1
|
Lu R, Luo XM. The role of gut microbiota in different murine models of systemic lupus erythematosus. Autoimmunity 2024; 57:2378876. [PMID: 39014962 DOI: 10.1080/08916934.2024.2378876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by immune system dysfunction that can lead to serious health issues and mortality. Recent investigations highlight the role of gut microbiota alterations in modulating inflammation and disease severity in SLE. This review specifically summaries the variations in gut microbiota composition across various murine models of lupus. By focusing on these differences, we aim to elucidate the intricate relationship between gut microbiota dysbiosis and the development and progression of SLE in preclinical settings.
Collapse
Affiliation(s)
- Ran Lu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
2
|
Alexander M, Upadhyay V, Rock R, Ramirez L, Trepka K, Puchalska P, Orellana D, Ang QY, Whitty C, Turnbaugh JA, Tian Y, Dumlao D, Nayak R, Patterson A, Newman JC, Crawford PA, Turnbaugh PJ. A diet-dependent host metabolite shapes the gut microbiota to protect from autoimmunity. Cell Rep 2024:114891. [PMID: 39500329 DOI: 10.1016/j.celrep.2024.114891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/04/2024] [Accepted: 10/03/2024] [Indexed: 11/13/2024] Open
Abstract
Diet can protect from autoimmune disease; however, whether diet acts via the host and/or microbiome remains unclear. Here, we use a ketogenic diet (KD) as a model to dissect these complex interactions. A KD rescued the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis in a microbiota-dependent fashion. Dietary supplementation with a single KD-dependent host metabolite (β-hydroxybutyrate [βHB]) rescued EAE, whereas transgenic mice unable to produce βHB in the intestine developed more severe disease. Transplantation of the βHB-shaped gut microbiota was protective. Lactobacillus sequence variants were associated with decreased T helper 17 cell activation in vitro. Finally, we isolated an L. murinus strain that protected from EAE, which was phenocopied by a Lactobacillus metabolite enriched by βHB supplementation, indole lactate. Thus, diet alters the immunomodulatory potential of the gut microbiota by shifting host metabolism, emphasizing the utility of taking a more integrative approach to study diet-host-microbiome interactions.
Collapse
Affiliation(s)
- Margaret Alexander
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Vaibhav Upadhyay
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rachel Rock
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lorenzo Ramirez
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kai Trepka
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Diego Orellana
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qi Yan Ang
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Caroline Whitty
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessie A Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yuan Tian
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Darren Dumlao
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Renuka Nayak
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; San Francisco VA Medical Center, San Francisco, CA 94121, USA
| | - Andrew Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - John C Newman
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Peter A Crawford
- Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub - San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
3
|
Yasmeen F, Pirzada RH, Ahmad B, Choi B, Choi S. Understanding Autoimmunity: Mechanisms, Predisposing Factors, and Cytokine Therapies. Int J Mol Sci 2024; 25:7666. [PMID: 39062908 PMCID: PMC11277571 DOI: 10.3390/ijms25147666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Autoimmunity refers to an organism's immune response against its own healthy cells, tissues, or components, potentially leading to irreversible damage to vital organs. Central and peripheral tolerance mechanisms play crucial roles in preventing autoimmunity by eliminating self-reactive T and B cells. The disruption of immunological tolerance, characterized by the failure of these mechanisms, results in the aberrant activation of autoreactive lymphocytes that target self-tissues, culminating in the pathogenesis of autoimmune disorders. Genetic predispositions, environmental exposures, and immunoregulatory disturbances synergistically contribute to the susceptibility and initiation of autoimmune pathologies. Within the realm of immune therapies for autoimmune diseases, cytokine therapies have emerged as a specialized strategy, targeting cytokine-mediated regulatory pathways to rectify immunological imbalances. Proinflammatory cytokines are key players in inducing and propagating autoimmune inflammation, highlighting the potential of cytokine therapies in managing autoimmune conditions. This review discusses the etiology of autoimmune diseases, current therapeutic approaches, and prospects for future drug design.
Collapse
Affiliation(s)
- Farzana Yasmeen
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Rameez Hassan Pirzada
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Bilal Ahmad
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Bogeum Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| |
Collapse
|
4
|
Koester ST, Chow A, Pepper-Tunick E, Lee P, Eckert M, Brenchley L, Gardner P, Song HJ, Li N, Schiffenbauer A, Volochayev R, Bayat N, McLean JS, Rider LG, Shenoi S, Stevens AM, Dey N. Familial clustering of dysbiotic oral and fecal microbiomes in juvenile dermatomyositis. Sci Rep 2024; 14:16158. [PMID: 38997299 PMCID: PMC11245510 DOI: 10.1038/s41598-024-60225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/19/2024] [Indexed: 07/14/2024] Open
Abstract
Juvenile dermatomyositis (JDM) is a rare immune-mediated disease of childhood with putative links to microbial exposures. In this multi-center, prospective, observational cohort study, we evaluated whether JDM is associated with discrete oral and gut microbiome signatures. We generated 16S rRNA sequencing data from fecal, saliva, supragingival, and subgingival plaque samples from JDM probands (n = 28). To control for genetic and environmental determinants of microbiome community structure, we also profiled microbiomes of unaffected family members (n = 27 siblings, n = 26 mothers, and n = 17 fathers). Sample type (oral-vs-fecal) and nuclear family unit were the predominant variables explaining variance in microbiome diversity, more so than having a diagnosis of JDM. The oral and gut microbiomes of JDM probands were more similar to their own unaffected siblings than they were to the microbiomes of other JDM probands. In a sibling-paired within-family analysis, several potentially immunomodulatory bacterial taxa were differentially abundant in the microbiomes of JDM probands compared to their unaffected siblings, including Faecalibacterium (gut) and Streptococcus (oral cavity). While microbiome features of JDM are often shared by unaffected family members, the loss or gain of specific fecal and oral bacteria may play a role in disease pathogenesis or be secondary to immune dysfunction in susceptible individuals.
Collapse
Affiliation(s)
- Sean T Koester
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Kansas School of Medicine, Kansas City, USA
| | - Albert Chow
- Department of Pediatrics, Division of Rheumatology, University of Washington, Seattle, WA, USA
- Loma Linda University, Loma Linda, USA
| | - Evan Pepper-Tunick
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Peggy Lee
- School of Dentistry, University of Washington, Seattle, WA, USA
| | - Mary Eckert
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Laurie Brenchley
- Office of the Clinical Director, NIDCR, National Institutes of Health, Bethesda, MD, USA
| | - Pamela Gardner
- Office of the Clinical Director, NIDCR, National Institutes of Health, Bethesda, MD, USA
- Oral Oncology at BC Cancer, Vancouver, BC, Canada
| | - Hyun Jung Song
- School of Dentistry, University of Washington, Seattle, WA, USA
| | - Naisi Li
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Adam Schiffenbauer
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Rita Volochayev
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Nastaran Bayat
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
- Social and Scientific Systems, Inc., A DLH Holdings Corp. Company, Silver Spring, MD, USA
| | - Jeffrey S McLean
- Department of Periodontics, University of Washington, Seattle, WA, USA
| | - Lisa G Rider
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Susan Shenoi
- Department of Pediatrics, Division of Rheumatology, University of Washington, Seattle, WA, USA
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Anne M Stevens
- Department of Pediatrics, Division of Rheumatology, University of Washington, Seattle, WA, USA
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
- Janssen, a Wholly Owned Subsidiary of Johnson & Johnson, Raritan, USA
| | - Neelendu Dey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, WA, USA.
- Microbiome Research Initiative, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
5
|
Zhao M, Wen X, Liu R, Xu K. Microbial dysbiosis in systemic lupus erythematosus: a scientometric study. Front Microbiol 2024; 15:1319654. [PMID: 38863759 PMCID: PMC11166128 DOI: 10.3389/fmicb.2024.1319654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/01/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. Mounting evidence suggests microbiota dysbiosis augment autoimmune response. This study aims to provide a systematic overview of this research field in SLE through a bibliometric analysis. Methods We conducted a comprehensive search and retrieval of literature related to microbial researches in SLE from the Web of Science Core Collection (WOSCC) database. The retrieved articles were subjected to bibliometric analysis using VOSviewer and Bibliometricx to explore annual publication output, collaborative patterns, research hotspots, current research status, and emerging trends. Results In this study, we conducted a comprehensive analysis of 218 research articles and 118 review articles. The quantity of publications rises annually, notably surging in 2015 and 2018. The United States and China emerged as the leading contributors in microbial research of SLE. Mashhad University of Medical Sciences had the highest publication outputs among the institutions. Frontiers in Immunology published the most papers. Luo XM and Margolles A were the most prolific and highly cited contributors among individual authors. Microbial research in SLE primarily focused on changes in microbial composition, particularly gut microbiota, as well as the mechanisms and practical applications in SLE. Recent trends emphasize "metabolites," "metabolomics," "fatty acids," "T cells," "lactobacillus," and "dietary supplementation," indicating a growing emphasis on microbial metabolism and interventions in SLE. Conclusion This study provides a thorough analysis of the research landscape concerning microbiota in SLE. The microbial research in SLE mainly focused on three aspects: microbial dysbiosis, mechanism studies and translational studies (microbiota-based therapeutics). It identifies current research trends and focal points, offering valuable guidance for scholars in the field.
Collapse
Affiliation(s)
- Miaomiao Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaoting Wen
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruiling Liu
- Department of Microbiology and Immunology, Basic Medical College, Shanxi Medical University, Jinzhong, China
| | - Ke Xu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Tsigalou C, Tsolou A, Stavropoulou E, Konstantinidis T, Zafiriou E, Dardiotis E, Tsirogianni A, Bogdanos D. Unraveling the intricate dance of the Mediterranean diet and gut microbiota in autoimmune resilience. Front Nutr 2024; 11:1383040. [PMID: 38818135 PMCID: PMC11137302 DOI: 10.3389/fnut.2024.1383040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024] Open
Abstract
The nutritional habits regulate the gut microbiota and increase risk of an autoimmune disease. Western diet is rich in sugars, meat, and poly-unsaturated fatty acids, which lead to dysbiosis of intestinal microbiota, disruption of gut epithelial barrier and chronic mucosal inflammation. In contrast, the Mediterranean Diet (MedDiet) is abundant in ω3 fatty acids, fruits, and vegetables, possessing anti-inflammatory properties that contribute to the restoration of gut eubiosis. Numerous studies have extensively examined the impact of MedDiet and its components on both health and various disease states. Additionally, specific investigations have explored the correlation between MedDiet, microbiota, and the risk of autoimmune diseases. Furthermore, the MedDiet has been linked to a reduced risk of cardiovascular diseases, playing a pivotal role in lowering mortality rates among individuals with autoimmune diseases and comorbidities. The aim of the present review is to specifically highlight current knowledge regarding possible interactions of MedDiet with the patterns of intestinal microbiota focusing on autoimmunity and a blueprint through dietary modulations for the prevention and management of disease's activity and progression.
Collapse
Affiliation(s)
- Christina Tsigalou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, University Hospital, Alexandroupolis, Greece
| | - Avgi Tsolou
- Laboratory of Molecular Cell Biology, Cell Cycle and Proteomics, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Elisavet Stavropoulou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, University Hospital, Alexandroupolis, Greece
| | - Theocharis Konstantinidis
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, University Hospital, Alexandroupolis, Greece
| | - Efterpi Zafiriou
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Efthymios Dardiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Alexandra Tsirogianni
- Department of Immunology-Histocompatibility, Evangelismos General Hospital, Athens, Greece
| | - Dimitrios Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
7
|
Alexander M, Upadhyay V, Rock R, Ramirez L, Trepka K, Puchalska P, Orellana D, Ang QY, Whitty C, Turnbaugh JA, Tian Y, Dumlao D, Nayak R, Patterson A, Newman JC, Crawford PA, Turnbaugh PJ. A diet-dependent host metabolite shapes the gut microbiota to protect from autoimmunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.02.565382. [PMID: 37961209 PMCID: PMC10635093 DOI: 10.1101/2023.11.02.565382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Diet can protect from autoimmune disease; however, whether diet acts via the host and/or microbiome remains unclear. Here, we use a ketogenic diet (KD) as a model to dissect these complex interactions. A KD rescued the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis in a microbiota-dependent fashion. Dietary supplementation with a single KD-dependent host metabolite (β-hydroxybutyrate, βHB) rescued EAE whereas transgenic mice unable to produce βHB in the intestine developed more severe disease. Transplantation of the βHB-shaped gut microbiota was protective. Lactobacillus sequence variants were associated with decreased T helper 17 (Th17) cell activation in vitro . Finally, we isolated a L. murinus strain that protected from EAE, which was phenocopied by the Lactobacillus metabolite indole lactic acid. Thus, diet alters the immunomodulatory potential of the gut microbiota by shifting host metabolism, emphasizing the utility of taking a more integrative approach to study diet-host-microbiome interactions.
