1
|
Khanna V, Singh K. MicroRNAs as promising drug delivery target to ameliorate chronic obstructive pulmonary disease using nano-carriers: a comprehensive review. Mol Cell Biochem 2024:10.1007/s11010-024-05110-0. [PMID: 39254870 DOI: 10.1007/s11010-024-05110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a deteriorating condition triggered by various factors, such as smoking, free radicals, and air pollution. This worsening disease is characterized by narrowing and thickening of airways, painful cough, and dyspnea. In COPD, numerous genes as well as microRNA (miRNA) play a significant role in the pathogenesis of the disease. Many in vivo and in vitro studies suggest that upregulation or suppression of certain miRNAs are effective treatment options for COPD. They have been proven to be more beneficial than the current symptomatic treatments, such as bronchodilators and corticosteroids. MiRNAs play a crucial role in immune cell development and regulate inflammatory responses in various tissues. MiRNA treatment thus allows for precision therapy with improved outcomes. Nanoparticle drug delivery systems such as polymeric nanoparticles, inorganic nanoparticles, dendrimers, polymeric micelles, and liposomes are an efficient method to ensure the biodistribution of the miRNAs to the target site. Identification of the right nanoparticle depending on the requirements and compatibility is essential for achieving maximum therapeutic effect. In this review, we offer a thorough comprehension of the pathology and genetics of COPD and the significance of miRNAs concerning various pathologies of the lung, as potential targets for treating the disease. The present review offers the latest insights into the nanoparticle drug delivery systems that can efficiently carry and deliver miRNA or antagomirs to the specific target site and hence help in effective management of COPD.
Collapse
Affiliation(s)
- Vamika Khanna
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
2
|
Hardin LT, Abid N, Vang D, Han X, Thor D, Ojcius DM, Xiao N. miRNAs mediate the impact of smoking on dental pulp stem cells via the p53 pathway. Toxicol Sci 2024; 200:47-56. [PMID: 38636493 DOI: 10.1093/toxsci/kfae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Cigarette smoke changes the genomic and epigenomic imprint of cells. In this study, we investigated the biological consequences of extended cigarette smoke exposure on dental pulp stem cells (DPSCs) and the potential roles of miRNAs. DPSCs were treated with various doses of cigarette smoke condensate (CSC) for up to 6 weeks. Cell proliferation, survival, migration, and differentiation were evaluated. Cytokine and miRNA expression were profiled. The results showed that extended exposure to CSC significantly impaired the regenerative capacity of the DPSCs. Bioinformatic analysis showed that the cell cycle pathway, cancer pathways (small cell lung cancer, pancreatic, colorectal, and prostate cancer), and pathways for TNF, TGF-β, p53, PI3K-Akt, mTOR, and ErbB signal transduction, were associated with altered miRNA profiles. In particular, 3 miRNAs has-miR-26a-5p, has-miR-26b-5p, and has-miR-29b-3p fine-tune the p53 and cell cycle signaling pathways to regulate DPSC cellular activities. The work indicated that miRNAs are promising targets to modulate stem cell regeneration and understanding miRNA-targeted genes and their associated pathways in smoking individuals have significant implications for disease control and prevention.
Collapse
Affiliation(s)
- Leyla Tahrani Hardin
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| | - Nabil Abid
- Department of Molecular and Cellular Biology, High Institute of Biotechnology of Monastir, University of Monastir, Monastir, 5000, Tunisia
- Laboratory of Transmissible Diseases and Biological Active Substances LR99ES27, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, 5000, Tunisia
| | - David Vang
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| | - Xiaoyuan Han
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| | - Der Thor
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| | - David M Ojcius
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| | - Nan Xiao
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| |
Collapse
|
3
|
Chung C, Park SY, Huh JY, Kim NH, Shon C, Oh EY, Park YJ, Lee SJ, Kim HC, Lee SW. Fine particulate matter aggravates smoking induced lung injury via NLRP3/caspase-1 pathway in COPD. J Inflamm (Lond) 2024; 21:13. [PMID: 38654364 DOI: 10.1186/s12950-024-00384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Exposure to noxious particles, including cigarette smoke and fine particulate matter (PM2.5), is a risk factor for chronic obstructive pulmonary disease (COPD) and promotes inflammation and cell death in the lungs. We investigated the combined effects of cigarette smoking and PM2.5 exposure in patients with COPD, mice, and human bronchial epithelial cells. METHODS The relationship between PM2.5 exposure and clinical parameters was investigated in patients with COPD based on smoking status. Alveolar destruction, inflammatory cell infiltration, and pro-inflammatory cytokines were monitored in the smoking-exposed emphysema mouse model. To investigate the mechanisms, cell viability and death and pyroptosis-related changes in BEAS-2B cells were assessed following the exposure to cigarette smoke extract (CSE) and PM2.5. RESULTS High levels of ambient PM2.5 were more strongly associated with high Saint George's respiratory questionnaire specific for COPD (SGRQ-C) scores in currently smoking patients with COPD. Combined exposure to cigarette smoke and PM2.5 increased mean linear intercept and TUNEL-positive cells in lung tissue, which was associated with increased inflammatory cell infiltration and inflammatory cytokine release in mice. Exposure to a combination of CSE and PM2.5 reduced cell viability and upregulated NLRP3, caspase-1, IL-1β, and IL-18 transcription in BEAS-2B cells. NLRP3 silencing with siRNA reduced pyroptosis and restored cell viability. CONCLUSIONS PM2.5 aggravates smoking-induced airway inflammation and cell death via pyroptosis. Clinically, PM2.5 deteriorates quality of life and may worsen prognosis in currently smoking patients with COPD.
Collapse
Affiliation(s)
- Chiwook Chung
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
- Department of Pulmonary and Critical Care Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea
| | - Suk Young Park
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
| | - Jin-Young Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Chung- Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, Republic of Korea
| | - Na Hyun Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
| | - ChangHo Shon
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
- Efficacy Evaluation Center, WOOJUNGBIO Inc, Hwaseong, Republic of Korea
| | - Eun Yi Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Jun Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seon-Jin Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hwan-Cheol Kim
- Department of Occupational and Environmental Medicine, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Zhang Y, Sheng Y, Gao Y, Lin Y, Cheng B, Li H, Zhang L, Xu H. Exploration of the Pathogenesis of Chronic Obstructive Pulmonary Disease Caused by Smoking-Based on Bioinformatics Analysis and In Vitro Experimental Evidence. TOXICS 2023; 11:995. [PMID: 38133396 PMCID: PMC10747869 DOI: 10.3390/toxics11120995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
This study was aimed at investigating the pathogenesis of chronic obstructive pulmonary disease (COPD) caused by smoking-based on bioinformatics analysis and in vitro experimental evidence. The GEO, GEO2R, TargetScan, miRDB, miRWalk, DAVID, and STRING databases were used for bioinformatics analysis. The mRNA expression and the protein levels were determined by real-time PCR and ELISA. After taking the intersection of the diversified results of the databases, four differentially expressed miRNAs (hsa-miR-146a, hsa-miR-708, hsa-miR-150, and hsa-miR-454) were screened out. Subsequently, a total of 57 target genes of the selected miRNAs were obtained. The results of DAVID analysis showed that the selected miRNAs participated in COPD pathogenesis through long-term potentiation, the TGF-β signaling pathway, the PI3K-Akt signaling pathway, etc. The results of STRING prediction showed that TP53, EP300, and MAPK1 were the key nodes of the PPI network. The results of the confirmatory experiment showed that, compared with the control group, the mRNA expression of ZEB1, MAPK1, EP300, and SP1 were up-regulated, while the expression of MYB was down-regulated and the protein levels of ZEB1, MAPK1, and EP300 were increased. Taken together, miRNAs (hsa-miR-146a, hsa-miR-708, hsa-miR-150, and hsa-miR-454) and their regulated target genes and downstream protein molecules (ZEB1, EP300, and MAPK1) may be closely related to the pathological process of COPD.
Collapse
Affiliation(s)
- Yingchi Zhang
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China (Y.S.); (Y.G.); (Y.L.); (H.L.)
- The Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
- Xi’an Center for Disease Control and Prevention, Xi’an 710000, China
| | - Yuxin Sheng
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China (Y.S.); (Y.G.); (Y.L.); (H.L.)
- The Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Yanrong Gao
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China (Y.S.); (Y.G.); (Y.L.); (H.L.)
- The Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Yujia Lin
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China (Y.S.); (Y.G.); (Y.L.); (H.L.)
