1
|
Cheng Y, Li Y, Fan Z, Wang N, Wang M, Li Y, Liu C, Li H, Yan F. The effects of restraint stress and orthodontic tooth movements on the intestinal epithelial structure and metabolic function in rats. PLoS One 2025; 20:e0319779. [PMID: 40014578 PMCID: PMC11867309 DOI: 10.1371/journal.pone.0319779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/07/2025] [Indexed: 03/01/2025] Open
Abstract
Chronic stress and orthodontic treatment have been revealed to trigger systemic stress responses in rats. This study aimed to investigate the effects of restraint stress and orthodontic treatment on the intestinal epithelial structure, barrier function, flora, and metabolism in rats. Twenty 8-week-old male Wistar rats were randomly divided into four groups: sham-stressed non-orthodontic (CC), sham-stressed orthodontic (CO), stressed non-orthodontic (SC), and stressed orthodontic (SO). The stress intervention involved subjecting the rats to restraint stress for 21 days, while the orthodontic intervention consisted of maxillary first molar traction from days 8 to 21. Histological and immunohistochemical staining were used to observe the epithelial structure and barrier function of the colon. The intestinal flora and metabolite alterations were investigated by 16S rRNA high-throughput sequencing and untargeted metabolomics sequencing. Colonic epithelial tissue disruption, mucus cells reduction, and a decreased expression of intestinal tight junction proteins were observed in the CO, SC, and SO groups. Lactobacillus spp. abundance was significantly lower in the CO group than in the CC group. Prevotella spp. abundance was significantly lower in the SC and SO groups than in the CC and CO groups. The differential metabolite enrichment pathways between each inter-group comparison might all be related to amino acid biosynthesis, protein digestion and absorption, and cofactor biosynthesis. Both restraint stress and orthodontic treatment may adversely affect the colonic epithelial structure and barrier function of rats. The intestinal flora structure and types of metabolites were also affected cumulatively.
Collapse
Affiliation(s)
- Ye Cheng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yue Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Ziqing Fan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Nannan Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Min Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yanfen Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Chao Liu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Huang Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Talwar C, Davuluri GVN, Kamal AHM, Coarfa C, Han SJ, Veeraragavan S, Parsawar K, Putluri N, Hoffman K, Jimenez P, Biest S, Kommagani R. Identification of distinct stool metabolites in women with endometriosis for non-invasive diagnosis and potential for microbiota-based therapies. MED 2025; 6:100517. [PMID: 39395412 PMCID: PMC11830556 DOI: 10.1016/j.medj.2024.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/15/2024] [Accepted: 09/13/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Endometriosis, a poorly studied gynecological condition, is characterized by the presence of ectopic endometrial lesions resulting in pelvic pain, inflammation, and infertility. These associated symptoms contribute to a significant burden, often exacerbated by delayed diagnosis. Current diagnostic methods involve invasive procedures, and existing treatments provide no cure. METHODS Microbiome-metabolome signatures in stool samples from individuals with and without endometriosis were determined using unbiased metabolomics and 16S bacteria sequencing. Functional studies for selected microbiota-derived metabolites were conducted in vitro using patient-derived cells and in vivo by employing murine and human xenograft pre-clinical disease models. FINDINGS We discovered a unique bacteria-derived metabolite signature intricately linked to endometriosis. The altered fecal metabolite profile exhibits a strong correlation with that observed in inflammatory bowel disease (IBD), revealing intriguing connections between these two conditions. Notably, we validated 4-hydroxyindole, a gut-bacteria-derived metabolite that is lower in stool samples of endometriosis. Extensive in vivo studies found that 4-hydroxyindole suppressed the initiation and progression of endometriosis-associated inflammation and hyperalgesia in heterologous mouse and in pre-clinical models of the disease. CONCLUSIONS Our findings are the first to provide a distinct stool metabolite signature in women with endometriosis, which could serve as stool-based non-invasive diagnostics. Further, the gut-microbiota-derived 4-hydroxyindole poses as a therapeutic candidate for ameliorating endometriosis. FUNDING This work was funded by the NIH/NICHD grants (R01HD102680, R01HD104813) and a Research Scholar Grant from the American Cancer Society to R.K.
Collapse
Affiliation(s)
- Chandni Talwar
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Cristian Coarfa
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA; Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Surabi Veeraragavan
- Department of Molecular Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Krishna Parsawar
- Analytical and Biological Mass Spectrometry Core Facility, University of Arizona, Tucson, AZ 85721, USA
| | - Nagireddy Putluri
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kristi Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patricia Jimenez
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Scott Biest
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO 63110, USA; Division of Minimally Invasive Gynecologic Surgery, Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Shah B, Solanki N. Ameliorative effect of nodakenin in combating TNBS-induced ulcerative colitis by suppressing NFƙB-mediated NLRP3 inflammasome pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:673-686. [PMID: 39042157 DOI: 10.1007/s00210-024-03304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Ulcerative colitis (UC) is an enduring and complex inflammatory bowel disease that is clinically prevalent, progressive, and debilitating. As of now, the few effective medical treatments for UC have unacceptably high side effects. It is crucial to find safer and more effective UC treatments. Nodakenin possesses anti-inflammatory and antioxidant activity by suppressing several pro-inflammatory mediators. In the present study, we aimed to evaluate the colonoprotective effect of nodakenin in combating colitis through the NFƙB-mediated NLRP3 inflammasome pathway. In mice, UC was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). Nodakenin (10, 20, and 40 mg/kg) was introduced intragastrically, and disease activity index (DAI) score was calculated. Malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD), nitric oxide (NO) levels, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) concentration were evaluated in colon homogenate. Colon samples were used for histopathological investigation and mRNA expression studies involving nuclear factor kappa B (NFƙB), cyclooxygenase-2 (COX-2), inducible nitric oxide (iNOS), nucleotide-binding receptor domain 3 (NLRP3), interleukin-1β (IL-1β), and interleukin-18 (IL-18). Nodakenin treatment was found effective in lowering the DAI score, histological score, MPO, MDA, and NO levels while elevating SOD levels as compared to the model control group, showcasing its anti-inflammatory and antioxidant properties. Nodakenin (40 mg/kg) significantly downregulated the expression of TNF-α, IL-6, NFƙB (1.24-fold), iNOS (1.2-fold), COX-2 (1.98-fold), NLRP3 (1.78-fold), IL-1β (1.29-fold), and IL-18 (1.17-fold) conferring its great anti-inflammatory potential in combating colitis. Taking together, nodakenin presumably alleviated TNBS-induced colitis by NFƙB-mediated NLRP3 inflammasome pathway and reduced colon damage by downregulating various transcriptional genes and pro-inflammatory mediators.
Collapse
Affiliation(s)
- Bhagyabhumi Shah
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, Gujarat, India.
| | - Nilay Solanki
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, Gujarat, India
| |
Collapse
|
4
|
Xu X, Wang Y, Wu X, Cai T, Dong L, Liang S, Zhu L, Song X, Dong Y, Zheng Y, Li L, Sun W. Administration of Alistipes indistinctus prevented the progression from nonalcoholic fatty liver disease to nonalcoholic steatohepatitis by enhancing the gut barrier and increasing Lactobacillus spp. Biochem Biophys Res Commun 2024; 741:151033. [PMID: 39579531 DOI: 10.1016/j.bbrc.2024.151033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/05/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is an important public health problem, and the gut microbiota has become a new treatment target for MAFLD. Previously, A. indistinctus, a core gut bacterium, was shown to potentially contribute to the prevention of MAFLD. However, the effect and mechanism of A. indistinctus on MAFLD are still unclear and need to be investigated. This study primarily evaluated whether A. indistinctus can improve gut microbiota disorders and prevent the progression from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) in mice fed a high-fat diet (HFD). First, we observed that A. indistinctus significantly improved lipid metabolism disorders and reduced hepatic inflammation induced by HFD consumption in mice. We found that A. indistinctus improved gut barrier function and inhibited the LPS/TLR4/NF-κB pathway, thereby reducing hepatic inflammation. Moreover, 16S rRNA V3-V4 analyses revealed that A. indistinctus could significantly change the structure of the gut microbiota and increase the abundance of L. johnsonii by promoting its growth. Finally, we showed that L. johnsonii administration significantly improved lipid metabolism disorders and reduced hepatic lipid accumulation induced by HFD consumption in mice. In summary, A. indistinctus administration significantly reduces hepatic inflammation by improving gut barrier function and improves lipid metabolism disorders by promoting the growth of L. johnsonii. Our research improves the understanding of the gut microbiota and provides a basis for future therapeutic use of A. indistinctus.
Collapse
Affiliation(s)
- Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, People's Republic of China
| | - Yanrong Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, People's Republic of China
| | - Xiaofei Wu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, People's Republic of China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China
| | - Linghui Zhu
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, People's Republic of China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China
| | - Yang Dong
- Monitoring and Statistical Research Center, National Administration of Traditional Chinese Medicine, Beijing, 100021, People's Republic of China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, People's Republic of China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, People's Republic of China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China.
| |
Collapse
|
5
|
Xavier LEMDS, Reis TCG, Martins ASDP, Santos JCDF, Bueno NB, Goulart MOF, Moura FA. Antioxidant Therapy in Inflammatory Bowel Diseases: How Far Have We Come and How Close Are We? Antioxidants (Basel) 2024; 13:1369. [PMID: 39594511 PMCID: PMC11590966 DOI: 10.3390/antiox13111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Inflammatory bowel diseases (IBD) pose a growing public health challenge with unclear etiology and limited efficacy of traditional pharmacological treatments. Alternative therapies, particularly antioxidants, have gained scientific interest. This systematic review analyzed studies from MEDLINE, Cochrane, Web of Science, EMBASE, and Scopus using keywords like "Inflammatory Bowel Diseases" and "Antioxidants." Initially, 925 publications were identified, and after applying inclusion/exclusion criteria-covering studies from July 2015 to June 2024 using murine models or clinical trials in humans and evaluating natural or synthetic substances affecting oxidative stress markers-368 articles were included. This comprised 344 animal studies and 24 human studies. The most investigated antioxidants were polyphenols and active compounds from medicinal plants (n = 242; 70.3%). The review found a strong link between oxidative stress and inflammation in IBD, especially in studies on nuclear factor kappa B and nuclear factor erythroid 2-related factor 2 pathways. However, it remains unclear whether inflammation or oxidative stress occurs first in IBD. Lipid peroxidation was the most studied oxidative damage, followed by DNA damage. Protein damage was rarely investigated. The relationship between antioxidants and the gut microbiota was examined in 103 animal studies. Human studies evaluating oxidative stress markers were scarce, reflecting a major research gap in IBD treatment. PROSPERO registration: CDR42022335357 and CRD42022304540.
Collapse
Affiliation(s)
| | | | - Amylly Sanuelly da Paz Martins
- Postgraduate Studies at the Northeast Biotechnology Network (RENORBIO), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| | - Juliana Célia de Farias Santos
- Postgraduate Degree in Medical Sciences (PPGCM/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| | - Nassib Bezerra Bueno
- Postgraduate Degree in Nutrition (PPGNUT), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (L.E.M.d.S.X.); (N.B.B.)
| | - Marília Oliveira Fonseca Goulart
- Postgraduate Studies at the Northeast Biotechnology Network (RENORBIO), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
- Institute of Chemistry and Biotechnology (IQB/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil
| | - Fabiana Andréa Moura
- Postgraduate Degree in Nutrition (PPGNUT), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (L.E.M.d.S.X.); (N.B.B.)