Collapse
|
8
|
Tan DSY, Akelew Y, Snelson M, Nguyen J, O’Sullivan KM. Unravelling the Link between the Gut Microbiome and Autoimmune Kidney Diseases: A Potential New Therapeutic Approach. Int J Mol Sci 2024; 25:4817. [PMID: 38732038 PMCID: PMC11084259 DOI: 10.3390/ijms25094817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
The gut microbiota and short chain fatty acids (SCFA) have been associated with immune regulation and autoimmune diseases. Autoimmune kidney diseases arise from a loss of tolerance to antigens, often with unclear triggers. In this review, we explore the role of the gut microbiome and how disease, diet, and therapy can alter the gut microbiota consortium. Perturbations in the gut microbiota may systemically induce the translocation of microbiota-derived inflammatory molecules such as liposaccharide (LPS) and other toxins by penetrating the gut epithelial barrier. Once in the blood stream, these pro-inflammatory mediators activate immune cells, which release pro-inflammatory molecules, many of which are antigens in autoimmune diseases. The ratio of gut bacteria Bacteroidetes/Firmicutes is associated with worse outcomes in multiple autoimmune kidney diseases including lupus nephritis, MPO-ANCA vasculitis, and Goodpasture's syndrome. Therapies that enhance SCFA-producing bacteria in the gut have powerful therapeutic potential. Dietary fiber is fermented by gut bacteria which in turn release SCFAs that protect the gut barrier, as well as modulating immune responses towards a tolerogenic anti-inflammatory state. Herein, we describe where the current field of research is and the strategies to harness the gut microbiome as potential therapy.
Collapse
Affiliation(s)
- Diana Shu Yee Tan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia; (D.S.Y.T.); (Y.A.)
| | - Yibeltal Akelew
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia; (D.S.Y.T.); (Y.A.)
| | - Matthew Snelson
- School of Biological Science, Monash University, Clayton, VIC 3168, Australia;
| | - Jenny Nguyen
- The Alfred Centre, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Kim Maree O’Sullivan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia; (D.S.Y.T.); (Y.A.)
| |
Collapse
|
9
|
Ma L, Ge Y, Brown J, Choi SC, Elshikha A, Kanda N, Terrell M, Six N, Garcia A, Mohamadzadeh M, Silverman G, Morel L. Dietary tryptophan and genetic susceptibility expand gut microbiota that promote systemic autoimmune activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575942. [PMID: 38293097 PMCID: PMC10827173 DOI: 10.1101/2024.01.16.575942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Tryptophan modulates disease activity and the composition of microbiota in the B6.Sle1.Sle2.Sle3 (TC) mouse model of lupus. To directly test the effect of tryptophan on the gut microbiome, we transplanted fecal samples from TC and B6 control mice into germ-free or antibiotic-treated non-autoimmune B6 mice that were fed with a high or low tryptophan diet. The recipient mice with TC microbiota and high tryptophan diet had higher levels of immune activation, autoantibody production and intestinal inflammation. A bloom of Ruminococcus gnavus (Rg), a bacterium associated with disease flares in lupus patients, only emerged in the recipients of TC microbiota fed with high tryptophan. Rg depletion in TC mice decreased autoantibody production and increased the frequency of regulatory T cells. Conversely, TC mice colonized with Rg showed higher autoimmune activation. Overall, these results suggest that the interplay of genetic and tryptophan can influence the pathogenesis of lupus through the gut microbiota.
Collapse
Affiliation(s)
- Longhuan Ma
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX
| | - Yong Ge
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX
| | - Josephine Brown
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Seung-Chul Choi
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX
| | - Ahmed Elshikha
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Nathalie Kanda
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Morgan Terrell
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Natalie Six
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX
| | - Abigail Garcia
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX
| | - Mansour Mohamadzadeh
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX
| | | | - Laurence Morel
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX
| |
Collapse
|
10
|
Libertini G. Phenoptosis and the Various Types of Natural Selection. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2007-2022. [PMID: 38462458 DOI: 10.1134/s0006297923120052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 03/12/2024]
Abstract
In the first description of evolution, the fundamental mechanism is the natural selection favoring the individuals best suited for survival and reproduction (selection at the individual level or classical Darwinian selection). However, this is a very reductive description of natural selection that does not consider or explain a long series of known phenomena, including those in which an individual sacrifices or jeopardizes his life on the basis of genetically determined mechanisms (i.e., phenoptosis). In fact, in addition to (i) selection at the individual level, it is essential to consider other types of natural selection such as those concerning: (ii) kin selection and some related forms of group selection; (iii) the interactions between the innumerable species that constitute a holobiont; (iv) the origin of the eukaryotic cell from prokaryotic organisms; (v) the origin of multicellular eukaryotic organisms from unicellular organisms; (vi) eusociality (e.g., in many species of ants, bees, termites); (vii) selection at the level of single genes, or groups of genes; (viii) the interactions between individuals (or more precisely their holobionts) of the innumerable species that make up an ecosystem. These forms of natural selection, which are all effects and not violations of the classical Darwinian selection, also show how concepts as life, species, individual, and phenoptosis are somewhat not entirely defined and somehow arbitrary. Furthermore, the idea of organisms selected on the basis of their survival and reproduction capabilities is intertwined with that of organisms also selected on the basis of their ability to cooperate and interact, even by losing their lives or their distinct identities.
Collapse
Affiliation(s)
- Giacinto Libertini
- Italian Society for Evolutionary Biology (ISEB), Asti, 14100, Italy.
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy
| |
Collapse
|
11
|
Guo M, Wang X, Li Y, Luo A, Zhao Y, Luo X, Li S. Intermittent Fasting on Neurologic Diseases: Potential Role of Gut Microbiota. Nutrients 2023; 15:4915. [PMID: 38068773 PMCID: PMC10707790 DOI: 10.3390/nu15234915] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
As the global population ages, the prevalence of neurodegenerative diseases is surging. These disorders have a multifaceted pathogenesis, entwined with genetic and environmental factors. Emerging research underscores the profound influence of diet on the development and progression of health conditions. Intermittent fasting (IF), a dietary pattern that is increasingly embraced and recommended, has demonstrated potential in improving neurophysiological functions and mitigating pathological injuries with few adverse effects. Although the precise mechanisms of IF's beneficial impact are not yet completely understood, gut microbiota and their metabolites are believed to be pivotal in mediating these effects. This review endeavors to thoroughly examine current studies on the shifts in gut microbiota and metabolite profiles prompted by IF, and their possible consequences for neural health. It also highlights the significance of dietary strategies as a clinical consideration for those with neurological conditions.
Collapse
Affiliation(s)
- Mingke Guo
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| | - Xuan Wang
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| | - Yujuan Li
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| | - Ailin Luo
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| | - Yilin Zhao
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiyong Li
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| |
Collapse
|
12
|
Chadwick C, Lehman H, Luebbert S, Abdul-Aziz R, Borowitz D. Autoimmunity in people with cystic fibrosis. J Cyst Fibros 2023; 22:969-979. [PMID: 36966037 DOI: 10.1016/j.jcf.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/27/2023]
Abstract
Cystic fibrosis (CF) clinicians may see patients who have difficult-to-manage symptoms that do not have a clear CF-related etiology, such as unusual gastrointestinal (GI) complaints, vasculitis, or arthritis. Alterations in immunity, inflammation and intraluminal dysbiosis create a milieu that may lead to autoimmunity, and the CF transmembrane regulator protein may have a direct role as well. While autoantibodies and other autoimmune markers may develop, these may or may not lead to organ involvement, therefore they are helpful but not sufficient to establish an autoimmune diagnosis. Autoimmune involvement of the GI tract is the best-established association. Next steps to understand autoimmunity in CF should include a more in-depth assessment of the community perspective on its impact. In addition, bringing together specialists in various fields including, but not limited to, pulmonology, gastroenterology, immunology, and rheumatology, would lead to cross-dissemination and help define the path forward in basic science and clinical practice.
Collapse
Affiliation(s)
| | - Heather Lehman
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | | | - Rabheh Abdul-Aziz
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Drucy Borowitz
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
13
|
Kenger EB, Eren F, Ozlu T, Gunes FE. Analysis of microbiota profile and nutritional status in male professional football players. J Sports Med Phys Fitness 2023; 63:1235-1243. [PMID: 37486255 DOI: 10.23736/s0022-4707.23.15103-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
BACKGROUND The interest in the effect of gut microbiota on athlete health has increased in recent years. Available data indicate a relationship between gut microbiota composition and physical activity, suggesting that changes in the microbiota may contribute to the host's physical performance. Studies show that leaky gut syndrome is highly correlated with upper respiratory infections and gastrointestinal disorders in endurance sports. This study aims to reveal the relationship between microbiota profiles, and the nutritional status of football players who perform endurance exercises. METHODS Twenty male professional football players playing in one of the Turkish Football Federation Second League clubs participated in the study. Fecal samples were collected and stored at -86 °C, and the fecal microbiota was analyzed through 16s rRNA gene sequencing. The body composition of the football players was measured using a bioelectrical impedance analyzer. In addition, the 3-day food intake of the participants was recorded with the help of a dietitian. RESULTS In the microbiota of football players, four phyla, 10 genera, and four species with densities above 1% were found. Body fat percentage was observed to be negatively correlated with the species of Faecalibacterium prausnitzii and Bacteroides vulgatus and the genus of Faecalibacterium (P<0.05). Considering the nutritional status, the fat intake was found to be positively correlated with Actinobacteria and Blautia coccoides; energy and fiber intake with Prevotella and Prevotella copri (P<0.05). In addition, there was a negative correlation between carbohydrate intake and Faecalibacterium (P<0.05). CONCLUSIONS Our study is the first to reveal the microbiota profile of professional Turkish football players. It was found that football players' nutritional status and anthropometric measurements of are significantly related to phylum, genus and species ranks in the microbiota. These results support the bidirectional interaction between microbiota and sports. The relationship between microbiota and sports health/performance is thought to be further clarified with future studies.
Collapse
Affiliation(s)
- Emre B Kenger
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bahcesehir University, Istanbul, Türkiye -
| | - Fatih Eren
- Institute of Gastroenterology, Marmara University, Istanbul, Türkiye
| | - Tugce Ozlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bahcesehir University, Istanbul, Türkiye
| | - Fatma E Gunes
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Medeniyet University, Istanbul, Türkiye
| |
Collapse
|
14
|
Waitayangkoon P, Charoenngam N, Ratchataswan T, Ponvilawan B, Jaroenlapnopparat A, Ungprasert P. Increased Risk of Systemic Lupus Erythematosus in Patients with Chronic Urticaria: A Systematic Review and Meta-analysis. Mediterr J Rheumatol 2023; 34:121-128. [PMID: 37654642 PMCID: PMC10466354 DOI: 10.31138/mjr.34.2.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 09/02/2023] Open
Abstract
Introduction The association between systemic lupus erythematosus (SLE) and chronic urticaria (CU) has been suggested in the literature although the amount of evidence is still relatively limited. We aimed to combine all available studies on this association using systematic review and meta-analysis technique. Methods Potentially eligible studies were identified from Medline and EMBASE from inception to February 2023 using search strategy that comprised of terms for "chronic urticaria" and "systemic lupus erythematosus". The eligible study must consist of one group of patients with CU and another group of comparators without CU and must compare the prevalence of SLE in each group and report effect size with 95% confidence intervals (95% CIs). We extracted such data from each study to calculate a pooled odds ratio using the generic inverse variance method with random-effect model. Funnel plot was used to evaluate publication bias. Newcastle-Ottawa Scale was used to appraise the methodological quality of the included studies. Results A total of 5,155 articles were identified. After two rounds of independent review by four investigators, five studies met the eligibility criteria and were included in the meta-analysis. The meta-analysis found an increased prevalence of SLE among patients with CU compared with individuals without CU with the pooled odds ratio of 5.03 (95% CI, 2.57-9.85, I2 of 93%). Conclusion This systematic review and meta-analysis found that patients with CU had a significantly increased risk of SLE compared to individuals without CU.
