv
- School of Agriculture, Ludong University, Yantai 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai 264025, China
| | - Xu Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Lele Zhang
- School of Agriculture, Ludong University, Yantai 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai 264025, China
| | - Longwu Jia
- School of Agriculture, Ludong University, Yantai 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai 264025, China
| | - Shiyi Zheng
- School of Agriculture, Ludong University, Yantai 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai 264025, China
| | - Yicong Ma
- School of Agriculture, Ludong University, Yantai 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai 264025, China
| | - Hansheng Yan
- School of Agriculture, Ludong University, Yantai 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai 264025, China
| | - Guangjun Jiang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Hongce Song
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Fang Wang
- Department of Pathology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264025, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yuping Hou
- School of Life Sciences, Ludong University, Yantai 264025, China
| |
Collapse
|
3
|
Xu H, Chen F, Liu Z, Gao R, He J, Li F, Li N, Mu X, Liu T, Wang Y, Chen X. B(a)P induces ovarian granulosa cell apoptosis via TRAF2-NFκB-Caspase1 axis during early pregnancy. ENVIRONMENTAL RESEARCH 2024; 252:118865. [PMID: 38583661 DOI: 10.1016/j.envres.2024.118865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Benzo(a)pyrene [B(a)P] is an environmental endocrine disruptor with reproductive toxicity. The corpus luteum (CL) of the ovary plays an important role in embryo implantation and pregnancy maintenance. Our previous studies have shown that B(a)P exposure affects embryo implantation and endometrial decidualization in mouse, but its effects and mechanisms on CL function remain unclear. In this study, we explore the mechanism of ovarian toxicity of B(a)P using a pregnant mouse model and an in vitro model of human ovarian granulosa cells (GCs) KGN. Pregnant mice were gavaged with corn oil or 0.2 mg/kg.bw B(a)P from pregnant day 1 (D1) to D7, while KGN cells were treated with DMSO, 1.0IU/mL hCG, or 1.0IU/mL hCG plus benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), a B(a)P metabolite. Our findings revealed that B(a)P exposure damaged embryo implantation and reduced estrogen and progesterone levels in early pregnant mice. Additionally, in vitro, BPDE impaired luteinization in KGN cells. We observed that B(a)P/BPDE promoted oxidative stress (OS) and inflammation, leading to apoptosis rather than pyroptosis in ovaries and luteinized KGN cells. This apoptotic response was mediated by the activation of inflammatory Caspase1 through the cleavage of BID. Furthermore, B(a)P/BPDE inhibited TRAF2 expression and suppressed NFκB signaling pathway activation. The administration of VX-765 to inhibit the Caspase1 activation, over-expression of TRAF2 using TRAF2-pcDNA3.1 (+) plasmid, and BetA-induced activation of NFκB signaling pathway successfully alleviated BPDE-induced apoptosis and cellular dysfunction in luteinized KGN cells. These findings were further confirmed in the KGN cell treated with H2O2 and NAC. In conclusion, this study elucidated that B(a)P/BPDE induces apoptosis rather than pyroptosis in GCs via TRAF2-NFκB-Caspase1 during early pregnancy, and highlighting OS as the primary contributor to B(a)P/BPDE-induced ovarian toxicity. Our results unveil a novel role of TRAF2-NFκB-Caspase1 in B(a)P-induced apoptosis and broaden the understanding of mechanisms underlying unexplained luteal phase deficiency.
Collapse
Affiliation(s)
- Hanting Xu
- Joint International Research Laboratory of Reproduction & Development, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Fangyuan Chen
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhihao Liu
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Rufei Gao
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Junlin He
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Fangfang Li
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Nanyan Li
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Jiulongpo District Center for Disease Control and Prevention, Chongqing, 400039, PR China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Taihang Liu
- Joint International Research Laboratory of Reproduction & Development, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction & Development, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China.
