1
|
Al Dhaheri AS, Alkhatib DH, Feehan J, Cheikh Ismail L, Apostolopoulos V, Stojanovska L. The Effect of Therapeutic Doses of Culinary Spices in Metabolic Syndrome: A Randomized Controlled Trial. Nutrients 2024; 16:1685. [PMID: 38892617 PMCID: PMC11175078 DOI: 10.3390/nu16111685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Non-communicable diseases (NCDs) place a significant burden on global health and the healthcare systems which support it. Metabolic syndrome is a major risk factor for a large number of NCDs; however, treatments remain limited. Previous research has shown the protective benefits of edible dietary spices on key components of metabolic syndrome. Therefore we performed a 12-week double-blind, placebo-controlled, randomized, clinical trial to evaluate the effect of ginger (Zingiber officinale), cinnamon (Cinnamomum), and black seed (Nigella sativa) consumption on blood glucose, lipid profiles, and body composition in 120 participants with, or at risk of, metabolic syndrome. Each participant consumed 3 g/day of powder (spice or placebo). Data related to different parameters were collected from participants at the baseline, midpoint, and endpoint of the intervention. Over the 12-week interventions, there was an improvement in a number of biochemical indices of metabolic syndrome, including fasting blood glucose, HbA1c, LCL, and total cholesterol associated with supplementation with the spices when compared to a placebo. This study provides evidence to support the adjunct use of supplementation for those at risk of metabolic syndrome and its sequelae.
Collapse
Affiliation(s)
- Ayesha S. Al Dhaheri
- Department of Nutrition & Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (D.H.A.); (L.S.)
| | - Dana Hasan Alkhatib
- Department of Nutrition & Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (D.H.A.); (L.S.)
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia; (J.F.); (V.A.)
| | - Leila Cheikh Ismail
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford OX1 2JD, UK
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia; (J.F.); (V.A.)
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Lily Stojanovska
- Department of Nutrition & Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (D.H.A.); (L.S.)
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia; (J.F.); (V.A.)
| |
Collapse
|
2
|
Wang J, Chen P, Zhao T, Huang X, Zong J, Luo Q, Peng C, Wu X, Qiu F, Zhao D, Xiang L, Zhang Y, Yang C, Zhang F, Liao Z, Fu Y, Zeng J. Biosynthesis of Scopoletin in Sweet Potato Confers Resistance against Fusarium oxysporum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7749-7764. [PMID: 38537104 DOI: 10.1021/acs.jafc.3c09389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Fusarium wilt is a severe fungal disease caused by Fusarium oxysporum in sweet potato. We conducted transcriptome analysis to explore the resistance mechanism of sweet potato against F. oxysporum. Our findings highlighted the role of scopoletin, a hydroxycoumarin, in enhancing resistance. In vitro experiments confirmed that scopoletin and umbelliferone had inhibitory effects on the F. oxysporum growth. We identified hydroxycoumarin synthase genes IbF6'H2 and IbCOSY that are responsible for scopoletin production in sweet potatoes. The co-overexpression of IbF6'H2 and IbCOSY in tobacco plants produced the highest scopoletin levels and disease resistance. This study provides insights into the molecular basis of sweet potato defense against Fusarium wilt and identifies valuable genes for breeding wilt-resistant cultivars.
Collapse
Affiliation(s)
- Jing Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Peitao Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Tengfei Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xianhui Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jikai Zong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qingqing Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chao Peng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoyan Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Fei Qiu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Dongchao Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Lien Xiang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Yan Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chunxian Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Fangyuan Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhihua Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yufan Fu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Junlan Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Nie XM, Li YL, Xu XL, Chen FM, Zhang F, Chen D. Application of urea-based magnetic covalent organic framework as sorbent for the determination of coumarin and its derivatives in food samples combined with liquid chromatography-mass spectrometry. Food Chem 2024; 431:137058. [PMID: 37591143 DOI: 10.1016/j.foodchem.2023.137058] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023]
Abstract
A magnetic solid-phase extraction (MSPE) protocol using novel Urea-based magnetic covalent organic framework coupled with liquid chromatography-mass spectrometry was developed for the detection of coumarins in food samples (soft drink, biscuit and sesame paste). This adsorbent was synthesized through atom economic polymerization of tetrakis(4-aminophenyl) methane and 1,4-phenylene diisocyanate, which was successfully verified by a series of techniques. Major parameters influencing MSPE efficiency were optimized. This protocol had some advantages, such as organic-reagent-saving (2.0 mL), easy operating, short extraction time, and high repeatability (8 times). The established method exhibited superior linearity (R2 ≥ 0.999) and the limits of detection ranging from 1.0 to 5.0 µg/kg. The recoveries of coumarin and its derivatives ranged from 73.8% to 113.5% and both intra- and inter-day precision were less than 15%. These data indicate the protocol is a highly promising alternative for coumarin extraction and enrichment.
Collapse
Affiliation(s)
- Xue-Mei Nie
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100123, China
| | - Yin-Long Li
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100123, China
| | - Xiu-Li Xu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100123, China
| | - Feng-Ming Chen
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100123, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100123, China.
| | - Da Chen
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Anywar G, Muhumuza E. Bioactivity and toxicity of coumarins from African medicinal plants. Front Pharmacol 2024; 14:1231006. [PMID: 38273831 PMCID: PMC10809390 DOI: 10.3389/fphar.2023.1231006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Coumarins are naturally occuring metabolites from plants and a few micro-organisms. They have been widely used in the food and drug industry in their natural or synthetic forms. Numerous coumarins possess several biological activities such as anti-inflammatory, anti-ulcers, anti-tumour, anti-microbial, anti-coagulant. The aim of this study was to assess the bioactivity, and toxicity of coumarins from African medicinal plants. Methods: We searched online databases and search engines such as PubMed, Google Scholar and Web of Science for key terms such as coumarins, toxicity, bioavailability, bioactivity with appropriate Boolean operators. Only full-length research articles published in English between 1956 to 2023 were reviewed. Results: We recorded 22 coumarins from 15 plant species from Africa. Most of the plant species (33%) were from North Africa. These were followed by East Africa at 21%, then West, and Central Africa at 18.2% each. Most of the coumarins (21.3%) were isolated from the entire plant and the leaves (19.1%) and most of them (46.7%) had some antimicrobial activity. Five coumarins viz osthole, pseudocordatolide C & calanolide, chartreusin and esculetin had either antitumor or anticancer activity. Six coumarins had varying levels and types of toxicity ranging from inhibiting blood clotting as anticoagulants, to cytotoxic effects, causing hyperventilation, tremor, & photophobia, pulmonary haemorrhage, carcinogenic activity, severe neurotoxicity, hepato- and phototoxicity. Conclusion: Several African medicinal plants are sources of various coumarins that possess several biological activities as well as toxicities. This calls for more research into their safety and efficacy because of their wide spread applications as therapeutic agents.
Collapse
Affiliation(s)
- Godwin Anywar
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | | |
Collapse
|
5
|
Gu Y, Li T, Zhou NY. Redundant and scattered genetic determinants for coumarin biodegradation in Pseudomonas sp. strain NyZ480. Appl Environ Microbiol 2023; 89:e0110923. [PMID: 37815346 PMCID: PMC10617510 DOI: 10.1128/aem.01109-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/18/2023] [Indexed: 10/11/2023] Open
Abstract
Coumarin (COU) is both a naturally derived phytotoxin and a synthetic pollutant which causes hepatotoxicity in susceptible humans. Microbes have potentials in COU biodegradation; however, its underlying genetic determinants remain unknown. Pseudomonas sp. strain NyZ480, a robust COU degrader, has been isolated and proven to grow on COU as its sole carbon source. In this study, five homologs of xenobiotic reductase A scattered throughout the chromosome of strain NyZ480 were identified, which catalyzed the conversion of COU to dihydrocoumarin (DHC) in vitro. Phylogenetic analysis indicated that these COU reductases belong to different subgroups of the old yellow enzyme family. Moreover, two hydrolases (CouB1 and CouB2) homologous to the 3,4-dihydrocoumarin hydrolase in the fluorene degradation were found to accelerate the generation of melilotic acid (MA) from DHC. CouC, a new member from the group A flavin monooxygenase, was heterologously expressed and purified, catalyzing the hydroxylation of MA to produce 3-(2,3-dihydroxyphenyl)propionate (DHPP). Gene deletion and complementation of couC indicated that couC played an essential role in the COU catabolism in strain NyZ480, considering that the genes involved in the downstream catabolism of DHPP have been characterized (Y. Xu and N. Y. Zhou, Appl Environ Microbiol 86:e02385-19, 2020) and homologous catabolic cluster exists in strain NyZ480. This study elucidated the genetic determinants for complete degradation of COU by Pseudomonas sp. strain NyZ480.IMPORTANCECoumarin (COU) is a phytochemical widely distributed in the plant kingdom and also artificially produced as an ingredient for personal care products. Hence, the environmental occurrence of COU has been reported in different places. Toxicologically, COU was proven hepatotoxic to individuals with mutations in the CYP2A6 gene and listed as a group 3 carcinogen by the International Agency for Research on Cancer and thus has raised increasing concerns. Until now, different physicochemical methods have been developed for the removal of COU, whereas their practical applications were hampered due to high cost and the risk of secondary contamination. In this study, genetic evidence and biochemical characterization of the COU degradation by Pseudomonas sp. strain NyZ480 are presented. With the gene and strain resources provided here, better managements of the hazards that humans face from COU could be achieved, and the possible microbiota-plant interaction mediated by the COU-utilizing rhizobacteria could also be investigated.