Collapse
Affiliation(s)
- Palapun Waitayangkoon
- Department of Medicine, MetroWest Medical Center, Tufts University School of Medicine, Framingham, MA, United States of America
| | - Nipith Charoenngam
- Department of Medicine, Mount Auburn Hospital/Beth Israel Lahey Health, Harvard Medical School, Cambridge, MA, United States of America
| | - Thanaporn Ratchataswan
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Ben Ponvilawan
- Department of Internal Medicine, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, United States of America
| | - Aunchalee Jaroenlapnopparat
- Department of Medicine, Mount Auburn Hospital/Beth Israel Lahey Health, Harvard Medical School, Cambridge, MA, United States of America
| | - Patompong Ungprasert
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| |
Collapse
|
15
|
Czaja AJ. Incorporating the Molecular Mimicry of Environmental Antigens into the Causality of Autoimmune Hepatitis. Dig Dis Sci 2023:10.1007/s10620-023-07967-5. [PMID: 37160542 PMCID: PMC10169207 DOI: 10.1007/s10620-023-07967-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Molecular mimicry between foreign and self-antigens has been implicated as a cause of autoimmune hepatitis in experimental models and cross-reacting antibodies in patients. This review describes the experimental and clinical evidence for molecular mimicry as a cause of autoimmune hepatitis, indicates the limitations and uncertainties of this premise, and encourages investigations that assess diverse environmental antigens as sources of disease-relevant molecular mimics. Pertinent articles were identified in PubMed using multiple search phrases. Several pathogens have linear or conformational epitopes that mimic the self-antigens of autoimmune hepatitis. The occurrence of an acute immune-mediated hepatitis after vaccination for severe acute respiratory syndrome (SARS)-associated coronavirus 2 (SARS-CoV-2) has suggested that vaccine-induced peptides may mimic disease-relevant tissue antigens. The intestinal microbiome is an under-evaluated source of gut-derived antigens that could also engage in molecular mimicry. Chaperone molecules may enhance the pathogenicity of molecular mimics, and they warrant investigation. Molecular mimics of immune dominant epitopes within cytochrome P450 IID6, the autoantigen most closely associated with autoimmune hepatitis, should be sought in diverse environmental antigens and assessed for pathogenicity. Avoidance strategies, dietary adjustments, vaccine improvement, and targeted manipulation of the intestinal microbiota may emerge as therapeutic possibilities. In conclusion, molecular mimicry may be a missing causality of autoimmune hepatitis. Molecular mimics of key immune dominant epitopes of disease-specific antigens must be sought in diverse environmental antigens. The ubiquity of molecular mimicry compels rigorous assessments of peptide mimics for immunogenicity and pathogenicity in experimental models. Molecular mimicry may complement epigenetic modifications as causative mechanisms of autoimmune hepatitis.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
16
|
Pedone M, Amedei A, Stingo FC. Subject-specific Dirichlet-multinomial regression for multi-district microbiota data analysis. Ann Appl Stat 2023. [DOI: 10.1214/22-aoas1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Matteo Pedone
- Department of Statistics, Computer Science, Applications, University of Florence
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence
| | - Francesco C. Stingo
- Department of Statistics, Computer Science, Applications, University of Florence
| |
Collapse
|
17
|
Toumi E, Mezouar S, Plauzolles A, Chiche L, Bardin N, Halfon P, Mege JL. Gut microbiota in SLE: from animal models to clinical evidence and pharmacological perspectives. Lupus Sci Med 2023; 10:10/1/e000776. [PMID: 36813473 PMCID: PMC9950977 DOI: 10.1136/lupus-2022-000776] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/16/2022] [Indexed: 02/24/2023]
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease driven by complex interactions between genetics and environmental factors. SLE is characterised by breaking self-immune tolerance and autoantibody production that triggers inflammation and damage of multiple organs. Given the highly heterogeneous nature of SLE, the treatments currently used are still not satisfactory with considerable side effects, and the development of new therapies is a major health issue for better patient management. In this context, mouse models significantly contribute to our knowledge of the pathogenesis of SLE and are an invaluable tool for testing novel therapeutic targets. Here, we discuss the role of the most used SLE mouse models and their contribution to therapeutic improvement. Considering the complexity of developing targeted therapies for SLE, adjuvant therapies are also increasingly proposed. Indeed, murine and human studies have recently revealed that gut microbiota is a potential target and holds great promises for successful new SLE therapies. However, the mechanisms of gut microbiota dysbiosis in SLE remain unclear to date. In this review, we propose an inventory of existing studies investigating the relationship between gut microbiota dysbiosis and SLE to establish microbiome signature that may serve as a potential biomarker of the disease and its severity as well as a new potential therapy target. This approach may open new possibilities for early diagnosis, prevention and therapeutic perspectives of SLE based on gut microbiome.
Collapse
Affiliation(s)
- Eya Toumi
- Aix-Marseille Univ, MEPHI, IRD, APHM, Marseille, France .,IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France.,R&D Department, Laboratoire Alphabio, Marseille, France
| | - Soraya Mezouar
- Aix-Marseille Univ, MEPHI, IRD, APHM, Marseille, France,IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France,Aix Marseille Univ, EFS, CNRS, ADES, 'Biologie des Groupes Sanguins', Marseille, France
| | | | - Laurent Chiche
- Infectious and Internal Medicine Department, Hôpital Européen Marseille, Marseille, France
| | - Nathalie Bardin
- Immunology Department, Hopital de la Conception, Marseille, France
| | - Philippe Halfon
- Aix-Marseille Univ, MEPHI, IRD, APHM, Marseille, France,IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France,R&D Department, Laboratoire Alphabio, Marseille, France,Infectious and Internal Medicine Department, Hôpital Européen Marseille, Marseille, France
| | - Jean Louis Mege
- Aix-Marseille Univ, MEPHI, IRD, APHM, Marseille, France,IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France,Immunology Department, Hopital de la Conception, Marseille, France
| |
Collapse
|
18
|
Harsini S, Rezaei N. Autoimmune diseases. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
PPARγ Gene as a Possible Link between Acquired and Congenital Lipodystrophy and its Modulation by Dietary Fatty Acids. Nutrients 2022; 14:nu14224742. [PMID: 36432429 PMCID: PMC9693235 DOI: 10.3390/nu14224742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Lipodystrophy syndromes are rare diseases that could be of genetic or acquired origin. The main complication of lipodystrophy is the dysfunction of adipose tissue, which leads to an ectopic accumulation of triglycerides in tissues such as the liver, pancreas and skeletal muscle. This abnormal fat distribution is associated with hypertriglyceridemia, insulin resistance, liver steatosis, cardiomyopathies and chronic inflammation. Although the origin of acquired lipodystrophies remains unclear, patients show alterations in genes related to genetic lipodystrophy, suggesting that this disease could be improved or aggravated by orchestrating gene activity, for example by diet. Nowadays, the main reason for adipose tissue dysfunction is an imbalance in metabolism, caused in other pathologies associated with adipose tissue dysfunction by high-fat diets. However, not all dietary fats have the same health implications. Therefore, this article aims to summarize the main genes involved in the pathophysiology of lipodystrophy, identify connections between them and provide a systematic review of studies published between January 2017 and January 2022 of the dietary fats that can modulate the development of lipodystrophy through transcriptional regulation or the regulation of protein expression in adipocytes.
Collapse
|
20
|
Characterization of the nasopharyngeal microbiome in patients with Kawasaki disease. An Pediatr (Barc) 2022; 97:300-309. [DOI: 10.1016/j.anpede.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/16/2021] [Indexed: 11/07/2022] Open
|
21
|
Goubran H, Ragab G, Seghatchian J, Burnouf T. Blood transfusion in autoimmune rheumatic diseases. Transfus Apher Sci 2022; 61:103596. [DOI: 10.1016/j.transci.2022.103596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Shahi SK, Yadav M, Ghimire S, Mangalam AK. Role of the gut microbiome in multiple sclerosis: From etiology to therapeutics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 167:185-215. [PMID: 36427955 DOI: 10.1016/bs.irn.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS that affects around one million people in the United States. Predisposition or protection from this disease is linked with both genetic and environmental factors. In recent years, gut microbiome has emerged as an important environmental factor in the pathobiology of MS. The gut microbiome supports various physiologic functions, including the development and maintenance of the host immune system, the perturbation of which is known as dysbiosis and has been linked with multiple diseases including MS. We and others have shown that people with MS (PwMS) have gut dysbiosis that is characterized by specific gut bacteria being enriched or depleted. Consequently, there is an emphasis on determining the mechanism(s) through which gut bacteria and/or their metabolites alter the course of MS through their ability to provide protection, predispose individuals, or promote disease progression. Improving our understanding of these mechanisms will allow us to harness the enormous potential of the gut microbiome as a diagnostic and/or therapeutic agent. In this chapter, we will discuss current advances in microbiome research in the context of MS, including a review of specific bacteria that are currently linked with this disease, potential mechanisms of disease pathogenesis, and the utility of microbiome-based therapy for PwMS.
Collapse
Affiliation(s)
- Shailesh K Shahi
- Department of Pathology, University of Iowa, Iowa City, IA, United States; Iowa City VA Health System, Iowa City, IA, United States
| | - Meeta Yadav
- Department of Pathology, University of Iowa, Iowa City, IA, United States; Iowa City VA Health System, Iowa City, IA, United States
| | - Sudeep Ghimire
- Department of Pathology, University of Iowa, Iowa City, IA, United States; Iowa City VA Health System, Iowa City, IA, United States
| | - Ashutosh K Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA, United States; Iowa City VA Health System, Iowa City, IA, United States.
| |
Collapse
|
23
|
La Barbera L, Macaluso F, Fasano S, Grasso G, Ciccia F, Guggino G. Microbiome Changes in Connective Tissue Diseases and Vasculitis: Focus on Metabolism and Inflammation. Int J Mol Sci 2022; 23:ijms23126532. [PMID: 35742974 PMCID: PMC9224234 DOI: 10.3390/ijms23126532] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
The microbial community acts as an active player in maintaining homeostasis and immune functions through a continuous and changeable cross-talk with the host immune system. Emerging evidence suggests that altered microbial composition, known as dysbiosis, might perturb the delicate balance between the microbiota and the immune system, triggering inflammation and potentially contributing to the pathogenesis and development of chronic inflammatory diseases. This review will summarize the current evidence about the microbiome-immunity cross-talk, especially focusing on the microbiota alterations described in patients with rheumatic diseases and on the recent findings concerning the interaction between microbiota, metabolic function, and the immune system.
Collapse
Affiliation(s)
- Lidia La Barbera
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (L.L.B.); (G.G.)
| | - Federica Macaluso
- Rheumatology Unit, Department of Internal Medicine, University of Modena and Reggio Emilia, AUSL-IRCCS, Via Giovanni Amendola, 2, 42122 Reggio Emilia, Italy;
- Division of Rheumatology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, S. Andrea delle Dame, Via L. De Crecchio 7, 80138 Naples, Italy; (S.F.); (F.C.)
| | - Serena Fasano
- Division of Rheumatology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, S. Andrea delle Dame, Via L. De Crecchio 7, 80138 Naples, Italy; (S.F.); (F.C.)
| | - Giulia Grasso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (L.L.B.); (G.G.)
| | - Francesco Ciccia
- Division of Rheumatology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, S. Andrea delle Dame, Via L. De Crecchio 7, 80138 Naples, Italy; (S.F.); (F.C.)
| | - Giuliana Guggino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (L.L.B.); (G.G.)