| | - Xuemei Chen
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
4
|
Traini G, Tamburrino L, Ragosta ME, Guarnieri G, Morelli A, Vignozzi L, Baldi E, Marchiani S. Effects of Benzo[a]pyrene on Human Sperm Functions: An In Vitro Study. Int J Mol Sci 2023; 24:14411. [PMID: 37833859 PMCID: PMC10572991 DOI: 10.3390/ijms241914411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Benzo(a)pyrene (BaP) is considered one of the most dangerous air pollutants for adverse health effects, including reproductive toxicity. It is found both in male and female reproductive fluids likely affecting spermatozoa after the selection process through cervical mucus, a process mimicked in vitro with the swim-up procedure. In vitro effects of BaP (1, 5, 10 µM) were evaluated both in unselected and swim-up selected spermatozoa after 3 and 24 h of incubation. BaP reduced total, progressive and hyperactivated motility and migration in a viscous medium both in swim-up selected and unselected spermatozoa. Viability was not significantly affected in swim-up selected but was reduced in unselected spermatozoa. In swim-up selected spermatozoa, increases in the percentage of spontaneous acrosome reaction and DNA fragmentation were observed after 24 h of incubation, whereas no differences between the control and BaP-treated samples were observed in caspase-3 and -7 activity, indicating no effects on apoptotic pathways. ROS species, evaluated by staining with CellROX® Orange and Dihydroethidium, did not differ in viable spermatozoa after BaP treatment. Conversely, the percentage of unviable ROS-positive spermatozoa increased. Our study suggests that BaP present in male and female genital fluids may heavily affect reproductive functions of human spermatozoa.
Collapse
Affiliation(s)
- Giulia Traini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.T.); (L.V.)
| | - Lara Tamburrino
- Andrology, Women’s Endocrinology and Gender Incongruence Unit, Center for Prevention, Diagnosis and Treatment of Infertility, Careggi University Hospital, 50134 Florence, Italy;
| | - Maria Emanuela Ragosta
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (M.E.R.); (G.G.); (A.M.)
| | - Giulia Guarnieri
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (M.E.R.); (G.G.); (A.M.)
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (M.E.R.); (G.G.); (A.M.)
| | - Linda Vignozzi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.T.); (L.V.)
- Andrology, Women’s Endocrinology and Gender Incongruence Unit, Center for Prevention, Diagnosis and Treatment of Infertility, Careggi University Hospital, 50134 Florence, Italy;
| | - Elisabetta Baldi
- Andrology, Women’s Endocrinology and Gender Incongruence Unit, Center for Prevention, Diagnosis and Treatment of Infertility, Careggi University Hospital, 50134 Florence, Italy;
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (M.E.R.); (G.G.); (A.M.)
| | - Sara Marchiani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.T.); (L.V.)
- Andrology, Women’s Endocrinology and Gender Incongruence Unit, Center for Prevention, Diagnosis and Treatment of Infertility, Careggi University Hospital, 50134 Florence, Italy;
| |
Collapse
|
5
|
Hwang S, Hood RB, Hauser R, Schwartz J, Laden F, Jones D, Liang D, Gaskins AJ. Using follicular fluid metabolomics to investigate the association between air pollution and oocyte quality. ENVIRONMENT INTERNATIONAL 2022; 169:107552. [PMID: 36191487 PMCID: PMC9620437 DOI: 10.1016/j.envint.2022.107552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIM Our objective was to use metabolomics in a toxicological-relevant target tissue to gain insight into the biological processes that may underlie the negative association between air pollution exposure and oocyte quality. METHODS Our study included 125 women undergoing in vitro fertilization at an academic fertility center in Massachusetts, US (2005-2015). A follicular fluid sample was collected during oocyte retrieval and untargeted metabolic profiling was conducted using liquid chromatography with ultra-high-resolution mass spectrometry and two chromatography columns (C18 and HILIC). Daily exposure to nitrogen dioxide (NO2), ozone, fine particulate matter, and black carbon was estimated at the women's residence using spatiotemporal models and averaged over the period of ovarian stimulation (2-weeks). Multivariable linear regression models were used to evaluate the associations between the air pollutants, number of mature oocytes, and metabolic feature intensities. A meet-in-the-middle approach was used to identify overlapping features and metabolic pathways. RESULTS Of the air pollutants, NO2 exposure had the largest number of overlapping metabolites (C18: 105; HILIC: 91) and biological pathways (C18: 3; HILIC: 6) with number of mature oocytes. Key pathways of overlap included vitamin D3 metabolism (both columns), bile acid biosynthesis (both columns), C21-steroid hormone metabolism (HILIC), androgen and estrogen metabolism (HILIC), vitamin A metabolism (HILIC), carnitine shuttle (HILIC), and prostaglandin formation (C18). Three overlapping metabolites were confirmed with level-1 or level-2 evidence. For example, hypoxanthine, a metabolite that protects against oxidant-induced cell injury, was positively associated with NO2 exposure and negatively associated with number of mature oocytes. Minimal overlap was observed between the other pollutants and the number of mature oocytes. CONCLUSIONS Higher exposure to NO2 during ovarian stimulation was associated with many metabolites and biologic pathways involved in endogenous vitamin metabolism, hormone synthesis, and oxidative stress that may mediate the observed associations with lower oocyte quality.