Collapse
Affiliation(s)
- Yichao Gu
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Li
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Britza SM, Musgrave IF, Farrington R, Byard RW. Intestinal epithelial damage due to herbal compounds - an in vitro study. Drug Chem Toxicol 2023; 46:247-255. [PMID: 34979837 DOI: 10.1080/01480545.2021.2021929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intestinal epithelial injury from herbal products has rarely been reported, despite the gut being the first point of contact for oral preparations. These products often consist of multiple herbs, thereby potentially exposing consumers to higher levels of reactive phytochemicals than predicted due to pharmacokinetic interactions. The phytochemical coumarin, found in many herbal products, may be taken in combination with herbal medicines containing astragalosides and atractylenolides, purported cytochrome P450 (CYP) modulators. As herbal use increases, the need to predict interactions in multiple at-risk organ systems is becoming critical. Hence, to determine whether certain herbal preparations containing coumarin may cause damage to the intestinal epithelium, Caco2 cells were exposed to common phytochemicals. Coumarin, astragaloside IV (AST-IV) or atractylenolide I (ATR-I) solutions were exposed to Caco2 cultures in increasing concentrations, individually or combined. Coumarin produced a significant concentration-dependant fall in cell viability that was potentiated when CYP enzymes were induced with rifampicin and incubated with CYP3A4 inhibitor econazole, suggesting a role for other CYP enzymes generating toxic metabolites. ATR-I alone produced no toxicity in uninduced cells but showed significant toxicity in rifampicin-induced cells. ATR-I had no effect on coumarin-induced toxicity. AST-IV was nontoxic alone but produced significant toxicity when combined with nontoxic concentrations of coumarin. The combination of coumarin, ATR-I and AST-IV was significantly toxic, but no synergistic interaction was seen. This investigation was conducted to determine the likelihood for intestinal-based interactions, with the results demonstrating coumarin is potentially toxic to intestinal epithelium, and combinations with other phytochemicals can potentiate this toxicity.
Collapse
Affiliation(s)
- Susan M Britza
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia
| | - Ian F Musgrave
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia
| | - Rachael Farrington
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia
| | - Roger W Byard
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia.,Forensic Science South Australia, Adelaide, South Australia
| |
Collapse
|
7
|
Pitaro M, Croce N, Gallo V, Arienzo A, Salvatore G, Antonini G. Coumarin-Induced Hepatotoxicity: A Narrative Review. Molecules 2022; 27:9063. [PMID: 36558195 PMCID: PMC9783661 DOI: 10.3390/molecules27249063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Coumarin is an effective treatment for primary lymphoedema, as well as lymphoedema related to breast cancer radiotherapy or surgery. However, its clinical use is limited in several countries due to the possible occurrence of hepatotoxicity, mainly in the form of mild to moderate transaminase elevation. It is worth noting that only a few cases of severe hepatotoxicity have been described in the literature, with no reported cases of liver failure. Data available on coumarin absorption, distribution, metabolism, and excretion have been reviewed, focusing on hepatotoxicity studies carried out in vitro and in vivo. Finally, safety and tolerability data from clinical trials have been thoroughly discussed. Based on these data, coumarin-induced hepatotoxicity is restricted to a small subset of patients, probably due to the activation in these individuals of alternative metabolic pathways involving specific CYP450s isoforms. The aim of this work is to stimulate research to clearly identify patients at risk of developing hepatotoxicity following coumarin treatment. Early identification of this subset of patients could open the possibility of more safely exploiting the therapeutical properties of coumarin, allowing patients suffering from lymphoedema to benefit from the anti-oedematous activity of the treatment.
Collapse
Affiliation(s)
- Michele Pitaro
- INBB—Biostructures and Biosystems National Institute, Viale delle Medaglie d’Oro 305, 00136 Rome, RM, Italy
| | - Nicoletta Croce
- INBB—Biostructures and Biosystems National Institute, Viale delle Medaglie d’Oro 305, 00136 Rome, RM, Italy
| | - Valentina Gallo
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, 00146 Rome, RM, Italy
| | - Alyexandra Arienzo
- INBB—Biostructures and Biosystems National Institute, Viale delle Medaglie d’Oro 305, 00136 Rome, RM, Italy
| | - Giulia Salvatore
- INBB—Biostructures and Biosystems National Institute, Viale delle Medaglie d’Oro 305, 00136 Rome, RM, Italy
| | - Giovanni Antonini
- INBB—Biostructures and Biosystems National Institute, Viale delle Medaglie d’Oro 305, 00136 Rome, RM, Italy
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, 00146 Rome, RM, Italy
| |
Collapse
|
8
|
Yamada T, Katsutani N, Maruyama T, Kawamura T, Yamazaki H, Murayama N, Tong W, Yamazoe Y, Hirose A. Combined Risk Assessment of Food-derived Coumarin with in Silico Approaches. Food Saf (Tokyo) 2022; 10:73-82. [PMID: 36237397 PMCID: PMC9509535 DOI: 10.14252/foodsafetyfscj.d-21-00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatotoxicity associated with food-derived coumarin occurs occasionally in humans. We have, herein, assessed the data of existing clinical and nonclinical studies as well as those of in silico models for humans in order to shed more light on this association. The average intakes of food-derived coumarin are estimated to be 1-3 mg/day, while a ten-times higher level is expected in the worst-case scenarios. These levels are close to or above the tolerable daily intake suggested by a chronic study in dogs. The human internal exposure levels were estimated by a physiologically-based pharmacokinetic model with the use of virtual doses of coumarin in the amounts expected to derive from foods. Our results suggest that: (i) coumarin can be cleared rapidly via 7-hydroxylation in humans, and (ii) the plasma levels of coumarin and of its metabolite, o-hydroxyphenylacetic acid associated with hepatotoxicity, are considerably lower than those yielding hepatotoxicity in rats. Pharmacokinetic data suggest a low or negligible concern regarding a coumarin-induced hepatotoxicity in humans exposed to an average intake from foods. Detoxification of coumarin through the 7-hydroxylation, however, might vary among individuals due to genetic polymorphisms in CYP2A6 enzyme. In addition, the CYP1A2- and CYP2E1-mediated activation of coumarin can fluctuate as a result of induction caused by environmental factors. Furthermore, the daily consumption of food-contained coumarin was implicated in the potential risk of hepatotoxicity by the drug-induced liver injury score model developed by the US Food and Drug Administration. These results support the idea of the existence of human subpopulations that are highly sensitive to coumarin; therefore, a more precise risk assessment is needed. The present study also highlights the usefulness of in silico approaches of pharmacokinetics with the liver injury score model as battery components of a risk assessment.
Collapse
Affiliation(s)
- Takashi Yamada
- Division of Risk Assessment, Center for Biological Safety
Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki
210-9501, Japan
| | - Naruo Katsutani
- Division of Risk Assessment, Center for Biological Safety
Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki
210-9501, Japan
| | - Taeko Maruyama
- Division of Risk Assessment, Center for Biological Safety
Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki
210-9501, Japan
| | - Tomoko Kawamura
- Division of Risk Assessment, Center for Biological Safety
Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki
210-9501, Japan
| | | | - Norie Murayama
- Showa Pharmaceutical University, Machida, Tokyo 194-8543,
Japan
| | - Weida Tong
- National Center for Toxicological Research, Food and Drug
Administration, 3900 NCTR Road, Jefferson, AR 72079, United States of America
| | - Yasushi Yamazoe
- Division of Risk Assessment, Center for Biological Safety
Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki
210-9501, Japan
- Division of Drug Metabolism and Molecular Toxicology,
Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku,
Sendai 980-8578, Japan
| | - Akihiko Hirose
- Division of Risk Assessment, Center for Biological Safety
Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki
210-9501, Japan
| |
Collapse
|
9
|
Long Q, Feng L, Li Y, Zuo T, Chang L, Zhang Z, Xu P. Time-resolved quantitative phosphoproteomics reveals cellular responses induced by caffeine and coumarin. Toxicol Appl Pharmacol 2022; 449:116115. [PMID: 35691368 DOI: 10.1016/j.taap.2022.116115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
Protein phosphorylation is a critical way that cells respond to external signals and environmental stresses. However, the patterns of cellular response to chemicals at different times were largely unknown. Here, we used quantitative phosphoproteomics to analyze the cellular response of kinases and signaling pathways, as well as pattern change of phosphorylated substrates in HepG2 cells that were exposed to caffeine and coumarin for 10 min and 24 h. Comparing the 10 min and 24 h groups, 33 kinases were co-responded and 32 signaling pathways were co-enriched in caffeine treated samples, while 48 kinases and 34 signaling pathways were co-identified in coumarin treated samples. Instead, the percentage of co-identified phosphorylated substrates only accounted for 4.31% and 9.57% between 10 min and 24 h in caffeine and coumarin treated samples, respectively. The results showed that specific chemical exposure led to a bunch of the same kinases and signaling pathways changed in HepG2 cells, while the phosphorylated substrates were different. In addition, it was found that insulin signaling pathway was significantly enriched by both the caffeine and coumarin treatment. The pattern changes in phosphorylation of protein substrates, kinases and signaling pathways with varied chemicals and different time course shed light on the potential mechanism of cellular responses to endless chemical stimulation.