- Postgraduate Degree in Medical Sciences (PPGCM/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| |
Collapse
|
6
|
Zou R, Zhou Y, Lu Y, Zhao Y, Zhang N, Liu J, Zhang Y, Fu Y. Preparation, pungency and bioactivity transduction of piperine from black pepper (Piper nigrum L.): A comprehensive review. Food Chem 2024; 456:139980. [PMID: 38850607 DOI: 10.1016/j.foodchem.2024.139980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Piperine, derived from black pepper (Piper nigrum L.), is responsible for the pungent sensation. The diverse bioactivities of piperine underscores its promising potential as a functional food ingredient. This review presents a comprehensive overview of the research progress in extraction, synthesis, pungency transduction mechanism and bioactivities of piperine. Piperine can be extracted through various methods, such as traditional, modern, and innovative extraction techniques. Its synthesis mainly included both chemical and biosynthetic approaches. It exhibits a diverse range of bioactivities, including anticancer, anticonvulsant, antidepressant, anti-inflammatory, antioxidant, immunomodulatory, anti-obesity, neuroprotective, antidiabetic, hepatoprotective, and cardiovascular protective activities. Piperine can bind to TRPV1 receptor to elicit pungent sensation. Overall, the present review can provide a theoretical reference for advancing the potential application of piperine in the field of food science.
Collapse
Affiliation(s)
- Ruixuan Zou
- College of Food Science, Southwest University, Chongqing 400715, China; Westa College, Southwest University, Chongqing, 400715, China
| | - Yuhao Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; Westa College, Southwest University, Chongqing, 400715, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Yuchen Zhao
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Jing Liu
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799, Copenhagen V, Denmark
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
7
|
Seidler Y, Rimbach G, Lüersen K, Vinderola G, Ipharraguerre IR. The postbiotic potential of Aspergillus oryzae - a narrative review. Front Microbiol 2024; 15:1452725. [PMID: 39507340 PMCID: PMC11538067 DOI: 10.3389/fmicb.2024.1452725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
The filamentous fungus Aspergillus oryzae has a long tradition in East Asian food processing. It is therefore not surprising that in recent years fermentation products of A. oryzae have attracted attention in the emerging field of postbiotics. This review aims to provide a comprehensive summary of the potential postbiotic effects of fermentation products from A. oryzae, by discussing possible mechanisms of action against the background of the molecular composition determined so far. In particular, cell wall constituents, enzymes, extracellular polymeric substances, and various metabolites found in A. oryzae fermentation preparations are described in detail. With reference to the generally assumed key targets of postbiotics, their putative beneficial bioactivities in modulating the microbiota, improving epithelial barrier function, influencing immune responses, metabolic reactions and signaling through the nervous system are assessed. Drawing on existing literature and case studies, we highlight A. oryzae as a promising source of postbiotics, particularly in the context of animal health and nutrition. Challenges and opportunities in quality control are also addressed, with a focus on the necessity for standardized methods to fully harness the potential of fungal-based postbiotics. Overall, this article sheds light on the emerging field of A. oryzae-derived postbiotics and emphasizes the need for further research to fully realize their therapeutic potential.
Collapse
Affiliation(s)
- Yvonne Seidler
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (CONICET-UNL), Faculty of Chemical Engineering, National University of Litoral, Santa Fe, Argentina
| | - Ignacio R. Ipharraguerre
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| |
Collapse
|
8
|
Ma H, Mueed A, Liu D, Ali A, Wang T, Ibrahim M, Su L, Wang Q. Polysaccharides of Floccularia luteovirens regulate intestinal immune response, and oxidative stress activity through MAPK/Nrf2/Keap1 signaling pathway in immunosuppressive mice. Int J Biol Macromol 2024; 277:134140. [PMID: 39074695 DOI: 10.1016/j.ijbiomac.2024.134140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
This study explores the novel immunomodulatory effects of polysaccharides from the rare Floccularia luteovirens, a fungus with significant potential yet unexplored bioactive components, traditionally used in Tibetan medicine. This study employs a wide array of analytical techniques, including HPGPC, HPLC, western blotting, ELISA, and 16S rRNA gene sequencing, to comprehensively investigate FLP1's effects. The main structure of FLP1 was characterized by IF-TR and NMR spectrometry. The structural backbone of FLP1 was →3,6)-β-D-Glcp-(1 → and →2,3)-α-D-Manp-(1→. After immunosuppressed mice treated with FLP1, the findings demonstrated that FLP1 stimulated the production of secretory sIgA and secretion of cytokines (IL-4, TNF-α, and IFN-γ) in the intestine of Cy-treated mice, resulting in the activation of the MAPK pathway. Additionally, FLP1 protected oxidative stress by triggering Nrf2/Keap1 pathways and antioxidation enzymes (SOD, MDA, T-AOC, CAT, and GSH-Px). It also enhanced the intestinal barrier function by regulating the villous height ratio and expression of tight-junction protein. Furthermore, FLP1 remarkably reversed the gut microbiota dysbiosis in immunosuppressed mice by increasing the abundance of Oscilliospiraceae, and Lachnospiraceae, and altered the fecal metabolites by increasing LysoPE (0:0/18:0); 0:0/16:0; 18:1(11Z)/0:0, LysoPG (16:0/0:0), LysoPG 18:1 (2n) PE (14:0/20:1), echinenone, 2-(2-Nitroimidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide, and suberic acid which is closely related to the immunity function. These results suggested that FLP1 may regulate the intestinal immune response by modulating the gut microbiota and fecal metabolites in immunosuppressed mice thereby activating the immune system.
Collapse
Affiliation(s)
- He Ma
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Daiyao Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Akhtar Ali
- School of Agriculture, Food and Ecosystem Sciences, the University of Melbourne, Parkville, VIC 3010, Australia
| | - Tianci Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Muhammad Ibrahim
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Ling Su
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China.
| | - Qi Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China.
| |
Collapse
|
9
|
Shoeibi S, Green E, Wei H, Gou W, Strange C, Wang H. Immortalized mesenchymal stromal cells overexpressing alpha-1 antitrypsin protect acinar cells from apoptotic and ferroptotic cell death. J Cell Mol Med 2024; 28:e70093. [PMID: 39468387 PMCID: PMC11518823 DOI: 10.1111/jcmm.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 10/30/2024] Open
Abstract
Chronic pancreatitis (CP) is a progressive inflammatory disorder that impairs endocrine and exocrine function. Our previous work showed that mesenchymal stem/stromal cells (MSCs) and MSCs overexpressing alpha-1 antitrypsin (AAT-MSCs) could be therapeutic tools for CP. However, primary MSCs are predisposed to undergo senescence during culture expansion, which limits their therapeutic applications. We generated and characterized immortalized human MSCs (iMSCs) and AAT-MSCs (iAAT-MSCs) and tested their protective effect on 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced acinar cell death in an in vitro cell culture system. Primary MSCs were immortalized by transduction with simian virus 40 large T antigen (SV40LT), and the resulting iMSC and iAAT-MSC lines were analysed for proliferation, senescence, phenotype and multi-differentiation potential. Subsequently, apoptosis and ferroptosis pathways were investigated by assessing changes before and after TNBS treatment. Coculture of iMSCs and iAAT-MSCs with acinar cell lines inhibited early cell death induced by TNBS, reduced ER stress and reversed TNBS-induced protein reduction at tight junctions. Additionally, iMSCs and iAAT-MSCs exerted such protection by regulating mitochondrial respiration, ATP content and ROS production in TNBS-induced acinar cells. Furthermore, iMSCs and iAAT-MSCs ameliorated TNBS-induced ferroptosis by modulating iron generation and ROS production and regulating the ferritin heavy chain 1 (FTH1)/protein disulfide isomerase (PDI)/glutathione peroxide 4 (GPX4) signalling pathways in acinar cells. These findings identify ferroptosis as an unrecognized mechanism that leads to TNBS-induced cell death and offer mechanistic insights relevant to using stem cell therapy to treat acinar cell death associated with CP.
Collapse
Affiliation(s)
- Sara Shoeibi
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Erica Green
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Hua Wei
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Wenyu Gou
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Charlie Strange
- Department of MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Hongjun Wang
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Ralph H. Johnson Veterans Affairs Medical CenterCharlestonSouth CarolinaUSA
| |
Collapse
|
10
|
Lee J, Lee MS, Kim Y. Effects of Green Tea and Java Pepper Mixture on Gut Microbiome and Colonic MicroRNA-221/222 in Mice with Dextran Sulfate Sodium-Induced Colitis. Prev Nutr Food Sci 2024; 29:279-287. [PMID: 39371512 PMCID: PMC11450278 DOI: 10.3746/pnf.2024.29.3.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 10/08/2024] Open
Abstract
In this study, we aimed to investigate the regulatory effects of a green tea and java pepper mixture (GTP) on the gut microbiome and microRNA (miR)-221/222 expression in mice with dextran sulfate sodium (DSS)-induced colitis. Male C57BL/6J mice were divided into four groups: DSS-, DSS+, GTP50, and GTP100. In the GTP50 and GTP100 groups, GTP was orally administered to mice at doses of 50 and 100 mg/kg body weight, respectively, every day for 2 weeks, and colitis was induced in the DSS+, GTP50, and GTP100 groups by adding 3% DSS to their drinking water for 1 week. GTP was found to mitigate the severity of inflammation and the damage to goblet cells caused by DSS-induced colitis. The results showed that compared with the DSS- group, the relative abundance of Bacteroidetes was increased and that of Proteobacteria and Candidatus Melainabacteria was decreased in the GTP100 group. The ratio of Firmicutes to Bacteroidetes was also reduced in the GTP100 group. However, GTP administration did not modulate the microbial diversity. GTP administration upregulated the mRNA and protein levels of occludin and zonula occludens 1. In addition, GTP effectively downregulated the expression of miR-221 and miR-222. Overall, GTP altered the gut microbiota composition and downregulated colonic miR-221/222 expression in mice with DSS-induced colitis.
Collapse
Affiliation(s)
- Jumi Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
11
|
Ni G, Kou L, Duan C, Meng R, Wang P. MicroRNA-199a-5p attenuates blood-brain barrier disruption following ischemic stroke by regulating PI3K/Akt signaling pathway. PLoS One 2024; 19:e0306793. [PMID: 39302945 DOI: 10.1371/journal.pone.0306793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/24/2024] [Indexed: 09/22/2024] Open
Abstract
OBJECTIVE To explore whether miR-199a-5p regulated BBB integrity through PI3K/Akt pathway after ischemia stroke. METHODS Adult male Sprague-Dawley rats with permanent middle cerebral artery occlusion(MCAO) were used in experiment. The Ludmila Belayev 12-point scoring was used to measure the neurological function of MCAO rats. The Evans Blue Stain, immunofluorescence staining, western-blotting and RT-PCR were performed to evaluate the effects of miR-199a-5p mimic on BBB integrity in rats following MCAO. RESULTS The result suggested that miR-199a-5p mimic treatment possessed the potential to boost proprioception and motor activity of MCAO rats. MiR-199a-5p decreased the expression of PIK3R2 after MCAO, activated Akt signaling pathway, and increased the expression of Claudin-5 and VEGF in the ischemic penumbra. Furthermore, miR-199a-5p alleviated inflammation after cerebral ischemia. BBB leakage and neurocyte apoptosis were cut down in MCAO rats treated with miR-199a-5p mimic. CONCLUSIONS MiR-199a-5p mimic decreased the expression of PIK3R2 and activated Akt signaling pathway after ischemia stroke, reduced the expression of inflammatory cytokines, and attenuated BBB disruption after ischemic stroke.