Collapse
Affiliation(s)
- Sueyoun Hwang
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Robert B Hood
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States
| | - Francine Laden
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States
| | - Dean Jones
- Division of Pulmonary, Allergy, & Critical Care Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Audrey J Gaskins
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, United States.
| |
Collapse
|
6
|
Kim G, Jang G, Song J, Kim D, Lee S, Joo JWJ, Jang W. A transcriptome-wide association study of uterine fibroids to identify potential genetic markers and toxic chemicals. PLoS One 2022; 17:e0274879. [PMID: 36174000 PMCID: PMC9521910 DOI: 10.1371/journal.pone.0274879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Uterine fibroid is one of the most prevalent benign tumors in women, with high socioeconomic costs. Although genome-wide association studies (GWAS) have identified several loci associated with uterine fibroid risks, they could not successfully interpret the biological effects of genomic variants at the gene expression levels. To prioritize uterine fibroid susceptibility genes that are biologically interpretable, we conducted a transcriptome-wide association study (TWAS) by integrating GWAS data of uterine fibroid and expression quantitative loci data. We identified nine significant TWAS genes including two novel genes, RP11-282O18.3 and KBTBD7, which may be causal genes for uterine fibroid. We conducted functional enrichment network analyses using the TWAS results to investigate the biological pathways in which the overall TWAS genes were involved. The results demonstrated the immune system process to be a key pathway in uterine fibroid pathogenesis. Finally, we carried out chemical–gene interaction analyses using the TWAS results and the comparative toxicogenomics database to determine the potential risk chemicals for uterine fibroid. We identified five toxic chemicals that were significantly associated with uterine fibroid TWAS genes, suggesting that they may be implicated in the pathogenesis of uterine fibroid. In this study, we performed an integrative analysis covering the broad application of bioinformatics approaches. Our study may provide a deeper understanding of uterine fibroid etiologies and informative notifications about potential risk chemicals for uterine fibroid.
Collapse
Affiliation(s)
- Gayeon Kim
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Gyuyeon Jang
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Jaeseung Song
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Daeun Kim
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Sora Lee
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Jong Wha J. Joo
- Department of Computer Science and Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Wonhee Jang
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
7
|
Guo Q, Li S, Wang X, Han HS, Yin XJ, Li JC. Paeoniflorin improves the in vitro maturation of benzo(a)pyrene treated porcine oocytes via effects on the sonic hedgehog pathway. Theriogenology 2021; 180:72-81. [PMID: 34953351 DOI: 10.1016/j.theriogenology.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/20/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
Benzo(a)pyrene (BaP) is a toxic substance that people are often exposed to. It has serious harmful effects on the body, and has a destructive effect on oocytes and cumulus cells. Here, we found that paeoniflorin (Pae), a traditional Chinese medicine monomer with antioxidant effects, decreased BaP-induced meiotic failure by increasing the activity of the Sonic hedgehog (SHH) signaling pathway and reducing the level of reactive oxygen species (ROS). We found that the in vitro maturation (IVM) rate was significantly increased (P < 0.05) in the 0.1 μM Pae and BaP (co-treatment) group compared with BaP group due to reduced ROS levels and increased mitochondrial membrane potential (ΔΨ) and ATP content. The mRNA expression levels of oocyte maturation and cumulus cell expansion-related genes were also significantly higher in the co-treatment group. To demonstrate the quality of oocytes, the development capacity of parthenogenetically activated (PA) and in vitro fertilization (IVF) embryos from different treatment groups oocytes were determined.The blastocyst formation rate was significantly higher in PA and IVF embryos derived from oocytes in the co-treatment group than in those derived from oocytes in the BaP group. To further confirm that the SHH signaling pathway was involved in causing these effects of Pae, we treated oocytes with Pae and BaP in the presence or absence of cyclopamine (Cy), an inhibitor of this pathway. Cy abolished the effects of Pae in BaP treated porcine oocytes. In conclusion, Pae improves the IVM capacity of BaP-treated porcine oocytes by activating the SHH signaling pathway, inhibiting ROS production, and increasing ΔΨ.