Collapse
Affiliation(s)
- Qi Long
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Lijie Feng
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yuan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China; School of Medicine, Guizhou University, Guiyang 550025, China
| | - Tao Zuo
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Zhenpeng Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China.
| | - Ping Xu
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China; School of Medicine, Guizhou University, Guiyang 550025, China; School of Public Health, China Medical University, Shenyang 110122, China; Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
10
|
Britza SM, Musgrave IF, Byard RW. Implications for herbal polypharmacy: coumarin-induced hepatotoxicity increased through common herbal phytochemicals astragaloside IV and atractylenolide I. Toxicol Mech Methods 2022; 32:606-615. [PMID: 35354423 DOI: 10.1080/15376516.2022.2057267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hepatotoxicity is a well-known adverse effect of many substances, with toxicity often resulting from interactions of drugs with other drug-like substances. With the increased availability of complementary and alternative medicines, including herbal medicines, the likelihood of adverse interactions between drugs and drug-like substances in herbs increases. However, the impact of potential herb-herb interactions is little understood. To assess the potential of two cytochrome P450 enzyme modulating phytochemicals common to many herbal medicines, atractylenolide I (ATR-I) and astragaloside IV (AST-IV), to interact with coumarin, another phytochemical common in many foods, a hepatocyte function model with a liver carcinoma cell line, HepG2, was exposed to these agents. To determine the effects of cytochrome P450 modulation by these phytochemicals certain cells were induced with rifampicin to induce cytochrome P450. Increasing concentrations of ATR-I combined with a fixed, nontoxic concentration of coumarin (200 µM), demonstrated significant additive interactions. 300 µM ATR-I produced a 31% reduction in cell viability (p < 0.01) with coumarin in rifampicin uninduced cells. In rifampicin-induced cells, ATR-I (100-300 µM) produced a significant reduction in cell viability (p < 0.01) with coumarin (200 µM). AST-IV with fixed coumarin (200 µM) showed 27% toxicity at 300 µM AST-IV in rifampicin uninduced cells (p < 0.05) and 30% toxicity in rifampicin induced cells (p < 0.05). However, when fixed coumarin and AST-IV were combined with increasing concentrations of ATR-I no further significant increase in toxicity was observed (p > 0.05). These results demonstrate the potential toxic interactive capabilities of common traditional Chinese herbal medicine phytochemicals and underline the potential importance of coumarin-mediated toxicity.
Collapse
Affiliation(s)
- Susan M Britza
- School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - Ian F Musgrave
- School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - Roger W Byard
- School of Biomedicine, The University of Adelaide, Adelaide, Australia.,Forensic Science South Australia, Adelaide, Australia
| |
Collapse
|
11
|
Zhu C, Yan H, Zheng Y, Santos HO, Macit MS, Zhao K. Impact of Cinnamon Supplementation on cardiometabolic Biomarkers of Inflammation and Oxidative Stress: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Complement Ther Med 2020; 53:102517. [DOI: 10.1016/j.ctim.2020.102517] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022] Open
|
12
|
Küpeli Akkol E, Genç Y, Karpuz B, Sobarzo-Sánchez E, Capasso R. Coumarins and Coumarin-Related Compounds in Pharmacotherapy of Cancer. Cancers (Basel) 2020; 12:cancers12071959. [PMID: 32707666 PMCID: PMC7409047 DOI: 10.3390/cancers12071959] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the most common causes of disease-related deaths worldwide. Despite the discovery of many chemotherapeutic drugs that inhibit uncontrolled cell division processes for the treatment of various cancers, serious side effects of these drugs are a crucial disadvantage. In addition, multi-drug resistance is another important problem in anticancer treatment. Due to problems such as cytotoxicity and drug resistance, many investigations are being conducted to discover and develop effective anticancer drugs. In recent years, researchers have focused on the anticancer activity coumarins, due to their high biological activity and low toxicity. Coumarins are commonly used in the treatment of prostate cancer, renal cell carcinoma and leukemia, and they also have the ability to counteract the side effects caused by radiotherapy. Both natural and synthetic coumarin derivatives draw attention due to their photochemotherapy and therapeutic applications in cancer. In this review, a compilation of various research reports on coumarins with anticancer activity and investigation and a review of structure-activity relationship studies on coumarin core are presented. Determination of important structural features around the coumarin core may help researchers to design and develop new analogues with a strong anticancer effect and reduce the potential side effects of existing therapeutics.
Collapse
Affiliation(s)
- Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkey;
- Correspondence: (E.K.A.); (R.C.); Tel.: +90-312-2023185 (E.K.A); +39-081-678664 (R.C.)
| | - Yasin Genç
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sıhhiye 06100, Ankara, Turkey;
| | - Büşra Karpuz
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkey;
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507 Santiago, Chile;
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Naples), Italy
- Correspondence: (E.K.A.); (R.C.); Tel.: +90-312-2023185 (E.K.A); +39-081-678664 (R.C.)
| |
Collapse
|
13
|
Hsieh CJ, Sun M, Osborne G, Ricker K, Tsai FC, Li K, Tomar R, Phuong J, Schmitz R, Sandy MS. Cancer Hazard Identification Integrating Human Variability: The Case of Coumarin. Int J Toxicol 2019; 38:501-552. [PMID: 31845612 DOI: 10.1177/1091581819884544] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Coumarin is a naturally occurring sweet-smelling benzopyrone that may be extracted from plants or synthesized for commercial uses. Its uses include as a flavoring agent, fragrance enhancer, and odor-masking additive. We reviewed and evaluated the scientific evidence on the carcinogenicity of coumarin, integrating information from carcinogenicity studies in animals with mechanistic and other relevant data, including data from toxicogenomic, genotoxicity, and metabolism studies, and studies of human variability of a key enzyme, CYP2A6. Increases in tumors were observed in multiple studies in rats and mice in multiple tissues. Our functional pathway analysis identified several common cancer-related biological processes/pathways affected by coumarin in rat liver following in vivo exposure and in human primary hepatocytes exposed in vitro. When coumarin 7-hydroxylation by CYP2A6 is compromised, this can lead to a shift in metabolism to the 3,4-epoxidation pathway and increased generation of electrophilic metabolites. Mechanistic data align with 3 key characteristics of carcinogens, namely formation of electrophilic metabolites, genotoxicity, and induction of oxidative stress. Considerations of metabolism, human variability in CYP2A6 activity, and coumarin hepatotoxicity in susceptible individuals provide additional support for carcinogenicity concern. Our analysis illustrates the importance of integrating information on human variability in the cancer hazard identification process.
Collapse
Affiliation(s)
- ChingYi Jennifer Hsieh
- Office of Environmental Health Hazard Assessment, CalEPA, Sacramento and Oakland, CA, USA
| | - Meng Sun
- Office of Environmental Health Hazard Assessment, CalEPA, Sacramento and Oakland, CA, USA
| | - Gwendolyn Osborne
- Office of Environmental Health Hazard Assessment, CalEPA, Sacramento and Oakland, CA, USA
| | - Karin Ricker
- Office of Environmental Health Hazard Assessment, CalEPA, Sacramento and Oakland, CA, USA
| | - Feng C Tsai
- Office of Environmental Health Hazard Assessment, CalEPA, Sacramento and Oakland, CA, USA
| | - Kate Li
- Office of Environmental Health Hazard Assessment, CalEPA, Sacramento and Oakland, CA, USA
| | - Rajpal Tomar
- Office of Environmental Health Hazard Assessment, CalEPA, Sacramento and Oakland, CA, USA.,Retired
| | - Jimmy Phuong
- Department of Biomedical and Health Informatics, University of Washington, Seattle, WA, USA
| | - Rose Schmitz
- Office of Environmental Health Hazard Assessment, CalEPA, Sacramento and Oakland, CA, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, CalEPA, Sacramento and Oakland, CA, USA
| |
Collapse
|
14
|
Are wild and cultivated flowers served in restaurants or sold by local producers in Denmark safe for the consumer? Food Chem Toxicol 2018; 120:129-142. [DOI: 10.1016/j.fct.2018.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/08/2018] [Accepted: 07/03/2018] [Indexed: 11/18/2022]
|
15
|
8-Farnesyloxycoumarin induces apoptosis in PC-3 prostate cancer cells by inhibition of 15-lipoxygenase-1 enzymatic activity. Anticancer Drugs 2017; 27:854-62. [PMID: 27362790 DOI: 10.1097/cad.0000000000000399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Prostate cancer is the second most common cancer in men worldwide. Overexpression of 15-lipoxygenase-1 (15-LOX-1) has been reported in prostate cancer patients. This study aimed to investigate the cytotoxic and anticancer effects of 8-farnesyloxycoumarin (8f), a prenylated coumarin, by inhibition of 15-LOX-1 activity, in prostate cancer cells. The activity of 15-LOX-1 and the inhibitory effects of 8f on this enzyme were first assessed in PC-3 and DU145 prostate cancer cells. The MTT assay was used to examine the cytotoxicity effects of 8f on PC-3 cells following 15-LOX-1 inhibition. To determine the type of cell death, chromatin condensation and DNA damage were examined by DAPI staining and comet assay, respectively. Furthermore, the effects of 8f on the cell cycle were evaluated by PI staining and flow cytometry. The activity of 15-LOX-1 was determined to be higher in PC-3 compared with DU145 cells; thus, this cell line was selected for further experiments. 8f induced cell death in PC-3 cells in a dose-dependent and time-dependent manner, with IC50 values similar to cisplatin, which was used as a control. However, 8f did not significantly affect the viability of HFF3, human foreskin fibroblast cells, under identical conditions. The appearance of apoptotic cells after 8f treatment was confirmed by the presence of PC-3 cells containing condensed chromatin as shown by DAPI staining. The comet assay indicated the induction of DNA damage in cancerous cells compared with normal cells. In addition, 8f induced a potent G1 cell-cycle arrest in PC-3 cells. Our results showed that the antitumor effects of 8f on PC-3 cells were promoted by apoptosis induction, probably via inhibition of 15-LOX-1 activity, thus suggesting that 8f may have therapeutic value in prostate cancer treatment.