- The Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Bin Cheng
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China (Y.S.); (Y.G.); (Y.L.); (H.L.)
- The Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Hongmei Li
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China (Y.S.); (Y.G.); (Y.L.); (H.L.)
- The Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Zhang
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China (Y.S.); (Y.G.); (Y.L.); (H.L.)
- The Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Haiming Xu
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China (Y.S.); (Y.G.); (Y.L.); (H.L.)
- The Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| |
Collapse
|
5
|
Baran K, Kordiak J, Jabłoński S, Brzeziańska-Lasota E. Panel of miR-150 and linc00673, regulators of CCR6/CCL20 may serve as non-invasive diagnostic marker of non-small cell lung cancer. Sci Rep 2023; 13:9642. [PMID: 37316552 DOI: 10.1038/s41598-023-36485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
The C-C motif ligand 20 (CCL20) is a chemokine that specifically binds to the chemokine receptor 6 (CCR6) and the CCL20/CCR6 axis has been implicated in the non-small lung cancer (NSCLC) development and progression. Its expression is regulated by mutual interactions of non-coding RNAs (ncRNAs). This goals of presented study was to evaluate the expression level of CCR6/CCL20 mRNA in NSCLC tissue comparative to selected ncRNAs: miR-150, linc00673. The expression level of the studied ncRNAs was also assessed in serum extracellular vesicles (EVs). Thirty patients (n = 30) were enrolled as the study cohort. Total RNA was isolated from tumor tissue, adjacent macroscopically unchanged tissue and serum EVs. The expression level of studied genes and ncRNAs were estimated based on the qPCR method. Higher expression level of CCL20 mRNA but lower expression level of CCR6 mRNA were observed in tumor in comparison to control tissue. Relative to the smoking status, higher CCL20 (p < 0.05) and CCR6 mRNA (p > 0.05) expression levels were observed in current smokers than in never smokers. In serum EVs the expression level of miR-150 has a negative correlation with AJCC tumor staging, whereas the expression level of linc00673 positively correlated (p > 0.05). The lower expression level of miR-150 and higher expression level of linc00673 in serum EVs were observed in NSCLC patients with lymph nodes metastases (p > 0.05). Regarding the histopathological type, significantly lower expression level of miR-150 and higher expression level of linc00673 were observed in the serum EVs of patients with AC compared to patient with SCC. Our findings revealed that smoking significantly changed the expression level of CCL20 mRNA in NSCLC tissue. Changes in expression levels of miR-150 and linc00673 in the serum EVs of NSCLC patients in relation to presence of lymph node metastases and the stage of cancer development may serve as a non-invasive molecular biomarkers of tumor progression. Furthermore, expression levels of miR-150 and linc00673 may serve as non-intrusive diagnostic biomarkers differentiating adenocarcinoma from squamous cell carcinoma.
Collapse
Affiliation(s)
- Kamila Baran
- Department of Biomedicine and Genetics, Chair of Biology and Medical Microbiology, Medical University of Lodz, Lodz, Poland.
| | - Jacek Kordiak
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, Lodz, Poland
| | - Sławomir Jabłoński
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, Lodz, Poland
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Chair of Biology and Medical Microbiology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Bi H, Wang G, Li Z, Zhou L, Zhang M. MEG3 Regulates CSE-Induced Apoptosis by Regulating miR-421/DFFB Signal Axis. Int J Chron Obstruct Pulmon Dis 2023; 18:859-870. [PMID: 37215747 PMCID: PMC10198185 DOI: 10.2147/copd.s405566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is a common respiratory disease with irreversible and progressive obstruction of airflow. Currently, there are no clinically available treatments to prevent COPD progression. Apoptosis of human lung microvascular endothelial cells (HPMECs) and bronchial epithelial cells (HBECs) is often observed in COPD, but its pathogenesis has not been fully elucidated. LncRNA maternally expressed gene 3 (MEG3) is closely related to CSE-induced apoptosis, but the specific mechanism of MEG3 in COPD is still unknown. Methods In the present study, cigarette smoke extract (CSE) is used to treat HPMECs and HBECs. Flow cytometry assay is used to detect the apoptosis of these cells. The expression of MEG3 in CSE-treated HPMECs and HBECs is detected by qRT-PCR. LncBase v.2 is used to predict miRNAs binding to MEG3, and miR-421 is found to bind to MEG3. Dual luciferase report analysis and RNA immunoprecipitation experiment jointly clarified the binding relationship between MEG3 and miR-421. Results MiR-421 was downregulated in CSE-treated HPMECs/HBECs, and miR-421 overexpression mitigated CSE-induced apoptosis in these cells. Subsequently, DFFB was found to be directly targeted by miR-421. The overexpression of miR-421 dramatically reduced the expression level of DNA fragmentation factor subunit beta (DFFB). DFFB was found downregulated in CSE-treated HPMECs and HBECs. MEG3 contributed to the apoptosis of HPMECs and HBECs induced by CSE by regulating the miR-421/DFFB axis. Conclusion This study presents a new perspective on the diagnosis and treatment of COPD caused by CSE.
Collapse
Affiliation(s)
- Hui Bi
- Department of Respiratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People’s Republic of China
| | - Gui Wang
- Department of Intensive Care Unit, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People’s Republic of China
| | - Zhiying Li
- Department of Respiratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People’s Republic of China
| | - Lin Zhou
- Department of Respiratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People’s Republic of China
| | - Ming Zhang
- Department of Respiratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
7
|
Xu H, Xu F, Lu H, Chen J, Huang X, Chen Y, Lin L. S1PR2 is Important for Cigarette Smoke-induced Pyroptosis in Human Bronchial Epithelial Cells. Arch Med Res 2023:S0188-4409(23)00040-1. [PMID: 36990889 DOI: 10.1016/j.arcmed.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease and other respiratory inflammatory diseases are often associated with cigarette smoke exposure. However, the underlying molecular mechanism remains unclear. AIM OF THE STUDY This study aimed to investigate the role of sphingosine-1-phosphate receptor 2 (S1PR2) in cigarette smoke extract (CSE)-induced inflammation and pyroptosis in human bronchial epithelial (HBE) cells. METHODS CSE was administered to HBE cells and inflammation and pyroptosis were assessed. The mRNA levels of S1PR2, NLRP3, IL-1β, and IL-18 in HBE cells were detected by quantitative RT-PCR. Secreted protein levels of IL-1β and IL-18 in the culture supernatants were detected using enzyme-linked immunosorbent assay. Western blotting was used to measure the levels of S1PR2 and pyroptosis-related proteins (NLRP3, ASC, caspase-1, GSDMD, IL-1β, and IL-18). RESULTS Our study revealed an upregulated expression of S1PR2, NLRP3, ASC, caspase-1, GSDMD, IL-1β, and regulated IL-18 in HBE cells after CSE exposure. Genetic blockage of S1PR2 could reverse the increased expression of these proteins related to CSE-induced pyroptosis. Conversely, S1PR2 overexpression increased CSE-induced pyroptosis by upregulating the expression of NLRP3, ASC, caspase-1, GSDMD, IL-1β, and IL-18 in HBE cells. CONCLUSIONS Our results revealed that a novel S1PR2 signaling pathway may be involved in the pathogenesis of CSE-induced inflammation and pyroptosis in HBE cells. Thus, S1PR2 inhibitors could be an effective treatment for cigarette smoke-induced airway inflammation and injury.
Collapse
|
8
|
Liu J, Jiang G, He P, Du X, Hu Z, Li F. Mechanism of ferroptosis in traditional chinese medicine for clinical treatment: A review. Front Pharmacol 2023; 13:1108836. [PMID: 36686700 PMCID: PMC9851042 DOI: 10.3389/fphar.2022.1108836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Ferroptosis is an iron-dependent regulation of cell death driven by lipid peroxidation, which is intracellularly dependent on iron and independent of other metals, and morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. Ferroptosis is closely related to physiological and pathological processes, such as development, aging, and immunity, and it plays an important role in a variety of diseases. In many departments, traditional Chinese medicine plays an increasingly important role in their clinical treatment. In recent years, an increasing number of studies have been conducted on the mechanism of ferroptosis in traditional Chinese medicine. However, the role of ferroptosis in the clinical treatment of traditional Chinese medicine requires further exploration. This article mainly introduces the application of ferroptosis in studies of the mechanism of traditional Chinese medicine to help clinicians understand the current status of traditional Chinese medicine therapy for the treatment of ferroptosis-related diseases.