Collapse
Affiliation(s)
- Qing Guo
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China; Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Suo Li
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Xue Wang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China; Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Huan-Sheng Han
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China; Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China.
| | - Jing-Chun Li
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China; Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China.
| |
Collapse
|
8
|
Diallyl Sulfide Attenuation of Carcinogenesis in Mammary Epithelial Cells through the Inhibition of ROS Formation, and DNA Strand Breaks. Biomolecules 2021; 11:biom11091313. [PMID: 34572526 PMCID: PMC8470778 DOI: 10.3390/biom11091313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Garlic has long been used medicinally for many diseases, including cancer. One of the active garlic components is diallyl sulfide (DAS), which prevents carcinogenesis and reduces the incidence rate of several cancers. In this study, non-cancerous MCF-10A cells were used as a model to investigate the effect of DAS on Benzo (a)pyrene (BaP)-induced cellular carcinogenesis. The cells were evaluated based on changes in proliferation, cell cycle arrest, the formation of peroxides, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, the generation of DNA strand breaks, and DNA Polymerase β (Pol β) expression. The results obtained indicate that when co-treated with BaP, DAS inhibited BaP-induced cell proliferation (p < 0.05) to levels similar to the negative control. BaP treatment results in a two-fold increase in the accumulation of cells in the G2/M-phase of the cell cycle, which is restored to baseline levels, similar to untreated cells and vehicle-treated cells, when pretreated with 6 μM and 60 μM DAS, respectively. Co-treatment with DAS (60 μM and 600 μM) inhibited BaP-induced reactive oxygen species (ROS) formation by 132% and 133%, respectively, as determined by the accumulation of H2O2 in the extracellular medium and an increase in 8-OHdG levels of treated cells. All DAS concentrations inhibited BaP-induced DNA strand breaks through co-treatment and pre-treatment methods at all time points evaluated. Co-Treatment with 60 μM DAS increased DNA Pol β expression in response to BaP-induced lipid peroxidation and oxidative DNA damage. These results indicate that DAS effectively inhibited BaP-induced cell proliferation, cell cycle transitions, ROS, and DNA damage in an MCF-10A cell line. These results provide more experimental evidence for garlic's antitumor abilities and corroborate many epidemiological studies regarding the association between the increased intake of garlic and the reduced risk of several types of cancer.
Collapse
|
9
|
Rahmani Z, Karimpour Malekshah A, Zargari M, Talebpour Amiri F. Effect of prenatal exposure to Benzo[a]pyrene on ovarian toxicity and reproductive dysfunction: Protective effect of atorvastatin in the embryonic period. ENVIRONMENTAL TOXICOLOGY 2021; 36:1683-1693. [PMID: 33978294 DOI: 10.1002/tox.23164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/05/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
As an environmental contaminant, Benzo[a]pyrene (B[a]P; BaP) disrupts the antioxidant signaling and thus leads to the induction of oxidative stress and the damage of DNA in the ovary. low-dose atorvastatin (ATV) has antioxidant and anti-apoptotic properties. The present study aimed to survey the effects of prenatal exposure to BaP on ovarian toxicity and also to investigate the protective role of ATV in reducing ovarian toxicity. In this study, rats were divided into seven groups: control, ATV (10 mg/kg), oil, BaP (10 and 20 mg/kg), and ATV + BaP (10 and 20 mg/kg). BaP and ATV were administrated from gestation day 7-16 (GD7 to GD16), orally. 10 weeks after the birth, female offsprings were examined for oxidative stress markers, sex hormones, ovarian and tubular tissue structure, and the apoptosis markers. Data showed that BaP significantly reduced glutathione, increased malondialdehyde level, and disrupted the tissue structure of the ovary. Moreover, estrogen and progesterone levels significantly decreased in the offsprings rats. Also, BaP increased caspase-3 immunoreactivity. Atorvastatin treatment along with BaP in the embryonic period were able to bring the antioxidant status and sex hormones levels relatively close to normal. Besides, histological findings showed that atorvastatin was able to improve ovarian and oviduct abnormalities caused by BaP. Based on the above studies be concluded that atorvastatin in the embryonic during was able to reduce ovarian damage caused by BaP with antioxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Zahra Rahmani
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbasali Karimpour Malekshah
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Department of Biochemistry, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
10
|