Collapse
Affiliation(s)
- Guangxiao Ni
- Department of Rehabilitation of the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lulu Kou
- Department of Rehabilitation of the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chunqiao Duan
- Department of Rehabilitation of the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ran Meng
- Department of Rehabilitation of the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Pu Wang
- Stomatological Laboratory of the Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Al-Failakawi A, Al-Jarallah A, Rao M, Khan I. The Role of Claudins in the Pathogenesis of Dextran Sulfate Sodium-Induced Experimental Colitis: The Effects of Nobiletin. Biomolecules 2024; 14:1122. [PMID: 39334888 PMCID: PMC11430412 DOI: 10.3390/biom14091122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The pathogenesis of inflammatory bowel diseases such as ulcerative colitis and Crohn's disease is not well understood. This study investigated the roles and regulation of the claudin-1, -2, -3, and -4 isoforms in the pathogenesis of ulcerative colitis, and the potential therapeutic effects of nobiletin. METHODS Colitis was induced in rats by administering dextran sulfate sodium [DSS] in drinking water for seven days. Animals were treated daily with nobiletin [oral, 60 mg/Kg body weight] and studied in four groups, C [non-colitis control], D [DSS-induced colitis], CN [nobiletin-treated non-colitis control], and DN [nobiletin-treated DSS-induced colitis]. On day seven, the animals were sacrificed, and colonic tissues were collected and analyzed. RESULTS Both macroscopic and microscopic findings suggest the progression of colitis. In the inflamed colon, claudin-1 and -4 proteins were decreased, claudin-2 increased, while the claudin-3 protein remained unchanged. Except for claudin-1, these changes were not paralleled by mRNA expression, indicating a complex regulatory mechanism. Uniform β-actin expression along with consistent quality and yield of total RNA indicated selectivity of these changes. Nobiletin treatment reversed these changes. CONCLUSIONS Altered expression of the claudin isoforms -1, -2, and -4 disrupts tight junctions, exposing the lamina propria to microflora, leading to electrolyte disturbance and the development of ulcerative colitis. Nobiletin with its anti-inflammatory properties may be useful in IBD.
Collapse
Affiliation(s)
- Asmaa Al-Failakawi
- Department of Biochemistry, College of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; (A.A.-F.); (A.A.-J.)
| | - Aishah Al-Jarallah
- Department of Biochemistry, College of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; (A.A.-F.); (A.A.-J.)
| | - Muddanna Rao
- Departments of Anatomy, College of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait;
| | - Islam Khan
- Department of Biochemistry, College of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; (A.A.-F.); (A.A.-J.)
| |
Collapse
|
13
|
Huang Y, Wu Q, Li S, Lin X, Yang S, Zhu R, Fu C, Zhang Z. Harnessing nature's pharmacy: investigating natural compounds as novel therapeutics for ulcerative colitis. Front Pharmacol 2024; 15:1394124. [PMID: 39206263 PMCID: PMC11349575 DOI: 10.3389/fphar.2024.1394124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
Backgrounds Ulcerative colitis (UC) is a form of chronic inflammatory bowel disease, and UC diagnosis rates continue to rise throughout the globe. The research and development of new drugs for the treatment of UC are urgent, and natural compounds are an important source. However, there is a lack of systematic summarization of natural compounds and their mechanisms for the treatment of UC. Methods We reviewed the literature in the databases below from their inception until July 2023: Web of Science, PubMed, China National Knowledge Infrastructure, and Wanfang Data, to obtain information on the relationship between natural compounds and UC. Results The results showed that 279 natural compounds treat UC through four main mechanisms, including regulating gut microbiota and metabolites (Mechanism I), protecting the intestinal mucosal barrier (Mechanism II), regulating intestinal mucosal immune response (Mechanism III), as well as regulating other mechanisms (Mechanism Ⅳ) such as cellular autophagy modulation and ferroptosis inhibition. Of these, Mechanism III is regulated by all natural compounds. The 279 natural compounds, including 62 terpenoids, 57 alkaloids, 52 flavonoids, 26 phenols, 19 phenylpropanoids, 9 steroids, 9 saponins, 8 quinonoids, 6 vitamins, and 31 others, can effectively ameliorate UC. Of these, terpenoids, alkaloids, and flavonoids have the greatest potential for treating UC. It is noteworthy to highlight that a total of 54 natural compounds exhibit their therapeutic effects by modulating Mechanisms I, II, and III. Conclusion This review serves as a comprehensive resource for the pharmaceutical industry, researchers, and clinicians seeking novel therapeutic approaches to combat UC. Harnessing the therapeutic potential of these natural compounds may significantly contribute to the improvement of the quality of life of patients with UC and promotion of disease-modifying therapies in the future.
Collapse
Affiliation(s)
- You Huang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuhong Wu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sha Li
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xia Lin
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shasha Yang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Zhu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaomei Fu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Shah B, Solanki N. Aegeline attenuates TNBS-induced colitis by suppressing the NFƙB-mediated NLRP3 inflammasome pathway in mice. Inflammopharmacology 2024; 32:2589-2599. [PMID: 38767762 DOI: 10.1007/s10787-024-01493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
A chronic inflammatory condition of the intestine, ulcerative colitis (UC), is challenging to successfully manage once diagnosed. Currently, available medical therapies for UC exhibit minimal efficacy with unacceptable side effects, while inventive biological agents are expensive and yet not well accepted by patients. Discovering more effective and safer treatments to treat UC is therefore essential. One of the primary alkaloids found in Aegle marmelos, aegeline, has anti-inflammatory and antioxidant properties as well as being able to suppress several pro-inflammatory cytokines responsible for inflammation. The study aimed to investigate the effectiveness of aegeline in alleviating 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis through the NFƙB-mediated NLRP3 inflammasome pathway. Mice were randomly allocated into six groups, Normal control (NC), Model control (MC-TNBS, 2,4,6-trinitrobenzene sulfonic acid), STD (TNBS + sulfasalazine 100 mg/kg), AG1, AG2, and AG3 (TNBS + aegeline 5, 10, 20 mg/kg) respectively. Physical parameters such as a change in body weight, stool consistency, rectal bleeding, colon length, myeloperoxidase (MPO) levels and nitric oxide (NO) levels, and disease activity index (DAI) were assessed and supporting gene expression studies of various pro-inflammatory cytokines and enzymes were evaluated and histopathological changes observed. Administration of aegeline (10, 20 mg/kg) was found to be effective in colon protection by lowering the disease activity score and myeloperoxidase level and improving other physical parameters. Aegeline in high dose significantly downregulated the gene expression of NFƙB, iNOS, COX-2, NLRP3, IL-1β, and IL-18, conferring great anti-inflammatory potential. Suggestive of the findings, aegeline reduced the damage to the colon by downregulating transcriptional genes and enzymes leading to inflammation and mitigated TNBS-induced colitis probably through the NFƙB-mediated NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Bhagyabhumi Shah
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, Gujarat, India.
| | - Nilay Solanki
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, Gujarat, India.
| |
Collapse
|
15
|
Hawker P, Zhang L, Liu L. Mas-related G protein-coupled receptors in gastrointestinal dysfunction and inflammatory bowel disease: A review. Br J Pharmacol 2024; 181:2197-2211. [PMID: 36787888 DOI: 10.1111/bph.16059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/25/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic debilitating condition, hallmarked by persistent inflammation of the gastrointestinal tract. Despite recent advances in clinical treatments, the aetiology of IBD is unknown, and a large proportion of patients are refractory to pharmacotherapy. Understanding IBD immunopathogenesis is crucial to discern the cause of IBD and optimise treatments. Mas-related G protein-coupled receptors (Mrgprs) are a family of approximately 50 G protein-coupled receptors that were first identified over 20 years ago. Originally known for their expression in skin nociceptors and their role in transmitting the sensation of itch in the periphery, new reports have described the presence of Mrgprs in the gastrointestinal tract. In this review, we consider the impact of these findings and assess the evidence that suggests that Mrgprs may be involved in the disrupted homeostatic processes that contribute to gastrointestinal disorders and IBD. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Patrick Hawker
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Lu Liu
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Cai F, Wang C. Comprehensive review of the phytochemistry, pharmacology, pharmacokinetics, and toxicology of alkamides (2016-2022). PHYTOCHEMISTRY 2024; 220:114006. [PMID: 38309452 DOI: 10.1016/j.phytochem.2024.114006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Alkamides refer to a class of natural active small-molecule products composed of fatty acids and amine groups. These compounds are widely distributed in plants, and their unique structures and various pharmacological activities have caught the attention of scholars. This review provides a collection of literatures related to the phytochemistry, pharmacological effects, pharmacokinetics, and toxicity of alkamides published in 2016-2022 and their summary to provide references for further development of this class of ingredients. A total of 234 components (including chiral isomers) were summarized, pharmacological activities, such as anti-inflammatory, antitumor, antidiabetic, analgesic, neuroprotective, insecticidal, antioxidant, and antibacterial, and miscellaneous properties of alkamides were discussed. In addition, the pharmacokinetic characteristics and toxicity of alkamides were reviewed. However, information on the pharmacological mechanisms of the action, drug safety, and pharmacokinetics of alkamides is limited and thus requires further investigation and evaluation.
Collapse
Affiliation(s)
- Fujie Cai
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
17
|
Kakali B. Natural Compounds as Protease Inhibitors in Therapeutic Focus on Cancer Therapy. Anticancer Agents Med Chem 2024; 24:1167-1181. [PMID: 38988167 DOI: 10.2174/0118715206303964240708095110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Proteases are implicated in every hallmark of cancer and have complicated functions. For cancer cells to survive and thrive, the process of controlling intracellular proteins to keep the balance of the cell proteome is essential. Numerous natural compounds have been used as ligands/ small molecules to target various proteases that are found in the lysosomes, mitochondria, cytoplasm, and extracellular matrix, as possible anticancer therapeutics. Promising protease modulators have been developed for new drug discovery technology through recent breakthroughs in structural and chemical biology. The protein structure, function of significant tumor-related proteases, and their natural compound inhibitors have been briefly included in this study. This review highlights the most current frontiers and future perspectives for novel therapeutic approaches associated with the list of anticancer natural compounds targeting protease and the mode and mechanism of proteinase-mediated molecular pathways in cancer.
