1
|
Stepanova OV, Fursa GA, Karsuntseva EK, Andretsova SS, Chadin AV, Voronova AD, Shishkina VS, Semkina AS, Reshetov IV, Chekhonin VP. Features of Remyelination after Transplantation of Olfactory Ensheathing Cells with Neurotrophic Factors into Spinal Cord Cysts. Bull Exp Biol Med 2024; 176:666-671. [PMID: 38727956 DOI: 10.1007/s10517-024-06088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 05/18/2024]
Abstract
This paper shows for the first time that co-transplantation of human olfactory ensheathing cells with neurotrophin-3 into spinal cord cysts is more effective for activation of remyelination than transplantation of cells with brain-derived neurotrophic factor and a combination of these two factors. The studied neurotrophic factors do not affect proliferation and migration of ensheathing cells in vitro. It can be concluded that the maximum improvement of motor function in rats receiving ensheathing cells with neurotrophin-3 is largely determined by activation of remyelination.
Collapse
Affiliation(s)
- O V Stepanova
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - G A Fursa
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E K Karsuntseva
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - S S Andretsova
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
| | - A V Chadin
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A D Voronova
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V S Shishkina
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A S Semkina
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I V Reshetov
- University Clinical Hospital, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - V P Chekhonin
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
2
|
Chen X, Liu Y, Stavrinou P, Stavrinou L, Hu W, Goldbrunner R, Zheng F, He H. Spinal cord injury: Olfactory ensheathing cell-based therapeutic strategies. J Neurosci Res 2024; 102:e25283. [PMID: 38284859 DOI: 10.1002/jnr.25283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/22/2023] [Accepted: 11/16/2023] [Indexed: 01/30/2024]
Abstract
Spinal cord injury (SCI) is a highly disabling neurological disorder that is difficult to treat due to its complex pathophysiology and nerve regeneration difficulties. Hence, effective SCI treatments are necessary. Olfactory ensheathing cells (OECs), glial cells derived from the olfactory bulb or mucosa, are ideal candidates for SCI treatment because of their neuroprotective and regenerative properties, ample supply, and convenience. In vitro, animal model, and human trial studies have reported discoveries on OEC transplantation; however, shortcomings have also been demonstrated. Recent studies have optimized various OEC transplantation strategies, including drug integration, biomaterials, and gene editing. This review aims to introduce OECs mechanisms in repairing SCI, summarize the research progress of OEC transplantation-optimized strategies, and provide novel research ideas for SCI treatment.
Collapse
Affiliation(s)
- Xinli Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yibin Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Pantelis Stavrinou
- Department of Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
- Neurosurgery, Metropolitan Hospital, Athens, Greece
| | - Lampis Stavrinou
- 2nd Department of Neurosurgery, "Attikon" University Hospital, National and Kapodistrian University, Athens Medical School, Athens, Greece
| | - Weipeng Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Roland Goldbrunner
- Department of Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hefan He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
3
|
Hu JL, Luo HL, Liu JP, Zuo C, Xu YS, Feng X, Zhang WJ. Chitosan biomaterial enhances the effect of OECs on the inhibition of sciatic nerve injury-induced neuropathic pain. J Chem Neuroanat 2023; 133:102327. [PMID: 37634701 DOI: 10.1016/j.jchemneu.2023.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Neuropathic pain is a common symptom experienced by most clinical diseases at different levels, and its treatment has always been a clinical difficulty. Therefore, it is particularly important to explore new and effective treatment methods. The role of olfactory ensheathing cells (OECs) in nerve injury and pain is recognized by different studies. Our previous study found that transplantation of OECs alleviated hyperalgesia in rats. However, single-cell transplantation lacks medium adhesion and support, and exerts limited analgesic effect. Therefore, on the basis of the previous study, this study investigated the effect of pain relief by co-transplanting OECs with chitosan (CS) (a biological tissue engineering material, as OECs were transplanted into the host medium) to the injured sciatic nerve. The results showed that the pain threshold of sciatic nerve injury of rats was significantly reduced, and the expression level of P2×4 receptor in the spinal cord was significantly increased. While olfactory ensheathing cells combined with chitosan (OECs+CS) transplantation could significantly relieve pain, and the analgesic effect was stronger than that of OECs transplantation alone. OECs+CS transplantation promoted the formation of sciatic nerve remyelination, improved the changes of demyelination, and promoted the repair of sciatic nerve injury more significantly. In addition, the effect of OECs+CS to down-regulate the expression of P2×4 receptor was significantly stronger than that of OECs transplantation, and exerted a better analgesic effect. These data reveal that OECs+CS have a better analgesic effect in relieving neuropathic pain induced by sciatic nerve injury, and provide a new therapeutic strategy for pain treatment.