Collapse
Affiliation(s)
- Jiajiao Liu
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Guanyin Jiang
- Orthopedic Laboratory, Chongqing Medical University, Chongqing, China,Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pengfei He
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Du
- Orthopedic Laboratory, Chongqing Medical University, Chongqing, China,Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Fuxiang Li, ; Zhenming Hu, ; Xing Du,
| | - Zhenming Hu
- Orthopedic Laboratory, Chongqing Medical University, Chongqing, China,Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Fuxiang Li, ; Zhenming Hu, ; Xing Du,
| | - Fuxiang Li
- School of Clinical Medicine, Southwest Medical University, Luzhou, China,*Correspondence: Fuxiang Li, ; Zhenming Hu, ; Xing Du,
| |
Collapse
|
9
|
Dapas M, Thompson EE, Wentworth-Sheilds W, Clay S, Visness CM, Calatroni A, Sordillo JE, Gold DR, Wood RA, Makhija M, Khurana Hershey GK, Sherenian MG, Gruchalla RS, Gill MA, Liu AH, Kim H, Kattan M, Bacharier LB, Rastogi D, Altman MC, Busse WW, Becker PM, Nicolae D, O’Connor GT, Gern JE, Jackson DJ, Ober C. Multi-omic association study identifies DNA methylation-mediated genotype and smoking exposure effects on lung function in children living in urban settings. PLoS Genet 2023; 19:e1010594. [PMID: 36638096 PMCID: PMC9879483 DOI: 10.1371/journal.pgen.1010594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 01/26/2023] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Impaired lung function in early life is associated with the subsequent development of chronic respiratory disease. Most genetic associations with lung function have been identified in adults of European descent and therefore may not represent those most relevant to pediatric populations and populations of different ancestries. In this study, we performed genome-wide association analyses of lung function in a multiethnic cohort of children (n = 1,035) living in low-income urban neighborhoods. We identified one novel locus at the TDRD9 gene in chromosome 14q32.33 associated with percent predicted forced expiratory volume in one second (FEV1) (p = 2.4x10-9; βz = -0.31, 95% CI = -0.41- -0.21). Mendelian randomization and mediation analyses revealed that this genetic effect on FEV1 was partially mediated by DNA methylation levels at this locus in airway epithelial cells, which were also associated with environmental tobacco smoke exposure (p = 0.015). Promoter-enhancer interactions in airway epithelial cells revealed chromatin interaction loops between FEV1-associated variants in TDRD9 and the promoter region of the PPP1R13B gene, a stimulator of p53-mediated apoptosis. Expression of PPP1R13B in airway epithelial cells was significantly associated the FEV1 risk alleles (p = 1.3x10-5; β = 0.12, 95% CI = 0.06-0.17). These combined results highlight a potential novel mechanism for reduced lung function in urban youth resulting from both genetics and smoking exposure.
Collapse
Affiliation(s)
- Matthew Dapas
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | - Emma E. Thompson
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | | | - Selene Clay
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | | | | | - Joanne E. Sordillo
- Department of Population Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diane R. Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert A. Wood
- Department of Pediatrics, Johns Hopkins University Medical Center, Baltimore, Maryland, United States of America
| | - Melanie Makhija
- Division of Allergy and Immunology, Ann & Robert H. Lurie Children’s Hospital, Chicago, Illinois, United States of America
| | - Gurjit K. Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Michael G. Sherenian
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Rebecca S. Gruchalla
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michelle A. Gill
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew H. Liu
- Department of Allergy and Immunology, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Haejin Kim
- Department of Medicine, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Meyer Kattan
- Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Leonard B. Bacharier
- Monroe Carell Jr. Children’s Hospital at Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Deepa Rastogi
- Children’s National Health System, Washington, District of Columbia, United States of America
| | - Matthew C. Altman
- Department of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - William W. Busse
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Patrice M. Becker
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Dan Nicolae
- Department of Statistics, University of Chicago, Chicago, Illinois, United States of America
| | - George T. O’Connor
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - James E. Gern
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Daniel J. Jackson
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| |
Collapse
|
10
|
MicroRNA-150 (miR-150) and Diabetic Retinopathy: Is miR-150 Only a Biomarker or Does It Contribute to Disease Progression? Int J Mol Sci 2022; 23:ijms232012099. [PMID: 36292956 PMCID: PMC9603433 DOI: 10.3390/ijms232012099] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetic retinopathy (DR) is a chronic disease associated with diabetes mellitus and is a leading cause of visual impairment among the working population in the US. Clinically, DR has been diagnosed and treated as a vascular complication, but it adversely impacts both neural retina and retinal vasculature. Degeneration of retinal neurons and microvasculature manifests in the diabetic retina and early stages of DR. Retinal photoreceptors undergo apoptosis shortly after the onset of diabetes, which contributes to the retinal dysfunction and microvascular complications leading to vision impairment. Chronic inflammation is a hallmark of diabetes and a contributor to cell apoptosis, and retinal photoreceptors are a major source of intraocular inflammation that contributes to vascular abnormalities in diabetes. As the levels of microRNAs (miRs) are changed in the plasma and vitreous of diabetic patients, miRs have been suggested as biomarkers to determine the progression of diabetic ocular diseases, including DR. However, few miRs have been thoroughly investigated as contributors to the pathogenesis of DR. Among these miRs, miR-150 is downregulated in diabetic patients and is an endogenous suppressor of inflammation, apoptosis, and pathological angiogenesis. In this review, how miR-150 and its downstream targets contribute to diabetes-associated retinal degeneration and pathological angiogenesis in DR are discussed. Currently, there is no effective treatment to stop or reverse diabetes-caused neural and vascular degeneration in the retina. Understanding the molecular mechanism of the pathogenesis of DR may shed light for the future development of more effective treatments for DR and other diabetes-associated ocular diseases.
Collapse
|
11
|
Song Q, Zhou ZJ, Cai S, Chen Y, Chen P. Oxidative stress links the tumour suppressor p53 with cell apoptosis induced by cigarette smoke. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1745-1755. [PMID: 33825597 DOI: 10.1080/09603123.2021.1910211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
This study was to investigate the effects of oxidative stress in cigarette smoke (CS)-induced cell apoptosis in mice with emphysema. Thirty-two mice were divided into four groups: the control group, the CS group, the CS + Pifithrin-α group, and the CS + NAC group. Pathological changes and apoptosis in lung tissue of mice were detected. The activity of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (T-AOC) were measured using spectrophotometer. The proteins expression of p53, Bcl-2, Bax, and caspase-3 were determined by western blot. The results showed that cell apoptosis, lung structural damage, and the activity of MDA, as well as the expression of apoptosis-related proteins Bax, total caspase-3, and cleaved caspase-3 were increased in CS-treated mice. The activity of SOD, CAT, and T-AOC, as well as the expression of anti-apoptosis protein Bcl-2 were decreased in CS-treated mice when compared with the control group. However, Pifithrin-α (p53 inhibitor) and N-Acetylcysteine (NAC) could reduce cell apoptosis, lung structural damage and oxidative stress, accelerate the expression of Bcl-2, while suppressing the expression of Bax, total caspase-3 and cleaved caspase-3. More importantly, the treatment with NAC even inhibited the expression of p53. In conclusions, oxidative stress linking the p53 is involved in cell apoptosis in CS-treated emphysema mice.
Collapse
Affiliation(s)
- Qing Song
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Zi-Jing Zhou
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Shan Cai
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
12
|
ROS-Responsive miR-150-5p Downregulation Contributes to Cigarette Smoke-Induced COPD via Targeting IRE1α. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5695005. [PMID: 35571237 PMCID: PMC9098354 DOI: 10.1155/2022/5695005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) have been reported in human diseases, in which chronic obstructive pulmonary disease (COPD) is included. Herein, we assessed the role along with the possible mechanisms of miR-150-5p in cigarette smoke- (CS-) induced COPD. The plasma miR-150-5p expression was lower in patients with COPD and acute exacerbation of COPD (AECOPD) and was related to disease diagnosis, disease severity, and lung function. Consistently, exposure to CS for 3 months or 3 days reduced miR-150-5p in the plasma and lung tissues of mice, and CS extract (CSE) inhibited miR-150-5p in human bronchial epithelial cells (HBECs) in a concentration along with time-dependent approach. In vitro, miR-150-5p overexpression decreased the contents of inflammatory factors interleukin- (IL-) 6, IL-8 along with cyclooxygenase-2 (COX-2), and endoplasmic reticulum (ER) stress markers glucose-regulated protein (GRP) 78 and C/-EBP homologous protein (CHOP) and promoted cell migrate. Mechanistically, miR-150-5p could bind with the 3′-untranslated region (UTR) of inositol requiring enzyme 1α (IRE1α), while IRE1α overexpression obliterated the impacts of miR-150-5p. Besides, N-acetyl-cysteine (NAC) reversed CSE-induced miR-150-5p downregulation and its downstream effects. In vivo, miR-150-5p overexpression counteracted CS-triggered IRE1α upregulation, inflammation, and ER stress in the lung tissues of mice. In conclusion, our findings illustrated that ROS-mediated downregulation of miR-150-5p led to CS-induced COPD by inhibiting IRE1α expression, suggesting to serve as a useful biomarker for diagnosing and treating COPD.