Collapse
Affiliation(s)
- Bhadra Kakali
- Department of Zoology, University of Kalyani, Kalyani, 741235, India
| |
Collapse
|
18
|
Abasubong KP, Jiang GZ, Guo HX, Wang X, Li XF, Yan-Zou D, Liu WB, Desouky HE. High-fat diet alters intestinal microbiota and induces endoplasmic reticulum stress via the activation of apoptosis and inflammation in blunt snout bream. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1079-1095. [PMID: 37831370 DOI: 10.1007/s10695-023-01240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/16/2023] [Indexed: 10/14/2023]
Abstract
The primary organ for absorbing dietary fat is the gut. High dietary lipid intake negatively affects health and absorption by causing fat deposition in the intestine. This research explores the effect of a high-fat diet (HFD) on intestinal microbiota and its connections with endoplasmic reticulum stress and inflammation. 60 fish (average weight: 45.84 ± 0.07 g) were randomly fed a control diet (6% fat) and a high-fat diet (12 % fat) in four replicates for 12 weeks. From the result, hepatosomatic index (HSI), Visceralsomatic index (VSI), abdominal fat (ADF), Intestosomatic index (ISI), mesenteric fat (MFI), Triglycerides (TG), total cholesterol (TC), non-esterified fatty acid (NEFA) content were substantially greater on HFD compared to the control diet. Moreover, fish provided the HFD significantly obtained lower superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. In contrast, an opposite result was seen in malondialdehyde (MDA) content in comparison to the control. HFD significantly altered intestinal microbiota in blunt snout bream, characterized by an increased abundance of Aeromonas, Plesiomonas proteobacteria, and firmicutes with a reduced abundance of Cetobacterium and ZOR0006. The transcriptional levels of glucose-regulated protein 78 (grp78), inositol requiring enzyme 1 (ire1), spliced X box-binding protein 1 (xbp1), DnaJ heat shock protein family (Hsp40) member B9 (dnajb9), tumor necrosis factor alpha (tnf-α), nuclear factor-kappa B (nf-κb), monocyte chemoattractant protein-1 (mcp-1), and interleukin-6 (il-6) in the intestine were markedly upregulated in fish fed HFD than the control group. Also, the outcome was similar in bax, caspases-3, and caspases-9, ZO-1, Occludin-1, and Occludin-2 expressions. In conclusion, HFD could alter microbiota and facilitate chronic inflammatory signals via activating endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Kenneth Prudence Abasubong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Hui-Xing Guo
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xi Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Dong Yan-Zou
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
| | - Hesham Eed Desouky
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, Beheria, 22713, Egypt
| |
Collapse
|
19
|
Gouda NA, Alshammari SO, Abourehab MAS, Alshammari QA, Elkamhawy A. Therapeutic potential of natural products in inflammation: underlying molecular mechanisms, clinical outcomes, technological advances, and future perspectives. Inflammopharmacology 2023; 31:2857-2883. [PMID: 37950803 DOI: 10.1007/s10787-023-01366-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/06/2023] [Indexed: 11/13/2023]
Abstract
Chronic inflammation is a common underlying factor in many major diseases, including heart disease, diabetes, cancer, and autoimmune disorders, and is responsible for up to 60% of all deaths worldwide. Metformin, statins, and corticosteroids, and NSAIDs (non-steroidal anti-inflammatory drugs) are often given as anti-inflammatory pharmaceuticals, however, often have even more debilitating side effects than the illness itself. The natural product-based therapy of inflammation-related diseases has no adverse effects and good beneficial results compared to substitute conventional anti-inflammatory medications. In this review article, we provide a concise overview of present pharmacological treatments, the pathophysiology of inflammation, and the signaling pathways that underlie it. In addition, we focus on the most promising natural products identified as potential anti-inflammatory therapeutic agents. Moreover, preclinical studies and clinical trials evaluating the efficacy of natural products as anti-inflammatory therapeutic agents and their pragmatic applications with promising outcomes are reviewed. In addition, the safety, side effects and technical barriers of natural products are discussed. Furthermore, we also summarized the latest technological advances in the discovery and scientific development of natural products-based medicine.
Collapse
Affiliation(s)
- Noha A Gouda
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi, 10326, Republic of Korea
| | - Saud O Alshammari
- Department of Pharmacognosy and Alternative Medicine, Faculty of Pharmacy, Northern Border University, Rafha, 76321, Saudi Arabia
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Qamar A Alshammari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Northern Border University, Rafha, 76321, Saudi Arabia
| | - Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi, 10326, Republic of Korea.
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
20
|
Shoeibi S, Green E, Wei H, Gou W, Strange C, Wang H. Immortalized Mesenchymal Stromal Cells Overexpressing Alpha-1 Antitrypsin Protect Acinar Cells from Apoptotic and Ferroptotic Cell Death. RESEARCH SQUARE 2023:rs.3.rs-2961444. [PMID: 37609340 PMCID: PMC10441457 DOI: 10.21203/rs.3.rs-2961444/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Chronic pancreatitis (CP) is a progressive inflammatory disorder that impairs endocrine and exocrine function. Our previous work suggests that mesenchymal stem/stromal cells (MSCs) and MSCs overexpressing alpha-1 antitrypsin (AAT-MSCs) could be therapeutic tools for CP treatment in mouse models. However, primary MSCs have a predisposition to undergo senescence during culture expansion which limits their therapeutic applications. Here we generated and characterized immortalized human MSCs (iMSCs) and AAT-MSCs (iAAT-MSCs) and tested their protective effect on 2,4,6-Trinitrobenzenesulfonic acid (TNBS) -induced acinar cell death in an in vitro cell culture system. Primary MSCs were immortalized by transduction with simian virus 40 large T antigen (SV40LT), and the resulting iMSC and iAAT-MSC lines were analyzed for proliferation, senescence, phenotype, and multi-differentiation potential. Subsequently, the impact of these cells on TNBS-induced cell death was measured and compared. Both apoptosis and ferroptosis pathways were investigated by assessing changes of critical factors before and after cell treatment. Coculture of iMSCs and iAAT-MSCs with acinar cell lines inhibited early apoptosis induced by TNBS, reduced ER stress, and reversed TNBS-induced protein reduction at tight junctions. Additionally, iMSCs and iAAT-MSCs exerted such protection by regulating mitochondrial respiration, ATP content, and ROS production in TNBS-induced acinar cells. Furthermore, iMSCs and iAAT-MSCs ameliorated ferroptosis by regulating the ferritin heavy chain 1 (FTH1)/protein disulfide isomerase (PDI)/glutathione peroxide 4 (GPX4) signaling pathways and by modulating ROS function and iron generation in acinar cells. These findings identified ferroptosis as one of the mechanisms that leads to TNBS-induced cell death and offer mechanistic insights relevant to using stem cell therapy for the treatment of CP.
Collapse
Affiliation(s)
| | | | | | - Wenyu Gou
- Medical University of South Carolina
| | | | | |
Collapse
|
21
|
Ning L, Ye N, Ye B, Miao Z, Cao T, Lu W, Xu D, Tan C, Xu Y, Yan J. Qingre Xingyu recipe exerts inhibiting effects on ulcerative colitis development by inhibiting TNFα/NLRP3/Caspase-1/IL-1β pathway and macrophage M1 polarization. Cell Death Discov 2023; 9:84. [PMID: 36890151 PMCID: PMC9995513 DOI: 10.1038/s41420-023-01361-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 03/10/2023] Open
Abstract
As a chronic inflammatory bowel disease, ulcerative colitis (UC) imposes a significant burden on public healthcare worldwide due to its increasing morbidity. Chinese medicines are regarded as potent therapeutic agents for UC treatment with minimal side effects. In the present study, we sought to determine the novel role of a traditional medicine Qingre Xingyu (QRXY) recipe in the development of UC and aimed to contribute to the currently available knowledge about UC by exploring the downstream mechanism of QRXY recipe in UC. Mouse models of UC were established by injections with dextran sulphate sodium (DSS), where the expression of tumor necrosis factor-alpha (TNFα), NLR family pyrin domain containing 3 (NLRP3), and interleukin-1β (IL-1β) was determined followed by an analysis of their interactions. The DSS-treated NLRP3 knockout (-/-) Caco-2 cell model was successfully constructed. The in vitro and in vivo effects of the QRXY recipe on UC were investigated with the determination of disease activity index (DAI), histopathological scores, transepithelial electrical resistance, FITC-dextran, as well as cell proliferation and apoptosis. In vivo and in vitro experiments indicated that the QRXY recipe reduced the degree of intestinal mucosal injury of UC mice and functional damage of DSS-induced Caco-2 cells by inhibition of the TNFα/NLRP3/caspase-1/IL-1β pathway and M1 polarization of macrophages, and TNFα overexpression or NLRP3 knockdown could counterweigh the therapeutic effects of QRXY recipe. To conclude, our study elicited that QRXY inhibited the expression of TNFα and inactivated the NLRP3/Caspase-1/IL-1β pathway, thereby alleviating intestinal mucosal injury and relieving UC in mice.
Collapse
Affiliation(s)
- Liqin Ning
- Chinese Medicine Master Studio, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, P. R. China
| | - Ningyuan Ye
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Bai Ye
- Department of Gastroenterology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, P. R. China
| | - Zhiwei Miao
- Department of Gastroenterology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215600, P. R. China
| | - Tingting Cao
- Department of Gastroenterology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, P. R. China
| | - Weimin Lu
- Department of Internal Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, P. R. China
| | - Danhua Xu
- Chinese Medicine Master Studio, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, P. R. China
| | - Chang Tan
- Chinese Medicine Master Studio, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, P. R. China
| | - Yi Xu
- Department of Gastroenterology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, P. R. China.
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China.
| |
Collapse
|
22
|
Erarslan AS, Ozmerdivenli R, Sirinyıldız F, Cevik O, Gumus E, Cesur G. Therapeutic and Prophylactic Role of Vitamin D and Curcumin in Acetic Acid-Induced Acute Ulcerative Colitis Model. Toxicol Mech Methods 2023:1-10. [PMID: 36872571 DOI: 10.1080/15376516.2023.2187729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Ulcerative Colitis (UC) is a disease that negatively affects quality of life and is associated with sustained oxidative stress, inflammation and intestinal permeability. Vitamin D and Curcumin; It has pharmacological properties beneficial to health, including antioxidant and anti-inflammatory properties. Our study investigates the role of Vitamin D and Curcumin in acetic acid-induced acute colitis model. To investigate the effect of Vitamin D and Curcumin, Wistar-albino rats were given 0.4 mcg/kg Vitamin D (Post-Vit D, Pre-Vit D) and 200 mg/kg Curcumin (Post-Cur, Pre-Cur) for 7 days and acetic acid was injected into all rats except the control group. Our results; colon tissue TNF-α, IL-1β, IL-6, IFN-γ and MPO levels were found significantly higher and Occludin levels were found significantly lower in the colitis group compared to the control group (p < 0.05). TNF-α and IFN-γ levels decreased and Occludin levels increased in colon tissue of Post-Vit D group compared to colitis group (p < 0.05). IL-1β, IL-6 and IFN-γ levels were decreased in colon tissue of Post-Cur and Pre-Cur groups (p < 0.05). MPO levels in colon tissue decreased in all treatment groups (p < 0.05). Vitamin D and Curcumin treatment significantly reduced inflammation and restored the normal histoarchitecture of the colon. From the present study findings, we can conclude that Vitamin D and Curcumin protect the colon from acetic acid toxicity with their antioxidant and anti-inflammatory potential.