Collapse
|
16
|
Meher AK, Chen YC. Analysis of volatile compounds by open-air ionization mass spectrometry. Anal Chim Acta 2017; 966:41-46. [PMID: 28372725 DOI: 10.1016/j.aca.2017.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/23/2017] [Accepted: 03/12/2017] [Indexed: 01/14/2023]
Abstract
This study demonstrates a simple method for rapid and in situ identification of volatile and endogenous compounds in culinary spice samples through mass spectrometry (MS). This method only requires a holder for solid spice sample (2-3 mm) that is placed close to a mass spectrometer inlet, which is applied with a high voltage. Volatile species responsible for the aroma of the spice samples can be readily detected by the mass spectrometer. Sample pretreatment is not required prior to MS analysis, and no solvent was used during MS analysis. The high voltage applied to the inlet of the mass spectrometer induces the ionization of volatile compounds released from the solid spice samples. Furthermore, moisture in the air also contributes to the ionization of volatile compounds. Dried spices including cinnamon and cloves are used as the model sample to demonstrate this straightforward MS analysis, which can be completed within few seconds. Furthermore, we also demonstrate the suitability of the current method for rapid screening of cinnamon quality through detection of the presence of a hepatotoxic agent, i.e. coumarin.
Collapse
Affiliation(s)
- Anil Kumar Meher
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan.
| |
Collapse
|
17
|
Harenberg J, Jörg I, Weiss C. Observations of Alanine Aminotransferase and Aspartate Aminotransferase in THRIVE Studies Treated Orally with Ximelagatran. Int J Toxicol 2016; 25:165-9. [PMID: 16717032 DOI: 10.1080/10915810600683143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Treatment of acute venous thromboembolism (VTE) and prophylaxis of recurrent events has been investigated in the THRIVE (THRombin Inhibitor in Venous ThrombeEmbolism) Treatment and the THRIVE III trial using the oral direct thrombin inhibitor ximelagatran. Alanine aminotransferase (ALAT) increased in 9.6% and 6.4% of patients in the THRIVE Treatment and THRIVE III trials, respectively. The authors analysed the time course of the ALAT and in additionally of aspartate aminotransferase (ASAT) in blood from 52 and 23 patients participating in the THRIVE Treatment and the THRIVE III trials in Germany. Analysis of variance for repeated measures and t test were performed. In the THRIVE Treatment trial, ALAT was significantly higher at week 2 for enoxaparin/warfarin ( p = .0039, t test) and at months 3 and 6 for ximelagatran ( p = .0453, p = .0014, respectively). ASAT and ASAT/ALAT ratio values did not increase and not differ for both groups. In the THRIVE III trial, ALAT and ASAT did not increase and did not differ compared to the comparator placebo. 2 × 36 mg Ximelagatran, induced higher ALAT values at months 3 and 6 compared to 2 × 24 mg ximelagatran ( p = .0105, p = .0063, respectively). ASAT did not differ between the two doses of ximelagatran. The ASAT/ALAT ratios were lower at week 2 for enoxaparin/warfarin ( t-test, p = .0032) and at month 3 and 6 for 2 × 36 mg versus warfarin or 2 × 24 mg Ximelagatran ( p between .0187 and .0002). The authors conclude that ALAT increases dose dependently during therapy with ximelagatran. The less frequent and lower increase of ASAT values compared to ALAT values indicates a nontoxic effect of ximelagatran on liver cells.
Collapse
Affiliation(s)
- Job Harenberg
- IV. Department of Medicine, University Hospital, Mannheim, Germany.
| | | | | |
Collapse
|
18
|
Kumar A, Jha S, Pattanayak SP. Daphnetin ameliorates 7,12-dimethylbenz[a]anthracene-induced mammary carcinogenesis through Nrf-2-Keap1 and NF-κB pathways. Biomed Pharmacother 2016; 82:439-48. [DOI: 10.1016/j.biopha.2016.05.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 01/29/2023] Open
|
19
|
Al-Majedy YK, Al-Amiery AA, Kadhum AAH, Mohamad AB. Antioxidant Activities of 4-Methylumbelliferone Derivatives. PLoS One 2016; 11:e0156625. [PMID: 27243231 PMCID: PMC4887010 DOI: 10.1371/journal.pone.0156625] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/17/2016] [Indexed: 01/17/2023] Open
Abstract
The synthesis of derivatives of 4-Methylumbelliferone (4-MUs), which are structurally interesting antioxidants, was performed in this study. The modification of 4-Methylumbelliferone (4-MU) by different reaction steps was performed to yield the target compounds, the 4-MUs. The 4-MUs were characterized by different spectroscopic techniques (Fourier transform infrared; FT-IR and Nuclear magnetic resonance; NMR) and micro-elemental analysis (CHNS). The in vitro antioxidant activity of the 4-MUs was evaluated in terms of their free radical scavenging activities against 2,2-diphenyl-1-picrylhydrazyl (DPPH), Nitric oxide radical scavenging activity assay, chelating activity and their (FRAP) ferric-reducing antioxidant power, which were compared with a standard antioxidant. Our results reveal that the 4-MUs exhibit excellent radical scavenging activities. The antioxidant mechanisms of the 4-MUs were also studied. Density Function Theory (DFT)-based quantum chemical studies were performed with the basis set at 3-21G. Molecular models of the synthesized compounds were studied to understand the antioxidant activity. The electron levels, namely HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital), for these synthesized antioxidants were also studied.
Collapse
Affiliation(s)
- Yasameen K. Al-Majedy
- Department of Chemical and Process Engineering, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43000, Malaysia
| | - Ahmed A. Al-Amiery
- Department of Chemical and Process Engineering, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43000, Malaysia
- * E-mail:
| | - Abdul Amir H. Kadhum
- Department of Chemical and Process Engineering, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43000, Malaysia
| | - Abu Bakar Mohamad
- Fuel Cell Institute, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43000, Malaysia
| |
Collapse
|
20
|
Nordin N, Fadaeinasab M, Mohan S, Mohd Hashim N, Othman R, Karimian H, Iman V, Ramli N, Mohd Ali H, Abdul Majid N. Pulchrin A, a New Natural Coumarin Derivative of Enicosanthellum pulchrum, Induces Apoptosis in Ovarian Cancer Cells via Intrinsic Pathway. PLoS One 2016; 11:e0154023. [PMID: 27136097 PMCID: PMC4852948 DOI: 10.1371/journal.pone.0154023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 04/07/2016] [Indexed: 12/27/2022] Open
Abstract
Drug resistance presents a challenge in chemotherapy and has attracted research interest worldwide and particular attention has been given to natural compounds to overcome this difficulty. Pulchrin A, a new compound isolated from natural products has demonstrated novel potential for development as a drug. The identification of pulchrin A was conducted using several spectroscopic techniques such as nuclear magnetic resonance, liquid chromatography mass spectrometer, infrared and ultraviolet spectrometry. The cytotoxicity effects on CAOV-3 cells indicates that pulchrin A is more active than cisplatin, which has an IC50 of 22.3 μM. Significant changes in cell morphology were present, such as cell membrane blebbing and formation of apoptotic bodies. The involvement of phosphatidylserine (PS) in apoptosis was confirmed by Annexin V-FITC after a 24 h treatment. Apoptosis was activated through the intrinsic pathway by activation of procaspases 3 and 9 as well as cleaved caspases 3 and 9 and ended at the executioner pathway, with the occurrence of DNA laddering. Apoptosis was further confirmed via gene and protein expression levels, in which Bcl-2 protein was down-regulated and Bax protein was up-regulated. Furthermore, the CAOV-3 cell cycle was disrupted at the G0/G1 phase, leading to apoptosis. Molecular modeling of Bcl-2 proteins demonstrated a high- binding affinity, which inhibited the function of Bcl-2 proteins and led to cell death. Results of the current study can shed light on the development of new therapeutic agents, particularly, human ovarian cancer treatments.
Collapse
Affiliation(s)
- Noraziah Nordin
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mehran Fadaeinasab
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Syam Mohan
- Medical Research Center, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Najihah Mohd Hashim
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rozana Othman
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hamed Karimian
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Venus Iman
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Noorlela Ramli
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hapipah Mohd Ali
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Nazia Abdul Majid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
21
|
Ghouili A, Brahmia A, Ben Hassen R. Polymorphism in 3-acetyl-4-hydroxy-2H-chromen-2-one. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2015; 71:873-7. [PMID: 26422214 DOI: 10.1107/s2053229615016083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 08/28/2015] [Indexed: 11/10/2022]
Abstract
A new polymorph (denoted polymorph II) of 3-acetyl-4-hydroxy-2H-chromen-2-one, C11H8O4, was obtained unexpectedly during an attempt to recrystallize the compound from salt-melted ice, and the structure is compared with that of the original polymorph (denoted polymorph I) [Lyssenko & Antipin (2001). Russ. Chem. Bull. 50, 418-431]. Strong intramolecular O-H...O hydrogen bonds are observed equally in the two polymorphs [O...O = 2.4263 (13) Å in polymorph II and 2.442 (1) Å in polymorph I], with a slight delocalization of the hydroxy H atom towards the ketonic O atom in polymorph II [H...O = 1.32 (2) Å in polymorph II and 1.45 (3) Å in polymorph I]. In both crystal structures, the packing of the molecules is dominated and stabilized by weak intermolecular C-H...O hydrogen bonds. Additional π-π stacking interactions between the keto-enol hydrogen-bonded rings stabilize polymorph I [the centres are separated by 3.28 (1) Å], while polymorph II is stabilized by interactions between α-pyrone rings, which are parallel to one another and separated by 3.670 (5) Å.