Collapse
|
13
|
Alsemeh AE, Abdullah DM. Protective effect of alogliptin against cyclophosphamide-induced lung toxicity in rats: Impact on PI3K/Akt/FoxO1 pathway and downstream inflammatory cascades. Cell Tissue Res 2022; 388:417-438. [PMID: 35107620 PMCID: PMC9035424 DOI: 10.1007/s00441-022-03593-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
Cyclophosphamide (CP)-induced lung toxicity is a remaining obstacle against the beneficial use of this chemotherapeutic agent. More considerations were given to the role of Alogliptin (ALO) in ameliorating CP-induced toxicities in many tissues. We designed this study to clarify the protective potential of ALO against CP-induced lung toxicity in rats. ALO was administered for 7 days. Single-dose CP was injected on the 2nd day (200 mg/kg: i.p.) to induce lung toxicity. Rats were divided into four groups: control, ALO-treated, CP-treated and ALO + CP-treated group. Leucocytic count, total proteins, LDH activity, TNF-α, and IL-6 were estimated in the bronchoalveolar lavage fluid (BALF). The oxidative/antioxidants (MDA, Nrf2, TAO and GSH), inflammatory (NFκB), fibrotic (TGF-β1) and apoptotic (PI3K/Akt/FoxO1) markers in pulmonary homogenates were biochemically evaluated. Rat lung sections were examined histologically (light and electron microscopic examination) and immunohistochemically (for iNOS and CD68 positive alveolar macrophages). CP significantly increased oxidative stress, inflammation, fibrosis, and apoptosis markers as well as deteriorated the histopathological pulmonary architecture. These hazardous effects were significantly ameliorated by ALO treatment. ALO protected against CP-induced lung toxicity by mitigating the oxidative, inflammatory and fibrotic impacts making it a promising pharmacological therapy for mitigating CP-induced lung toxicity.
Collapse
Affiliation(s)
- Amira Ebrahim Alsemeh
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Doaa M Abdullah
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
14
|
Wang L, Zhao H, Raman I, Yan M, Chen Q, Li QZ. Peripheral Blood Mononuclear Cell Gene Expression in Chronic Obstructive Pulmonary Disease: miRNA and mRNA Regulation. J Inflamm Res 2022; 15:2167-2180. [PMID: 35392023 PMCID: PMC8983057 DOI: 10.2147/jir.s337894] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/16/2022] [Indexed: 01/01/2023] Open
Affiliation(s)
- Lijing Wang
- Departments of Geriatrics, Respiratory Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People’s Republic of China
| | - Hongjun Zhao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People’s Republic of China
| | - Indu Raman
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mei Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Qiong Chen
- Departments of Geriatrics, Respiratory Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People’s Republic of China
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Correspondence: Quan-Zhen Li, Department of Immunology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA, Tel +1 214-645-6071, Fax +1 214-645-6074, Email
| |
Collapse
|
15
|
Song ZM, Zhang XJ, Yuan PP, Wang YZ, Li MQ, Liu YF, Hu XY, Miao JJ, Fang HB, Feng WS. Diarylheptanoid glycosides from Zingiber officinale peel and their anti-apoptotic activity. Fitoterapia 2022; 157:105109. [PMID: 34954262 DOI: 10.1016/j.fitote.2021.105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 11/29/2022]
Abstract
Four new diarylheptanoid glycosides (1-4), (1S,3R,5S)-2-(4-hydroxy-3- methoxyphenyl)-6-[2-(4-hydroxyphenyl)ethyl]-tetrahydropyran-4-ol-4'-O-β-D-glucopyranoside (1), (1S,3R,5S)-2-(4,5-dihydroxy-3-methoxyphenyl)-6-[2-(4-hydroxyphenyl) ethyl]-tetrahydropyran-4-ol-4'-O-β-D-glucopyranoside (2), (1S,3R,5S)-2-(4-hydroxy- 3,5-dimethoxyphenyl)-6-[2-(4-hydroxy-3-methoxyphenyl)ethyl]-tetrahydropyran-4-ol-4'-O-β-D-glucopyranoside (3), and (1R,3R,5R)-2-(4-hydroxy-3,5-dimethoxyphenyl)- 6-[2-(4-hydroxy-3-methoxyphenyl)ethyl]-tetrahydropyran-4-ol-3-O-β-D-glucopyranoside (4) were isolated from the 50% ethanol extract of Zingiber officinale peel. The structures of the isolated compounds were determined by HR-ESI-MS and extensive spectroscopic techniques (UV, IR, 1D-NMR, and 2D-NMR). Compounds 1-4 significantly increased the survival rate of human normal lung bronchial epithelial cells (BEAS-2B) induced by lipopolysaccharide (LPS) at the concentration of 10 μM.
Collapse
Affiliation(s)
- Zhi-Min Song
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xiao-Juan Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Pei-Pei Yuan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yan-Zhi Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R. China, Zhengzhou 450046, China.
| | - Man-Qian Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yu-Fei Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xue-Yu Hu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jing-Jing Miao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Hong-Bin Fang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Wei-Sheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R. China, Zhengzhou 450046, China.
| |
Collapse
|
16
|
Wang S, Tan Y, Yang T, Liu C, Li R. Pulmonary AngII promotes LPS-induced lung inflammation by regulating microRNA-143. Cytotechnology 2021; 73:745-754. [PMID: 34493899 PMCID: PMC8414951 DOI: 10.1007/s10616-021-00493-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) is a terminal carboxypeptidase, which cleaves single terminal residues from several bioactive peptides such as Angiotensin II (AngII). Many investigations indicated that ACE2 functions in angiotensin system and plays a crucial role in inflammatory lung diseases. However, the mechanism behind the involvement of ACE2 in inflammatory lung disease has not been fully elucidated. In this study, BEAS-2B cells were treated with gradient concentration of AngII and lipopolysaccharide (LPS) to induce inflammatory condition. Quantitative RT-PCR was performed to detect the level of ACE2 and miR-143-3p. Western blotting and immunofluorescence assays were performed to measure the expression of related proteins. The levels of inflammatory cytokines and cell viability were respectively measured by ELISA and CCK-8 kits. And ACE2 activity was detected by corresponding commercial kits. Bioinformatics methods were employed to predict the potential microRNA targeting ACE2, which was then confirmed by dual luciferase reporter assay. The results showed that ACE2 expression and activity were time-dependently decreased in LPS group for the first 12 h, after which this tendency was reversed. AngII addition enhanced these effects, compared with LPS group. Additionally, the lowest ACE2 activity level was found in both LPS and AngII + LPS groups at 6 h. The number of nuclei and the ACE2 expression were decreased in LPS groups at 6 h and further reduced by addition of AngII, detected by immunofluorescence. Moreover, ACE2 was validated to be a direct target of miR-143-3p. Pretreatment of AngII and LPS regulated the activity of ACE2, increased the expression of proinflammatory cytokines and cell apoptosis and regulated the expression of Bax, Bcl-2 and cleaved caspase-3 in BEAS-2B cells, which could be reversed by transfecting miR-143-3p inhibitor. The results collectively suggest that AngII promotes LPS-induced inflammation by regulating miR-143-3p in BEAS-2B cells. Therefore, miR-143-3p is considered a potential molecular target for the treatment of lung inflammation.