Collapse
Affiliation(s)
- Ayse Seda Erarslan
- Suleyman Demirel University, Health Science Institute, Department of Physiology (Medicine), Isparta, Turkey
| | - Recep Ozmerdivenli
- Aydın Adnan Menderes University, Faculty of Medicine, Department of Physiology, Aydın, Turkey
| | - Ferhat Sirinyıldız
- Aydın Adnan Menderes University, Faculty of Medicine, Department of Physiology, Aydın, Turkey
| | - Ozge Cevik
- Aydın Adnan Menderes University, Faculty of Medicine, Department of Biochemistry, Aydın, Turkey
| | - Erkan Gumus
- Aydın Adnan Menderes University, Faculty of Medicine, Department of Histology and Embryology, Aydın, Turkey
| | - Gokhan Cesur
- Aydın Adnan Menderes University, Faculty of Medicine, Department of Physiology, Aydın, Turkey
| |
Collapse
|
23
|
Zhou Y, Wang D, Yan W. Treatment Effects of Natural Products on Inflammatory Bowel Disease In Vivo and Their Mechanisms: Based on Animal Experiments. Nutrients 2023; 15:nu15041031. [PMID: 36839389 PMCID: PMC9967064 DOI: 10.3390/nu15041031] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, non-specific inflammatory disease of the intestine that can be classified as ulcerative colitis (UC) and Crohn's disease (CD). Currently, the incidence of IBD is still increasing in developing countries. However, current treatments for IBD have limitations and do not fully meet the needs of patients. There is a growing demand for new, safe, and highly effective alternative drugs for IBD patients. Natural products (NPs) are used in drug development and disease treatment because of their broad biological activity, low toxicity, and low side effects. Numerous studies have shown that some NPs have strong therapeutic effects on IBD. In this paper, we first reviewed the pathogenesis of IBD as well as current therapeutic approaches and drugs. Further, we summarized the therapeutic effects of 170 different sources of NPs on IBD and generalized their modes of action and therapeutic effects. Finally, we analyzed the potential mechanisms of NPs for the treatment of IBD. The aim of our review is to provide a systematic and credible summary, thus supporting the research on NPs for the treatment of IBD and providing a theoretical basis for the development and application of NPs in drugs and functional foods.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
- Correspondence: ; Tel.: +86-010-6238-8926
| |
Collapse
|
24
|
Wang L, Zhang P, Chen J, Li C, Tian Y, Xu F. Prebiotic properties of the polysaccharide from Rosa roxburghii Tratt fruit and its protective effects in high-fat diet-induced intestinal barrier dysfunction: A fecal microbiota transplantation study. Food Res Int 2023; 164:112400. [PMID: 36737985 DOI: 10.1016/j.foodres.2022.112400] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
Polysaccharide from Rosa roxburghii Tratt fruit (RTFP) ameliorates high-fat diet (HFD)-induced colitis in mice. However, it is still unknown whether the gut microbiota can mediate the anti-colitis effects of RTFP in mice. This research aims to investigate the role of gut microbes in modulating RTFP in colitis mice through fecal microbiota transplantation (FMT). The findings demonstrated that RTFP exhibited prebiotic effects on HFD-induced colitis mice. After FMT treatment (transplatation of the microbiota from the fecal sample to each recipient daily), the fecal microbiota of RTFP-treated donor mice remarkably alleviated colitis-related symptoms (e.g., colonic inflammation, loss of body weight, gut microbiota dysbiosis, and loss of barrier integrity) and upregulated the expression of tight junction proteins compared to the HFD-treated donor mice. Overall, RTFP can reduce the severity of HFD-induced colitis by regulating gut microbiota.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Pan Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jie Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Chao Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yingpeng Tian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Fei Xu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
25
|
Satitsri S, Akrimajirachoote N, Nunta K, Ruennarong N, Amnucksoradej O, Muanprasat C. Piperine as potential therapy of post-weaning porcine diarrheas: an in vitro study using a porcine duodenal enteroid model. BMC Vet Res 2023; 19:4. [PMID: 36624444 PMCID: PMC9827699 DOI: 10.1186/s12917-022-03536-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023] Open
Abstract
Post-weaning diarrhea in piglets is a major problem, resulting in a significant loss in pig production. This study aimed to investigate the effects of piperine, an alkaloid abundantly found in black peppers, on biological activities related to the pathogenesis of post-weaning diarrhea using a porcine duodenal enteroid model, a newly established intestinal stem cell-derived in vitro model recapitulating physiology of porcine small intestinal epithelia. Porcine duodenal enteroid models were treated with disease-relevant pathological inducers with or without piperine (8 μg/mL and/or 20 μg/mL) before measurements of oxidative stress, mRNA, and protein expression of proinflammatory cytokines, nuclear factor-kappa B (NF-κB) nuclear translocation, barrier leakage, and fluid secretion. We found that piperine (20 μg/mL) inhibited H2O2-induced oxidative stress, TNF-α-induced mRNA, and protein expression of proinflammatory cytokines without affecting NF-κB nuclear translocation, and prevented TNF-α-induced barrier leakage in porcine duodenal enteroid monolayers. Importantly, piperine inhibited fluid secretion induced by both forskolin and heat-stable toxins (STa) in a three-dimensional model of porcine duodenal enteroids. Collectively, piperine possesses both anti-inflammatory and anti-secretory effects in porcine enteroid models. Further research and development of piperine may provide novel interventions for the treatment of post-weaning porcine diarrhea.
Collapse
Affiliation(s)
- Saravut Satitsri
- grid.10223.320000 0004 1937 0490Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, 10540 Thailand
| | - Nattaphong Akrimajirachoote
- grid.9723.f0000 0001 0944 049XDepartment of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900 Thailand
| | - Kanokkan Nunta
- Vet Products Research and Innovation Center Co., Ltd., Pathum Thani, 12120 Thailand
| | - Nitwarat Ruennarong
- Vet Products Research and Innovation Center Co., Ltd., Pathum Thani, 12120 Thailand
| | - Orawan Amnucksoradej
- Vet Products Research and Innovation Center Co., Ltd., Pathum Thani, 12120 Thailand
| | - Chatchai Muanprasat
- grid.10223.320000 0004 1937 0490Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, 10540 Thailand
| |
Collapse
|
26
|
Phytochemicals and Regulation of NF-kB in Inflammatory Bowel Diseases: An Overview of In Vitro and In Vivo Effects. Metabolites 2023; 13:metabo13010096. [PMID: 36677021 PMCID: PMC9862976 DOI: 10.3390/metabo13010096] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic relapsing idiopathic inflammatory conditions affecting the gastrointestinal tract. They are mainly represented by two forms, ulcerative colitis (UC) and Crohn's disease (CD). IBD can be associated with the activation of nuclear factors, such as nuclear factor-kB (NF-kB), leading to increased transcription of pro-inflammatory mediators that result in diarrhea, abdominal pain, bleeding, and many extra-intestinal manifestations. Phytochemicals can interfere with many inflammation targets, including NF-kB pathways. Thus, this review aimed to investigate the effects of different phytochemicals in the NF-kB pathways in vitro and in vivo models of IBD. Fifty-six phytochemicals were included in this study, such as curcumin, resveratrol, kaempferol, sesamol, pinocembrin, astragalin, oxyberberine, berberine hydrochloride, botulin, taxifolin, naringin, thymol, isobavachalcone, lancemaside A, aesculin, tetrandrine, Ginsenoside Rk3, mangiferin, diosgenin, theanine, tryptanthrin, lycopene, gyngerol, alantolactone, mangostin, ophiopogonin D, fisetin, sinomenine, piperine, oxymatrine, euphol, artesunate, galangin, and nobiletin. The main observed effects related to NF-kB pathways were reductions in tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, interferon-gamma (IFN-γ), and cyclooxygenase-2 (COX-2), and augmented occludin, claudin-1, zonula occludens-1, and IL-10 expression levels. Moreover, phytochemicals can improve weight loss, stool consistency, and rectal bleeding in IBD. Therefore, phytochemicals can constitute a powerful treatment option for IBD in humans.
Collapse
|
27
|
do Nascimento RDP, da Rocha Alves M, Noguera NH, Lima DC, Marostica Junior MR. Cereal grains and vegetables. NATURAL PLANT PRODUCTS IN INFLAMMATORY BOWEL DISEASES 2023:103-172. [DOI: 10.1016/b978-0-323-99111-7.00014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
Yuan S, Li Y, Li J, Xue JC, Wang Q, Hou XT, Meng H, Nan JX, Zhang QG. Traditional Chinese Medicine and Natural Products: Potential Approaches for Inflammatory Bowel Disease. Front Pharmacol 2022; 13:892790. [PMID: 35873579 PMCID: PMC9301246 DOI: 10.3389/fphar.2022.892790] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a rare, recurrent, and intractable inflammation obstruction of the stomach tract, usually accompanied by inflammation of cell proliferation and inflammation of the colon and carries a particular cause of inflammation. The clinical use of drugs in western countries affects IBD treatment, but various adverse effects and high prices limit their application. For these reasons, Traditional Chinese Medicine (TCM) is more advantageous in treating IBD. This paper reviews the mechanism and research status of TCM and natural products in IBD treatment by analyzing the relevant literature to provide a scientific and theoretical basis for IBD treatment.
Collapse
Affiliation(s)
- Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - You Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Jiao Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| | - Jia-Chen Xue
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| | - Qi Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Xiao-Ting Hou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Huan Meng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Qing-Gao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| |
Collapse
|
29
|
Green Tea Extract Containing Piper retrofractum Fruit Ameliorates DSS-Induced Colitis via Modulating MicroRNA-21 Expression and NF-κB Activity. Nutrients 2022; 14:nu14132684. [PMID: 35807865 PMCID: PMC9268562 DOI: 10.3390/nu14132684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of the present study was to examine the effect of green tea extract containing Piper retrofractum fruit (GTP) on dextran-sulfate-sodium (DSS)-induced colitis, the regulatory mechanisms of microRNA (miR)-21, and the nuclear factor-κB (NF-κB) pathway. Different doses of GTP (50, 100, and 200 mg/kg) were administered orally once daily for 14 days, followed by GTP with 3% DSS for 7 days. Compared with the DSS-treated control, GTP administration alleviated clinical symptoms, including the disease activity index (DAI), colon shortening, and the degree of histological damage. Moreover, GTP suppressed miR-21 expression and NF-κB activity in colon tissue of DSS-induced colitis mice. The mRNA levels of inflammatory mediators, such as tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), were downregulated by GTP. Colonic nitric oxide (NO) and prostaglandin E2 (PGE2) production, and myeloperoxidase (MPO) activity were also lowered by GTP. Taken together, our results revealed that GTP inhibits DSS-induced colonic inflammation by suppressing miR-21 expression and NF-κB activity, suggesting that it may be used as a potential functional material for improving colitis.
Collapse
|
30
|
Zaghloul MS, Elshal M, Abdelmageed ME. Preventive empagliflozin activity on acute acetic acid-induced ulcerative colitis in rats via modulation of SIRT-1/PI3K/AKT pathway and improving colon barrier. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 91:103833. [PMID: 35218923 DOI: 10.1016/j.etap.2022.103833] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic colon inflammation that is linked to exposure to environmental factors leading to improper immune responses to enteric microbes in genetically susceptible individuals. This study was designed to explore the possible protective impact of Empagliflozin (EMPA), an anti-diabetic sodium-glucose cotransporter-2 (SGLT2) inhibitor, on acetic acid (AA)-induced UC in rats. METHOD Intrarectal instillation of AA (2 ml, 3% v/v) was used to induce UC. EMPA (10 & 30 mg/kg) was administered orally for 11 days. RESULTS EMPA successfully counteracted AA-induced UC that was manifested by improving colonic histopathological architecture concomitant with a marked decrease in disease activity index (DAI), colon weight, weight/length ratio, serum lactate dehydrogenase (LDH) activity, and C-reactive protein (CRP) level. Additionally, EMPA successfully restored the disrupted oxidant/antioxidants balance induced by AA. Moreover, EMPA significantly induced silent information regulator-1(SIRT-1) expression along with a significant reduction in phosphatidylinositol-3-Kinase (PI3K), Protein Kinase B (AKT), nuclear factor kappa B (NF-κB), tumor necrosis factor (TNF)-α and interleukins (IL-1β and IL-6) expression in colonic tissues. Furthermore, EMPA successfully improved the colonic barrier that was appeared from the marked induction of tight junction proteins level (occludin and claudin-1). CONCLUSION EMPA successfully counteracted AA-induced UC in rats via the modulation of SIRT1/PI3K/AKT/NF-κB inflammatory pathway, normalizing oxidant/antioxidants balance, and improving the integrity of colon barrier.