- Correspondence: ; Tel.: +39-091-655-2148
| |
Collapse
|
24
|
Sánchez-Manubens J, Henares D, Muñoz-Almagro C, Brotons de los Reyes P, Timoneda N, Antón J. Caracterización del microbioma nasofaríngeo en pacientes con enfermedad de Kawasaki. An Pediatr (Barc) 2022. [DOI: 10.1016/j.anpedi.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
25
|
Impact of Nutritional Profile on Gut Microbiota Diversity in Patients with Celiac Disease. Curr Microbiol 2022; 79:129. [PMID: 35286507 DOI: 10.1007/s00284-022-02820-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/21/2022] [Indexed: 12/14/2022]
Abstract
The pathogenesis of celiac disease (CD) is significantly influenced by gut microbiota. Daily nutritional profile influences the diversity of gut microbiota. This study was aimed to compare the abundance of gut microbiota in CD patients compared to normal control (NC), and to investigate the impact of nutritional factors on their fecal microbiota diversity. In this study, a selected panel of intestinal bacteria was assessed in 31 confirmed CD patients adhering to gluten-free diet (GFD) for more than 6 months and in 20 NC subjects. Stool samples were collected from each participant, DNA was extracted, and absolute quantitative real-time PCR (qPCR) was carried out. The gut microbiota including Bacteroidetes, Bifidobacterium, Clostridium, Staphylococcus, Enterobacteiaceae, Firmicutes, and Lactobacillus were assessed. The quantities of fruits, vegetables, meat, liquids, sugar and gluten-free candy/bread consumption were evaluated using a questionnaire. The proportion of Bifidobacterium, Firmicutes, and Lactobacillus in CD cases was significantly lower than NC (P < 0.005). Significant correlation coefficients between Bifidobacterium and Lactobacillus (P < 0.001), and also Firmicutes and Lactobacillus (P < 0.001) were recorded. Moreover, a significant association between medium amount of meat and bean consumptions and low abundance of Lactobacillus and Firmicutes (P = 0.024 and P = 0.027, respectively), and also high amount of bean consumptions and low abundance of Lactobacillus (P = 0.027) in CD were observed. The results showed that meat and bean consumptions could reduce the beneficial bacteria including Firmicutes and Lactobacillus in CD patients. Therefore, changes in the gut microbiota abundance may contribute to dietary changes and unimproved CD symptoms.
Collapse
|
26
|
Feng HY, Chan CH, Chu YC, Qu XM, Wang YH, Wei JCC. Patients with ankylosing spondylitis have high risk of irritable bowel syndrome. A long-term nationwide population-based cohort study. Postgrad Med 2022; 134:290-296. [PMID: 35139724 DOI: 10.1080/00325481.2022.2041338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Ankylosing spondylitis (AS) is a chronic inflammatory disease, might carry a high risk of irritable bowel syndrome (IBS) due to abnormal gut microbiota or inflammatory reaction. METHODS We conducted a 14-year retrospective cohort study based on Taiwan's National Health Insurance Research Database (NHIRD). A total of 4007 patients with newly diagnosed AS (outpatient visits≧3 times, or hospitalization≧1 time) and 988,084 non-AS comparisons were enrolled during 2000-2012. To ensure baseline comparability, the propensity score was matched by age, gender, comorbidities, and other possible confounders. The outcome was the incidence of IBS, followed up to the end of 2013. Cox proportional hazard model calculated adjusted hazard ratio (aHR) and the cumulative incidence of both groups was analyzed by the Kaplan-Meier method. RESULT After propensity score matching, baseline demographic characteristics were comparable between AS patients and the comparison group. The crude HR for IBS in the AS group was significantly higher 2.41 (95%C.I. =1.84-3.16) than comparison group. After adjusting for possible confounders, adjusted HR was 2.50 (95%C.I.=1.91-3.29). The cumulative incidence of IBS in AS was significantly higher than non-AS comparisons during the 14-year follow-up (P<0.001). CONCLUSION This nationwide population-based cohort study showed that patients with AS have higher risks of IBS than those of the non-AS comparison group.
Collapse
Affiliation(s)
- Hao-Yuan Feng
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chi-Ho Chan
- Department of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yu-Cheng Chu
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Xin-Man Qu
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yu-Hsun Wang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - James Cheng-Chung Wei
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan.,Department of Allergy, Immunology & Rheumatology, Chung Shan Medical University Hospital, Taichung 402, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung 402, Taiwan
| |
Collapse
|
27
|
Cantoni C, Lin Q, Dorsett Y, Ghezzi L, Liu Z, Pan Y, Chen K, Han Y, Li Z, Xiao H, Gormley M, Liu Y, Bokoliya S, Panier H, Suther C, Evans E, Deng L, Locca A, Mikesell R, Obert K, Newland P, Wu Y, Salter A, Cross AH, Tarr PI, Lovett-Racke A, Piccio L, Zhou Y. Alterations of host-gut microbiome interactions in multiple sclerosis. EBioMedicine 2022; 76:103798. [PMID: 35094961 PMCID: PMC8814376 DOI: 10.1016/j.ebiom.2021.103798] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/24/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
Background Multiple sclerosis (MS) has a complex genetic, immune and metabolic pathophysiology. Recent studies implicated the gut microbiome in MS pathogenesis. However, interactions between the microbiome and host immune system, metabolism and diet have not been studied over time in this disorder. Methods We performed a six-month longitudinal multi-omics study of 49 participants (24 untreated relapse remitting MS patients and 25 age, sex, race matched healthy control individuals. Gut microbiome composition and function were characterized using 16S and metagenomic shotgun sequencing. Flow cytometry was used to characterize blood immune cell populations and cytokine profiles. Circulating metabolites were profiled by untargeted UPLC-MS. A four-day food diary was recorded to capture the habitual dietary pattern of study participants. Findings Together with changes in blood immune cells, metagenomic analysis identified a number of gut microbiota decreased in MS patients compared to healthy controls, and microbiota positively or negatively correlated with degree of disability in MS patients. MS patients demonstrated perturbations of their blood metabolome, such as linoleate metabolic pathway, fatty acid biosynthesis, chalcone, dihydrochalcone, 4-nitrocatechol and methionine. Global correlations between multi-omics demonstrated a disrupted immune-microbiome relationship and a positive blood metabolome-microbiome correlation in MS. Specific feature association analysis identified a potential correlation network linking meat servings with decreased gut microbe B. thetaiotaomicron, increased Th17 cell and greater abundance of meat-associated blood metabolites. The microbiome and metabolome profiles remained stable over six months in MS and control individuals. Interpretation Our study identified multi-system alterations in gut microbiota, immune and blood metabolome of MS patients at global and individual feature level. Multi-OMICS data integration deciphered a potential important biological network that links meat intakes with increased meat-associated blood metabolite, decreased polysaccharides digesting bacteria, and increased circulating proinflammatory marker. Funding This work was supported by the Washington University in St. Louis Institute of Clinical and Translational Sciences, funded, in part, by Grant Number # UL1 TR000448 from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award (Zhou Y, Piccio, L, Lovett-Racke A and Tarr PI); R01 NS10263304 (Zhou Y, Piccio L); the Leon and Harriet Felman Fund for Human MS Research (Piccio L and Cross AH). Cantoni C. was supported by the National MS Society Career Transition Fellowship (TA-180531003) and by donations from Whitelaw Terry, Jr. / Valerie Terry Fund. Ghezzi L. was supported by the Italian Multiple Sclerosis Society research fellowship (FISM 2018/B/1) and the National Multiple Sclerosis Society Post-Doctoral Fellowship (FG-190734474). Anne Cross was supported by The Manny & Rosalyn Rosenthal-Dr. John L. Trotter MS Center Chair in Neuroimmunology of the Barnes-Jewish Hospital Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qingqi Lin
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Yair Dorsett
- Department of Medicine, UConn Health, Farmington, CT, USA
| | - Laura Ghezzi
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Dino Ferrari Center, University of Milan, Milan, Italy
| | - Zhongmao Liu
- Department of Statistics, University of Connecticut, Storrs, CT USA
| | - Yeming Pan
- Department of Statistics, University of Connecticut, Storrs, CT USA
| | - Kun Chen
- Department of Statistics, University of Connecticut, Storrs, CT USA
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts USA
| | - Zhengze Li
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts USA
| | - Matthew Gormley
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Yue Liu
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | | | - Hunter Panier
- Department of Medicine, UConn Health, Farmington, CT, USA
| | - Cassandra Suther
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts USA
| | - Emily Evans
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Li Deng
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Alberto Locca
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert Mikesell
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathleen Obert
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pamela Newland
- Barnes Jewish College, Goldfarb School of Nursing, St. Louis, MO, USA
| | - Yufeng Wu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Amber Salter
- Division of Biostatistics, School of Medicine, Washington University, St. Louis, MO, USA
| | - Anne H Cross
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Phillip I Tarr
- Departments of Pediatrics and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy Lovett-Racke
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia.
| | - Yanjiao Zhou
- Department of Medicine, UConn Health, Farmington, CT, USA.
| |
Collapse
|
28
|
Hou J, Tang Y, Chen Y, Chen D. The Role of the Microbiota in Graves' Disease and Graves' Orbitopathy. Front Cell Infect Microbiol 2022; 11:739707. [PMID: 35004341 PMCID: PMC8727912 DOI: 10.3389/fcimb.2021.739707] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023] Open
Abstract
Graves' disease (GD) is a clinical syndrome with an enlarged and overactive thyroid gland, an accelerated heart rate, Graves' orbitopathy (GO), and pretibial myxedema (PTM). GO is the most common extrathyroidal complication of GD. GD/GO has a significant negative impact on the quality of life. GD is the most common systemic autoimmune disorder, mediated by autoantibodies to the thyroid-stimulating hormone receptor (TSHR). It is generally accepted that GD/GO results from complex interactions between genetic and environmental factors that lead to the loss of immune tolerance to thyroid antigens. However, the exact mechanism is still elusive. Systematic investigations into GD/GO animal models and clinical patients have provided important new insight into these disorders during the past 4 years. These studies suggested that gut microbiota may play an essential role in the pathogenesis of GD/GO. Antibiotic vancomycin can reduce disease severity, but fecal material transfer (FMT) from GD/GO patients exaggerates the disease in GD/GO mouse models. There are significant differences in microbiota composition between GD/GO patients and healthy controls. Lactobacillus, Prevotella, and Veillonella often increase in GD patients. The commonly used therapeutic agents for GD/GO can also affect the gut microbiota. Antigenic mimicry and the imbalance of T helper 17 cells (Th17)/regulatory T cells (Tregs) are the primary mechanisms proposed for dysbiosis in GD/GO. Interventions including antibiotics, probiotics, and diet modification that modulate the gut microbiota have been actively investigated in preclinical models and, to some extent, in clinical settings, such as probiotics (Bifidobacterium longum) and selenium supplements. Future studies will reveal molecular pathways linking gut and thyroid functions and how they impact orbital autoimmunity. Microbiota-targeting therapeutics will likely be an essential strategy in managing GD/GO in the coming years.
Collapse
Affiliation(s)
- Jueyu Hou
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yunjing Tang
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Danian Chen
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Etchegaray-Morales I, Jiménez-Herrera EA, Mendoza-Pinto C, Rojas-Villarraga A, Macías-Díaz S, Osorio-Peña ÁD, Munguía-Realpozo P, García-Carrasco M. Helicobacter pylori and its association with autoimmune diseases: systemic lupus erythematosus, rheumatoid arthritis and Sjögren syndrome. J Transl Autoimmun 2021; 4:100135. [PMID: 34825158 PMCID: PMC8605081 DOI: 10.1016/j.jtauto.2021.100135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a gram-negative bacterium that adapts to the gastric mucosa and provokes symptoms associated with gastritis. Chronic H. pylori infection in patients with a genetic predisposition can trigger autoimmune diseases due to the immune interaction of cellular and humoral responses. Infections are a triggering factor for systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and Sjögren syndrome (SS), although the association between H. pylori and these diseases is unclear. Therefore, we reviewed this interaction and its clinical importance.