Collapse
Affiliation(s)
- Jia-Ling Hu
- Department of Emergency Medicine, the second affiliated hospital, Nanchang University, Nanchang city, Jiangxi province, China
| | - Hong-Liang Luo
- Gastrointestinal Surgery, the second affiliated hospital, Nanchang University, Nanchang city, Jiangxi province, China
| | - Ji-Peng Liu
- Gastrointestinal Surgery, the second affiliated hospital, Nanchang University, Nanchang city, Jiangxi province, China
| | - Cheng Zuo
- Gastrointestinal Surgery, the second affiliated hospital, Nanchang University, Nanchang city, Jiangxi province, China
| | - Yong-Sheng Xu
- Gastrointestinal Surgery, the second affiliated hospital, Nanchang University, Nanchang city, Jiangxi province, China
| | - Xiao Feng
- Department of Rehabilitation Medicine, the second affiliated hospital, Nanchang University, Nanchang city, Jiangxi province, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, the second affiliated hospital, Nanchang University, Nanchang city, Jiangxi province, China.
| |
Collapse
|
4
|
Tseng YT, Lai R, Oieni F, Standke A, Smyth G, Yang C, Chen M, St John J, Ekberg J. Liraglutide modulates adhesion molecules and enhances cell properties in three-dimensional cultures of olfactory ensheathing cells. Biomed Pharmacother 2023; 165:115084. [PMID: 37399717 DOI: 10.1016/j.biopha.2023.115084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
Cell transplantation using olfactory ensheathing cells (OECs) is a promising approach for nerve repair but there are numerous limitations with their delivery method. Three-dimensional (3D) cell culture systems potentially offer a powerful approach for cell production and delivery options. To further optimise the use of OECs, strategies to promote cell viability and maintain cell behaviours in 3D cultures become important. We previously demonstrated an anti-diabetic drug, liraglutide, could modulate OEC migration and re-model extracellular matrix in two-dimensional (2D) cultures. In the present study, we further investigated its beneficial effects in our 3D culture system using primary OECs. OECs treated with liraglutide at 100 nM showed improved cell viability and had modulated expression of N-cadherin and β1-integrin (two important cell adhesion molecules). When formed into 3D spheroids, the pre-treated OECs generated spheroids with an increased volume and a decreased cell density compared to control spheroids. OECs that subsequently migrated out of the liraglutide pre-treated spheroids had higher capacity for migration with increased duration and length, which was attributed to a reduction in the pauses during the migration. Moreover, OECs that migrated out from liraglutide spheroids had a more bipolar morphology consistent with higher migratory capacity. In summary, liraglutide improved the viability of OECs, modulated cell adhesion molecules, and resulted in stable 3D cell constructs which conferred enhanced migratory capacity on the OECs. Overall, liraglutide may potentially improve the therapeutic use of OECs for neural repair by enhancing the generation of stable 3D constructs and increasing the migratory behaviour of OECs.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Richard Lai
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Francesca Oieni
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Andrea Standke
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Graham Smyth
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Chenying Yang
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Mo Chen
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - James St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Jenny Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
5
|
Liu JP, Wang JL, Hu BE, Zou FL, Wu CL, Shen J, Zhang WJ. Olfactory ensheathing cells and neuropathic pain. Front Cell Dev Biol 2023; 11:1147242. [PMID: 37223000 PMCID: PMC10201020 DOI: 10.3389/fcell.2023.1147242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 08/29/2023] Open
Abstract
Damage to the nervous system can lead to functional impairment, including sensory and motor functions. Importantly, neuropathic pain (NPP) can be induced after nerve injury, which seriously affects the quality of life of patients. Therefore, the repair of nerve damage and the treatment of pain are particularly important. However, the current treatment of NPP is very weak, which promotes researchers to find new methods and directions for treatment. Recently, cell transplantation technology has received great attention and has become a hot spot for the treatment of nerve injury and pain. Olfactory ensheathing cells (OECs) are a kind of glial cells with the characteristics of lifelong survival in the nervous system and continuous division and renewal. They also secrete a variety of neurotrophic factors, bridge the fibers at both ends of the injured nerve, change the local injury microenvironment, and promote axon regeneration and other biological functions. Different studies have revealed that the transplantation of OECs can repair damaged nerves and exert analgesic effect. Some progress has been made in the effect of OECs transplantation in inhibiting NPP. Therefore, in this paper, we provided a comprehensive overview of the biology of OECs, described the possible pathogenesis of NPP. Moreover, we discussed on the therapeutic effect of OECs transplantation on central nervous system injury and NPP, and prospected some possible problems of OECs transplantation as pain treatment. To provide some valuable information for the treatment of pain by OECs transplantation in the future.
Collapse
Affiliation(s)
- Ji-peng Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jia-ling Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Bai-er Hu
- Department of Physical Examination, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Fei-long Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Chang-lei Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jie Shen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Stepanova OV, Fursa GA, Andretsova SS, Shishkina VS, Voronova AD, Chadin AV, Karsuntseva EK, Reshetov IV, Chekhonin VP. Prospects for the use of olfactory mucosa cells in bioprinting for the treatment of spinal cord injuries. World J Clin Cases 2023; 11:322-331. [PMID: 36686356 PMCID: PMC9850961 DOI: 10.12998/wjcc.v11.i2.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/28/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
The review focuses on the most important areas of cell therapy for spinal cord injuries. Olfactory mucosa cells are promising for transplantation. Obtaining these cells is safe for patients. The use of olfactory mucosa cells is effective in restoring motor function due to the remyelination and regeneration of axons after spinal cord injuries. These cells express neurotrophic factors that play an important role in the functional recovery of nerve tissue after spinal cord injuries. In addition, it is possible to increase the content of neurotrophic factors, at the site of injury, exogenously by the direct injection of neurotrophic factors or their delivery using gene therapy. The advantages of olfactory mucosa cells, in combination with neurotrophic factors, open up wide possibilities for their application in three-dimensional and four-dimensional bioprinting technology treating spinal cord injuries.