Collapse
Affiliation(s)
- Afef Ghouili
- Unité de chimie des matériaux et de l'environnement, UR11ES25, ISSBAT, Université de Tunis El Manar, 9 Avenue Dr Zoheir Safi, 1006 Tunis, Tunisia
| | - Ameni Brahmia
- Unité de chimie des matériaux et de l'environnement, UR11ES25, ISSBAT, Université de Tunis El Manar, 9 Avenue Dr Zoheir Safi, 1006 Tunis, Tunisia
| | - Rached Ben Hassen
- Unité de chimie des matériaux et de l'environnement, UR11ES25, ISSBAT, Université de Tunis El Manar, 9 Avenue Dr Zoheir Safi, 1006 Tunis, Tunisia
| |
Collapse
|
22
|
Soto-Nuñez M, Díaz-Morales KA, Cuautle-Rodríguez P, Torres-Flores V, López-González JS, Mandoki-Weitzner JJ, Molina-Guarneros JA. Single-cell microinjection assay indicates that 7-hydroxycoumarin induces rapid activation of caspase-3 in A549 cancer cells. Exp Ther Med 2015; 10:1789-1795. [PMID: 26640551 PMCID: PMC4665690 DOI: 10.3892/etm.2015.2765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 09/01/2015] [Indexed: 01/06/2023] Open
Abstract
Coumarins have attracted intense interest in recent years due to their apoptogenic effects. The aim of the present study was to determine whether 7-hydroxycoumarin (7-HC) induces changes in caspase-3 (C-3) activity in A549 human lung carcinoma cells. A range of analytical techniques, including colorimetric and fluorometric assays, western blotting, single-cell microinjection, fluorescence microscopy and image analysis were conducted to elucidate the effects of 7-HC. A 24-h exposure to 1.85 mM 7-HC induced a 65% increase in C-3 activity, and a notable conversion of procaspase-3 to C-3, in addition to poly(ADP-ribose)polymerase cleavage. Furthermore, morphological changes associated with apoptosis were observed. Exposure of the cells to 7-HC for 3 or 6 h increased calcium conductance by 27%. By performing the single-cell microinjection of a specific fluorescent substrate of C-3 into previously 7-HC-exposed cells, a typical enzymatic kinetic profile of C-3 activation was identified a number of hours prior to the morphological and biochemical changes associated with apoptosis being observed. These results suggest that the rapid in vivo activation of C-3 is induced by 7-HC, the most relevant biotransformation product of coumarin in humans.
Collapse
Affiliation(s)
- Maribel Soto-Nuñez
- Department of Pharmacology, School of Medicine, National University of Mexico, Mexico City 04510, Mexico
| | - Karen Azucena Díaz-Morales
- Department of Pharmacology, School of Medicine, National University of Mexico, Mexico City 04510, Mexico
| | | | - Víctor Torres-Flores
- Department of Pharmacology, School of Medicine, National University of Mexico, Mexico City 04510, Mexico
| | - José Sullivan López-González
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases 'Ismael Cosio Villegas', Mexican Ministry of Health, Mexico City 14080, Mexico
| | - Juan José Mandoki-Weitzner
- Department of Pharmacology, School of Medicine, National University of Mexico, Mexico City 04510, Mexico
| | | |
Collapse
|
23
|
Gokce B, Gencer N, Arslan O, Karatas MO, Alici B. In vitro inhibition effect of some coumarin compounds on purified human serum paraoxonase 1 (PON1). J Enzyme Inhib Med Chem 2015; 31:534-7. [PMID: 25982292 DOI: 10.3109/14756366.2015.1043297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human serum paraoxonase 1 (PON1; EC 3.1.8.1) is a high-density lipoprotein associated, calcium-dependent enzyme that hydrolyses aromatic esters, organophosphates and lactones and can protect the low-density lipoprotein against oxidation. In this study, in vitro effect of some hydroxy and dihydroxy ionic coumarin derivatives (1-20) on purified PON1 activity was investigated. Among these compounds, derivatives 11-20 are water soluble. In investigated compounds, compounds 6 and 13 were found the most active (IC50 = 35 and 34 µM) for PON1, respectively. The present study has demonstrated that PON1 activity is very highly sensitive to studied coumarin derivatives.
Collapse
Affiliation(s)
- Basak Gokce
- a Department of Biochemistry, Faculty of Pharmacy , Suleyman Demirel University , Isparta , Turkey
| | - Nahit Gencer
- b Department of Chemistry, Faculty of Art and Sciences , Balikesir University , Balikesir , Turkey , and
| | - Oktay Arslan
- b Department of Chemistry, Faculty of Art and Sciences , Balikesir University , Balikesir , Turkey , and
| | - Mert Olgun Karatas
- c Department of Chemistry, Faculty of Arts and Sciences , Inonu University , Malatya , Turkey
| | - Bulent Alici
- c Department of Chemistry, Faculty of Arts and Sciences , Inonu University , Malatya , Turkey
| |
Collapse
|
24
|
Yang Y, Liu QW, Shi Y, Song ZG, Jin YH, Liu ZQ. Design and synthesis of coumarin-3-acylamino derivatives to scavenge radicals and to protect DNA. Eur J Med Chem 2014; 84:1-7. [PMID: 25011038 DOI: 10.1016/j.ejmech.2014.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 06/27/2014] [Accepted: 07/03/2014] [Indexed: 01/10/2023]
Abstract
In this study, a series of coumarin-3-acylamino derivatives containing phenethylamine moiety or tyramine moiety were synthesized and their antioxidant activities were evaluated by Cu(2+)/glutathione(GSH)-, ˙OH- and 2,2'-azobis(2-amidinopropane hydrochloride)(AAPH)-induced oxidation of DNA. It was found that both hydroxyl and ortho-methoxy groups at A ring, hydroxyl group at B ring and peptide bond can enhance the abilities of coumarin-3-acylamino derivatives to protect DNA against ˙OH- and AAPH-induced oxidation. Moreover, these coumarin-3-acylamino derivatives were employed to scavenge 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS(+˙)). We found that tyramine moiety, hydroxyl and ortho-methoxy are the key groups to enhance the activities of antioxidants to quench ABTS(+˙). Therefore, tyramine linked with coumarin-3-carboxyl acid which containing hydroxyl and ortho-methoxy exhibited powerful antioxidant abilities.
Collapse
Affiliation(s)
- Yang Yang
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Qing-Wen Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Ye Shi
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Zhi-Guang Song
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130021, China.
| | - Ying-Hua Jin
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun 130012, China
| | - Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
25
|
Density, Viscosity and Refraction Index of Aqueous Solutions of 7-Hydroxycoumarin and Ethanol or 1-Propanol at Temperatures from 293.15 to 313.15 K. J SOLUTION CHEM 2013. [DOI: 10.1007/s10953-013-0100-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Sun L, Li J, Bera H, Dolzhenko AV, Chiu GNC, Chui WK. Fragment-based approach to the design of 5-chlorouracil-linked-pyrazolo[1,5-a][1,3,5]triazines as thymidine phosphorylase inhibitors. Eur J Med Chem 2013; 70:400-10. [PMID: 24177367 DOI: 10.1016/j.ejmech.2013.10.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/01/2013] [Accepted: 10/07/2013] [Indexed: 11/26/2022]
Abstract
5-Chlorouracil-linked-pyrazolo[1,5-a][1,3,5]triazines were designed as new thymidine phosphorylase inhibitors based on the fragment based drug design approach. Multiple-step convergent synthetic schemes were devised to generate the target compounds. The intermediate 5-chloro-6-chloromethyluracil was synthesized by a 4-step reaction. A series of the second bicyclic intermediates, namely pyrazolo[1,5-a][1,3,5]triazin-2-thioxo-4-one, was obtained from various substituted 3-aminopyrazoles. These two intermediates were coupled finally in the presence of sodium ethoxide and methanol to yield the desirable target compounds. The methylthio coupling spacer was found to be suitable in enabling the interaction of the two fragments at the active site and allosteric site of the enzyme. The best coupled compound (9q) inhibited the thymidine phosphorylase with an IC₅₀ value as low as 0.36 ± 0.1 μM. In addition, 9q demonstrated a mixed-type of enzyme inhibition kinetics, thus suggesting that it might indeed potentially bind at two different sites on the enzyme.
Collapse
Affiliation(s)
- Lingyi Sun
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| | | | | | | | | | | |
Collapse
|
27
|
Wang YH, Avula B, Nanayakkara NPD, Zhao J, Khan IA. Cassia cinnamon as a source of coumarin in cinnamon-flavored food and food supplements in the United States. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4470-6. [PMID: 23627682 DOI: 10.1021/jf4005862] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Coumarin as an additive or as a constituent of tonka beans or tonka extracts is banned from food in the United States due to its potentially adverse side effects. However, coumarin in food from other natural ingredients is not regulated. "True Cinnamon" refers to the dried inner bark of Cinnamomum verum. Other cinnamon species, C. cassia, C. loureiroi, and C. burmannii, commonly known as cassia, are also sold in the U.S. as cinnamon. In the present study, coumarin and other marker compounds were analyzed in authenticated cinnamon bark samples as well as locally bought cinnamon samples, cinnamon-flavored foods, and cinnamon-based food supplements using a validated UPLC-UV/MS method. The experimental results indicated that C. verum bark contained only traces of coumarin, whereas barks from all three cassia species, especially C. loureiroi and C. burmannii, contained substantial amounts of coumarin. These species could be potential sources of coumarin in cinnamon-flavored food in the U.S. Coumarin was detected in all locally bought cinnamon, cinnamon-flavored foods, and cinnamon food supplements. Their chemical profiles indicated that the cinnamon samples and the cinnamon in food supplements and flavored foods were probably Indonesian cassia, C. burmannii.