Collapse
Affiliation(s)
- Shenglan Wang
- Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650032 Yunnan China.,The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Xishan District, Kunming, 650032 Yunnan China
| | - Yan Tan
- Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650032 Yunnan China.,The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Xishan District, Kunming, 650032 Yunnan China
| | - Tingting Yang
- Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650032 Yunnan China.,The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Xishan District, Kunming, 650032 Yunnan China
| | - Chen Liu
- Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650032 Yunnan China.,The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Xishan District, Kunming, 650032 Yunnan China
| | - Rufang Li
- Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650032 Yunnan China.,The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Xishan District, Kunming, 650032 Yunnan China
| |
Collapse
|
17
|
Huang Q, Chen L, Bai Q, Tong T, Zhou Y, Li Z, Lu C, Chen S, Chen L. The roles of microRNAs played in lung diseases via regulating cell apoptosis. Mol Cell Biochem 2021; 476:4265-4275. [PMID: 34398353 DOI: 10.1007/s11010-021-04242-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/10/2021] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) are a type of endogenous non-coding short-chain RNA, which plays a crucial role in the regulation of many essential cellular functions, including cellular migration, proliferation, invasion, autophagy, oxidative stress, apoptosis, and differentiation. The lung can be damaged by pathogenic microorganisms, as well as physical or chemical factors. Research has confirmed that miRNAs and lung cell apoptosis can affect the development and progression of several lung diseases. This article reviews the role of miRNAs in the development of lung disease through regulating host cell apoptosis.
Collapse
Affiliation(s)
- Qiaoling Huang
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Li Chen
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Qinqin Bai
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Ting Tong
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - You Zhou
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Zhongyu Li
- Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Chunxue Lu
- Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Shenghua Chen
- Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.
| | - Lili Chen
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China. .,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.
| |
Collapse
|
18
|
Kim B, Guaregua V, Chen X, Zhao C, Yeow W, Berg NK, Eltzschig HK, Yuan X. Characterization of a Murine Model System to Study MicroRNA-147 During Inflammatory Organ Injury. Inflammation 2021; 44:1426-1440. [PMID: 33566257 PMCID: PMC7873671 DOI: 10.1007/s10753-021-01427-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
Inflammatory organ injury and sepsis have profound impacts on the morbidity and mortality of surgical and critical care patients. MicroRNAs are small RNAs composed of 20-25 nucleotides that have a significant contribution to gene regulation. MicroRNA-147 (miR-147), in particular, has been shown to have an emerging role in different physiological functions such as cell cycle regulation and inflammatory responses. However, animal model systems to study tissue-specific functions of miR-147 during inflammatory conditions in vivo are lacking. In the present study, we characterize miR-147 expression in different organs and cell types. Next, we generated a transgenic mouse line with a floxed miR-147 gene. Subsequently, we used this mouse line to generate mice with whole-body deletion of miR-147 (miR-147 -/-) by crossing "floxed" miR-147 mice with transgenic mice expressing Cre recombinase in all tissues (CMVcre mice). Systematic analysis of miR-147 -/- mice demonstrates normal growth, development, and off-spring. In addition, deletion of the target gene in different organs was successful at baseline or during inflammation, including the heart, intestine, stomach, liver, spleen, bone marrow, lungs, kidneys, or stomach. Moreover, miR-147 -/- mice have identical baseline inflammatory gene expression compared to C57BL/6 mice, except elevated IL-6 expression in the spleen (7.5 fold, p < 0.05). Taken together, our data show the successful development of a transgenic animal model for tissue and cell-specific deletion of miR-147 that can be used to study the functional roles of miR-147 during inflammatory organ injury.
Collapse
Affiliation(s)
- Boyun Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Victor Guaregua
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Xuebo Chen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Chad Zhao
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Wanyi Yeow
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Nathaniel K Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
MicroRNA-150 inhibits myeloid-derived suppressor cells proliferation and function through negative regulation of ARG-1 in sepsis. Life Sci 2021; 278:119626. [PMID: 34004247 DOI: 10.1016/j.lfs.2021.119626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023]
Abstract
AIMS Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. The majority of sepsis-related deaths occur during late sepsis, which presents as a state of immunosuppression. Myeloid-derived suppressor cells (MDSCs) have been reported to promote immunosuppression during sepsis. Here we aim to understand the role of microRNAs in regulating MDSCs proliferation and immunosuppression function during sepsis. MAIN METHODS Murine sepsis model was established using cecal ligation and puncture (CLP). A microarray was used to identify microRNAs with differential expression in murine sepsis. The effect of microRNA-150 on MDSCs proliferation and function was then evaluated. 140 multiple trauma patients from Tongji Hospital and 10 healthy controls were recruited. Peripheral blood samples were taken and the serum level of miR-150 was measured. KEY FINDINGS In the murine model of sepsis, MDSCs expansion was noted in the spleen and bone marrow, while expression of miR-150 in MDSCs decreased. Replenishing miR-150 inhibited the expansion of MDSCs in both monocytic and polymorphonuclear subpopulations, as well as decreasing the immunosuppressive function of MDSCs, through down-regulation of ARG1. Both pro-inflammatory cytokine IL-6 and anti-inflammatory cytokines TGF-β and IL-10 were reduced by miR-150. In human, the serum level of miR-150 was down-regulated in septic patients and elevated in non-septic trauma patients compared to healthy controls. SIGNIFICANCE Our study showed that MiR-150 is down-regulated during sepsis. Replenishing miR-150 reduces the immunosuppression function of MDSCs by down-regulating ARG1 in late sepsis. MiR-150 might serve as a potential therapeutic option for sepsis.
Collapse
|
20
|
Zhang MY, Jiang YX, Yang YC, Liu JY, Huo C, Ji XL, Qu YQ. Cigarette smoke extract induces pyroptosis in human bronchial epithelial cells through the ROS/NLRP3/caspase-1 pathway. Life Sci 2021; 269:119090. [PMID: 33465393 DOI: 10.1016/j.lfs.2021.119090] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
AIMS Pyroptosis and inflammation are involved in the development of chronic obstructive pulmonary disease (COPD). However, the cigarette smoke-mediated mechanism of COPD remains unclear. In this study, we aimed to investigate the role of nucleotide-binding domain-like receptor protein-3 (NLRP3) inflammasome-mediated pyroptosis in the death of human bronchial epithelial (HBE) cells after cigarette smoke extract (CSE) exposure. MAIN METHODS The protein level of NLRP3 in lung tissue was measured after cigarette smoke exposure in vivo. In vitro, HBE cells were treated with CSE. Subsequently, the activity of caspase-1, lactate dehydrogenase (LDH) release, release of interleukin (IL)-1β and NLRP3 expression levels were measured. The involvement of reactive oxygen species (ROS) was also explored. KEY FINDINGS After exposure to CSE, increased release of LDH, the transcriptional and translational upregulation of NLRP3, the caspase-1 activity levels, and enhanced IL-1β and IL-18 release were observed in 16HBE cells. In addition, NLRP3 was required to activate the caspase-1. Our results suggested that pre-stimulated of 16HBE with a caspase-1 inhibitor, or using NLRP3 siRNA to silence NLRP3 expression, also caused the decrease of IL-1β release and pyroptosis. SIGNIFICANCES CSE induced inflammation and contributed to pyroptosis through the ROS/NLRP3/caspase-1 pathway in 16HBE cells. The NLRP3 inflammasome participates in CSE-induced HBE cell damage and pyroptosis, which could provide new insights into COPD.
Collapse
Affiliation(s)
- Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ying-Xiao Jiang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yi-Can Yang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jian-Yu Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chen Huo
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiu-Li Ji
- Department of Pulmonary Disease, Jinan Traditional Chinese Medicine Hospital, Jinan 250012, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
21
|
Cañas JA, Rodrigo-Muñoz JM, Sastre B, Gil-Martinez M, Redondo N, del Pozo V. MicroRNAs as Potential Regulators of Immune Response Networks in Asthma and Chronic Obstructive Pulmonary Disease. Front Immunol 2021; 11:608666. [PMID: 33488613 PMCID: PMC7819856 DOI: 10.3389/fimmu.2020.608666] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic respiratory diseases (CRDs) are an important factor of morbidity and mortality, accounting for approximately 6% of total deaths worldwide. The main CRDs are asthma and chronic obstructive pulmonary disease (COPD). These complex diseases have different triggers including allergens, pollutants, tobacco smoke, and other risk factors. It is important to highlight that although CRDs are incurable, various forms of treatment improve shortness of breath and quality of life. The search for tools that can ensure accurate diagnosis and treatment is crucial. MicroRNAs (miRNAs) are small non-coding RNAs and have been described as promising diagnostic and therapeutic biomarkers for CRDs. They are implicated in multiple processes of asthma and COPD, regulating pathways associated with inflammation, thereby showing that miRNAs are critical regulators of the immune response. Indeed, miRNAs have been found to be deregulated in several biofluids (sputum, bronchoalveolar lavage, and serum) and in both structural lung and immune cells of patients in comparison to healthy subjects, showing their potential role as biomarkers. Also, miRNAs play a part in the development or termination of histopathological changes and comorbidities, revealing the complexity of miRNA regulation and opening up new treatment possibilities. Finally, miRNAs have been proposed as prognostic tools in response to both conventional and biologic treatments for asthma or COPD, and miRNA-based treatment has emerged as a potential approach for clinical intervention in these respiratory diseases; however, this field is still in development. The present review applies a systems biology approach to the understanding of miRNA regulatory networks in asthma and COPD, summarizing their roles in pathophysiology, diagnosis, and treatment.