Cotena M, Auffan M, Tassistro V, Resseguier N, Rose J, Perrin J. In Vitro Co-Exposure to CeO 2 Nanomaterials from Diesel Engine Exhaust and Benzo( a)Pyrene Induces Additive DNA Damage in Sperm and Cumulus Cells but Not in Oocytes. NANOMATERIALS 2021; 11:nano11020478. [PMID: 33668575 PMCID: PMC7918929 DOI: 10.3390/nano11020478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 01/31/2023]
Abstract
Benzo(a)pyrene (BaP) is a recognized reprotoxic compound and the most widely investigated polycyclic aromatic hydrocarbon in ambient air; it is widespread by the incomplete combustion of fossil fuels along with cerium dioxide nanomaterials (CeO2 NMs), which are used in nano-based diesel additives to decrease the emission of toxic compounds and to increase fuel economy. The toxicity of CeO2 NMs on reproductive organs and cells has also been shown. However, the effect of the combined interactions of BaP and CeO2 NMs on reproduction has not been investigated. Herein, human and rat gametes were exposed in vitro to combusted CeO2 NMs or BaP or CeO2 NMs and BaP in combination. CeO2 NMs were burned at 850 °C prior to mimicking their release after combustion in a diesel engine. We demonstrated significantly higher amounts of DNA damage after exposure to combusted CeO2 NMs (1 µg·L-1) or BaP (1.13 µmol·L-1) in all cell types considered compared to unexposed cells. Co-exposure to the CeO2 NMs-BaP mixture induced additive DNA damage in sperm and cumulus cells, whereas no additive effect was observed in rat oocytes. This result could be related to the structural protection of the oocyte by cumulus cells and to the oocyte's efficient system to repair DNA damage compared to that of cumulus and sperm cells.
Collapse
Affiliation(s)
- Martina Cotena
- IMBE, CNRS, IRD, Avignon Université, Aix Marseille Univ., 13005 Marseille, France; (M.C.); (V.T.)
- CEREGE, CNRS, Aix Marseille Univ., IRD, INRAE, Coll France, 13545 Aix-en-Provence, France; (M.A.); (J.R.)
| | - Mélanie Auffan
- CEREGE, CNRS, Aix Marseille Univ., IRD, INRAE, Coll France, 13545 Aix-en-Provence, France; (M.A.); (J.R.)
- Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Virginie Tassistro
- IMBE, CNRS, IRD, Avignon Université, Aix Marseille Univ., 13005 Marseille, France; (M.C.); (V.T.)
| | - Noémie Resseguier
- Department of Biostatistics and Public Health, La Timone Hospital, 13005 Marseille, France;
| | - Jérôme Rose
- CEREGE, CNRS, Aix Marseille Univ., IRD, INRAE, Coll France, 13545 Aix-en-Provence, France; (M.A.); (J.R.)
- Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Jeanne Perrin
- IMBE, CNRS, IRD, Avignon Université, Aix Marseille Univ., 13005 Marseille, France; (M.C.); (V.T.)
- Laboratory of Reproduction Biology-CECOS, Department of Gynecology, Obstetrics and Reproductive Medicine, AP-HM La Conception, Pôle Femmes Parents Enfants, 13005 Marseille, France
- Correspondence:
| |
Collapse
|
11
|
Xu H, Mu X, Ding Y, Tan Q, Liu X, He J, Gao R, Li N, Geng Y, Wang Y, Chen X. Melatonin alleviates benzo(a)pyrene-induced ovarian corpus luteum dysfunction by suppressing excessive oxidative stress and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111561. [PMID: 33254415 DOI: 10.1016/j.ecoenv.2020.111561] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Benzo(a)pyrene (B(a)P) is a widespread persistent organic pollutant (POP) and a well-known endocrine disruptor. Exposure to BaP is known to disrupt the steroid balance and impair embryo implantation, but the mechanism under it remains unclear. The corpus luteum (CL), the primary source of progesterone during early pregnancy, plays a pivotal role in embryo implantation and pregnancy maintenance. The inappropriate luteal function may result in implantation failure and spontaneous abortions. Therefore, this study was conducted to assess the effects and potential mechanisms of B(a)P on the CL function. Our results showed that pregnant mice received B(a)P displayed impaired embryo implantation and dysfunction of ovarian CL. The estrogen and progesterone levels decreased by B(a)P. In vitro, exposure to BPDE, which is the metabolite of B(a)P, affected the luteinization of granular cell KK-1. Additionally, melatonin and its receptors, which are important for ovarian function and anti-oxidative damage, were affected by B(a)P or BPDE. B(a)P or BPDE-treated alone impaired antioxidant capacity of ovarian granulosa cells, caused an increasing of ROS and cell apoptosis, and disrupted the PI3K/AKT/GSK3β signaling pathway in vivo and in vitro. Co-treatment with melatonin alleviated B(a)P or BPDE-induced CL dysfunction by ameliorating oxidative stress, counteracting phosphorylation of PI3K/AKT/GSK3β signaling pathway, decreasing the apoptosis of the ovarian cells. Moreover, activation of the melatonin receptor by ramelteon in KK-1 cells exhibits an analogous protective effect as melatonin. In conclusion, our findings not only firstly clarify the potential mechanisms of BaP-induced CL dysfunction, but also extend the understanding about the ovarian protection of melatonin and its receptors against B(a)P exposure.