Collapse
Affiliation(s)
- Yan-Hong Wang
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | | | | | | | | |
Collapse
|
28
|
Sun L, Bera H, Chui WK. Synthesis of pyrazolo[1,5-a][1,3,5]triazine derivatives as inhibitors of thymidine phosphorylase. Eur J Med Chem 2013; 65:1-11. [PMID: 23688695 DOI: 10.1016/j.ejmech.2013.03.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/21/2013] [Accepted: 03/28/2013] [Indexed: 10/27/2022]
Abstract
Thymidine phosphorylase (TP) is an enzyme that promotes tumor growth and metastasis and therefore is an attractive druggable target. Using a reported TP inhibitor, 7-deazaxanthine (7DX), as the lead compound; this study was set up to evaluate whether pyrazolo[1,5-a][1,3,5]triazin-2,4-diones and pyrazolo[1,5-a][1,3,5]triazin-2-thioxo-4-ones would exhibit TP inhibitory activity. The pyrazolo[1,5-a][1,3,5]triazine nucleus was constructed using a reaction that annulated the 1,3,5-triazine ring onto a pyrazole scaffold. Among the 52 compounds synthesized and tested, it was found that 1,3-dihydro-pyrazolo[1,5-a][1,3,5]triazin-2-thioxo-4-ones exhibited various extent of inhibitory activity against TP. The best compound 17p, which bears a para-substituted pentafluorosulfur group, showed an IC50 value of 0.04 μM, which was around 800 times more potent than the 7DX (IC50 = 32 μM) under the same bioassay conditions. The results of the study suggested that a substituent with +σ and +π properties inserted at position 4 of a phenyl ring that is attached to position 8 of the pyrazolo[1,5-a][1,3,5]triazin-2-thioxo-4-one scaffold would give excellent TP inhibitory action. In addition, 17p was found to be a non-competitive inhibitor thus suggested that it might interact with TP at a position different from the substrate binding site.
Collapse
Affiliation(s)
- Lingyi Sun
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| | | | | |
Collapse
|
29
|
Kostova I. Studying plant-derived coumarins for their pharmacological and therapeutic properties as potential anticancer drugs. Expert Opin Drug Discov 2013; 2:1605-18. [PMID: 23488904 DOI: 10.1517/17460441.2.12.1605] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Coumarins have attracted intense interest in recent years because of their diverse pharmacological properties. Among these properties, their anticancer effect was most extensively examined. In this review, their broad range of effects on the tumours as shown by various in vitro and in vivo experiments as well as clinical investigations is discussed. Studies have indicated that coumarins elicit inhibitory effects on cell growth of various carcinoma cell lines and may be potential candidates for cancer therapy. These natural compounds have served as valuable leads for further design and synthesis of more active analogues. In view of the relative simplicity of the coumarin compounds and their mechanism of action, the coumarin pharmacophore may serve as an important model on which to develop new patterns in cancer chemotherapy. The aim of this review is to examine in detail the properties of the title compounds as anticancer agents. In view of their comparatively low toxicity, relative cheapness, presence in the diet and occurrence in various herbal remedies, it appears important to evaluate their anticancer potentialities. Moreover their synergistic activity in combination therapy with other well-known anticancer drugs could be the basis for the development of rational approaches to new forms of cancer chemotherapy.
Collapse
Affiliation(s)
- Irena Kostova
- Medical University, Department of Chemistry, Faculty of Pharmacy, 2 Dunav Street, Sofi a 1000, Bulgaria +35 92 92 36 569 ; +35 92 98 79 874 ;
| |
Collapse
|
30
|
Toxicity of coumarin and various methyl derivatives in cultures of rat hepatocytes and V79 cells. Toxicol In Vitro 2012; 6:21-5. [PMID: 20732088 DOI: 10.1016/0887-2333(92)90081-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/1991] [Revised: 04/22/1991] [Indexed: 11/24/2022]
Abstract
The toxicity of coumarin and various simple methyl derivatives in rat hepatocyte and V79 cell cultures was studied to investigate further the mechanism of coumarin hepatotoxicity. Coumarin was six times more toxic in hepatocyte cultures from phenobarbitone (PB)-treated rats than in those from untreated rats. At concentrations below 3 mm, coumarin did not affect the survival of V79 lung fibroblasts. SKF-525A inhibited coumarin-induced toxicity in hepatocytes cultured from PB-treated rats, whereas depletion of hepatocyte glutathione (GSH) levels with buthionine sulphoximine (BSO) significantly increased toxicity. Dihydrocoumarin (DHC) had little effect on the survival of cultured hepatocytes, indicating that the 3,4-double bond is an important determinant of coumarin toxicity. In general, the toxicity of coumarin in hepatocyte cultures was reduced by substitution with one or more methyl groups. 3-Methylcoumarin (MeC), however, was more toxic than coumarin itself in hepatocyte cultures from untreated rats. Except for 3,4-diMeC, the methyl derivatives were markedly more toxic in rat hepatocytes than in V79 cell cultures. The data obtained for coumarin and 4-MeC, and possibly 6-MeC and 7-MeC, are consistent with hepatocyte toxicity being due to the cytochrome P-450-dependent formation of one or more toxic metabolites that may be detoxified by reacting with GSH. This was less apparent for 3-MeC and 3,4-diMeC, although depletion of GSH levels significantly increased the hepatocyte toxicity of both compounds.
Collapse
|
31
|
Maggi F, Conti F, Cristalli G, Giuliani C, Papa F, Sagratini G, Vittori S. Chemical differences in volatiles between Melittis melissophyllum L. subsp. melissophyllum and subsp. albida (Guss) P. W. Ball (Lamiaceae) determined by solid-phase microextraction (SPME) coupled with GC/FID and GC/MS. Chem Biodivers 2011; 8:325-43. [PMID: 21337505 DOI: 10.1002/cbdv.201000262] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Melittis melissophyllum (Lamiaceae) is a perennial herb, typical of woody places, occurring in Italy with two subspecies, i.e., melissophyllum and albida. So far, the classification of these two taxa was only based on morphology, i.e., the presence of glandular trichomes, the dimension of the leaves, and the number of teeth on each side as the main discriminant characters. To find marker compounds to chemically discriminate the subsp. melissophyllum with respect to the subsp. albida, a solid-phase microextraction SPME analysis coupled with GC/FID (=flame ionization detector) and GC/MS was carried out. SPME proved to be a chemotaxonomically useful technique that permitted a clearly differentiation of the two subspecies at headspace level. The subsp. melissophyllum was characterized by high amount of the mushroom alcohol oct-1-en-3-ol and the phenolic coumarin, whilst the subsp. albida exhibited a high content in monoterpenes and sesquiterpenes, α-pinene, sabinene, and (E)-caryophyllene being the major compounds. Multivariate chemometric techniques, such as cluster analysis (CA) and principal-component analysis (PCA), were used to support chemical data and characterize the population according to the taxonomy. In addition, the micromorphology and distribution of glandular trichomes of both subspecies were studied by scanning electron microscopy (SEM).
Collapse
Affiliation(s)
- Filippo Maggi
- School of Pharmacy, University of Camerino, Via Pontoni 5, Camerino, Italy.
| | | | | | | | | | | | | |
Collapse
|
32
|
Chen X, Zhou Y, Qu L, Liu X, Yuan J, Zhao Y. Synthesis of Novel Coumarin-7,8-cyclophosphoramide Analogs. SYNTHETIC COMMUN 2010. [DOI: 10.1080/00397910903219369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Salinas-Jazmín N, de la Fuente M, Jaimez R, Pérez-Tapia M, Pérez-Torres A, Velasco-Velázquez MA. Antimetastatic, antineoplastic, and toxic effects of 4-hydroxycoumarin in a preclinical mouse melanoma model. Cancer Chemother Pharmacol 2010; 65:931-940. [PMID: 19690859 DOI: 10.1007/s00280-009-1100-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 07/29/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE We have previously reported that in vitro treatment of B16-F10 melanoma cells with 4-hydroxycoumarin (4-HC) decreases their metastatic potential. However, the antimetastatic efficacy of 4-HC in vivo is unknown; therefore, we investigated the antimetastatic and antineoplastic effects of 4-HC in a mouse melanoma model. Based on the findings, the immunomodulatory and toxic effects of 4-HC were also studied. METHODS Experimental metastasis assay was performed in C57BL/6 mice that received 4-HC before intravenous injection of B16-F10 cells. Antitumor and antimetastatic efficacy of 4-HC was assessed in mice implanted subcutaneously with melanoma cells. Possible immunostimulant and toxic effects of 4-HC were studied in healthy mice. RESULTS 4-HC reduced the number of experimental lung metastases. Moreover, 4-HC diminished primary tumor growth and increased survival time in mice bearing melanoma tumors. Treatments also decrease spontaneous lung metastases in the same animals. Different to other coumarins, the antitumor effect of 4-HC seems to be unrelated to immunostimulation, since plasma concentrations of cytokines remained unchanged. In contrast, toxic histological changes in nephrons and bronchiolar epithelium and a pronounced anticoagulant effect were found in 4-HC treated animals. CONCLUSIONS These results show that 4-HC not only exhibit antimetastatic effect in vivo, but also effectively reduces tumor growth and improves survival, even when it produce toxic effects. Although the molecular mechanism of 4-HC actions needs to be further defined, our data suggest that 4-HC may lead to the development of agents that could be used as adjuvants in the therapy of melanoma.