Collapse
Affiliation(s)
- José A. Cañas
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - José M. Rodrigo-Muñoz
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Beatriz Sastre
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Marta Gil-Martinez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Natalia Redondo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Victoria del Pozo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
22
|
Zheng S, Gong M, Chen J. Extracellular vesicles enriched with miR-150 released by macrophages regulates the TP53-IGF-1 axis to alleviate myocardial infarction. Am J Physiol Heart Circ Physiol 2020; 320:H969-H979. [PMID: 33164579 DOI: 10.1152/ajpheart.00304.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Myocardial infarction (MI) is recognized as a major cause of death and disability around the world. Macrophage-derived extracellular vesicles (EVs) have been reportedly involved in the regulation of cellular responses to MI. Thus, we sought to clarify the mechanism by which macrophage-derived EVs regulate this process. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed to determine microRNA-150 (miR-150) expression in an MI mouse model with ligation of the left anterior descending coronary artery (LAD) and in hypoxia/reoxygenation (H/R)-exposed cardiomyocytes. Bioinformatics analysis and dual luciferase reporter gene assay were adopted to identify the correlation of miR-150 with tumor protein 53 (TP53) expression in cardiomyocytes. Gain- and loss-of-function experiments were conducted in H/R-induced cardiomyocytes, cardiomyocytes incubated with EVs from miR-150 mimic-transfected macrophages, or MI-model mice treated with EVs from miR-150 mimic-transfected macrophages. hematoxylin-eosin (HE) and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining assays were used for detecting inflammatory infiltration and cell apoptosis. The release of lactate dehydrogenase (LDH) by dead cardiomyocytes was measured with an LDH kit, and the apoptosis-related proteins, Bax, and cleaved-caspase 3 were determined by Western blot analysis. miR-150 expression was downregulated in the infarcted cardiac tissues of MI mice. Macrophage-derived EVs could transfer miR-150 into cardiomyocytes, where it directly targeted and suppressed TP53. Furthermore, miR-150 suppressed phosphatase and tensin homology (PTEN) and activated p-Akt to upregulate IGF-1 expression. Furthermore, increased expression of EV-derived miR-150 prevented cardiomyocyte apoptosis in vitro, as evidenced by downregulated Bax and cleaved-caspase 3 and upregulated Bcl2 and alleviated MI in vivo. In conclusion, our study demonstrates the cardioprotective effect of macrophage-derived EV-miR-150 on MI-induced heart injury through negatively regulating the TP53-IGF-1 signaling pathway.NEW & NOTEWORTHY miR-150 is expressed at a low level in cardiac tissues after myocardial infarction. Macrophages-derived EVs transfer miR-150 to cardiomyocytes. miR-150 directly targets TP53. miR-150 elevation regulates TP53-IGF-1 axis to reduce cardiomyocyte apoptosis. EV-derived miR-150 could be a potential therapeutic target for myocardial infarction.
Collapse
Affiliation(s)
- Suxia Zheng
- Department of Cardiology, Linyi People's Hospital, Linyi, People's Republic of China
| | - Maolei Gong
- Department of Critical Care Medicine, Aerospace Center Hospital (Aerospace Clinical Medical College of Peking University), Beijing, People's Republic of China
| | - Jing Chen
- Department of Cardiology, Linyi People's Hospital, Linyi, People's Republic of China
| |
Collapse
|
23
|
Yu F, Chapman S, Pham DL, Ko ML, Zhou B, Ko GYP. Decreased miR-150 in obesity-associated type 2 diabetic mice increases intraocular inflammation and exacerbates retinal dysfunction. BMJ Open Diabetes Res Care 2020; 8:8/1/e001446. [PMID: 32973073 PMCID: PMC7517560 DOI: 10.1136/bmjdrc-2020-001446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Diabetic retinopathy (DR) is the leading cause of blindness among the working population in the USA. Current therapies, including anti-vascular endothelial growth factor treatments, cannot completely reverse the visual defects induced by DR. MicroRNA-150 (miR-150) is a regulator that suppresses inflammation and pathological angiogenesis. In patients with diabetes, miR-150 is downregulated. As chronic inflammation is a major contributor to the pathogenesis of DR, whether diabetes-associated decrease of miR-150 is merely associated with the disease progression or decreased miR-150 causes retinal inflammation and pathological angiogenesis is still unknown. RESEARCH DESIGN AND METHODS We used high-fat diet (HFD)-induced type 2 diabetes (T2D) in wild type (WT) and miR-150 knockout (miR-150-/-) mice for this study and compared retinal function and microvasculature morphology. RESULTS We found that WT mice fed with an HFD for only 1 month had a significant decrease of miR-150 in the blood and retina, and retinal light sensitivity also decreased. The miR-150-/- mice on the HFD developed diabetes similar to that of the WT. At 7-8 months old, miR-150-/- mice under normal diet had increased degeneration of retinal capillaries compared with WT mice, indicating that miR-150 is important in maintaining the structural integrity of retinal microvasculature. Deletion of miR-150 worsened HFD-induced retinal dysfunction as early as 1 month after the diet regimen, and it exacerbated HFD-induced T2DR by further increasing retinal inflammation and microvascular degeneration. CONCLUSION These data suggest that decreased miR-150 caused by obesity or diabetic insults is not merely correlated to the disease progression, but it contributes to the retinal dysfunction and inflammation, as well as the development of DR.
Collapse
Affiliation(s)
- Fei Yu
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Samantha Chapman
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Dylan Luc Pham
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Michael Lee Ko
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
- Biology, Blinn College, Bryan, Texas, USA
| | - Beiyan Zhou
- Immunology, UConn Health, Farmington, Connecticut, USA
| | - Gladys Y-P Ko
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
24
|
A novel protective role of sacubitril/valsartan in cyclophosphamide induced lung injury in rats: impact of miRNA-150-3p on NF-κB/MAPK signaling trajectories. Sci Rep 2020; 10:13045. [PMID: 32747644 PMCID: PMC7400763 DOI: 10.1038/s41598-020-69810-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclophosphamide (CP) is a chemotherapeutic agent that induces oxidative stress causing multiple organ damage. Sacubitril/valsartan, is a combined formulation of neprilysin inhibitor (sacubitril) and angiotensin II receptor blocker (valsartan), that induces the protective effect of brain natriuretic peptide. The aim of the current study is to investigate the prophylactic impacts of sacubitril/valsartan versus valsartan against CP-induced lung toxicity in rats. Rats were assigned randomly into 6 groups; control; received corn oil (2 ml/kg/day; p.o. for 6 days), sacubitril/valsartan (30 mg/kg; p.o. for 6 days), valsartan (15 mg/kg; p.o. for 6 days), CP (200 mg/kg; i.p. on day 5), sacubitril/valsartan + CP (30 mg/kg; p.o. for 6 days, 200 mg/kg; i.p. single dose on day 5, respectively), valsartan + CP (15 mg/kg; p.o. for 6 days, 200 mg/kg; i.p. single dose on day 5, respectively). Both sacubitril/valsartan and valsartan produced a significant decrease in the inflammation and fibrosis markers in the BALF, in comparison with the CP group. Both sacubitril/valsartan and valsartan produced an apparent decrease in the relative genes expression of miR-150-3p and NF-κB, as well as a significant decrease in the relative expression of P38 and ERK1/2 MAPKs and an increase in the relative gene expression of Nrf-2, compared to CP group. Intriguingly, sacubitril/valsartan , showed subtle superiority in almost all investigated parameters, compared to valsartan. In conclusion, sacubitril/valsartan effectively abrogated the CP induced lung inflammation and fibrosis, providing a potential promising protection that could be linked to their ability to inhibit miR-150-3p via inhibition of NF-κB and MAPK signaling pathways.