Collapse
Affiliation(s)
- Hanting Xu
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Xinyi Mu
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Qiman Tan
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Nanyan Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Yanqing Geng
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| |
Collapse
|
12
|
Plunk EC, Richards SM. Endocrine-Disrupting Air Pollutants and Their Effects on the Hypothalamus-Pituitary-Gonadal Axis. Int J Mol Sci 2020; 21:ijms21239191. [PMID: 33276521 PMCID: PMC7731392 DOI: 10.3390/ijms21239191] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Anthropogenic endocrine-disrupting chemicals (EDCs) can contaminate air, soil, and water. Human exposures to EDCs occur through inhalation, absorption, and ingestion. EDCs act by disrupting various pathways in the endocrine system. When the hypothalamic–pituitary–gonadal (HPG) axis is disrupted by EDCs, there can be effects on fertility in both men and women. Not only can fertility be indirectly affected by EDC disruptions of the HPG axis, but EDCs can also directly affect the menstrual cycle and sperm morphology. In this review, we will discuss the current findings on EDCs that can be inhaled. This review examines effects of exposure to prominent EDCs: brominated and organophosphate flame retardants, diesel exhaust, polycyclic aromatic hydrocarbons, cadmium and lead, TCDD, and polychlorinated biphenyls on fertility through alterations that disrupt the HPG axis and fertility through inhalation. Although the studies included herein include multiple exposure routes, all the studies indicate receptor interactions that can occur from inhalation and the associated effects of all compounds on the HPG axis and subsequent fertility.
Collapse
Affiliation(s)
- Elizabeth C. Plunk
- Department of Environmental Medicine, University of Rochester Medical School, Rochester, NY 14642, USA
- Correspondence:
| | - Sean M. Richards
- Department of Biological, Geological and Environmental Sciences, University of Tennessee-Chattanooga, Chattanooga, TN 37403, USA;
- Department of Obstetrics and Gynecology, College of Medicine, University of Tennessee Health Science Center, Chattanooga, TN 37403, USA
| |
Collapse
|
13
|
Shukla H, Lee HY, Koucheki A, Bibi HA, Gaje G, Sun X, Zhu H, Li YR, Jia Z. Targeting glutathione with the triterpenoid CDDO-Im protects against benzo-a-pyrene-1,6-quinone-induced cytotoxicity in endothelial cells. Mol Cell Biochem 2020; 474:27-39. [PMID: 32715408 DOI: 10.1007/s11010-020-03831-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/11/2020] [Indexed: 12/13/2022]
Abstract
Epidemiological studies have exhibited a strong correlation between exposure to air pollution and deaths due to vascular diseases such as atherosclerosis. Benzo-a-pyrene-1,6-quinone (BP-1,6-Q) is one of the components of air pollution. This study was to examine the role of GSH in BP-1,6-Q mediated cytotoxicity in human EA.hy96 endothelial cells and demonstrated that induction of cellular glutathione by a potent triterpenoid, CDDO-Im (1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole), protects cells against BP-1,6-Q induced protein and lipid damage. Incubation of EA.hy926 endothelial cells with BP-1,6-Q caused a significant increase in dose-dependent cytotoxicity as measured by LDH release assay and both apoptotic and necrotic cell deaths as measured by flow cytometric analysis. Incubation of EA.hy926 endothelial cells with BP-1,6-Q also caused a significant decrease in cellular GSH levels. The diminishment of cellular GSH by buthionine sulfoximine (BSO) potentiated BP-1,6-Q-induced toxicity significantly suggesting a critical involvement of GSH in BP-1,6-Q induced cellular toxicity. GSH-induction by CDDO-Im significantly protects cells against BP-1,6-Q induced protein and lipid damage as measured by protein carbonyl (PC) assay and thiobarbituric acid reactive substances (TBARS) assay, respectively. However, the co-treatment of cells with CDDO-Im and BSO reversed the cytoprotective effect of CDDO-Im on BP-1,6-Q-mediated lipid peroxidation and protein oxidation. These results suggest that induction of GSH by CDDO-Im might be the important cellular defense against BP-1,6-Q induced protein and lipid damage. These findings would contribute to better understand the action of BP-1,6-Q and may help to develop novel therapies to protect against BP-1,6-Q-induced atherogenesis.