Collapse
Affiliation(s)
- Nohemí Salinas-Jazmín
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo. Postal 70-297, México, DF 04510, México
| | | | | | | | | | | |
Collapse
|
34
|
Abraham K, Wöhrlin F, Lindtner O, Heinemeyer G, Lampen A. Toxicology and risk assessment of coumarin: Focus on human data. Mol Nutr Food Res 2010; 54:228-39. [DOI: 10.1002/mnfr.200900281] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
35
|
Affiliation(s)
- Eric Yarnell
- President of the Botanical Medicine Academy, a specialty board for using medicinal herbs, and is a faculty member at Bastyr University in Kenmore, Washington
| | - Kathy Abascal
- Executive director of the Botanical Medicine Academy in Vashon, Washington
| |
Collapse
|
36
|
Coumarin in flavourings and other food ingredients with flavouring properties ‐ Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC). EFSA J 2008. [DOI: 10.2903/j.efsa.2008.793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
37
|
Abstract
The coumarin (benzopyran-2-one, or chromen-2-one) ring system, present in natural products (such as the anticoagulant warfarin) that display interesting pharmacological properties, has intrigued chemists and medicinal chemists for decades to explore the natural coumarins or synthetic analogs for their applicability as drugs. Many molecules based on the coumarin ring system have been synthesized utilizing innovative synthetic techniques. The diversity oriented synthetic routes have led to interesting derivatives including the furanocoumarins, pyranocoumarins, and coumarin sulfamates (COUMATES), which have been found to be useful in photochemotherapy, antitumor and anti-HIV therapy, and as stimulants for central nervous system, antibacterials, anti-inflammatory, anti-coagulants, and dyes. Of particular interest in breast cancer chemotherapy, some coumarins and their active metabolite 7-hydroxycoumarin analogs have shown sulfatase and aromatase inhibitory activities. Coumarin based selective estrogen receptor modulators (SERMs) and coumarin-estrogen conjugates have also been described as potential antibreast cancer agents. Since breast cancer is the second leading cause of death in American women behind lung cancer, there is a strong impetus to identify potential new drug treatments for breast cancer. Therefore, the objective of this review is to focus on important coumarin analogs with antibreast cancer activities, highlight their mechanisms of action and structure-activity relationships on selected receptors in breast tissues, and the different methods that have been applied in the construction of these pharmacologically important coumarin analogs.
Collapse
Affiliation(s)
- Musiliyu A Musa
- Florida A&M University, College of Arts and Sciences, Department of Chemistry, Tallahassee, FL 32307, USA.
| | | | | |
Collapse
|
38
|
Felter SP, Vassallo JD, Carlton BD, Daston GP. A safety assessment of coumarin taking into account species-specificity of toxicokinetics. Food Chem Toxicol 2006; 44:462-75. [PMID: 16203076 DOI: 10.1016/j.fct.2005.08.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 08/19/2005] [Accepted: 08/22/2005] [Indexed: 11/16/2022]
Abstract
Coumarin (1,2-benzopyrone) is a naturally occurring fragrant compound found in a variety of plants and spices. Exposure to the general public is through the diet and from its use as a perfume raw material in personal care products. High doses of coumarin by the oral route are known to be associated with liver toxicity in rodents. Chronic oral bioassays conducted in the 1990s reported liver tumors in rats and mice and lung tumors in mice, raising concerns regarding the safety of coumarin. Since then, an extensive body of research has focused on understanding the etiology of these tumors. The data support a conclusion that coumarin is not DNA-reactive and that the induction of tumors at high doses in rodents is attributed to cytotoxicity and regenerative hyperplasia. The species-specific target organ toxicity is shown to be related to the pharmacokinetics of coumarin metabolism, with data showing rats to be particularly susceptible to liver effects and mice to be particularly susceptible to lung effects. A quantitative human health risk assessment that integrates both cancer and non-cancer effects is presented, confirming the safety of coumarin exposure from natural dietary sources as well as from its use as a perfume in personal care products.
Collapse
Affiliation(s)
- S P Felter
- The Procter & Gamble Company, Miami Valley Innovation Center, 11810 E. Miami River Road, Cincinnati, OH 45252, USA.
| | | | | | | |
Collapse
|
39
|
Nath M, Jairath R, Eng G, Song X, Kumar A. Triorganotin(IV) derivatives of umbelliferone (7-hydroxycoumarin) and their adducts with 1,10-phenanthroline: synthesis, structural and biological studies. J Organomet Chem 2005. [DOI: 10.1016/j.jorganchem.2004.08.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Adam BS, Pentz R, Siegers CP, Strubelt O, Tegtmeier M. Troxerutin protects the isolated perfused rat liver from a possible lipid peroxidation by coumarin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2005; 12:52-61. [PMID: 15693708 DOI: 10.1016/j.phymed.2004.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
For more than 40 years coumarin has been successfully used in the therapy of chronic venous insufficiency (CVI). The occurrence of liver injuries is rather rare and happens predominantly when doses are administered which are significantly higher than necessary for therapeutical use. Such effects caused by high coumarin concentrations are reproducible in in vivo experiments in mice or rats and HepG2-cells. In order to characterize the mechanism of liver injuries, the isolated perfused rat liver has been chosen as model. Since liver injuries are quite rare, if coumarin is used in co-medication with troxerutin, a possible protective influence of this flavonoid has been investigated. In concentrations higher than 4 mmol/l, coumarin alone is effective in the isolated perfused rat liver. Then the release of the enzymes alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) increases and there is a measurable reduction of perfusion flow, oxygen consumption and rate of bile secretion. Additionally, the concentrations of hepatic adenosine triphosphate (ATP) and oxidized and total glutathione (GSSG/GSH) decrease. In the livers of fasting animals, coumarin doubles the concentration of hepatic malondialdehyde (MDA). This effect cannot be detected if troxerutin is added. In general, troxerutin reduces the concentration of all coumarin-metabolites in the perfusate and bile and changes the ratio of the main metabolites, coumarin: 3-hydroxycoumarin: 7-hydroxycoumarin. An analysis of the metabolic steps also shows that the amount of coumarin eliminated via faeces does not stem from absorbed coumarin, because the amount of orally applied coumarin detectable in the bile is less than 1%. The study demonstrates that troxerutin has hepatoprotective properties and thus protects the liver from a possible lipid peroxidation caused by coumarin. However, it is necessary to point out that these adverse effects caused by coumarin can be detected only in very high concentrations considerably above the regular therapeutical dosage. This allows the conclusion that troxerutin is a beneficial cofactor in coumarin preparations used for the therapy of chronic venous insufficiency.
Collapse
Affiliation(s)
- B S Adam
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical University of Luebeck, D-23538 Lübeck, Germany
| | | | | | | | | |
Collapse
|
41
|
Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to Coumarin. EFSA J 2004. [DOI: 10.2903/j.efsa.2004.104] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
42
|
Finn GJ, Creaven BS, Egan DA. Daphnetin induced differentiation of human renal carcinoma cells and its mediation by p38 mitogen-activated protein kinase. Biochem Pharmacol 2004; 67:1779-88. [PMID: 15081877 DOI: 10.1016/j.bcp.2004.01.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Accepted: 01/16/2004] [Indexed: 11/20/2022]
Abstract
Daphnetin has been shown to be a potent in vitro anti-proliferative agent to the human renal cell carcinoma (RCC) cell line, A-498. In the present study, we investigated its effects on mitogen-activated protein kinase (MAPK) signalling along with cell cycle events and cellular differentiation. Daphnetin-activated p38, however, higher concentrations were required to inhibit ERK1/ERK2. In addition, it did not activate SAPK or induce apoptosis, but instead inhibited S phase cell cycle transition of A-498 cells at low concentrations and time of exposure. In addition, a late G(1), early S phase inhibition was observed at higher concentrations and time of exposure, indicating that the mechanism of daphnetin-induced differentiation was concentration dependent. Increased expression of the epithelial differentiation markers cytokeratins 8 and 18, correlated with increasing concentrations of daphnetin, while pre-treatment with a specific p38-inhibitor, served to limit this effect. There was no evidence that P-glycoprotein (P-gp) mediated multi-drug resistance (MDR) played a role in the anti-proliferative activity of daphnetin. Consequently, we concluded that p38 MAP kinase is intrinsically involved in mediating the effect of daphnetin in A-498 cells, suggesting that this drug may act by promotion of cellular maturation, and consequently may represent a novel low toxic approach for the treatment of poorly differentiated RCCs.
Collapse
Affiliation(s)
- Gregory J Finn
- Department of Applied Science, National Centre for Sensor Research, School of Science, Institute of Technology, Tallaght, Dublin 24, Ireland
| | | | | |
Collapse
|
43
|
Vassallo JD, Morrall SW, Fliter KL, Curry SM, Daston GP, Lehman-McKeeman LD. Liquid chromatographic determination of the glutathione conjugate and ring-opened metabolites formed from coumarin epoxidation. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 794:257-71. [PMID: 12954377 DOI: 10.1016/s1570-0232(03)00473-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Species differences in the biotransformation of coumarin are thought to play an important role in its toxicity. Since the putative toxic metabolite is coumarin 3,4-epoxide (CE), methods to measure the metabolites of CE were developed. The glutathione (GSH) conjugate of CE (CE-SG) at the 3-position was purified by reversed-phase (RP)-high performance liquid chromatography (HPLC), and characterized by mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR). An RP-HPLC method was developed to quantify CE-SG in hepatic microsomal mixtures and a separate RP-HPLC method was also developed to quantify the three ring-opened coumarin metabolites; o-hydroxyphenylacetic acid (o-HPAA), o-hydroxyphenylethanol (o-HPE) and o-hydroxyphenylacetaldehyde (o-HPA) in hepatic microsomal mixtures. Detection limits for all four products of coumarin epoxidation exceeded 3.5 ng/ml and recovery from hepatic microsomal mixtures was essentially quantitative with RSD values less than 8%. Species differences in o-HPA detoxification were consistent with sensitivity to coumarin, thereby demonstrating that these methods have utility in addressing the fate of CE and its contribution to toxicity.