Collapse
Affiliation(s)
- Ivet Etchegaray-Morales
- Department of Rheumatology, Medicine School, Meritorious Autonomous University of Puebla, 13 Sur 2702, 72420, Puebla, Mexico
| | | | - Claudia Mendoza-Pinto
- Department of Rheumatology, Medicine School, Meritorious Autonomous University of Puebla, 13 Sur 2702, 72420, Puebla, Mexico
- Systemic Autoimmune Diseases Research, Unit of Specialties, Hospital UMAE, Mexican Social Security Institute, 2 Norte 2004, 72000, Puebla, Mexico
| | - Adriana Rojas-Villarraga
- Research Institute, Fundación Universitaria De Ciencias De La Salud, University of Health Sciences, Cra. 19 N 8a-32, Bogota, Colombia
| | - Salvador Macías-Díaz
- Internal Medicine Service, Hospital General de Zona N°1, Instituto Mexicano del Seguro Social, Avenida Francisco I. Madero 407, 42070, Hidalgo, Mexico
- Department of Medical Oncology. Medicine School. Meritorious Autonomous University of Puebla, 13 Sur 2702, 72420, Puebla, Mexico
| | - Ángel David Osorio-Peña
- Department of Rheumatology, Medicine School, Meritorious Autonomous University of Puebla, 13 Sur 2702, 72420, Puebla, Mexico
| | - Pamela Munguía-Realpozo
- Department of Rheumatology, Medicine School, Meritorious Autonomous University of Puebla, 13 Sur 2702, 72420, Puebla, Mexico
| | - Mario García-Carrasco
- Department of Rheumatology, Medicine School, Meritorious Autonomous University of Puebla, 13 Sur 2702, 72420, Puebla, Mexico
- Corresponding author.
| |
Collapse
|
30
|
Impact of Body Mass Index on the Age of Relapsing-Remitting Multiple Sclerosis Onset: A Retrospective Study. Neurol Int 2021; 13:517-526. [PMID: 34698268 PMCID: PMC8544404 DOI: 10.3390/neurolint13040051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022] Open
Abstract
A BACKROUND: Multiple sclerosis (MS) is a complex chronic disease of the central nervous system (CNS). Body mass index (BMI), a component of metabolic syndrome (MetS), is considered among the risk factors for MS. However, its role in MS remains ambiguous. OBJECTIVE: To examine the impact of BMI on the age of onset in patients with relapsing-remitting MS (RRMS) in a Greek cohort. METHODS: Data from 821 Greek patients with RRMS were collected. The BMI values were considered as quartiles. Comparisons for the demographic characteristics between the quartiles were made by Pearson’s chi-square test for the categorical variables and by ANOVA for the continuous variables. An overall p-value was calculated corresponding to trend for association. In case of significant association, further post-hoc analysis was performed in order to identify differences in demographic characteristics between specific BMI quartiles groups. Linear regression analyses were used to assess the relationship between BMI and age at onset of MS. RESULTS: Comparisons of participant characteristics by quartiles of BMI revealed that participants with the highest BMI had an older age of disease onset. Results from linear regression analysis showed that with each increase of 1 BMI unit, the age of RRMS onset increases by 0.255 (95% CI 0.136 to 0.374) years, p < 0.001. CONCLUSIONS: Patients with higher BMI, as a parameter of MetS, exhibit increased age of RRMS onset. Our results may present an alternative personalized approach for diagnosis, prognosis, and/or prevention of RRMS.
Collapse
|
31
|
Nguyen MH, Pham TTM, Vu DN, Do BN, Nguyen HC, Duong TH, Pham KM, Pham LV, Nguyen TTP, Tran CQ, Nguyen QH, Hoang TM, Tran KV, Duong TT, Yang SH, Bai CH, Duong TV. Single and Combinative Impacts of Healthy Eating Behavior and Physical Activity on COVID-19-like Symptoms among Outpatients: A Multi-Hospital and Health Center Survey. Nutrients 2021; 13:3258. [PMID: 34579134 PMCID: PMC8465237 DOI: 10.3390/nu13093258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Healthy eating and physical activity are effective non-pharmacological approaches to boost immune function and contain the pandemic. We aimed to explore the associations and interactions between physical activity and healthy eating behavior with COVID-19-like symptoms (Slike-CV19S). METHODS A cross-sectional study was conducted on 3947 outpatients, from 14 February to 2 March 2020, at nine health facilities in Vietnam. Data collection included sociodemographic characteristics, healthy eating behavior (using the healthy eating score (HES) questionnaire), physical activity (using the short form international physical activity questionnaire), and Slike-CV19S. The associations and interactions were tested using logistic regression models. RESULTS Frequent intake of fruits (OR = 0.84; p = 0.016), vegetables (OR = 0.72; p = 0.036), and fish (OR = 0.43; p < 0.001) were associated with a lower Slike-CV19S likelihood, as compared with infrequent intake. Patients with higher HES levels (OR = 0.84; p = 0.033 for medium HES; OR = 0.77; p = 0.006 for high HES) or being physically active (OR = 0.69; p < 0.001) had a lower Slike-CV19S likelihood, as compared to those with low HES or physical inactivity, respectively. Patients with medium HES who were physically active (OR = 0.69; p = 0.005), or with high HES and physically active (OR = 0.58; p < 0.001), had a lower Slike-CV19S likelihood, as compared to those with low HES and physical inactivity. CONCLUSIONS Healthy eating behavior and physical activity showed single and combinative impacts on protecting people from Slike-CV19S. Strategic approaches are encouraged to improve healthy behaviors, which may further contribute to containing the pandemic.
Collapse
Affiliation(s)
- Minh H. Nguyen
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110-31, Taiwan;
| | - Thu T. M. Pham
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong 042-12, Vietnam; (T.T.M.P.); (K.M.P.)
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 110-31, Taiwan
| | - Dinh N. Vu
- Director Office, Military Hospital 103, Hanoi 121-08, Vietnam;
- Department of Trauma and Orthopedic Surgery, Vietnam Military Medical University, Hanoi 121-08, Vietnam
| | - Binh N. Do
- Department of Infectious Diseases, Vietnam Military Medical University, Hanoi 121-08, Vietnam;
- Division of Military Science, Military Hospital 103, Hanoi 121-08, Vietnam
| | - Hoang C. Nguyen
- Director Office, Thai Nguyen National Hospital, Thai Nguyen City 241-24, Vietnam; (H.C.N.); (T.H.D.)
- President Office, Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen City 241-17, Vietnam
| | - Thai H. Duong
- Director Office, Thai Nguyen National Hospital, Thai Nguyen City 241-24, Vietnam; (H.C.N.); (T.H.D.)
- Department of Internal Medicine, Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen City 241-17, Vietnam
| | - Khue M. Pham
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong 042-12, Vietnam; (T.T.M.P.); (K.M.P.)
- President Office, Hai Phong University of Medicine and Pharmacy, Hai Phong 042-12, Vietnam
| | - Linh V. Pham
- Department of Pulmonary & Cardiovascular Diseases, Hai Phong University of Medicine and Pharmacy Hospital, Hai Phong 042-12, Vietnam;
- Director Office, Hai Phong University of Medicine and Pharmacy Hospital, Hai Phong 042-12, Vietnam
| | - Thao T. P. Nguyen
- Health Management Training Institute, University of Medicine and Pharmacy, Hue University, Thua Thien Hue 491-20, Vietnam;
| | - Cuong Q. Tran
- Director Office, Thu Duc City Health Center, Ho Chi Minh City 713-10, Vietnam;
- Faculty of Health, Mekong University, Vinh Long 852-16, Vietnam
| | - Quyen H. Nguyen
- Department of Anesthesiology, Thu Duc City Hospital, Ho Chi Minh City 713-11, Vietnam; (Q.H.N.); (T.M.H.)
| | - Thanh M. Hoang
- Department of Anesthesiology, Thu Duc City Hospital, Ho Chi Minh City 713-11, Vietnam; (Q.H.N.); (T.M.H.)
| | - Khanh V. Tran
- Director Office, Le Van Thinh Hospital (Previously Hospital District 2), Ho Chi Minh City 711-13, Vietnam;
| | - Trang T. Duong
- Nursing Office, Tan Phu District Hospital, Ho Chi Minh City 720-16, Vietnam;
| | - Shwu-Huey Yang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110-31, Taiwan;
- Research Center of Geriatric Nutrition, Taipei Medical University, Taipei 110-31, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110-31, Taiwan
| | - Chyi-Huey Bai
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110-31, Taiwan;
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 110-31, Taiwan
- Department of Public Health, College of Medicine, Taipei Medical University, Taipei 110-31, Taiwan
| | - Tuyen Van Duong
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110-31, Taiwan;
| |
Collapse
|
32
|
Zhang J, Xia Y, Sun J. Breast and gut microbiome in health and cancer. Genes Dis 2021; 8:581-589. [PMID: 34291130 PMCID: PMC8278537 DOI: 10.1016/j.gendis.2020.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/19/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
The microbiota plays essential roles in health and disease, in both the intestine and the extra-intestine. Dysbiosis of the gut microbiota causes dysfunction in the intestine, which leads to inflammatory, immune, and infectious diseases. Dysbiosis is also associated with diseases beyond the intestine via microbial translocation or metabolisms. The in situ breast microbiome, which may be sourced from the gut through lactation and sexual contact, could be altered and cause breast diseases. In this review, we summarize the recent progress in understanding the interactions among the gut microbiome, breast microbiome, and breast diseases. We discuss the intestinal microbiota, microbial metabolites, and roles of microbiota in immune system. We emphasize the novel roles and mechanisms of the microbiome (both in situ and gastrointestinal sourced) and bacterial products in the development and progression of breast cancer. The intestinal microbial translocation suggests that the gut microbiome is translocated to the skin and subsequently to the breast tissue. The gut bacterial translocation is also due to the increased intestinal permeability. The breast and intestinal microbiota are important factors in maintaining healthy breasts. Micronutrition queuine (Q) is derived from a de novo synthesized metabolite in bacteria. All human cells use queuine and incorporate it into the wobble anticodon position of specific transfer RNAs. We have demonstrated that Q modification regulates genes critical in tight junctions and migration in human breast cancer cells and a breast tumor model. We further discuss the challenges and future perspectives that can move the field forward for prevention, diagnosis, and treatment of breast diseases.
Collapse
Affiliation(s)
- Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
33
|
Pham T, Sokol H, Halioua B, Pourcel G, Brun M, Pain E, Testa D. Immune-mediated inflammatory diseases and nutrition: results from an online survey on patients' practices and perceptions. BMC Nutr 2021; 7:38. [PMID: 34266484 PMCID: PMC8283994 DOI: 10.1186/s40795-021-00446-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Background The central role of microbiota and the contribution of diet in immune-mediated inflammatory diseases (IMID) are increasingly examined. However, patients’ perspectives on nutrition and its impact on their disease has not received a lot of attention. We aimed to directly collect information from patients with IMID about their dietary behaviors and their perceptions of the influence of nutrition on their disease. Methods Adult patients with rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis, Crohn’s disease, ulcerative colitis or psoriasis registered in an online patient community were invited to participate in the study and complete an online self-administered questionnaire. We assessed patients’ dietary knowledge and choices by collecting information on the diet regimens they were following or recommended and their perceptions of the diet and its consequences on their disease. Results Fifty patients per target disease were included with a mean age of 48.1 years (95%CI 46.7–49.6). Other sociodemographic and clinical characteristics varied across the diseases. Since diagnosis, 44% of the patients changed their eating habits, mainly patients with inflammatory bowel disease with 69% of these making the change on their own initiative. Patients who did not change their diet habits reported not having received nutritional advice from their healthcare professionals (HCP) in 69% of the cases. The perceived impact of nutrition on their symptoms was mixed (overall 74% of the patients reported positive consequences and 60% negative ones) and varied across the diseases. Patients with psoriasis only experienced positive consequences from changing their diet, such as reduction of stress and improved mental health, while patients with Crohn’s disease reported more negative effects such as increased fatigue and disturbed sleep. Patients with rheumatic diseases and ulcerative colitis reported weight loss and better physical fitness, but also increased fatigue. Conclusions Even if differences exist across diseases, the importance of nutrition and its potential positive role in symptom management is acknowledged by the majority of the patients. However, there is a need and a demand from patients to receive more dietary advice. Developing therapeutic education tools on nutrition for people with IMID and involving patients’ organizations would provide useful information and encourage communication between HCP and patients.