Collapse
Affiliation(s)
- Halley Shukla
- Department of Biology, The University of North Carolina At Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, NC, 27402-6170, USA
| | - Ho Young Lee
- Department of Biology, The University of North Carolina At Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, NC, 27402-6170, USA
| | - Ashkon Koucheki
- Department of Biology, The University of North Carolina At Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, NC, 27402-6170, USA
| | - Humaira A Bibi
- Department of Biology, The University of North Carolina At Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, NC, 27402-6170, USA
| | - Gabriella Gaje
- Department of Biology, The University of North Carolina At Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, NC, 27402-6170, USA
| | - Xiaolun Sun
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Hong Zhu
- Campbell University School of Osteopathic Medicine, Buies Creek, NC, USA
| | - Y Robert Li
- Campbell University School of Osteopathic Medicine, Buies Creek, NC, USA
| | - Zhenquan Jia
- Department of Biology, The University of North Carolina At Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, NC, 27402-6170, USA.
| |
Collapse
|
14
|
Luo ZB, Rahman SU, Xuan MF, Han SZ, Li ZY, Yin XJ, Kang JD. The protective role of ginsenoside compound K in porcine oocyte meiotic maturation failed caused by benzo(a)pyrene during in vitro maturation. Theriogenology 2020; 157:96-109. [PMID: 32810794 DOI: 10.1016/j.theriogenology.2020.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 11/27/2022]
Abstract
Benzo(a)pyrene (BaP) is a pollutant and carcinogen derived from air pollution. It causes serious damage to reproductive system, especially ovary. Ginseng is always used in food and traditional medicine as a nutraceuticals or herbal medicine. Ginsenoside compound K (CK) is a major bioactive ingredient of ginseng, that shows very specific anti-apoptosis, anti-oxidant, and anti-inflammatory activities and thus, it protects cells from damage. The aim of this study was to investigate the effects of CK on the BaP-induced inhibition of the in vitro maturation of porcine oocytes and their subsequent embryonic development capacity. We found that supplementation with 10 μg mL-1 CK during in vitro maturation significantly increased maturation rate (P < 0.05) and the expression level of related genes after damage induced by 40 μM BaP treatment. In addition, reactive oxygen species (ROS) levels significantly decreased and ATP content and mitochondrial membrane potential (MMP) increased after CK supplementation (P < 0.05). The competence for embryonic development was improved by the induction of pluripotency gene expression and the inhibition of apoptosis after CK supplementation of BaP-treated oocytes. Supplementation with 10 μg mL-1 CK improved porcine oocyte maturation and subsequent embryonic development of parthenogenetic activation (33.01 vs. 20.92, P < 0.05) and in vitro fertilization (24.01 vs. 16.52, P < 0.05) by increasing antioxidant activity and improving mitochondrial function after BaP-induced damage.
Collapse
Affiliation(s)
- Zhao-Bo Luo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China
| | - Saeed Ur Rahman
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China
| | - Mei-Fu Xuan
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China
| | - Sheng-Zhong Han
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China
| | - Zhou-Yan Li
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China.