Collapse
Affiliation(s)
- Jeffrey D Vassallo
- Miami Valley Laboratories, The Procter and Gamble Company, Cincinnati, OH 45252, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Born SL, Caudill D, Fliter KL, Purdon MP. Identification of the cytochromes P450 that catalyze coumarin 3,4-epoxidation and 3-hydroxylation. Drug Metab Dispos 2002; 30:483-7. [PMID: 11950775 DOI: 10.1124/dmd.30.5.483] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Coumarin, a widely used fragrance ingredient, is a rat liver and mouse lung toxicant. Species differences in toxicity are metabolism-dependent, with injury resulting from the cytochrome P450-mediated formation of coumarin 3,4-epoxide (CE). In this study, the enzymes responsible for coumarin activation in liver and lung were determined. Recombinant human and rat CYP1A forms and recombinant human CYP2E1 readily catalyzed CE production. Coinhibition with CYP1A1/2 and CYP2E1 antibodies blocked CE formation by 38, 84, and 67 to 92% (n = 3 individual samples) in mouse, rat, and human hepatic microsomes, respectively. Although CYP1A and 2E forms seem to be the most active catalysts of CE formation in liver, studies conducted with the mechanism-based inhibitor 5-phenyl-pentyne demonstrated that CYP2F2 is responsible for up to 67% of CE formation in whole mouse lung microsomes. In contrast to the CE pathway, coumarin 3-hydroxylation is a minor product of coumarin in liver microsomes from mice, rats, and humans and is catalyzed predominately by CYP3A and CYP1A forms, confirming that CE and 3-hydroxycoumarin are formed via distinct metabolic pathways.
Collapse
Affiliation(s)
- Stephanie L Born
- The Miami Valley Laboratories, Procter & Gamble, Cincinnati, Ohio, USA.
| | | | | | | |
Collapse
|
45
|
Jiménez-Orozco FA, López-González JS, Nieto-Rodriguez A, Velasco-Velázquez MA, Molina-Guarneros JA, Mendoza-Patiño N, García-Mondragón MJ, Elizalde-Galvan P, León-Cedeño F, Mandoki JJ. Decrease of cyclin D1 in the human lung adenocarcinoma cell line A-427 by 7-hydroxycoumarin. Lung Cancer 2001; 34:185-194. [PMID: 11679177 DOI: 10.1016/s0169-5002(01)00263-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coumarin in vivo has antitumor activity in various types of cancer. In vitro, coumarin and 7-hydroxycoumarin, its major biotransformation product in humans, inhibit the proliferation of several human tumor cell lines. The molecular mechanisms of these effects are unknown. To gain information about these mechanisms, we studied the effects of coumarin and 7-hydroxycoumarin in the human lung adenocarcinoma cell line A-427 on the inhibition of: (i) cell proliferation; (ii) cell cycle progression; and (iii) expression of cyclins D1, E and A. The inhibitory concentrations 50 (IC(50)) of both compounds were estimated by cytostatic assays of tetrazolium (MTT) reduction. The effects on cell cycle progression were assayed with propidium iodide and BrdU using DNA histograms and multiparametric flow cytometry. The percentages of cells expressing cyclins D1, E, and A were estimated by means of bivariate flow cytometry using propidium iodide, and FITC-conjugated monoclonal antibodies for each cyclin. The IC(50) (+/-S.E.M. n=3) of 7-hydroxycoumarin and coumarin at 72 h exposure, were 100+/-4.8 and 257+/-8.8 microg/ml, respectively. 7-Hydroxycoumarin at the concentration of 160 microg/ml (1 mM), inhibited the G(1)/S transition of the cell cycle, an action consistent with the cytostatic effect. No significant decreases of cyclins E and A were observed. In contrast, cyclin D1 significantly decreased, which appears to indicate an action of 7-hydroxycoumarin in early events of phase G(1). However, messenger RNA of cyclin D1, assayed by RT-PCR, did not change. This suggests a posttranscriptional effect. The effects of coumarin were not significant. Cyclin D1 is overexpressed in many types of cancer, and its inhibition has been proposed as a pharmacological and therapeutic target for novel antitumor agents. Knowledge of the decrease of cyclin D1 by 7-hydroxycoumarin may lead to its use in cancer therapy, as well as to the development of more active compounds.
Collapse
Affiliation(s)
- F A Jiménez-Orozco
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-297 Ciudad Universitaria, Mexico D.F. 04510, Mexico.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Alternative therapies, including herbal remedies, are popular in the general population and even more so among patients with liver disease. The use of such products is now well established in western society and is no longer confined to traditional medicine practitioners in Asia, Africa and the Middle-East. Their perceived benefits remain generally unproven and concern about adverse effects is leading to closer scrutiny of these products. Herbal hepatotoxicity has been recognized for many years, but new agents are constantly being identified. The varied manifestations of liver injury include steatosis, acute and chronic hepatitis, hepatic fibrosis, zonal or diffuse hepatic necrosis, bile duct injury, veno-occlusive disease, acute liver failure requiring liver transplantation and carcinogenesis. Potential interactions between herbal medicines and conventional drugs may interfere with patient management. Concurrent use of such products is not often disclosed unless specifically sought after and can lead to perpetuation of the liver injury. The present review focuses on emerging herbal hepatotoxins, newer patterns of liver injury among the older agents and provides an updated tabulation of the adverse effects of major herbal hepatotoxins. Key issues of diagnosis and prevention of this growing problem are addressed. Continued public education, physician awareness and more stringent licensing are required to tackle this growing problem.
Collapse
Affiliation(s)
- S Chitturi
- Storr Liver Unit, University of Sydney at Westmead Hospital, New South Wales, Australia
| | | |
Collapse
|
47
|
Sardari S, Nishibe S, Daneshtalab M. Coumarins, the bioactive structures with antifungal property. BIOACTIVE NATURAL PRODUCTS (PART D) 2000. [DOI: 10.1016/s1572-5995(00)80133-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
48
|
Goeger DE, Hsie AW, Anderson KE. Co-mutagenicity of coumarin (1,2-benzopyrone) with aflatoxin B1 and human liver S9 in mammalian cells. Food Chem Toxicol 1999; 37:581-9. [PMID: 10478826 DOI: 10.1016/s0278-6915(99)00046-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Coumarin (1,2-benzopyrone), a natural dietary constituent and drug currently under evaluation for treatment of certain cancers and lymphedema, reduces polycyclic aromatic hydrocarbon-induced neoplasms in rodents. Because most rodents metabolize coumarin through 3,4-epoxidation, whereas 7-hydroxylation predominates in humans, their suitability as a model for coumarin effects in humans has been questioned. We examined coumarin chemoprotection against the promutagen and dietary contaminant aflatoxin B1 with human liver S9 bioactivation in the Chinese hamster ovary cell/hypoxanthine-guanine phosphoribosyltransferase mutation assay. Coumarin in the absence of aflatoxin B1 was not mutagenic or cytotoxic up to 500 microM. When included with either 1 or 10 microM aflatoxin B1, coumarin produced a dose-dependent increase in mutant frequency and cytotoxicity. At concentrations greater than 50 microM, coumarin stimulated human liver S9 bioactivation of aflatoxin B1 to the mutagenic 8,9-epoxide. This increase was 12- and fivefold at 500 microM coumarin with 1 and 10 microM aflatoxin B1, respectively, compared with incubations with aflatoxin B1 alone. These findings differ from previous results with liver S9 from other species, and indicate that coumarin co-mutagenicity with aflatoxin B1 and human liver S9 is through increased aflatoxin B1 bioactivation.
Collapse
Affiliation(s)
- D E Goeger
- Department of Preventive Medicine & Community Health, University of Texas Medical Branch, Galveston 77555-1109, USA
| | | | | |
Collapse
|
49
|
Andréjak M, Gersberg M, Sgro C, Decocq G, Hamel JD, Morin M, Gras V. French pharmacovigilance survey evaluating the hepatic toxicity of coumarin. Pharmacoepidemiol Drug Saf 1999. [DOI: 10.1002/(sici)1099-1557(199808)7:1+3.0.co;2-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Bruppacher R, Rieckemann B, Naser-Hijazi B, Wüstenberg P. Evaluation of the safety of a coumarin–troxerutin combination. Pharmacoepidemiol Drug Saf 1999; 7 Suppl 1:S37-40. [PMID: 15073957 DOI: 10.1002/(sici)1099-1557(199808)7:1+3.0.co;2-j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Concerns about liver reactions reported for coumarin preparations prompted a re-evaluation of the combination of coumarin with troxerutin, widely used since 1971 in Germany. No evidence of liver toxicity could be found in available clinical research data. We estimated the number of coincidental cases of unexplained clinically apparent liver disease expected to arise during the patient treatment time on the basis of sales and the maximal recommended daily dosage. A comparison to the number of spontaneous reports yielded reassuring results.
Collapse
Affiliation(s)
- R Bruppacher
- Institut of Social- and Preventive Medicine, University of Basel, CH-4051 Basel, Switzerland.
| | | | | | | |
Collapse
|