Collapse
Affiliation(s)
- Olga Vladislavovna Stepanova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, Moscow 121552, Russia
| | - Grigorii Andreevich Fursa
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Svetlana Sergeevna Andretsova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Biology, Moscow State University, Moscow 119991, Russia
| | - Valentina Sergeevna Shishkina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Anastasia Denisovna Voronova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Andrey Viktorovich Chadin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | | | | | - Vladimir Pavlovich Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnologу, N.I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
7
|
Chaudhari LR, Kawale AA, Desai SS, Kashte SB, Joshi MG. Pathophysiology of Spinal Cord Injury and Tissue Engineering Approach for Its Neuronal Regeneration: Current Status and Future Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:51-81. [PMID: 36038807 DOI: 10.1007/5584_2022_731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
A spinal cord injury (SCI) is a very debilitating condition causing loss of sensory and motor function as well as multiple organ failures. Current therapeutic options like surgery and pharmacotherapy show positive results but are incapable of providing a complete cure for chronic SCI symptoms. Tissue engineering, including neuroprotective or growth factors, stem cells, and biomaterial scaffolds, grabs attention because of their potential for regeneration and ability to bridge the gap in the injured spinal cord (SC). Preclinical studies with tissue engineering showed functional recovery and neurorestorative effects. Few clinical trials show the safety and efficacy of the tissue engineering approach. However, more studies should be carried out for potential treatment modalities. In this review, we summarize the pathophysiology of SCI and its current treatment modalities, including surgical, pharmacological, and tissue engineering approaches following SCI in preclinical and clinical phases.
Collapse
Affiliation(s)
- Leena R Chaudhari
- Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Akshay A Kawale
- Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Sangeeta S Desai
- Department of Obstetrics and Gynecology, Dr. D Y Patil Medical College, Hospital and Research Institute, Kolhapur, Maharashtra, India
| | - Shivaji B Kashte
- Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Meghnad G Joshi
- Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India.
- Stem Plus Biotech, SMK Commercial Complex, Sangli, Maharashtra, India.
| |
Collapse
|
8
|
Designing a Clinical Trial with Olfactory Ensheathing Cell Transplantation-Based Therapy for Spinal Cord Injury: A Position Paper. Biomedicines 2022; 10:biomedicines10123153. [PMID: 36551909 PMCID: PMC9776288 DOI: 10.3390/biomedicines10123153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) represents an urgent unmet need for clinical reparative therapy due to its largely irreversible and devastating effects on patients, and the tremendous socioeconomic burden to the community. While different approaches are being explored, therapy to restore the lost function remains unavailable. Olfactory ensheathing cell (OEC) transplantation is a promising approach in terms of feasibility, safety, and limited efficacy; however, high variability in reported clinical outcomes prevent its translation despite several clinical trials. The aims of this position paper are to present an in-depth analysis of previous OEC transplantation-based clinical trials, identify existing challenges and gaps, and finally propose strategies to improve standardization of OEC therapies. We have reviewed the study design and protocols of clinical trials using OEC transplantation for SCI repair to investigate how and why the outcomes show variability. With this knowledge and our experience as a team of biologists and clinicians with active experience in the field of OEC research, we provide recommendations regarding cell source, cell purity and characterisation, transplantation dosage and format, and rehabilitation. Ultimately, this position paper is intended to serve as a roadmap to design an effective clinical trial with OEC transplantation-based therapy for SCI repair.