Collapse
Affiliation(s)
- Marwa S Zaghloul
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
31
|
The Combination of Intestinal Alkaline Phosphatase Treatment with Moderate Physical Activity Alleviates the Severity of Experimental Colitis in Obese Mice via Modulation of Gut Microbiota, Attenuation of Proinflammatory Cytokines, Oxidative Stress Biomarkers and DNA Oxidative Damage in Colonic Mucosa. Int J Mol Sci 2022; 23:ijms23062964. [PMID: 35328382 PMCID: PMC8955215 DOI: 10.3390/ijms23062964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are commonly considered as Crohn's disease and ulcerative colitis, but the possibility that the alterations in gut microbiota and oxidative stress may affect the course of experimental colitis in obese physically exercising mice treated with the intestinal alkaline phosphatase (IAP) has been little elucidated. Mice fed a high-fat-diet (HFD) or normal diet (ND) for 14 weeks were randomly assigned to exercise on spinning wheels (SW) for 7 weeks and treated with IAP followed by intrarectal administration of TNBS. The disease activity index (DAI), grip muscle strength test, oxidative stress biomarkers (MDA, SOD, GSH), DNA damage (8-OHdG), the plasma levels of cytokines IL-2, IL-6, IL-10, IL-12p70, IL-17a, TNF-α, MCP-1 and leptin were assessed, and the stool composition of the intestinal microbiota was determined by next generation sequencing (NGS). The TNBS-induced colitis was worsened in obese sedentary mice as manifested by severe colonic damage, an increase in DAI, oxidative stress biomarkers, DNA damage and decreased muscle strength. The longer running distance and weight loss was observed in mice given IAP or subjected to IAP + SW compared to sedentary ones. Less heterogeneous microbial composition was noticed in sedentary obese colitis mice and this effect disappeared in IAP + SW mice. Absence of Alistipes, lower proportion of Turicibacter, Proteobacteria and Faecalibacterium, an increase in Firmicutes and Clostridium, a decrease in oxidative stress biomarkers, 8-OHdG content and proinflammatory cytokines were observed in IAP + SW mice. IAP supplementation in combination with moderate physical activity attenuates the severity of murine colitis complicated by obesity through a mechanism involving the downregulation of the intestinal cytokine/chemokine network and oxidative stress, the modulation of the gut microbiota and an improvement of muscle strength.
Collapse
|
32
|
Wang J, Li M, Gao Y, Li H, Fang L, Liu C, Liu X, Min W. Effects of Exopolysaccharides from Lactiplantibacillus plantarum JLAU103 on Intestinal Immune Response, Oxidative Stress, and Microbial Communities in Cyclophosphamide-Induced Immunosuppressed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2197-2210. [PMID: 35118857 DOI: 10.1021/acs.jafc.1c06502] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study investigated the effects of the exopolysaccharide from Lactiplantibacillus plantarum JLAU103 (EPS103) on the intestinal immune response, oxidative stress, intestinal mucosal barrier, and microbial community in cyclophosphamide-induced immune-suppressed mice. The results showed that EPS103 promoted the secretion of cytokines and the generation of secretory immunoglobulin A and mucin-2 in the small intestine of mice, which might be related to the activation of the MAPK pathway. Additionally, EPS103 protected against oxidative stress by activating antioxidation enzymes and Nrf2/Keap1 pathways. It also improved the intestinal physical barrier functions via regulating the ratio of villous height to crypt depth and upregulating the expression of tight-junction proteins. Meanwhile, EPS103 promoted the generation of short-chain fatty acids (SCFAs) and modulated the constituents of gut microbiota. These results suggested that EPS103 may modulate the intestinal immunoresponse relying on the regulation of SCFA production and gut microbiota in immunosuppressed mice, resulting in the activation of systemic immunity.
Collapse
Affiliation(s)
- Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, Jilin, P. R. China
| | - Meihe Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, Jilin, P. R. China
| | - Yawen Gao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, Jilin, P. R. China
| | - Hongmei Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, Jilin, P. R. China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, Jilin, P. R. China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, Jilin, P. R. China
| | - Xiaoting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, Jilin, P. R. China
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, Jilin, P. R. China
| |
Collapse
|
33
|
Murugan SK, Bethapudi B, Raghunandhakumar S, Purusothaman D, Nithyanantham M, Mundkinajeddu D, Talkad MS. A flavonoid rich standardized extract of Glycyrrhiza glabra protects intestinal epithelial barrier function and regulates the tight-junction proteins expression. BMC Complement Med Ther 2022; 22:38. [PMID: 35130890 PMCID: PMC8822647 DOI: 10.1186/s12906-021-03500-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Intestinal epithelial barrier dysfunction predisposes to many gastrointestinal, metabolic, and psychological disorders. A flavonoid rich extract of Glycyrrhiza glabra (FREG) has previously been reported to possess anti-inflammatory, antioxidant, and antiulcer properties. AIM To investigate the effect of FREG (GutGard®) on restoring intestinal barrier function in tumor necrosis factor-alpha (TNF-α) stimulated human colonic adenocarcinoma cell monolayer (Caco-2) and 2,4,6-Trinitrobenzenesulfonic acid (TNBS) induced ulcerative colitis in rats. METHODS In in vitro, human intestinal Caco-2 cell monolayers were treated with TNF-α in the presence or absence of FREG and the paracellular permeability to FITC-conjugated 4-kD dextran (FD4) was measured to evaluate protection against the barrier dysfunction. In in vivo, intestinal barrier dysfunction was induced in male albino Wistar rats via intrarectal instillation of TNBS. Subsequently, the rats were treated orally with either FREG at 6.25, 12.5, and 25 mg/kg body weight, or Mesacol (250 mg/kg) for 5 days. On day 5, intestinal epithelial permeability was assessed with FD4 leakage into the serum. Also, colonic inflammation, colon morphology, histology and macroscopic score, weight to length ratio were evaluated. The activity of myeloperoxidase (MPO), TNF- α, secretory IgA levels and tight junction proteins expression were evaluated in rat's colon. RESULTS FREG protected the intestinal epithelial barrier integrity in human intestinal Caco-2 cells in vitro. FREG administration significantly improved the intestinal epithelial barrier function as evident from significant reduction in FD4 leakage. The colon morphology, histology score, macroscopic score, colon weight to length ratio also indicates beneficial effects of FREG on barrier function. In addition, FREG regulated the tight junction proteins, and markedly decreased TNF-α, MPO levels and significantly increased the secretory IgA levels in TNBS induced colitis rats. CONCLUSION The study findings support the protective action of FREG on intestinal epithelial barrier integrity indicating its potential in protecting from implications of leaky gut.
Collapse
Affiliation(s)
- Sasi Kumar Murugan
- Department of Pharmacology & Toxicology, R&D Centre, Natural Remedies Private Limited, Plot No. 5B Veerasandra Indl. Area 19th K. M. Stone Hosur road Electronic City Post, 560100, Bengaluru, Karnataka, India
| | - Bharathi Bethapudi
- Department of Pharmacology & Toxicology, R&D Centre, Natural Remedies Private Limited, Plot No. 5B Veerasandra Indl. Area 19th K. M. Stone Hosur road Electronic City Post, 560100, Bengaluru, Karnataka, India.
| | - Subramanian Raghunandhakumar
- Department of Pharmacology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Divya Purusothaman
- Department of Pharmacology & Toxicology, R&D Centre, Natural Remedies Private Limited, Plot No. 5B Veerasandra Indl. Area 19th K. M. Stone Hosur road Electronic City Post, 560100, Bengaluru, Karnataka, India
| | - Muruganantham Nithyanantham
- Department of Pharmacology & Toxicology, R&D Centre, Natural Remedies Private Limited, Plot No. 5B Veerasandra Indl. Area 19th K. M. Stone Hosur road Electronic City Post, 560100, Bengaluru, Karnataka, India
| | - Deepak Mundkinajeddu
- Department of Pharmacology & Toxicology, R&D Centre, Natural Remedies Private Limited, Plot No. 5B Veerasandra Indl. Area 19th K. M. Stone Hosur road Electronic City Post, 560100, Bengaluru, Karnataka, India
| | | |
Collapse
|
34
|
Ogundepo S, Chiamaka AM, Olatinwo M, Adepoju D, Aladesanmi MT, Celestine UO, Ali KC, Umezinwa OJ, Olasore J, Alausa A. The role of diosgenin in crohn’s disease. CLINICAL PHYTOSCIENCE 2022. [DOI: 10.1186/s40816-022-00338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractInflammatory bowel disease (IBD) is a chronic idiopathic inflammation that can grossly affect the entire gastrointestinal tract (GIT) from the mouth to the anus. Crohn’s disease is the most known type of IBD and has been the focus of attention due to its increase in prevalence worldwide. Although the etiology is yet to be elucidated, recent studies have pointed out Crohn’s disease to arise from a complex interaction between environmental influences, genetic predisposition, and altered gut microbiota, resulting in dysregulated adaptive and innate responses. The presenting hallmarks of Crohn’s disease may include weight loss, nausea, vomiting, abdominal pain, diarrhea, fever, or chills. Treatment is usually done with many approved immunosuppressive drugs and surgery. However, a promising avenue from natural compounds is a safer therapy due to its safe natural active ingredients and the strong activity it shows in the treatment and management of diseases. Diosgenin, “a major biologically active natural steroidal sapogenin found in Chinese yam,” has been widely reported as a therapeutic agent in the treatment of various classes of disorders such as hyperlipidemia, inflammation, diabetes, cancer, infection, and immunoregulation. In this review, an analysis of literature data on diosgenin employed as a therapeutic agent for the treatment of Crohn’s disease is approached, to strengthen the scientific database and curtail the dreadful impact of Crohn’s disease.
Collapse
|
35
|
Craig CF, Filippone RT, Stavely R, Bornstein JC, Apostolopoulos V, Nurgali K. Neuroinflammation as an etiological trigger for depression comorbid with inflammatory bowel disease. J Neuroinflammation 2022; 19:4. [PMID: 34983592 PMCID: PMC8729103 DOI: 10.1186/s12974-021-02354-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with inflammatory bowel disease (IBD) suffer from depression at higher rates than the general population. An etiological trigger of depressive symptoms is theorised to be inflammation within the central nervous system. It is believed that heightened intestinal inflammation and dysfunction of the enteric nervous system (ENS) contribute to impaired intestinal permeability, which facilitates the translocation of intestinal enterotoxins into the blood circulation. Consequently, these may compromise the immunological and physiological functioning of distant non-intestinal tissues such as the brain. In vivo models of colitis provide evidence of increased blood–brain barrier permeability and enhanced central nervous system (CNS) immune activity triggered by intestinal enterotoxins and blood-borne inflammatory mediators. Understanding the immunological, physiological, and structural changes associated with IBD and neuroinflammation may aid in the development of more tailored and suitable pharmaceutical treatment for IBD-associated depression.