Collapse
|
25
|
Tan BWQ, Sim WL, Cheong JK, Kuan WS, Tran T, Lim HF. MicroRNAs in chronic airway diseases: Clinical correlation and translational applications. Pharmacol Res 2020; 160:105045. [PMID: 32590100 DOI: 10.1016/j.phrs.2020.105045] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are short single-stranded RNAs that have pivotal roles in disease pathophysiology through transcriptional and translational modulation of important genes. It has been implicated in the development of many diseases, such as stroke, cardiovascular conditions, cancers and inflammatory airway diseases. There is recent evidence that miRNAs play important roles in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD), and could help to distinguish between T2-low (non-eosinophilic, steroid-insensitive) versus T2-high (eosinophilic, steroid-sensitive) disease endotypes. As these are the two most prevalent chronic respiratory diseases globally, with rising disease burden, miRNA research might lead to the development of new diagnostic and therapeutic targets. Research involving miRNAs in airway disease is challenging because: (i) asthma and COPD are heterogeneous inflammatory airway diseases; there are overlapping but distinct inter- and intra-disease differences in the immunological pathophysiology, (ii) there exists more than 2000 known miRNAs and a single miRNA can regulate multiple targets, (iii) differential effects of miRNAs could be present in different cellular subtypes and tissues, and (iv) dysregulated miRNA expression might be a direct consequence of an indirect effect of airway disease onset or progression. As miRNAs are actively secreted in fluids and remain relatively stable, they have the potential for biomarker development and therapeutic targets. In this review, we summarize the preclinical data on potential miRNA biomarkers that mediate different pathophysiological mechanisms in airway disease. We discuss the framework for biomarker development using miRNA and highlight the need for careful patient characterization and endotyping in the screening and validation cohorts, profiling both airway and blood samples to determine the biological fluids of choice in different disease states or severity, and adopting an untargeted approach. Collaboration between the various stakeholders - pharmaceutical companies, laboratory professionals and clinician-scientists is crucial to reduce the difficulties and cost required to bring miRNA research into the translational stage for airway diseases.
Collapse
Affiliation(s)
- Bryce W Q Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Liang Sim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jit Kong Cheong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Win Sen Kuan
- Department of Emergency Medicine, National University Hospital, National University Health System, Singapore
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hui Fang Lim
- Division of Respiratory & Critical Care Medicine, Department of Medicine, National University Hospital, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
26
|
Yao MY, Zhang WH, Ma WT, Liu QH, Xing LH, Zhao GF. Long non-coding RNA MALAT1 exacerbates acute respiratory distress syndrome by upregulating ICAM-1 expression via microRNA-150-5p downregulation. Aging (Albany NY) 2020; 12:6570-6585. [PMID: 32315984 PMCID: PMC7202495 DOI: 10.18632/aging.102953] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury in which severe inflammatory responses induce cell apoptosis, necrosis, and fibrosis. This study investigated the role of lung adenocarcinoma transcript 1 (MALAT1) in ARDS and the underlying mechanism involved. The expression of MALAT1, microRNA-150-5p (miR-150-5p), and intercellular adhesion molecule-1 (ICAM-1) was determined in ARDS patients and lipopolysaccharide (LPS)-treated human pulmonary microvascular endothelial cells (HPMECs). Next, the interactions among MALAT1, miR-150-5p, and ICAM-1 were explored. Gain- or loss-of-function experiments in HPMECs were employed to determine cell apoptosis and inflammation. Furthermore, a mouse xenograft model of ARDS was established in order to verify the function of MALAT1 in vivo. MALAT1 and ICAM-1 were upregulated, while miR-150-5p was downregulated in both ARDS patients and LPS-treated HPMECs. MALAT1 upregulated ICAM-1 expression by competitively binding to miR-150-5p. MALAT1 silencing or miR-150-5p overexpression was shown to suppress HPMEC apoptosis, decrease the expressions of pro-inflammatory cytokines (IL-6, IL-1β and TNF-α) and E-selectin in HPMECs, as well as alleviated lung injury in nude mice. These findings demonstrated that MALAT1 silencing can potentially suppress HPMEC apoptosis and alleviate lung injury in ARDS via miR-150-5p-targeted ICAM-1, suggestive of a novel therapeutic target for ARDS.
Collapse
Affiliation(s)
- Meng-Ying Yao
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Wei-Hong Zhang
- Department of Anatomy, Nursing College of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Wen-Tao Ma
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Qiu-Hong Liu
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Li-Hua Xing
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Gao-Feng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| |
Collapse
|
27
|
Jia R, Zhao XF. MicroRNA-497 functions as an inflammatory suppressor via targeting DDX3Y and modulating toll-like receptor 4/NF-κB in cigarette smoke extract-stimulated human bronchial epithelial cells. J Gene Med 2019; 22:e3137. [PMID: 31696986 DOI: 10.1002/jgm.3137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND We aimed to investigate the biological effect of miR-497 in cigarette smoke extract (CSE)-damaged human bronchial epithelial (HBE) cells and the underlying molecular mechanism. METHODS MiR-497 mimic was transfected into HBE cells to up-regulate miR-497 expression. Cigarette smoke extract (CSE, 20 μg/mL) was utilized to treat HBE cells to form the injury model. Cell proliferation and apoptosis were detected by CCK8 and flow cytometry assays. DDX3Y mRNA expression was determined by a quantitative reverse transcriptase-polymerase chain reaction. The interaction between miR-497 and DDX3Y was verified by a luciferase reporter assay. Protein expression levels were tested by western blotting. RESULTS CSE treatment decreased miR-497 level in HBE cells. CSE exposure restrained cell proliferation, promoted cell apoptosis and enhanced the relative expression of TLR4 and p-NF-κB p65. DDX3Y was predicted as a target of miR-497. The mRNA and protein expression of DDX3Y was negatively modulated by miR-497 in CSE-injured HBE cells. Up-regulation of miR-497 by miR-497 mimic increased cell proliferation and reduced cell apoptosis in CSE-treated HBE cells, which were rescued by DDX3Y high expression in CSE-treated HBE cells. Consistently, Bcl-2 protein level was heightened, whereas Bax and actived caspase-3/9 protein levels were decreased by miR-497 mimic in CSE-stimulated HBE cells, which was reversed by DDX3Y over-expression in CSE-stimulated HBE cells. The relative expression of TLR4 and p-NF-κB p65 was decreased by miR-497 mimic, whereas they were rescued by DDX3Y over-expression in CSE-damaged HBE cells. CONCLUSIONS The results of the present study demonstrate that up-regulation of miR-497 exhibits a protective effect on CSE-damaged HBE cells, which might be achieved by targeting DDX3Y and regulating the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Rong Jia
- Department of Geriatrics, Lianyungang Second People's Hospital, Lianyungang, Jiangsu, China
| | - Xiao-Fei Zhao
- Department of Geriatrics, Lianyungang Second People's Hospital, Lianyungang, Jiangsu, China
| |
Collapse
|
28
|
Zong D, Liu X, Li J, Ouyang R, Chen P. The role of cigarette smoke-induced epigenetic alterations in inflammation. Epigenetics Chromatin 2019; 12:65. [PMID: 31711545 PMCID: PMC6844059 DOI: 10.1186/s13072-019-0311-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background Exposure to cigarette smoke (CS) is a major threat to human health worldwide. It is well established that smoking increases the risk of respiratory diseases, cardiovascular diseases and different forms of cancer, including lung, liver, and colon. CS-triggered inflammation is considered to play a central role in various pathologies by a mechanism that stimulates the release of pro-inflammatory cytokines. During this process, epigenetic alterations are known to play important roles in the specificity and duration of gene transcription. Main text Epigenetic alterations include three major modifications: DNA modifications via methylation; various posttranslational modifications of histones, namely, methylation, acetylation, phosphorylation, and ubiquitination; and non-coding RNA sequences. These modifications work in concert to regulate gene transcription in a heritable fashion. The enzymes that regulate these epigenetic modifications can be activated by smoking, which further mediates the expression of multiple inflammatory genes. In this review, we summarize the current knowledge on the epigenetic alterations triggered by CS and assess how such alterations may affect smoking-mediated inflammatory responses. Conclusion The recognition of the molecular mechanisms of the epigenetic changes in abnormal inflammation is expected to contribute to the understanding of the pathophysiology of CS-related diseases such that novel epigenetic therapies may be identified in the near future.