Collapse
|
9
|
Neurotrophin-3 Enhances the Effectiveness of Cell Therapy in Chronic Spinal Cord Injuries. Bull Exp Biol Med 2022; 173:114-118. [DOI: 10.1007/s10517-022-05504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 11/25/2022]
|
10
|
Wang X, Jiang C, Zhang Y, Chen Z, Fan H, Zhang Y, Wang Z, Tian F, Li J, Yang H, Hao D. The promoting effects of activated olfactory ensheathing cells on angiogenesis after spinal cord injury through the PI3K/Akt pathway. Cell Biosci 2022; 12:23. [PMID: 35246244 PMCID: PMC8895872 DOI: 10.1186/s13578-022-00765-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
Objective The aim of this study was to investigate the pro-angiogenic potential of olfactory ensheathing cells (OECs) activated by curcumin (CCM) and lipopolysaccharide (LPS) and the possible underlying mechanisms. Methods Vascular endothelial cells or tissues were cultured and treated with conditioned medium (CM) extracted from activated OECs activated through the addition of LPS and CCM or unactivated controls. Concomitantly, the pro-angiogenic potential of OECs was assessed in vitro by aortic ring sprouting assay, endothelial wound healing assay, CCK-8 assay, and tube formation assay. Subsequently, the OECs were co-cultured with endothelial cells to evaluate their promoting effect on endothelial cell proliferation and migration following a mechanical scratch. Moreover, the spinal cord injury (SCI) model in rats was established, and the number of endothelial cells and vascular structure in the injured area after SCI was observed with OEC transplantation. Finally, the underlying mechanism was investigated by western blot analysis of phosphorylated kinase expression with or without the MK-2206 (Akt-inhibitor). Result The present results showed that the activated OECs can effectively promote vascular endothelial cells' proliferation, migration, and vessel-like structure formation. Strikingly, several pro-angiogenic growth factors such as VEGF-A and PDGF-AA, which facilitate vessel formation, were found to be significantly elevated in CM. In addition, the PI3K/Akt signaling pathway was found to be involved in pro-angiogenic events caused by activated OEC CM, displaying higher phosphorylation levels in cells. In contrast, the delivery of MK2206 can effectively abrogate all the positive effects. Conclusions OECs activated by LPS and CCM have a pro-angiogenic effect and can effectively promote angiogenesis and improve the microenvironment at the injury site when transplanted in the injured spinal cord. This potentiated ability of OECs to provide pro-angiogenic effects is likely mediated through the PI3K/Akt pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00765-y.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.,Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Chao Jiang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yongyuan Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Zhe Chen
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hong Fan
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.,Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yuyang Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.,Department of Medicine, Solna, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Zhiyuan Wang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Fang Tian
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jing Li
- Department of Orthopaedic, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
11
|
Basu S, Choudhury IN, Nazareth L, Chacko A, Shelper T, Vial ML, Ekberg JAK, St John JA. In vitro modulation of Schwann cell behavior by VEGF and PDGF in an inflammatory environment. Sci Rep 2022; 12:662. [PMID: 35027585 PMCID: PMC8758747 DOI: 10.1038/s41598-021-04222-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/17/2021] [Indexed: 01/19/2023] Open
Abstract
Peripheral glial cell transplantation with Schwann cells (SCs) is a promising approach for treating spinal cord injury (SCI). However, improvements are needed and one avenue to enhance regenerative functional outcomes is to combine growth factors with cell transplantation. Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) are neuroprotective, and a combination of these factors has improved outcomes in rat SCI models. Thus, transplantation of SCs combined with VEGF and PDGF may further improve regenerative outcomes. First, however, we must understand how the two factors modulate SCs. In this in vitro study, we show that an inflammatory environment decreased the rate of SC-mediated phagocytosis of myelin debris but the addition of VEGF and PDGF (alone and combined) improved phagocytosis. Cytokine expression by SCs in the inflammatory environment revealed that addition of PDGF led to significantly lower level of pro-inflammatory cytokine, TNF-α, but IL-6 and anti-inflammatory cytokines (TGF-β and IL-10), remained unaltered. Further, PDGF was able to decrease the expression of myelination associated gene Oct6 in the presence of inflammatory environment. Overall, these results suggest that the use of VEGF and/or PDGF combined with SC transplantation may be beneficial in SCI therapy.
Collapse
Affiliation(s)
- Souptik Basu
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Indra N Choudhury
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Lynn Nazareth
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Anu Chacko
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Todd Shelper
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Marie-Laure Vial
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Jenny A K Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - James A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia. .,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia.
| |
Collapse
|
12
|
Murtaza M, Mohanty L, Ekberg JAK, St John JA. Designing Olfactory Ensheathing Cell Transplantation Therapies: Influence of Cell Microenvironment. Cell Transplant 2022; 31:9636897221125685. [PMID: 36124646 PMCID: PMC9490465 DOI: 10.1177/09636897221125685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Olfactory ensheathing cell (OEC) transplantation is emerging as a promising treatment option for injuries of the nervous system. OECs can be obtained relatively easily from nasal biopsies, and exhibit several properties such as secretion of trophic factors, and phagocytosis of debris that facilitate neural regeneration and repair. But a major limitation of OEC-based cell therapies is the poor survival of transplanted cells which subsequently limit their therapeutic efficacy. There is an unmet need for approaches that enable the in vitro production of OECs in a state that will optimize their survival and integration after transplantation into the hostile injury site. Here, we present an overview of the strategies to modulate OECs focusing on oxygen levels, stimulating migratory, phagocytic, and secretory properties, and on bioengineering a suitable environment in vitro.