Collapse
Affiliation(s)
- Colin F Craig
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rhiannon T Filippone
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rhian Stavely
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia.,Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Joel C Bornstein
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Vasso Apostolopoulos
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia.,Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Kulmira Nurgali
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia. .,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia. .,Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia. .,Institute for Health and Sport, Victoria University, Level 4 Research Labs, Western Centre for Health Research and Education, Sunshine Hospital, 176 Furlong Road, St Albans, VIC, 3021, Australia.
| |
Collapse
|
36
|
Zhao L, Liang J, Chen F, Tang X, Liao L, Liu Q, Luo J, Du Z, Li Z, Luo W, Yang S, Rahimnejad S. High carbohydrate diet induced endoplasmic reticulum stress and oxidative stress, promoted inflammation and apoptosis, impaired intestinal barrier of juvenile largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2021; 119:308-317. [PMID: 34662728 DOI: 10.1016/j.fsi.2021.10.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 05/12/2023]
Abstract
This study assessed the effects of feed carbohydrate content on intestinal physical barrier and immunity in juvenile largemouth bass (Micropterus salmoides). Triplicate groups of juvenile fish (4.1 ± 0.2 g) were fed low (LCD, 7%), medium (MCD, 12%) and high (HCD, 17%) carbohydrate diets for eight weeks. Gut histology revealed the slight infiltration of inflammatory cells and moderate loss of mucous membrane layer in HCD group. Expression of ZO1, occluding, and claudin7 genes and epidermal growth factor receptor (EGFR) gene were significantly decreased in HCD group indicating the impairment of tight junction and epithelial cell regeneration. The results showed the significant (P < 0.05) reduction of antioxidant capacity in HCD group compared to LCD. Furthermore, expression of intestinal ERS-related genes such as IRE1, Eif2α, GRP78, CHOPα and CHOPβ in HCD group was significantly higher than the LCD group. In addition, HCD induced the up-regulated expression of inflammatory (IL-8, IL-1β, TNFα and COX2) and apoptosis (TRAF2, bax, casepase3, caspase8 and casepase9) related genes in fish intestine. The data generated in this study clearly demonstrated that HCD induced ERS and oxidative stress, which promoted intestinal inflammation and apoptosis in juvenile largemouth bass.
Collapse
Affiliation(s)
- Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Ji Liang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Fukai Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xiaohong Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Lei Liao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhiqiong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Samad Rahimnejad
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic.
| |
Collapse
|
37
|
Wang W, Zhang Y, Wang X, Che H, Zhang Y. Piperine Improves Obesity by Inhibiting Fatty Acid Absorption and Repairing Intestinal Barrier Function. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:410-418. [PMID: 34591253 DOI: 10.1007/s11130-021-00919-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Currently, the weight loss effects of piperine have gained considerable attention; however, the underlying mechanism needs to be comprehensively elucidated. In the present study, we aimed to investigate the relationship between the weight loss effects of piperine and intestinal function. Based on the obtained results, piperine inhibited intestinal fatty acid absorption in both cellular and animal models. The underlying mechanism may be related to the downregulation of fatty acid absorption-related genes, fatty acid-binding protein 2 and cluster of differentiation 36, but not fatty acid transport protein 4. In addition, piperine repaired the tight junction damage induced by obesity by downregulating jejunal tumor necrosis factor-α and reducing lipopolysaccharide-induced damage on intestinal cell proliferation, thus enhancing intestinal barrier function, which is beneficial in reducing chronic inflammation associated with obesity. In conclusion, the anti-obesity effect of piperine is related to the enhancement of intestinal barrier function and inhibition of intestinal fatty acid absorption.
Collapse
Affiliation(s)
- Wenli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| | - Yanhua Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| | - Xiong Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| | - Huilian Che
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China.
| |
Collapse
|
38
|
Li C, Wang J, Ma R, Li L, Wu W, Cai D, Lu Q. Natural-derived alkaloids exhibit great potential in the treatment of ulcerative colitis. Pharmacol Res 2021; 175:105972. [PMID: 34758401 DOI: 10.1016/j.phrs.2021.105972] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease of colon and rectum with unknown etiology, and the lesions are mainly confined to the mucosa and submucosa of large intestine. The main clinical features of UC include diarrhea, abdominal pain, bloody purulent stool and tenesmus, which seriously affect patients' quality of life. Most of UC patients would receive drug therapy with the exception of surgery for some severe cases. However, current drugs for the treatment of UC have certain limitations including difficulty of radical treatment, adverse reactions and drug resistance after long-term use and exorbitant price of some drugs. The research and development of new drugs for the treatment of UC is urgent, and natural alkaloids are an important source. This research paid close attention to the progress of natural alkaloids from diverse medicinal plants for treating UC in the last twenty years. The potential mechanisms for the natural alkaloids in the treatment of UC was closely related to its modulation of oxidative stress, immune response, intestinal flora and improvement of the gut barrier function. Remarkable effectiveness and safety of natural-derived alkaloids make them potential candidates of UC therapy.
Collapse
Affiliation(s)
- Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Jiahao Wang
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Runfang Ma
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Luhao Li
- Health Service Center of Dengfeng Street Community, Yuexiu District, Guangzhou 510091, PR China
| | - Wenfeng Wu
- Laboratory of Herbal Pharmacology, GuangDong Second Traditional Chinese Medicine Hospital, Guangzhou 510095, PR China
| | - Dake Cai
- Laboratory of Herbal Pharmacology, GuangDong Second Traditional Chinese Medicine Hospital, Guangzhou 510095, PR China
| | - Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China.
| |
Collapse
|
39
|
Zhou X, Du HH, Long X, Pan Y, Hu J, Yu J, Zhao X. β-Nicotinamide Mononucleotide (NMN) Administrated by Intraperitoneal Injection Mediates Protection Against UVB-Induced Skin Damage in Mice. J Inflamm Res 2021; 14:5165-5182. [PMID: 34675595 PMCID: PMC8504657 DOI: 10.2147/jir.s327329] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/29/2021] [Indexed: 12/27/2022] Open
Abstract
Objective Ultraviolet light is an important environmental factor that induces skin oxidation, inflammation, and other diseases. Nicotinamide mononucleotide (NMN) has the effect of anti-oxidation and improving various physiological processes. This study explores the protective effect of NMN monomers given via intraperitoneal injection on UVB-induced photodamage. Methods We used a murine model of UVB-induced photodamage to evaluate the effect of an NMN monomer on photoaging skin by assessing skin and liver tissue sections, serum and skin oxidative stress levels, inflammatory markers, mRNA expression, and protein expression of skin- and liver-related genes. Results The results showed that NMN treatment blocked UVB-induced photodamage in mice, maintaining normal structure and amount of collagen fibers, normal thickness of epidermis and dermis, reducing the production of mast cells, and maintaining complete organized skin structure. NMN intraperitoneal injection also maintained the normal morphology of the mouse liver after UVB exposure. Meanwhile, NMN intraperitoneal injection was found to increase antioxidant ability and regulate the proinflammatory response of the skin and liver to UVB irradiation by enhancing the activity of antioxidant enzymes, release of anti-inflammatory cytokines, reduction of hydrogen peroxide production (H2O2), and decreased inflammatory cytokines. Furthermore, RT-qPCR results indicated that NMN reduced oxidative stress of skin and liver by promoting the activation of the AMP-activated protein kinase (AMPK) signaling pathway and further increasing the expression of downstream antioxidant genes of AMPK. RT-qPCR results also revealed that NMN treatment could downregulate the mRNA expression of interleukin (IL)-6, interleukin (IL)-1β, and tumor necrosis factor (TNF)-α, and upregulate NF-kappa-B inhibitor-α (IκB-α) and interleukin (IL)-10 by inhibiting the activation of nuclear factor-κBp65 (NFκB-p65). Finally, NMN upregulated AMPK, IκB-α, SOD1, and CAT in the skin and downregulated NF-κBp65 protein expression, which is in line with the RT-qPCR results. Conclusion Based on the above results, NMN monomer treatment with intraperitoneal injection also block the photodamage caused by UVB irradiation in mice by regulating the oxidative stress response and inflammatory response.
Collapse
Affiliation(s)
- Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan, South Korea
| | - Hang-Hang Du
- Department of Plastic Surgery, Chongqing Huamei Plastic Surgery Hospital, Chongqing, People's Republic of China
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| | - Yanni Pan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| | - Jian Hu
- R&D Department, Effepharm (Shanghai) Co., Ltd, Shanghai, People's Republic of China
| | - Jianjun Yu
- R&D Department, Effepharm (Shanghai) Co., Ltd, Shanghai, People's Republic of China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| |
Collapse
|
40
|
Lu Y, Ding Y, Wei J, He S, Liu X, Pan H, Yuan B, Liu Q, Zhang J. Anticancer effects of Traditional Chinese Medicine on epithelial-mesenchymal transition(EMT) in breast cancer: Cellular and molecular targets. Eur J Pharmacol 2021; 907:174275. [PMID: 34214582 DOI: 10.1016/j.ejphar.2021.174275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/31/2022]
Abstract
Breast cancer is a malignant epithelial tumor of ductal or lobular origin. Breast cancer remains the most frequently diagnosed invasive cancer in women and is the leading cause of cancer-associated mortality worldwide. Epithelial-mesenchymal transition (EMT), a phenotypic process of conversion from epithelial to mesenchymal cells, allows tumor cells to acquire infiltration and metastasization properties. Therapies directed at pathways, which are primarily involved in malignant transformation, can lead to clinical implications. In recent years, EMT has gained increasing attention as a potential therapeutic target in cancer therapy. Moreover, for the past few decades, increasing numbers of studies have suggested that Traditional Chinese Medicine(TCM) compounds can significantly inhibit the growth and development of breast cancer cells through the inhibition of EMT in breast cancer cells. This review discusses some essential signaling pathways associated with EMT and summarizes the effects and mechanism of TCM components on that inhibit EMT in breast cancer therapy.
Collapse
Affiliation(s)
- Yiran Lu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Yu Ding
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Jiahui Wei
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Song He
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Xinmiao Liu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Huihao Pan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Qing Liu
- The Second Clinical School of Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China.
| | - Jiabao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China.
| |
Collapse
|
41
|
Luo Y, Yin S, Lu J, Zhou S, Shao Y, Bao X, Wang T, Qiu Y, Yu H. Tumor microenvironment: a prospective target of natural alkaloids for cancer treatment. Cancer Cell Int 2021; 21:386. [PMID: 34284780 PMCID: PMC8290600 DOI: 10.1186/s12935-021-02085-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022] Open
Abstract
Malignant tumor has become one of the major diseases that seriously endangers human health. Numerous studies have demonstrated that tumor microenvironment (TME) is closely associated with patient prognosis. Tumor growth and progression are strongly dependent on its surrounding tumor microenvironment, because the optimal conditions originated from stromal elements are required for cancer cell proliferation, invasion, metastasis and drug resistance. The tumor microenvironment is an environment rich in immune/inflammatory cells and accompanied by a continuous, gradient of hypoxia and pH. Overcoming immunosuppressive environment and boosting anti-tumor immunity may be the key to the prevention and treatment of cancer. Most traditional Chinese medicine have been proved to have good anti-tumor activity, and they have the advantages of better therapeutic effect and few side effects in the treatment of malignant tumors. An increasing number of studies are giving evidence that alkaloids extracted from traditional Chinese medicine possess a significant anticancer efficiency via regulating a variety of tumor-related genes, pathways and other mechanisms. This paper reviews the anti-tumor effect of alkaloids targeting tumor microenvironment, and further reveals its anti-tumor mechanism through the effects of alkaloids on different components in tumor microenvironment.