Collapse
Affiliation(s)
- Thao Pham
- Service de rhumatologie, Hôpital Sainte-Marguerite, Aix Marseille Univ, Assistance publique - Hôpitaux de Marseille, Marseille, France
| | - Harry Sokol
- Gastroenterology department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, 75012, Paris, France.,INRAE, UMR1319 Micalis & AgroParisTech, 78350, Jouy en Josas, France
| | | | | | | | - Emilie Pain
- Carenity, Communauté de patients en ligne, Paris, France.
| | - Damien Testa
- Carenity, Communauté de patients en ligne, Paris, France
| |
Collapse
|
34
|
Han Y, Gong Z, Sun G, Xu J, Qi C, Sun W, Jiang H, Cao P, Ju H. Dysbiosis of Gut Microbiota in Patients With Acute Myocardial Infarction. Front Microbiol 2021; 12:680101. [PMID: 34295318 PMCID: PMC8290895 DOI: 10.3389/fmicb.2021.680101] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/17/2021] [Indexed: 01/12/2023] Open
Abstract
Acute myocardial infarction (AMI) continues as the main cause of morbidity and mortality worldwide. Interestingly, emerging evidence highlights the role of gut microbiota in regulating the pathogenesis of coronary heart disease, but few studies have systematically assessed the alterations and influence of gut microbiota in AMI patients. As one approach to address this deficiency, in this study the composition of fecal microflora was determined from Chinese AMI patients and links between gut microflora and clinical features and functional pathways of AMI were assessed. Fecal samples from 30 AMI patients and 30 healthy controls were collected to identify the gut microbiota composition and the alterations using bacterial 16S rRNA gene sequencing. We found that gut microflora in AMI patients contained a lower abundance of the phylum Firmicutes and a slightly higher abundance of the phylum Bacteroidetes compared to the healthy controls. Chao1 (P = 0.0472) and PD-whole-tree (P = 0.0426) indices were significantly lower in the AMI versus control group. The AMI group was characterized by higher levels of the genera Megasphaera, Butyricimonas, Acidaminococcus, and Desulfovibrio, and lower levels of Tyzzerella 3, Dialister, [Eubacterium] ventriosum group, Pseudobutyrivibrio, and Lachnospiraceae ND3007 group as compared to that in the healthy controls (P < 0.05). The common metabolites of these genera are mostly short-chain fatty acids, which reveals that the gut flora is most likely to affect the occurrence and development of AMI through the short-chain fatty acid pathway. In addition, our results provide the first evidence revealing remarkable differences in fecal microflora among subgroups of AMI patients, including the STEMI vs. NSTEMI, IRA-LAD vs. IRA-Non-LAD and Multiple (≥2 coronary stenosis) vs. Single coronary stenosis groups. Several gut microflora were also correlated with clinically significant characteristics of AMI patients, including LVEDD, LVEF, serum TnI and NT-proBNP, Syntax score, counts of leukocytes, neutrophils and monocytes, and fasting serum glucose levels. Taken together, the data generated enables the prediction of several functional pathways as based on the fecal microfloral composition of AMI patients. Such information may enhance our comprehension of AMI pathogenesis.
Collapse
Affiliation(s)
- Ying Han
- Department of Cardiovascular, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaowei Gong
- Department of Cardiovascular, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guizhi Sun
- Department of Cardiovascular, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Xu
- Department of Cardiovascular, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Changlu Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Weiju Sun
- Department of Cardiovascular, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peigang Cao
- Department of Cardiology, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Hong Ju
- Department of Information Engineering, Heilongjiang Biological Science and Technology Career Academy, Harbin, China
| |
Collapse
|
35
|
Asoudeh F, Jayedi A, Kavian Z, Ebrahimi-Mousavi S, Nielsen SM, Mohammadi H. A systematic review and meta-analysis of observational studies on the association between animal protein sources and risk of rheumatoid arthritis. Clin Nutr 2021; 40:4644-4652. [PMID: 34237693 DOI: 10.1016/j.clnu.2021.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the linear and nonlinear dose-response associations of animal-based dietary protein intake and risk of developing rheumatoid arthritis (RA). METHODS A systematic search of MEDLINE, Scopus and Embase was conducted up to October 2020. Observational studies that report risk estimates of RA for animal-based protein consumption were included. We calculated pooled relative risks (RRs) by using a random-effects model. Linear and non-linear dose-response analyses were performed to examine the dose-response relations between animal-based protein consumption and RA. RESULTS Seven cohort studies (n = 457,554) with 3545 incident cases and six case-control studies with 3994 cases and 5252 controls were identified. Highest compared with the lowest category of fish consumption was inversely associated with risk of RA (RR: 0.89; 95% CI, 0.80 to 0.99; I2 = 0%, n = 10). Also, a 100 g/day increment in fish intake was associated with a 15% decreased risk of RA. Dose-response analysis showed a modest U-shaped association between fish consumption and incidence of RA, with the lowest risk at a fish intake of 20-30 g/day (Pnon-linearity = 0.04). We found no significant association between consumption of red meat, poultry or dairy and the risk of RA. CONCLUSION The present study revealed a significant reverse association between fish consumption and risk of RA. While we observed no association between red meat, dairy or poultry consumption and risk of RA. Further well-designed prospective studies are needed to support our findings.
Collapse
Affiliation(s)
- Farzaneh Asoudeh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jayedi
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Zahra Kavian
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sara Ebrahimi-Mousavi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sabrina Mai Nielsen
- Musculoskeletal Statistics Unit, The Parker Institute, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark; Research Unit of Rheumatology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Bai X, Fu R, Duan Z, Wang P, Zhu C, Fan D. Ginsenoside Rk3 alleviates gut microbiota dysbiosis and colonic inflammation in antibiotic-treated mice. Food Res Int 2021; 146:110465. [PMID: 34119248 DOI: 10.1016/j.foodres.2021.110465] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/23/2021] [Accepted: 05/23/2021] [Indexed: 02/08/2023]
Abstract
Ginsenoside Rk3 is a natural prebiotic found in ginseng, has excellent pharmacological efficacy, especially antitumor effects, and can greatly benefit human health. Here, we investigated the impact of Rk3 intake on modulation of the gut microbiota and their metabolites as well as its effect on low-grade inflammation in mice. C57BL/6JFandd mice were administered different doses of Rk3 for two weeks after establishment of an antibiotic-mediated gut microbiota disturbance model. Interestingly, Rk3 intake induced substantial changes in the gut microbiota composition, enriched the Bacteroides, Alloprevotella and Blautia genera, and effectively ameliorated gut microbiota dysbiosis, with significantly decreased Firmicutes/Bacteroidetes ratios. These changes were accompanied by beneficial alterations in gut microbiota diversity and improved short-chain fatty acid levels. In addition, we found that Rk3 intervention repaired intestinal barrier dysfunction by increasing the expression of tight junction proteins (ZO-1, Occludin and Claudin-1), reducing colonic inflammatory cytokine levels, and suppressing TNF-α, IL-1β, and IL-6 overproduction. In conclusion, Rk3 improves intestinal inflammation and induces potentially beneficial changes in the gut microbiota, and these findings help elucidate host-microbe interactions.
Collapse
Affiliation(s)
- Xue Bai
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Pan Wang
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
37
|
Bhuiyan P, Chen Y, Karim M, Dong H, Qian Y. Bidirectional communication between mast cells and the gut-brain axis in neurodegenerative diseases: Avenues for therapeutic intervention. Brain Res Bull 2021; 172:61-78. [PMID: 33892083 DOI: 10.1016/j.brainresbull.2021.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 03/02/2021] [Accepted: 04/17/2021] [Indexed: 12/12/2022]
Abstract
Although the global incidence of neurodegenerative diseases has been steadily increasing, especially in adults, there are no effective therapeutic interventions. Neurodegeneration is a heterogeneous group of disorders that is characterized by the activation of immune cells in the central nervous system (CNS) (e.g., mast cells and microglia) and subsequent neuroinflammation. Mast cells are found in the brain and the gastrointestinal tract and play a role in "tuning" neuroimmune responses. The complex bidirectional communication between mast cells and gut microbiota coordinates various dynamic neuro-cellular responses, which propagates neuronal impulses from the gastrointestinal tract into the CNS. Numerous inflammatory mediators from degranulated mast cells alter intestinal gut permeability and disrupt blood-brain barrier, which results in the promotion of neuroinflammatory processes leading to neurological disorders, thereby offsetting the balance in immune-surveillance. Emerging evidence supports the hypothesis that gut-microbiota exert a pivotal role in inflammatory signaling through the activation of immune and inflammatory cells. Communication between inflammatory cytokines and neurocircuits via the gut-brain axis (GBA) affects behavioral responses, activates mast cells and microglia that causes neuroinflammation, which is associated with neurological diseases. In this comprehensive review, we focus on what is currently known about mast cells and the gut-brain axis relationship, and how this relationship is connected to neurodegenerative diseases. We hope that further elucidating the bidirectional communication between mast cells and the GBA will not only stimulate future research on neurodegenerative diseases but will also identify new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Yinan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Mazharul Karim
- College of Pharmacy, Western University of Health Science, 309 East 2nd Street, Pomona, CA, 91766, USA
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| |
Collapse
|
38
|
Pocovi-Gerardino G, Correa-Rodríguez M, Callejas-Rubio JL, Ríos-Fernández R, Martín-Amada M, Cruz-Caparros MG, Rueda-Medina B, Ortego-Centeno N. Beneficial effect of Mediterranean diet on disease activity and cardiovascular risk in systemic lupus erythematosus patients: a cross-sectional study. Rheumatology (Oxford) 2021; 60:160-169. [PMID: 32594173 DOI: 10.1093/rheumatology/keaa210] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To analyse the influence of the Mediterranean diet (Med Diet) on SLE activity, damage accrual and cardiovascular disease risk markers. METHODS A cross-sectional study was conducted on 280 patients with SLE [46.9 (12.85) years]. Med Diet adherence was assessed through a 14-item questionnaire on food consumption frequency and habits (total score from 0 to 14 points; higher score is greater adherence to the Med Diet). CRP, homocysteine, SLEDAI-2K (SLE disease activity), and SLICC/ACR and SDI (damage accrual) were measured. Obesity, diabetes mellitus, hypertension and blood lipids, among others, were considered cardiovascular disease risk factors. RESULTS Greater adherence to the Med Diet was significantly associated with better anthropometric profiles, fewer cardiovascular disease risk factors, and lower disease activity and damage accrual scores (P ≤ 0.001 for SLEDAI and SDI). An inverse relationship between the Med Diet score and SLEDAI (P ≥ 0.001; β = -0.380), SDI (P ≤ 0.001; β = -0.740) and hsCRP (P = 0.039; β = -0.055) was observed. The odds ratio for having active SLE (SLEDAI ≥5) or the presence of damage (SDI ≥1) was lower among patients whose Med Diet score was higher (P ≤ 0.001). Finally, greater consumption of Med Diet foods (olive oil, fruits, vegetables, fish, etc.) and abstaining from red meat and meat products, sugars and pastries was associated with less SLE clinical activity and damage. CONCLUSION Greater adherence to the Med Diet seems to exert a beneficial effect on disease activity and cardiovascular risk in SLE patients. To confirm these findings, further longitudinal studies would be of interest.