Collapse
Affiliation(s)
- Mariyam Murtaza
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - Lipsa Mohanty
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - Jenny A K Ekberg
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - James A St John
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Stepanova OV, Voronova AD, Sosnovtseva AO, Stepanenko AA, Chadin AV, Karsuntseva EK, Fursa GA, Valikhov MP, Semkina AS, Vorobyev PO, Reshetov IV, Chekhonin VP. Study of the Therapeutic Efficiency of Transduced Olfactory Ensheathing Cells in Spinal Cord Cysts. Stem Cells Dev 2021; 31:9-17. [PMID: 34847755 DOI: 10.1089/scd.2021.0265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Posttraumatic spinal cord cysts are difficult to treat with medication and surgery. Gene-cell therapy is a promising area of treatment for such patients. However, optimal gene-cell construct for this therapy has not been developed. We investigated the therapeutic efficiency of human olfactory ensheathing cells (OECs) transduced by adenoviral vector encoding the mature form of brain-derived neurotrophic factor (mBDNF) in spinal cord cysts. The adenoviral vectors Ad5/35-CAG-mBDNF and Ad5/35-CAG-Fluc were constructed. Spinal cysts were modeled in female Wistar rats. We selected animals at the early and intermediate stages of recovery with scores to 13 according to the Basso, Beattie and Bresnahan (BBB) scale. The efficiency of therapy was evaluated by BBB tests. No cytotoxicity was detected using the Resazurin/AlamarBlue assay for both vectors at multiplicity of infection (MOIs) of 1, 5, and 25. There was an increase in the proliferation of cells treated with Ad5/35-CAG-mBDNF at MOIs of 5 and 25. The hind limb mobility after the transplantation of Ad5/35-CAG-mBDNF- and Ad5/35-CAG-Fluc-transduced human OECs and nontransduced OECs had approximately the same tendency to improve. Cyst reduction was observed with the transplantation of all the samples. Although Ad5/35-CAG-mBDNF-transduced OECs had high BDNF expression levels in vitro, these cells lacked positive effect in vivo because they did not exhibit significant effect concerning functional test when comparing the groups that received the same numbers of OECs. The therapeutic efficiency of transduced OECs appears to be due to the cell component. The autological and tissue-specific human OECs are promising for the personalized cell therapy. It is extremely important to test new gene-cell constructs based on these cells for further clinical use.
Collapse
Affiliation(s)
- Olga V Stepanova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, Moscow, Russia
| | - Anastasia D Voronova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Anastasiia O Sosnovtseva
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Aleksei A Stepanenko
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Andrey V Chadin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | | | - Grigorii A Fursa
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Biology, Moscow State University, Moscow, Russia
| | - Marat P Valikhov
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, Moscow, Russia
| | - Alevtina S Semkina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Pavel O Vorobyev
- Laboratory of Cell Proliferation, Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Igor V Reshetov
- Department of Plastic Surgery, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir P Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
14
|
Gilmour AD, Reshamwala R, Wright AA, Ekberg JAK, St John JA. Optimizing Olfactory Ensheathing Cell Transplantation for Spinal Cord Injury Repair. J Neurotrauma 2021; 37:817-829. [PMID: 32056492 DOI: 10.1089/neu.2019.6939] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell transplantation constitutes an important avenue for development of new treatments for spinal cord injury (SCI). These therapies are aimed at supporting neural repair and/or replacing lost cells at the injury site. To date, various cell types have been trialed, with most studies focusing on different types of stem cells or glial cells. Here, we review commonly used cell transplantation approaches for spinal cord injury (SCI) repair, with focus on transplantation of olfactory ensheathing cells (OECs), the glial cells of the primary olfactory nervous system. OECs are promising candidates for promotion of neural repair given that they support continuous regeneration of the olfactory nerve that occurs throughout life. Further, OECs can be accessed from the nasal mucosa (olfactory neuroepithelium) at the roof of the nasal cavity and can be autologously transplanted. OEC transplantation has been trialed in many animal models of SCI, as well as in human clinical trials. While several studies have been promising, outcomes are variable and the method needs improvement to enhance aspects such as cell survival, integration, and migration. As a case study, we include the approaches used by our team (the Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia) to address the current problems with OEC transplantation and discuss how the therapeutic potential of OEC transplantation can be improved. Our approach includes discovery research to improve our knowledge of OEC biology, identifying natural and synthetic compounds to stimulate the neural repair properties of OECs, and designing three-dimensional cell constructs to create stable and transplantable cell structures.
Collapse
Affiliation(s)
- Aaron D Gilmour
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - Ronak Reshamwala
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Alison A Wright
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - Jenny A K Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - James A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
15
|
Tseng YT, Chen M, Lai R, Oieni F, Smyth G, Anoopkumar-Dukie S, St John J, Ekberg J. Liraglutide modulates olfactory ensheathing cell migration with activation of ERK and alteration of the extracellular matrix. Biomed Pharmacother 2021; 141:111819. [PMID: 34126351 DOI: 10.1016/j.biopha.2021.111819] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Transplantation of olfactory ensheathing cells (OECs) is a promising approach for repairing the injured nervous system that has been extensively trialed for nervous system repair. However, the method still needs improvement and optimization. One avenue of improving outcomes is to stimulate OEC migration into the injury site. Liraglutide is a glucagon-like peptide-1 receptor agonist used for management of diabetes and obesity. It has been shown to be neuroprotective and to promote cell migration, but whether it can stimulate glial cells remains unknown. In the current study, we investigated the effects of liraglutide on OEC migration and explored the involved mechanisms. We showed that liraglutide at low concentration (100 nM) overall promoted OEC migration over time. Liraglutide modulated the migratory behavior of OECs by reducing time in arrest, and promoted random rather than straight migration. Liraglutide also induced a morphological change of primary OECs towards a bipolar shape consistent with improved migration. We found that liraglutide activated extracellular signal-regulated kinase (ERK), which has key roles in cell migration; the timing of ERK activation correlated with stimulation of migration. Furthermore, liraglutide also modulated the extracellular matrix by upregulating laminin-1 and down-regulating collagen IV. In summary, we found that liraglutide can stimulate OEC migration and re-model the extracellular matrix to better promote cell migration, and possibly also to become more conducive for axonal regeneration. Thus, liraglutide may improve OEC transplantation outcomes.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia
| | - Mo Chen
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia
| | - Richard Lai
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Francesca Oieni
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia
| | - Graham Smyth
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia
| | | | - James St John
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Jenny Ekberg
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
16
|
Antimicrobial responses of peripheral and central nervous system glia against Staphylococcus aureus. Sci Rep 2021; 11:10722. [PMID: 34021227 PMCID: PMC8140078 DOI: 10.1038/s41598-021-90252-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/04/2021] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus infections of the central nervous system are serious and can be fatal. S. aureus is commonly present in the nasal cavity, and after injury to the nasal epithelium it can rapidly invade the brain via the olfactory nerve. The trigeminal nerve constitutes another potential route of brain infection. The glia of these nerves, olfactory ensheathing cells (OECs) and trigeminal nerve Schwann cells (TgSCs), as well as astrocytes populating the glia limitans layer, can phagocytose bacteria. Whilst some glial responses to S. aureus have been studied, the specific responses of different glial types are unknown. Here, we compared how primary mouse OECs, TgSCs, astrocytes and microglia responded to S. aureus. All glial types internalized the bacteria within phagolysosomes, and S. aureus-conjugated BioParticles could be tracked with subtle but significant differences in time-course of phagocytosis between glial types. Live bacteria could be isolated from all glia after 24 h in culture, and microglia, OECs and TgSCs exhibited better protection against intracellular S. aureus survival than astrocytes. All glial types responded to the bacteria by cytokine secretion. Overall, OECs secreted the lowest level of cytokines, suggesting that these cells, despite showing strong capacity for phagocytosis, have immunomodulatory functions that can be relevant for neural repair.
Collapse
|
17
|
Minkelyte K, Collins A, Liadi M, Ibrahim A, Li D, Li Y. High-Yield Mucosal Olfactory Ensheathing Cells Restore Loss of Function in Rat Dorsal Root Injury. Cells 2021; 10:cells10051186. [PMID: 34066218 PMCID: PMC8150777 DOI: 10.3390/cells10051186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023] Open
Abstract
In a previous study, we reported that no axons were crossing from the severed dorsal roots to the spinal cord using the rat dorsal rhizotomy paradigm. The injury caused ipsilateral deficits of forepaw function. An attempt to restore the function by transplanting cells containing 5% olfactory ensheathing cells (OECs) cultured from the olfactory mucosa did not succeed. However, obtaining OECs from the olfactory mucosa has an advantage for clinical application. In the present study, we used the same rhizotomy paradigm, but rats with an injury received cells from a modified mucosal culture containing around 20% OECs mixed in collagen. The forelimb proprioception assessment showed that 80% of the rats receiving the transplants had functional improvement over six weeks of the study. The adhesive removal test showed that the time taken for the rats to notice the adhesive label and remove it almost returned to the normal level after receiving the transplants. Transplanted cells were identified with the expression of green fluorescent protein (ZsGreen). Some regeneration fibres immunostained for neurofilament (NF) or traced by biotinylated dextran amine (BDA) in the injury area were associated with the transplanted cells. The evidence in this study improves the prospect of clinical application using OECs from the olfactory mucosa to treat CNS injuries.
Collapse
Affiliation(s)
- Kamile Minkelyte
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; (K.M.); (A.C.); (M.L.); (A.I.); (D.L.)
| | - Andrew Collins
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; (K.M.); (A.C.); (M.L.); (A.I.); (D.L.)
| | - Modinat Liadi
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; (K.M.); (A.C.); (M.L.); (A.I.); (D.L.)
| | - Ahmed Ibrahim
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; (K.M.); (A.C.); (M.L.); (A.I.); (D.L.)
- Barking, Havering and Redbridge University Hospitals, London RM7 0AG, UK
| | - Daqing Li
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; (K.M.); (A.C.); (M.L.); (A.I.); (D.L.)
| | - Ying Li
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; (K.M.); (A.C.); (M.L.); (A.I.); (D.L.)
- Correspondence: ; Tel.: +44-(0)-20-3448-4481
| |
Collapse
|
18
|
Guo YS, Yuan M, Han Y, Shen XY, Gao ZK, Bi X. Therapeutic Potential of Cytokines in Demyelinating Lesions After Stroke. J Mol Neurosci 2021; 71:2035-2052. [PMID: 33970426 DOI: 10.1007/s12031-021-01851-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022]
Abstract
White matter damage is a component of most human stroke and usually accounts for at least half of the lesion volume. Subcortical white matter stroke (WMS) accounts for 25% of all strokes and causes severe motor and cognitive dysfunction. The adult brain has a very limited ability to repair white matter damage. Pathological analysis shows that demyelination or myelin loss is the main feature of white matter injury and plays an important role in long-term sensorimotor and cognitive dysfunction. This suggests that demyelination is a major therapeutic target for ischemic stroke injury. An acute inflammatory reaction is triggered by brain ischemia, which is accompanied by cytokine production. The production of cytokines is an important factor affecting demyelination and myelin regeneration. Different cytokines have different effects on myelin damage and myelin regeneration. Exploring the role of cytokines in demyelination and remyelination after stroke and the underlying molecular mechanisms of demyelination and myelin regeneration after ischemic injury is very important for the development of rehabilitation treatment strategies. This review focuses on recent findings on the effects of cytokines on myelin damage and remyelination as well as the progress of research on the role of cytokines in ischemic stroke prognosis to provide a new treatment approach for amelioration of white matter damage after stroke.