| | - Jin-Dan Kang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
15
|
Miao Y, Zhou C, Bai Q, Cui Z, ShiYang X, Lu Y, Zhang M, Dai X, Xiong B. The protective role of melatonin in porcine oocyte meiotic failure caused by the exposure to benzo(a)pyrene. Hum Reprod 2017; 33:116-127. [DOI: 10.1093/humrep/dex331] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/12/2017] [Indexed: 12/27/2022] Open
Affiliation(s)
- Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Changyin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingyun Bai
- School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Zhaokang Cui
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiayan ShiYang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yajuan Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mianqun Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxin Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Zhang M, Miao Y, Chen Q, Cai M, Dong W, Dai X, Lu Y, Zhou C, Cui Z, Xiong B. BaP exposure causes oocyte meiotic arrest and fertilization failure to weaken female fertility. FASEB J 2017; 32:342-352. [DOI: 10.1096/fj.201700514r] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/28/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Mianqun Zhang
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Qian Chen
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Meng Cai
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Wenkang Dong
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Xiaoxin Dai
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Yajuan Lu
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Changyin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Zhaokang Cui
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| |
Collapse
|
17
|
Li X, Shen C, Liu X, He J, Ding Y, Gao R, Mu X, Geng Y, Wang Y, Chen X. Exposure to benzo[a]pyrene impairs decidualization and decidual angiogenesis in mice during early pregnancy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:523-531. [PMID: 28043741 DOI: 10.1016/j.envpol.2016.11.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/30/2016] [Accepted: 11/09/2016] [Indexed: 06/06/2023]
Abstract
Benzo[a]pyrene (BaP) is a ubiquitous environmental persistent organic pollutant and a well-known endocrine disruptor. BaP exposure could alter the steroid balance in females. Endometrium decidualization and decidual angiogenesis are critical events for embryo implantation and pregnancy maintenance during early pregnancy and are modulated by steroids. However, the effect of BaP on decidualization is not clear. This study aimed to explore the effects of BaP on decidualization and decidual angiogenesis in pregnant mice. The result showed that the uteri in the BaP-treated groups were smaller and exhibited an uneven size compared with those in the control group. Artificial decidualization was detected in the uteri of the controls, but weakened decidualization response was observed in the BaP-treated groups. BaP significantly reduced the levels of estradiol, progesterone, and their cognate receptors ER and PR, respectively. The expression of several decidualization-related factors, including FOXO1, HoxA10, and BMP2, were altered after BaP treatment. BaP reduced the expression of cluster designation 34 (CD34), which indicated that the decidual angiogenesis was inhibited by BaP treatment. In addition, BaP induced the downregulation of vascular endothelial growth factor A. These data suggest that oral BaP ingestion compromised decidualization and decidual angiogenesis. Our results provide experimental data for the maternal reproductive toxicity of BaP during early pregnancy, which is very important for a comprehensive risk assessment of BaP on human reproductive health.
Collapse
Affiliation(s)
- Xueyan Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Cha Shen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Xinyi Mu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Yanqing Geng
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| |
Collapse
|
18
|
Liu L, Wang Y, Shen C, He J, Liu X, Ding Y, Gao R, Chen X. Benzo(a)pyrene inhibits migration and invasion of extravillous trophoblast HTR-8/SVneo cells via activation of the ERK and JNK pathway. J Appl Toxicol 2015; 36:946-55. [PMID: 26359795 DOI: 10.1002/jat.3227] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 08/02/2015] [Accepted: 08/02/2015] [Indexed: 12/31/2022]
Abstract
Benzo(a)pyrene (BaP) is a persistent organic pollutant (POP) that is a serious threat to human health. Numerous studies have shown that BaP causes adverse effects in pregnancy, but the mechanism remains unclear. The moderate invasion of trophoblast cells into the endometrium is an important factor during successful embryo implantation. The aim of this study was to investigate the effect and mechanism of BaP on the invasion and migration of trophoblast cells. HTR-8/SVneo cells were treated with different concentrations (1, 5, 10, 25, 50 and 100 μM) of BaP. The invasion and migration of HTR-8/SVneo cells were observed after BaP treatment. The protein levels related to migration and invasion was detected by Western blot. The results confirmed that BaP inhibits the migration and invasion of extravillous trophoblast HTR-8/SVneo cells. Further investigations indicated that the protein levels of MMP-2, MMP-9 and E-cadherin in HTR-8/SVneo cells were changed by BaP treatment. Moreover, the data demonstrated that BaP activated the MAPK signaling pathway. Pretreatment with specific inhibitors of MAPK rescued BaP-induced change in the migration and invasion of HTR-8/SVneo cells. Taken together, our results indicated that BaP inhibits invasion and the migration of HTR-8/SVneo cells, which might cause a failure in early pregnancy. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Liyuan Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Cha Shen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| |
Collapse
|
19
|
Use of ovary culture techniques in reproductive toxicology. Reprod Toxicol 2014; 49:117-35. [DOI: 10.1016/j.reprotox.2014.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/14/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022]
|