Collapse
Affiliation(s)
- Yanming Luo
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangshuang Yin
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jia Lu
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiyue Zhou
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yingying Shao
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaomei Bao
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tao Wang
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Haiyang Yu
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
42
|
Wang RX, Zhou M, Ma HL, Qiao YB, Li QS. The Role of Chronic Inflammation in Various Diseases and Anti-inflammatory Therapies Containing Natural Products. ChemMedChem 2021; 16:1576-1592. [PMID: 33528076 DOI: 10.1002/cmdc.202000996] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Chronic inflammation represents a long-term reaction of the body's immune system to noxious stimuli. Such a sustained inflammatory response sometimes results in lasting damage to healthy tissues and organs. In fact, chronic inflammation is implicated in the development and progression of various diseases, including cardiovascular diseases, respiratory diseases, metabolic diseases, neurodegenerative diseases, and even cancers. Targeting nonresolving inflammation thus provides new opportunities for treating relevant diseases. In this review, we will go over several chronic inflammation-associated diseases first with emphasis on the role of inflammation in their pathogenesis. Then, we will summarize a number of natural products that exhibit therapeutic effects against those diseases by acting on different markers in the inflammatory response. We envision that natural products will remain a rich resource for the discovery of new drugs treating diseases associated with chronic inflammation.
Collapse
Affiliation(s)
- Ren-Xiao Wang
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Mi Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Hui-Lai Ma
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| | - Yuan-Biao Qiao
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| | - Qing-Shan Li
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| |
Collapse
|
43
|
Kumar S, Chowdhury S, Razdan A, Kumari D, Purty RS, Ram H, Kumar P, Nayak P, Shukla SD. Downregulation of Candidate Gene Expression and Neuroprotection by Piperine in Streptozotocin-Induced Hyperglycemia and Memory Impairment in Rats. Front Pharmacol 2021; 11:595471. [PMID: 33737876 PMCID: PMC7962412 DOI: 10.3389/fphar.2020.595471] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/21/2020] [Indexed: 01/27/2023] Open
Abstract
There is accumulating evidence showing that hyperglycemia conditions like diabetes possess a greater risk of impairment to the neuronal system because high glucose levels exacerbate oxidative stress, accumulation of amyloid-beta peptides, and mitochondrial dysfunction, and impair cognitive functions and cause neurodegeneration conditions like Alzheimer's diseases. Due to the extensive focus on pharmacological intervention to prevent neuronal cells' impairment induced by hyperglycemia, the underlying molecular mechanism that links between Diabetes and Alzheimer's is still lacking. Given this, the present study aimed to evaluate the protective effect of piperine on streptozotocin (STZ) induced hyperglycemia and candidate gene expression. In the present study, rats were divided into four groups: control (Vehicle only), diabetic control (STZ only), piperine treated (20 mg/kg day, i.p), and sitagliptin (Positive control) treated. The memory function was assessed by Morris water maze and probe test. After treatment, biochemical parameters such as HOMA index and lipid profile were estimated in the serum, whereas histopathology was evaluated in pancreatic and brain tissue samples. Gene expression studies were done by real-time PCR technique. Present data indicated that piperine caused significant memory improvement as compared to diabetic (STZ) control. The assessment of HOMA indices in serum samples showed that piperine and sitagliptin (positive control, PC) caused significant alterations of insulin resistance, β cell function, and insulin sensitivity. Assessment of brain and pancreas histopathology shows significant improvement in tissue architecture in piperine and sitagliptin treated groups compared to diabetic control. The gene expression profile in brain tissue shows significantly reduced BACE1, PSEN1, APAF1, CASPASE3, and CATALASE genes in the piperine and sitagliptin (PC) treated groups compared to Diabetic (STZ) control. The present study demonstrated that piperine not only improves memory in diabetic rats but also reduces the expression of specific AD-related genes that can help design a novel strategy for therapeutic intervention at the molecular level.
Collapse
Affiliation(s)
- Suresh Kumar
- University School of Biotechnology, GGS Indraprastha University, New Delhi, India
| | - Suman Chowdhury
- University School of Biotechnology, GGS Indraprastha University, New Delhi, India
| | - Ajay Razdan
- University School of Biotechnology, GGS Indraprastha University, New Delhi, India
| | - Deepa Kumari
- University School of Biotechnology, GGS Indraprastha University, New Delhi, India
| | - Ram Singh Purty
- University School of Biotechnology, GGS Indraprastha University, New Delhi, India
| | - Heera Ram
- Department of Zoology, Jai Narain Vyas University, Jodhpur, India
| | - Pramod Kumar
- Department of Zoology, Jai Narain Vyas University, Jodhpur, India
| | - Prasunpriya Nayak
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, India
| | - Sunil Dutt Shukla
- Government Meera Girls College, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
44
|
Ji E, Wang T, Xu J, Fan J, Zhang Y, Guan Y, Yang H, Wei J, Zhang G, Huang L. Systematic Investigation of the Efficacy of Sinitang Decoction Against Ulcerative Colitis. Front Pharmacol 2020; 11:1337. [PMID: 32982747 PMCID: PMC7490561 DOI: 10.3389/fphar.2020.01337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the precise clinical use of Sinitang decoction (SNT) in ulcerative colitis (UC). Network pharmacology-based analysis of the drug components-targets-diseases-pathways was used to predict the possible clinical applications of SNT. Next, 2,4,6-trinitrobenzenesulfonic acid (TNBS) was used to establish a rat model of UC, and the efficacy of SNT against UC was tested, followed by a proteomic analysis of the specific signatures regulated by SNT against UC. SNT was predicted to be effective in inflammatory bowel disease, UC, and several other diseases. In the rats with UC, SNT decreased the disease activity index and colon mucosal damage index compared to the untreated UC model rats. Additionally, SNT reversed the upregulated levels of serum tumor necrosis factor (TNF)-α, prostaglandin E2 (PGE2), interleukin (IL)-6, and nitric oxide (NO) in UC model rats. The proteomic analysis identified 78 proteins that were differentially regulated by SNT in the rats with UC, which were associated with the Gene Ontology terms sulfur compound binding, calcium ion binding, and Toll-like receptor (TLR)-4 binding. Among these differentially regulated proteins, C-reactive protein (CRP) and collagen alpha-1(XII) chain (COL12A1) were found to be signature proteins associated with the efficacy of SNT against UC. This study represents the first precise investigation of the efficacy and mechanisms of SNT against UC, and shows that SNT is a promising candidate for personalized management of UC.
Collapse
Affiliation(s)
- Enhui Ji
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tingting Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianwei Fan
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongxia Guan
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junying Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guimin Zhang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Luqi Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
45
|
Tang X, Huang G, Zhang T, Li S. Elucidation of colon-protective efficacy of diosgenin in experimental TNBS-induced colitis: inhibition of NF-κB/IkB-α and Bax/Caspase-1 signaling pathways. Biosci Biotechnol Biochem 2020; 84:1903-1912. [PMID: 32525764 DOI: 10.1080/09168451.2020.1776590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The aim of present investigation was to elucidate the unrevealed beneficial role of diosgenin against an experimental model of TNBS (2,4,6-trinitrobenzenesufonic acid)-induced ulcerative colitis (UC). Colitis was induced in Sprague-Dawley rats by intrarectal administration of TNBS (in 50% ethanol). Then animals were treated with diosgenin (50, 100, and 200 mg/kg) for 14 days. Various biochemical, behavioral, molecular, and histological analysis was performed. Diosgenin significantly decreased (p < 0.05) TNBS-induced elevated colonic oxido-nitrosative damage, myeloperoxidase, hydroxyproline, mRNA expressions of proinflammatory cytokines (TNF-α, IL-1β, IL-6, and IFN-γ) and inflammatory markers (iNOs and COX-2) induced by TNBS. Western blot analysis relevated that TNBS-induced up-regulated protein expressions of NF-κB, IκBα, Bax, and Caspase-1 were markedly decreased (p < 0.05) by diosgenin treatment. It also markedly ameliorated the histological insults induced in the colon by TNBS. In conclusion, diosgenin exerts its colon-protective efficacy probably through the inhibition of NF-κB/IkB-α and Bax/Caspase-1 signaling pathways to experimental TNBS-induced ulcerative colitis. ABBREVIATIONS ANOVA: Analysis of variance; 5-ASA: 5-aminosalicylic acid; Bax: Bcl-2-associated X protein; COX-2: Cyclooxygenase-2; DAI: Disease Activity Index; DMSO: Dimethyl sulfoxide; GAPDH: Glyceraldehyde 3-phosphate dehydrogenase; GSH: Glutathione; HP: Hydroxyproline; IAEC: International Animal Ethics Committee; IBD: Inflammatory Bowel Disease; IBS: Inflammatory Bowel Syndrome; IL's: Interleukin's; IFN-γ: Interferon-gamma; IκBα: nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-alpha; iNOs: Inducible nitric oxide synthase; LTB4: Leukotriene B4; MDA: Malondialdehyde; MPO: Myeloperoxidase; NO: Nitric Oxide; NF-κB: Nuclear Factor-κB; ROS: Reactive Oxygen Species; SOD: Superoxide Dismutase; TNBS: Trinitrobenzene Sulfonic Acid; TNF-α: Tumor necrosis factor-α.
Collapse
Affiliation(s)
- Xiaobo Tang
- Gastroenterology Department, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical , Nanchong, Sichuan, China
| | - Gengzhen Huang
- Gastroenterology Department, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical , Nanchong, Sichuan, China
| | - Tao Zhang
- Gastroenterology Department, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical , Nanchong, Sichuan, China
| | - Shiqing Li
- Gastroenterology Department, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical , Nanchong, Sichuan, China
| |
Collapse
|
46
|
Song Y, Cao C, Xu Q, Gu S, Wang F, Huang X, Xu S, Wu E, Huang JH. Piperine Attenuates TBI-Induced Seizures via Inhibiting Cytokine-Activated Reactive Astrogliosis. Front Neurol 2020; 11:431. [PMID: 32655468 PMCID: PMC7325955 DOI: 10.3389/fneur.2020.00431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
Peppers have been used in clinics for a long time and its major component, piperine (PPR), has been proven to be effective in the treatment of seizures. The purpose of this study was to investigate the effects of piperine on early seizures in mice after a traumatic brain injury (TBI) and to explore the mechanism of the drug against the development on TBI. Specific-pathogen-free-grade mice were randomly divided into six dietary groups for a week: control group, TBI group, three piperine groups (low PPR group with 10 mg/kg PPR, medium PPR group with 20 mg/kg PPR, and high PPR group with 40 mg/kg PPR), and a positive control group (200 mg/kg valproate). Except for the control group, all the other groups used Feeney free weight falling method to establish the TBI of closed brain injury in mice, and the corresponding drugs were continuously injected intraperitoneally for 7 days after the brain injury. The results from behavior and electroencephalogram showed that piperine attenuated the subthreshold dose of pentylenetetrazole-induced seizures compared with the TBI group. The western blot results showed that the expression levels of inflammatory factors tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were reduced by piperine. The immunostaining results showed that the brain-derived neurotrophic factor (BDNF) was also reduced by piperine. In addition, positive cell counts of astrocytic fibrillary acidic protein (GFAP) in immuno-fluorescence showed that they were also reduced. Our data show that piperine treatment can reduce the degree of cerebral edema, down-regulate TNF-α, IL-1β, and BDNF, decrease the reactivity of GFAP in the hippocampus, and inhibit TBI-induced seizures.
Collapse
Affiliation(s)
- Yabei Song
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Caiyun Cao
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiuyue Xu
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Simeng Gu
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Psychology, School of Medicine, Jiangsu University, Zhenjiang, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Fushun Wang
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Xi Huang
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, United States
- Department of Surgery, College of Medicine, Texas A&M University, Temple, TX, United States
| | - Jason H. Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, United States
- Department of Surgery, College of Medicine, Texas A&M University, Temple, TX, United States
| |
Collapse
|