Collapse
Affiliation(s)
| | - María Correa-Rodríguez
- Instituto de Investigación Biosanitaria, IBS, Granada.,Nursing Department, Faculty of Health Sciences, University of Granada, Armilla, Granada
| | - José-Luis Callejas-Rubio
- Instituto de Investigación Biosanitaria, IBS, Granada.,Unidad de Enfermedades Autoinmunes Sistémicas, Servicio de Medicina Interna, Hospital Universitario San Cecilio, Granada
| | - Raquel Ríos-Fernández
- Instituto de Investigación Biosanitaria, IBS, Granada.,Unidad de Enfermedades Autoinmunes Sistémicas, Servicio de Medicina Interna, Hospital Universitario San Cecilio, Granada
| | - María Martín-Amada
- Unidad de Enfermedades Autoinmunes Sistémicas, Servicio de Medicina Interna, Complejo Hospitalario de Jaén, Jaén
| | - María-Gracia Cruz-Caparros
- Unidad de Enfermedades Autoinmunes Sistémicas, Servicio de Medicina Interna, Hospital de Poniente, El Ejido
| | | | - Norberto Ortego-Centeno
- Instituto de Investigación Biosanitaria, IBS, Granada.,Unidad de Enfermedades Autoinmunes Sistémicas, Servicio de Medicina Interna, Hospital Universitario San Cecilio, Granada.,Departamento de Medicina, Facultad de Medicina, Universidad of Granada, Granada, Spain
| |
Collapse
|
39
|
Pi H, Huang L, Liu H, Liang S, Mei J. Effects of PD-1/PD-L1 signaling pathway on intestinal flora in patients with colorectal cancer. Cancer Biomark 2021; 28:529-535. [PMID: 32568184 DOI: 10.3233/cbm-201606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To explore the effects of the programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) signaling pathway on the intestinal flora in patients with colorectal cancer (CRC). METHODS A total of 30 CRC patients treated with PD-1 monoclonal antibody therapy in the Oncology Department of our hospital from January 2018 to January 2019, and another 30 patients treated with routine non-immune therapy were enrolled. The feces specimens were collected for sequencing, the CRC model was established, and the 16S rRNA gene sequences in intestinal flora in feces specimens of mice were analyzed. RESULTS The 3-month progression-free survival could not be predicted through the gene count or abundance of metagenomic species (MGS) in intestinal microflora of patients. The gene count or MGS abundance was related to the clinical progression-free response. There were abundant unclassified Escherichia coli, s_lactobacillus and s_unclassified parasutterella in patients treated with PD-1. The reflection curve of microbiota had an obvious difference in richness (Chao1), but had no apparent difference in diversity (Shannon). CONCLUSION The PD-1/PD-L1 signaling pathway can regulate the metabolic activity of intestinal flora, thereby promoting immune surveillance of tumors.
Collapse
Affiliation(s)
- Hongquan Pi
- Department of Laboratory Medicine, Dongguan Eastern Central Hospital, Dongguan, Guangdong, China
| | - Libing Huang
- Department of Laboratory Medicine, Dongguan Eastern Central Hospital, Dongguan, Guangdong, China
| | - Huifang Liu
- Department of Laboratory Medicine, Dongguan Eastern Central Hospital, Dongguan, Guangdong, China
| | - Shulan Liang
- Department of Laboratory Medicine, Dongguan Eastern Central Hospital, Dongguan, Guangdong, China
| | - Juanjuan Mei
- Department of Pathology, Dongguan Eastern Central Hospital, Dongguan, Guangdong, China
| |
Collapse
|
40
|
Mangalam AK, Yadav M, Yadav R. The Emerging World of Microbiome in Autoimmune Disorders: Opportunities and Challenges. INDIAN JOURNAL OF RHEUMATOLOGY 2021; 16:57-72. [PMID: 34531642 PMCID: PMC8442979 DOI: 10.4103/injr.injr_210_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trillions of commensal bacteria colonizing humans (microbiome) have emerged as essential player(s) in human health. The alteration of the same has been linked with diseases including autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, and ankylosing spondylitis. Gut bacteria are separated from the host through a physical barrier such as skin or gut epithelial lining. However, the perturbation in the healthy bacterial community (gut dysbiosis) can compromise gut barrier integrity, resulting in translocation of bacterial contents across the epithelial barrier (leaky gut). Bacterial contents such as lipopolysaccharide and bacterial antigens can induce a systemic inflammatory environment through activation and induction of immune cells. The biggest question in the field is whether inflammation causes gut dysbiosis or dysbiosis leads to disease induction or propagation, i.e., it is inside out or outside in or both. In this review, we first discuss the microbiome profiling studies in various autoimmune disorders, followed by a discussion of potential mechanisms through which microbiome is involved in the pathobiology of diseases. A better understanding of the role of the microbiome in health and disease will help us harness the power of commensal bacteria for the development of novel therapeutic agents to treat autoimmune disorders.
Collapse
Affiliation(s)
| | - Meeta Yadav
- Department of Pathology, University of Iowa, Iowa, IA,
USA
| | - Rajwardhan Yadav
- Department of Rheumatology, St Francis Hospital, Hartford,
CT, USA
| |
Collapse
|
41
|
Katz-Agranov N, Zandman-Goddard G. The microbiome links between aging and lupus. Autoimmun Rev 2021; 20:102765. [PMID: 33476814 DOI: 10.1016/j.autrev.2021.102765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Many forms of immune dysregulation, which lead to inflammaging and senescence, have been demonstrated in patients with systemic lupus erythematosus (SLE; lupus) and in the aging population. The discovery of the microbiome and its association with human health and pathology has led it to be the center of investigation as a major contributor to the pathogenesis of immunosenescence in both populations. Similar alterations to the microbiome in the form of dysbiosis, that are demonstrated in both aging and in lupus patients, may help explain the significant overlap in clinical manifestations seen in these groups. METHODS We performed an extensive literature review, utilizing the Pubmed search engine and Google Scholar for studies evaluating the microbiome in two groups, elderly populations and lupus patients (both murine and human models), between the years 2000-2019. We searched for the terms: microbiome, dysbiosis, lupus, elderly, aging and inflammaging, which yielded hundreds of articles, of which 114 were used for preparation of this paper. We compared the similarities between the populations. RESULTS We found that the similar processes of immune dysregulation, in both aging populations and lupus patients, extend to the microbiome, in the form of dysbiosis. Some of these similarities include loss of microbiota biodiversity, increased representation of microbes that are associated with inflammation and disease (i.e Proteobacteria, Bacteroidetes), a relative decrease in protective microbes with "anti-inflammatory" properties (i.e Firmicutes) and a subsequent compromise to the intestinal barrier, leading to leakage of proinflammatory microbial components in both groups. CONCLUSIONS We conclude that there are several similar alterations in the composition and function of the microbiome of lupus patients and aging individuals, leading to immunosenescence, which may also be a contributing mechanism in lupus. It seems in fact that the microbiome of SLE may actually be analogous to immunosenescence. This knowledge may help the continuous efforts in finding a solution for both conditions.
Collapse
Affiliation(s)
- Nurit Katz-Agranov
- Department of Medicine, Saint Elizabeth's Medical Center, Boston, MA, USA; Tufts University School of Medicine, Boston, MA, USA
| | - Gisele Zandman-Goddard
- Department of Medicine C, Wolfson Medical Center, Holon, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
42
|
Soto Chervin C, Gajewski T. Microbiome-based interventions: therapeutic strategies in cancer immunotherapy. IMMUNO-ONCOLOGY TECHNOLOGY 2020; 8:12-20. [PMID: 35757563 PMCID: PMC9216398 DOI: 10.1016/j.iotech.2020.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The composition of the commensal microbiota has recently emerged as a key element influencing the efficacy of cancer treatments. It has become apparent that the interplay between the microbiome and immune system within the host influences the response to immunotherapy, particularly immune checkpoint inhibitor therapy. Identifying the key components of the gut microbiota that influence this response is paramount for designing therapeutic interventions to enhance the response to cancer therapy. This review will discuss strategies being considered to modulate the gut microbiota, including fecal microbiota transplantation, administration of defined bacterial isolates as well as bacterial consortia, supplementation with probiotics, and lifestyle modifications such as dietary changes. Understanding the influence of the complex variables of the human microbiota on the effectiveness of cancer therapy will help drive the clinical design of microbial-based interventions in the field of oncology.
Collapse
Affiliation(s)
- C. Soto Chervin
- Department of Pathology and Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, USA
| | - T.F. Gajewski
- Department of Pathology and Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, USA
| |
Collapse
|
43
|
Corsello A, Pugliese D, Gasbarrini A, Armuzzi A. Diet and Nutrients in Gastrointestinal Chronic Diseases. Nutrients 2020; 12:nu12092693. [PMID: 32899273 PMCID: PMC7551310 DOI: 10.3390/nu12092693] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Diet and nutrition are known to play key roles in many chronic gastrointestinal diseases, regarding both pathogenesis and therapeutic possibilities. A strong correlation between symptomatology, disease activity and eating habits has been observed in many common diseases, both organic and functional, such as inflammatory bowel disease and irritable bowel syndrome. New different dietary approaches have been evaluated in order improve patients’ symptoms, modulating the type of sugars ingested, the daily amount of fats or the kind of metabolites produced in gut. Even if many clinical studies have been conducted to fully understand the impact of nutrition on the progression of disease, more studies are needed to test the most promising approaches for different diseases, in order to define useful guidelines for patients.
Collapse
Affiliation(s)
- Antonio Corsello
- OU Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (D.P.); (A.G.); (A.A.)
- Correspondence: ; Tel.: +39-380-381-0206
| | - Daniela Pugliese
- OU Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (D.P.); (A.G.); (A.A.)
| | - Antonio Gasbarrini
- OU Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (D.P.); (A.G.); (A.A.)
- Istituto di Patologia Speciale Medica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Alessandro Armuzzi
- OU Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (D.P.); (A.G.); (A.A.)
- Istituto di Patologia Speciale Medica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
44
|
Cabral DJ, Wurster JI, Korry BJ, Penumutchu S, Belenky P. Consumption of a Western-Style Diet Modulates the Response of the Murine Gut Microbiome to Ciprofloxacin. mSystems 2020; 5:e00317-20. [PMID: 32723789 PMCID: PMC7394352 DOI: 10.1128/msystems.00317-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Dietary composition and antibiotic use have major impacts on the structure and function of the gut microbiome, often resulting in dysbiosis. Despite this, little research has been done to explore the role of host diet as a determinant of antibiotic-induced microbiome disruption. Here, we utilize a multi-omic approach to characterize the impact of Western-style diet consumption on ciprofloxacin-induced changes to gut microbiome structure and transcriptional activity. We found that Western diet consumption dramatically increased Bacteroides abundances and shifted the community toward the metabolism of simple sugars and mucus glycoproteins. Mice consuming a Western-style diet experienced a greater expansion of Firmicutes following ciprofloxacin treatment than those eating a control diet. Transcriptionally, we found that ciprofloxacin reduced the abundance of tricarboxylic acid (TCA) cycle transcripts on both diets, suggesting that carbon metabolism plays a key role in the response of the gut microbiome to this antibiotic. Despite this, we observed extensive diet-dependent differences in the impact of ciprofloxacin on microbiota function. In particular, at the whole-community level we detected an increase in starch degradation, glycolysis, and pyruvate fermentation following antibiotic treatment in mice on the Western diet, which we did not observe in mice on the control diet. Similarly, we observed diet-specific changes in the transcriptional activity of two important commensal bacteria, Akkermansia muciniphila and Bacteroides thetaiotaomicron, involving diverse cellular processes such as nutrient acquisition, stress responses, and capsular polysaccharide (CPS) biosynthesis. These findings demonstrate that host diet plays a role in determining the impacts of ciprofloxacin on microbiome composition and microbiome function.IMPORTANCE Due to the growing incidence of disorders related to antibiotic-induced dysbiosis, it is essential to determine how our "Western"-style diet impacts the response of the microbiome to antibiotics. While diet and antibiotics have profound impacts on gut microbiome composition, little work has been done to examine their combined effects. Previous work has shown that nutrient availability, influenced by diet, plays an important role in determining the extent of antibiotic-induced disruption to the gut microbiome. Thus, we hypothesize that the Western diet will shift microbiota metabolism toward simple sugar and mucus degradation and away from polysaccharide utilization. Because of bacterial metabolism's critical role in antibiotic susceptibility, this change in baseline metabolism will impact how the structure and function of the microbiome are impacted by ciprofloxacin exposure. Understanding how diet modulates antibiotic-induced microbiome disruption will allow for the development of dietary interventions that can alleviate many of the microbiome-dependent complications of antibiotic treatment.