Collapse
Affiliation(s)
- Yi-Sha Guo
- Shanghai University of Sport, Shanghai, 200438, China
| | - Mei Yuan
- Shanghai University of Sport, Shanghai, 200438, China
| | - Yu Han
- Shanghai University of Sport, Shanghai, 200438, China
| | - Xin-Ya Shen
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200438, China
| | - Zhen-Kun Gao
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200438, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China.
| |
Collapse
|
19
|
Nazareth L, St John J, Murtaza M, Ekberg J. Phagocytosis by Peripheral Glia: Importance for Nervous System Functions and Implications in Injury and Disease. Front Cell Dev Biol 2021; 9:660259. [PMID: 33898462 PMCID: PMC8060502 DOI: 10.3389/fcell.2021.660259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022] Open
Abstract
The central nervous system (CNS) has very limited capacity to regenerate after traumatic injury or disease. In contrast, the peripheral nervous system (PNS) has far greater capacity for regeneration. This difference can be partly attributed to variances in glial-mediated functions, such as axon guidance, structural support, secretion of growth factors and phagocytic activity. Due to their growth-promoting characteristic, transplantation of PNS glia has been trialed for neural repair. After peripheral nerve injuries, Schwann cells (SCs, the main PNS glia) phagocytose myelin debris and attract macrophages to the injury site to aid in debris clearance. One peripheral nerve, the olfactory nerve, is unique in that it continuously regenerates throughout life. The olfactory nerve glia, olfactory ensheathing cells (OECs), are the primary phagocytes within this nerve, continuously clearing axonal debris arising from the normal regeneration of the nerve and after injury. In contrast to SCs, OECs do not appear to attract macrophages. SCs and OECs also respond to and phagocytose bacteria, a function likely critical for tackling microbial invasion of the CNS via peripheral nerves. However, phagocytosis is not always effective; inflammation, aging and/or genetic factors may contribute to compromised phagocytic activity. Here, we highlight the diverse roles of SCs and OECs with the focus on their phagocytic activity under physiological and pathological conditions. We also explore why understanding the contribution of peripheral glia phagocytosis may provide us with translational strategies for achieving axonal regeneration of the injured nervous system and potentially for the treatment of certain neurological diseases.
Collapse
Affiliation(s)
- Lynn Nazareth
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia
| | - James St John
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Mariyam Murtaza
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Jenny Ekberg
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
20
|
Progress in Stem Cell Therapy for Spinal Cord Injury. Stem Cells Int 2020; 2020:2853650. [PMID: 33204276 PMCID: PMC7661146 DOI: 10.1155/2020/2853650] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background Spinal cord injury (SCI) is one of the serious neurological diseases that occur in young people with high morbidity and disability. However, there is still a lack of effective treatments for it. Stem cell (SC) treatment of SCI has gradually become a new research hotspot over the past decades. This article is aimed at reviewing the research progress of SC therapy for SCI. Methods Review the literature and summarize the effects, strategies, related mechanisms, safety, and clinical application of different SC types and new approaches in combination with SC in SCI treatment. Results A large number of studies have focused on SC therapy for SCI, most of which showed good effects. The common SC types for SCI treatment include mesenchymal stem cells (MSCs), hematopoietic stem cells (HSCs), neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs). The modes of treatment include in vivo and in vitro induction. The pathways of transplantation consist of intravenous, transarterial, nasal, intraperitoneal, intrathecal, and intramedullary injections. Most of the SC treatments for SCI use a number of cells ranging from tens of thousands to millions. Early or late SC administration, application of immunosuppressant or not are still controversies. Potential mechanisms of SC therapy include tissue repair and replacement, neurotrophy, and regeneration and promotion of angiogenesis, antiapoptosis, and anti-inflammatory. Common safety issues include thrombosis and embolism, tumorigenicity and instability, infection, high fever, and even death. Recently, some new approaches, such as the pharmacological activation of endogenous SCs, biomaterials, 3D print, and optogenetics, have been also developed, which greatly improved the application of SC therapy for SCI. Conclusion Most studies support the effects of SC therapy on SCI, while a few studies do not. The cell types, mechanisms, and strategies of SC therapy for SCI are very different among studies. In addition, the safety cannot be ignored, and more clinical trials are required. The application of new technology will promote SC therapy of SCI.