Collapse
Affiliation(s)
- Dandan Zong
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Xiangming Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Jinhua Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
29
|
Uddin MA, Barabutis N. P53: The endothelium defender. J Cell Biochem 2019; 120:10952-10955. [PMID: 30816605 PMCID: PMC6713618 DOI: 10.1002/jcb.28511] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/07/2019] [Indexed: 01/25/2023]
Abstract
P53 represents the paradigm of a multitalented transcription factor, responsible for the cellular defense against a plethora of potentially harmful stimuli. It exercises the ability to strongly oppose both cancer and inflammation, partially due to the fact that both conditions are highly interrelated. Endothelium hyperpermeability is considered the hallmark of severe lung inflammation, and the cardinal feature of the lethal acute respiratory distress syndrome. An emerging body of evidence suggests a strategic role of P53 towards vascular barrier integrity. The "endothelium defender" orchestrates meticulously devised responses; to counteract toxin-induced destructions of endothelium monolayers. The present effort seeks to further our understanding on the expanding P53 universe, discussing the most recent information regarding the involvement of that molecule in the pulmonary function.
Collapse
Affiliation(s)
- Mohammad Afaz Uddin
- School of Basic Pharmaceutical and Toxicological Sciences,
College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences,
College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.,To whom correspondence should be addressed at:
Nektarios Barabutis, M.Sc., Ph.D., School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe,
Monroe, LA 71201, United States of America, ,
Phone: (318) 342 −1460
| |
Collapse
|
30
|
Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci 2019; 20:ijms20051223. [PMID: 30862067 PMCID: PMC6429360 DOI: 10.3390/ijms20051223] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Aging and various age-related diseases are associated with reductions in melatonin secretion, proinflammatory changes in the immune system, a deteriorating circadian system, and reductions in sirtuin-1 (SIRT1) activity. In non-tumor cells, several effects of melatonin are abolished by inhibiting SIRT1, indicating mediation by SIRT1. Melatonin is, in addition to its circadian and antioxidant roles, an immune stimulatory agent. However, it can act as either a pro- or anti-inflammatory regulator in a context-dependent way. Melatonin can stimulate the release of proinflammatory cytokines and other mediators, but also, under different conditions, it can suppress inflammation-promoting processes such as NO release, activation of cyclooxygenase-2, inflammasome NLRP3, gasdermin D, toll-like receptor-4 and mTOR signaling, and cytokine release by SASP (senescence-associated secretory phenotype), and amyloid-β toxicity. It also activates processes in an anti-inflammatory network, in which SIRT1 activation, upregulation of Nrf2 and downregulation of NF-κB, and release of the anti-inflammatory cytokines IL-4 and IL-10 are involved. A perhaps crucial action may be the promotion of macrophage or microglia polarization in favor of the anti-inflammatory phenotype M2. In addition, many factors of the pro- and anti-inflammatory networks are subject to regulation by microRNAs that either target mRNAs of the respective factors or upregulate them by targeting mRNAs of their inhibitor proteins.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
31
|
miR-145-5p is associated with smoke-related chronic obstructive pulmonary disease via targeting KLF5. Chem Biol Interact 2019; 300:82-90. [PMID: 30639269 DOI: 10.1016/j.cbi.2019.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/07/2018] [Accepted: 01/07/2019] [Indexed: 01/12/2023]
Abstract
Increasing evidence illustrate that dysregulation of microRNAs (miRNAs) is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD), which is mainly resulted from cigarette smoke (CS) exposure. However, the role of miR-145-5p in CS-mediated COPD remains largely unknown. Thus, the aim of this study was to investigate the expression level of miR-145-5p in 31 human lung tissues samples, and to explore its regulatory role in the apoptosis and inflammation of human bronchial epithelial cells (HBECs) following CS extract (CSE) exposure. We found that miR-145-5p was significantly down-regulated in lung tissues from smokers without or with COPD compared to non-smokers. Functional assays showed that miR-145-5p overexpression remarkably alleviated CSE-induced apoptosis and inflammation response by regulating p53-mediated apoptotic signaling and pre-inflammatory factors such as necrosis factor-α (TNF-α), interleukins (IL)-6, IL-8 in HBECs, whereas, down-regulation of miR-145-5p showed opposite effects. Furthermore, luciferase reporter assays verified that Kruppel-like 5 (KLF5) was a direct target of miR-145-5p. Western blot assay also confirmed that KLF5 was up-regulated in COPD tissues and was negatively associated with miR-145-5p expression. Restoration of miR-145-5p expression significantly abrogated the suppressive effect of miR-145-5p on CSE-stimulated apoptosis and inflammation. In addition, the CSE-induced NF-κB signaling activation was suppressed by miR-145-5p overexpression. Therefore, our data suggested that miR-145-5p conferred protection against CSE-induced airway epithelial cell apoptosis and inflammation partially via targeting KLF5, which might be a potential therapeutic biomarker in COPD treatment.
Collapse
|
32
|
Zhong S, Chen C, Liu N, Yang L, Hu Z, Duan P, Shuai D, Zhang Q, Wang Y. Overexpression Of hsa-miR-664a-3p Is Associated With Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease Via Targeting FHL1. Int J Chron Obstruct Pulmon Dis 2019; 14:2319-2329. [PMID: 31632001 PMCID: PMC6790409 DOI: 10.2147/copd.s224763] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/12/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is recognized as a chronic lung disease with incomplete reversible airflow limitation, but its pathophysiology was still not clear. This study aimed at investigating regulatory roles of special miRNA-mRNA axis in COPD development. METHODS Differentially expressed miRNAs and downstream mRNAs were screened from the Gene Expression Omnibus (GEO) dataset by using the LIMMA package in R software. Weighted Gene Co-expression Network Analysis (WGCNA) was used to construct a co-expression network for COPD. The correlation of dysregulated miRNA(s) and COPD was analyzed, and miRNAs with significant differences were validated in peripheral blood mononuclear cells (PBMCs) from COPD patients by real-time PCR. Regulatory roles of candidate miRNAs and targeted mRNAs were investigated in vitro study. RESULTS Thirteen modules of co-expressed miRNAs and mRNAs were constructed from a selected cohort with WGCNA. Turquoise module with 12 differentially expressed miRNAs and 120 mRNAs was significantly correlated with COPD. The expression of hsa-miR-664a-3p, an upregulated miRNA in the module, was increased both in lung tissue and PBMCs from COPD patients, whereas that targeted four and a half LIM domains 1 (FHL1) gene was decreased and positively correlated with forced expiratory volume in 1 sec (FEV1)/forced vital capacity (FVC%) (r = 0.59, p < 0.01). In vitro, luciferase activity assay revealed FHL1 as a target of hsa-miR-664a-3p and it could be directly downregulated by overexpression of hsa-miR-664a-3p. Furthermore, cigarette smoke extract could increase hsa-miR-664a-3p level and decrease FHL1 level in Beas-2B cells. CONCLUSION The present study validated significant upregulation of hsa-miR-664a-3p in COPD patients, and its target gene FHL1 was downregulated and positively correlated with FEV1/FVC%; both hsa-miR-664a-3p and FHL1 could be regulated by cigarette smoke extract. Results of bioinformatic analyses and expanded validation suggest that the axis from hsa-miR-664a-3p to FHL1 might play a key role in cigarette smoke-induced COPD, and the exact mechanism should be confirmed in further studies.
Collapse
Affiliation(s)
- Shan Zhong
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong515041, People’s Republic of China
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518055, People’s Republic of China
| | - Chengshui Chen
- Department of Respiratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Naijia Liu
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518055, People’s Republic of China
| | - Li Yang
- Department of Respiratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Zhangli Hu
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518055, People’s Republic of China
| | - Pengfei Duan
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong515041, People’s Republic of China
| | - Diquan Shuai
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518055, People’s Republic of China
| | - Qingying Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong515041, People’s Republic of China
- Qingying Zhang Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong515041, People’s Republic of ChinaTel +86 754 8825 9850Fax +86 754 8856 6774 Email
| | - Yun Wang
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518055, People’s Republic of China
- Correspondence: Yun Wang Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University (Xili Campus), No. 1066, Xueyuan Ave, Nanshan Distract, Shenzhen, Guangdong518055, People’s Republic of ChinaTel +86 755 2695 8895Fax +86 755 2653 4274 Email
| |
Collapse
|