Collapse
Affiliation(s)
- Damien J Cabral
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Jenna I Wurster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
45
|
Barrea L, Muscogiuri G, Frias-Toral E, Laudisio D, Pugliese G, Castellucci B, Garcia-Velasquez E, Savastano S, Colao A. Nutrition and immune system: from the Mediterranean diet to dietary supplementary through the microbiota. Crit Rev Food Sci Nutr 2020; 61:3066-3090. [PMID: 32691606 DOI: 10.1080/10408398.2020.1792826] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The interaction between nutrition and the immune system is very complex. In particular, at every stage of the immune response, specific micronutrients, including vitamins and minerals play a key role and often synergistic, and the deficiency of only one essential nutrient may impair immunity. An individual's overall nutrition status and pattern of dietary intake (comprised of nutrients and non-nutritive bioactive compounds and food) and any supplementation with nutraceuticals including vitamins and minerals, can influence positively or negatively the function of the immune system. This influence can occur at various levels from the innate immune system and adaptive immune system to the microbiome. Although there are conflicting evidence, the current results point out that dietary supplementation with some nutrients such as vitamin D and zinc may modulate immune function. An update on the complex relationship between nutrition, diet, and the immune system through gut microbiota is the aim of this current review. Indeed, we will provide the overview of the link among immune function, nutrition and gut microbiota, paying particular attention at the effect of the Mediterranean diet on the immune system, and finally we will speculate the possible role of the main one functional supplements on immune function.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | | | - Daniela Laudisio
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Gabriella Pugliese
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Bianca Castellucci
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | | | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile," University Federico II, Naples, Italy
| |
Collapse
|
46
|
Fu X, Chen Y, Chen D. The Role of Gut Microbiome in Autoimmune Uveitis. Ophthalmic Res 2020; 64:168-177. [PMID: 32674100 DOI: 10.1159/000510212] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/10/2020] [Indexed: 02/05/2023]
Abstract
The gut microbiome has important physiological functions and plays an indispensable role in the human body. Currently, there are an increasing number of studies revealing the close correlation between dysbiosis of the gut microbiome and a variety of autoimmune diseases, including autoimmune uveitis. This brief review summarizes recent literature regarding the relationship between dysbiosis and the occurrence and development of autoimmune uveitis. Dysbiosis participates in the pathogenesis of autoimmune uveitis largely by 4 mechanisms: antigenic mimicry, disturbance of intestinal immune homeostasis, destruction of the intestinal barrier, and reduction of beneficial anti-inflammatory metabolites. Further elucidation of these mechanisms will facilitate the treatment of the gut-microbiome-relevant autoimmune diseases by potential therapeutic strategies, such as antibiotics, probiotics, diet modifications, and fecal microbial transplantation.
Collapse
Affiliation(s)
- Xiangyu Fu
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Danian Chen
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China, .,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,
| |
Collapse
|
47
|
Choi SC, Brown J, Gong M, Ge Y, Zadeh M, Li W, Croker BP, Michailidis G, Garrett TJ, Mohamadzadeh M, Morel L. Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice. Sci Transl Med 2020; 12:eaax2220. [PMID: 32641487 PMCID: PMC7739186 DOI: 10.1126/scitranslmed.aax2220] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/04/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
Abstract
The autoimmune disease systemic lupus erythematosus (SLE) is characterized by the production of pathogenic autoantibodies. It has been postulated that gut microbial dysbiosis may be one of the mechanisms involved in SLE pathogenesis. Here, we demonstrate that the dysbiotic gut microbiota of triple congenic (TC) lupus-prone mice (B6.Sle1.Sle2.Sle3) stimulated the production of autoantibodies and activated immune cells when transferred into germfree congenic C57BL/6 (B6) mice. Fecal transfer to B6 mice induced autoimmune phenotypes only when the TC donor mice exhibited autoimmunity. Autoimmune pathogenesis was mitigated by horizontal transfer of the gut microbiota between co-housed lupus-prone TC mice and control congenic B6 mice. Metabolomic screening identified an altered distribution of tryptophan metabolites in the feces of TC mice including an increase in kynurenine, which was alleviated after antibiotic treatment. Low dietary tryptophan prevented autoimmune pathology in TC mice, whereas high dietary tryptophan exacerbated disease. Reducing dietary tryptophan altered gut microbial taxa in both lupus-prone TC mice and control B6 mice. Consequently, fecal transfer from TC mice fed a high tryptophan diet, but not a low tryptophan diet, induced autoimmune phenotypes in germfree B6 mice. The interplay of gut microbial dysbiosis, tryptophan metabolism and host genetic susceptibility in lupus-prone mice suggest that aberrant tryptophan metabolism may contribute to autoimmune activation in this disease.
Collapse
Affiliation(s)
- Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Josephine Brown
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Minghao Gong
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32610, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yong Ge
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32610, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mojgan Zadeh
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32610, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Byron P Croker
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - George Michailidis
- Department of Statistics and the Informatics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32610, USA.
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
48
|
Microbial Alterations and Risk Factors of Breast Cancer: Connections and Mechanistic Insights. Cells 2020; 9:cells9051091. [PMID: 32354130 PMCID: PMC7290701 DOI: 10.3390/cells9051091] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer-related mortality remains high worldwide, despite tremendous advances in diagnostics and therapeutics; hence, the quest for better strategies for disease management, as well as the identification of modifiable risk factors, continues. With recent leaps in genomic technologies, microbiota have emerged as major players in most cancers, including breast cancer. Interestingly, microbial alterations have been observed with some of the established risk factors of breast cancer, such as obesity, aging and periodontal disease. Higher levels of estrogen, a risk factor for breast cancer that cross-talks with other risk factors such as alcohol intake, obesity, parity, breastfeeding, early menarche and late menopause, are also modulated by microbial dysbiosis. In this review, we discuss the association between known breast cancer risk factors and altered microbiota. An important question related to microbial dysbiosis and cancer is the underlying mechanisms by which alterations in microbiota can support cancer progression. To this end, we review the involvement of microbial metabolites as effector molecules, the modulation of the metabolism of xenobiotics, the induction of systemic immune modulation, and altered responses to therapy owing to microbial dysbiosis. Given the association of breast cancer risk factors with microbial dysbiosis and the multitude of mechanisms altered by dysbiotic microbiota, an impaired microbiome is, in itself, an important risk factor.
Collapse
|
49
|
Dietary Intake of Free Sugars is Associated with Disease Activity and Dyslipidemia in Systemic Lupus Erythematosus Patients. Nutrients 2020; 12:nu12041094. [PMID: 32326626 PMCID: PMC7231002 DOI: 10.3390/nu12041094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
Diet has been closely associated with inflammatory autoimmune diseases, including systemic lupus erythematosus (SLE). Importantly, the consumption of dietary sugars has been positively linked to elevated levels of some inflammation markers, but the potential role of their consumption on the prognosis of autoimmune diseases has not yet been examined. The aim of this study was to evaluate the association between the dietary intake of free sugars and clinical parameters and cardiovascular (CVD) risk markers in patients with SLE. A cross-sectional study including a total of 193 patients with SLE (aged 48.25 ± 12.54 years) was conducted. The SLE Disease Activity Index (SLEDAI-2K) and the SDI Damage Index were used to asses disease activity and disease-related damage, respectively. Levels of C-reactive protein (CRP; mg/dL), homocysteine (Hcy; µmol/L), anti-double stranded DNA antibodies (anti-dsDNA) (IU/mL), complement C3 (mg/dL), and complement C4 (mg/dL), among other biochemical markers, were measured. The main factors we considered as risk factors for CVD were obesity, diabetes mellitus, hypertension, and blood lipids. The dietary-intrinsic sugar and added-sugar content participants consumed were obtained via a 24-h patient diary. Significant differences were observed in dietary sugar intake between patients with active and inactive SLE (in grams: 28.31 ± 24.43 vs. 38.71 ± 28.87; p = 0.035) and free sugar intake (as a percentage: 6.36 ± 4.82 vs. 8.60 ± 5.51; p = 0.020). Linear regression analysis revealed a significant association between free sugars intake (by gram or percentage) and the number of complications (β (95% CI) = 0.009 (0.001, 0.0018), p = 0.033)); (β (95% CI) = 0.046 (0.008, 0.084), p = 0.018)), and SLEDAI (β (95% CI) = 0.017 (0.001, 0.034), p = 0.043)); (β (95% CI) = 0.086 (0.011, 0.161), p = 0.024)) after adjusting for covariates. Free sugars (g and %) were also associated with the presence of dyslipidaemia (β (95% CI) = −0.003 (−0.005, 0.000), p = 0.024)) and (β (95% CI) = −0.015 (−0.028, −0.002), p = 0.021)). Our findings suggest that a higher consumption of free sugars might negatively impact the activity and complications of SLE. However, future longitudinal research on SLE patients, including dietary intervention trials, are necessary to corroborate these preliminary data.
Collapse
|
50
|
Uwaezuoke SN, Muoneke UV, Mbanefo NR. The Supportive Treatment of IgA Nephropathy and Idiopathic Nephrotic Syndrome: How Useful are Omega-3 Polyunsaturated Fatty Acids? Int J Nephrol Renovasc Dis 2020; 13:27-35. [PMID: 32161487 PMCID: PMC7049740 DOI: 10.2147/ijnrd.s237527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/12/2020] [Indexed: 01/02/2023] Open
Abstract
IgA nephropathy (IgAN) is the most prevalent glomerular disease in young adults worldwide, while idiopathic nephrotic syndrome (INS) represents the most frequent manifestation of glomerular disease in childhood. Over the years, studies have speculated about the potential benefits of omega-3 polyunsaturated fatty acids (PUFAs) in improving morbidity in both forms of chronic kidney disease (CKD). The proposed mechanisms of action include reduction of proteinuria and modulation of dyslipidemia. Although in vitro and in vivo experimental studies report the suppressive effect of omega-3 PUFAs on inflammatory pathways linked with the progression of nephropathy, the evidence supporting their beneficial effect in IgAN and INS is still weak. Also, their ability to regulate levels of total cholesterol, low-density lipoprotein-cholesterol (LDL-C), and triglycerides (TG) suggests that they could delay both dyslipidemia-associated nephrotoxicity and atherosclerosis. Most of the clinical trials that were conducted on their therapeutic benefits in IgAN patients reported positive outcomes with low and high doses of omega-3 PUFAs. However, few of the trials noted inconclusive findings, with low-quality evidence suggesting potential improvements in surrogate renal function outcomes. If the beneficial effect of omega-3 PUFAs is predicated on their hypolipidemic action, much higher doses could be used in well-designed randomized-controlled trials (RCTs) to determine if they could produce better renal function outcomes and provide much stronger evidence of their therapeutic benefits in IgAN and INS. However, the current hypothetical mechanisms of action in these forms of CKD also include the effect of omega-3 PUFAs on renal inflammatory pathways and glomerular proteinuria. Perhaps, the unresolved therapeutic efficacy of these fatty acids in IgAN and INS suggests that their exact mechanisms of action are yet to be fully established. In this narrative review, we aim to appraise the current evidence of their potential therapeutic benefits in these diseases.
Collapse
Affiliation(s)
- Samuel N Uwaezuoke
- Pediatric Nephrology Firm, Department of Pediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
| | - Uzoamaka V Muoneke
- Pediatric Nephrology Firm, Department of Pediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
| | - Ngozi R Mbanefo
- Pediatric Nephrology Firm, Department of Pediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
| |
Collapse
|