Collapse
|
21
|
Key differences between olfactory ensheathing cells and Schwann cells regarding phagocytosis of necrotic cells: implications for transplantation therapies. Sci Rep 2020; 10:18936. [PMID: 33144615 PMCID: PMC7642263 DOI: 10.1038/s41598-020-75850-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Transplantation of peripheral nervous system glia is being explored for treating neural injuries, in particular central nervous system injuries. These glia, olfactory ensheathing cells (OECs) and Schwann cells (SCs), are thought to aid regeneration by clearing necrotic cells, (necrotic bodies, NBs), as well as myelin debris. The mechanism by which the glia phagocytose and traffic NBs are not understood. Here, we show that OECs and SCs recognize phosphatidylserine on NBs, followed by engulfment and trafficking to endosomes and lysosomes. We also showed that both glia can phagocytose and process myelin debris. We compared the time-course of glial phagocytosis (of both NBs and myelin) to that of macrophages. Internalization and trafficking were considerably slower in glia than in macrophages, and OECs were more efficient phagocytes than SCs. The two glial types also differed regarding their cytokine responses after NB challenge. SCs produced low amounts of the pro-inflammatory cytokine TNF-α while OECs did not produce detectable TNF-α. Thus, OECs have a higher capacity than SCs for phagocytosis and trafficking, whilst producing lower amounts of pro-inflammatory cytokines. These findings suggest that OEC transplantation into the injured nervous system may lead to better outcomes than SC transplantation.
Collapse
|
22
|
Sarwat M, Surrao DC, Huettner N, St John JA, Dargaville TR, Forget A. Going beyond RGD: screening of a cell-adhesion peptide library in 3D cell culture. Biomed Mater 2020; 15:055033. [DOI: 10.1088/1748-605x/ab9d6e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Yang B, Zhang F, Cheng F, Ying L, Wang C, Shi K, Wang J, Xia K, Gong Z, Huang X, Yu C, Li F, Liang C, Chen Q. Strategies and prospects of effective neural circuits reconstruction after spinal cord injury. Cell Death Dis 2020; 11:439. [PMID: 32513969 PMCID: PMC7280216 DOI: 10.1038/s41419-020-2620-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Due to the disconnection of surviving neural elements after spinal cord injury (SCI), such patients had to suffer irreversible loss of motor or sensory function, and thereafter enormous economic and emotional burdens were brought to society and family. Despite many strategies being dealing with SCI, there is still no effective regenerative therapy. To date, significant progress has been made in studies of SCI repair strategies, including gene regulation of neural regeneration, cell or cell-derived exosomes and growth factors transplantation, repair of biomaterials, and neural signal stimulation. The pathophysiology of SCI is complex and multifaceted, and its mechanisms and processes are incompletely understood. Thus, combinatorial therapies have been demonstrated to be more effective, and lead to better neural circuits reconstruction and functional recovery. Combinations of biomaterials, stem cells, growth factors, drugs, and exosomes have been widely developed. However, simply achieving axon regeneration will not spontaneously lead to meaningful functional recovery. Therefore, the formation and remodeling of functional neural circuits also depend on rehabilitation exercises, such as exercise training, electrical stimulation (ES) and Brain-Computer Interfaces (BCIs). In this review, we summarize the recent progress in biological and engineering strategies for reconstructing neural circuits and promoting functional recovery after SCI, and emphasize current challenges and future directions.
Collapse
Affiliation(s)
- Biao Yang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Feng Zhang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Feng Cheng
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Liwei Ying
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Chenggui Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Kesi Shi
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Jingkai Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Kaishun Xia
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Zhe Gong
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Xianpeng Huang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Cao Yu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Fangcai Li
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| | - Chengzhen Liang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| | - Qixin Chen
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
24
|
Effect of olfactory ensheathing cells combined with chitosan on inhibition of P2×4 receptor over-expression-mediated neuropathic pain. Neurosci Lett 2020; 722:134859. [DOI: 10.1016/j.neulet.2020.134859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022]
|
25
|
Chen M, Vial ML, Gee L, Davis RA, St John JA, Ekberg JAK. The plant natural product 2-methoxy-1,4-naphthoquinone stimulates therapeutic neural repair properties of olfactory ensheathing cells. Sci Rep 2020; 10:951. [PMID: 31969642 PMCID: PMC6976649 DOI: 10.1038/s41598-020-57793-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/11/2019] [Indexed: 01/04/2023] Open
Abstract
Olfactory ensheathing cells (OECs) are crucial for promoting the regeneration of the primary olfactory nervous system that occurs throughout life. Transplantation of OECs has emerged as a promising therapy for nervous system injuries, in particular for spinal cord injury repair. Functional outcomes in both animals and humans are, however, highly variable, primarily because it is difficult to rapidly obtain enough OECs for transplantation. Compounds which can stimulate OEC proliferation without changing the phenotype of the cells are therefore highly sought after. Additionally, compounds which can stimulate favourable cell behaviours such as migration and phagocytic activity are desirable. We conducted a medium-throughput screen testing the Davis open access natural product-based library (472 compounds) and subsequently identified the known plant natural product 2-methoxy-1,4-naphthoquinone as a stimulant of OEC viability. We showed that 2-methoxy-1,4-naphthoquinone: (i) strongly stimulates proliferation over several weeks in culture whilst maintaining the OEC phenotype; (ii) stimulates the phagocytic activity of OECs, and (iii) modulates the cell cycle. We also identified the transcription factor Nrf2 as the compound’s potential molecular target. From these extensive investigations we conclude that 2-methoxy-1,4-naphthoquinone may enhance the therapeutic potential of OECs by stimulating proliferation prior to transplantation.
Collapse
Affiliation(s)
- M Chen
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia
| | - M L Vial
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia
| | - L Gee
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia
| | - R A Davis
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - J A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia
| | - J A K Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111, QLD, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia. .,Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia.
| |
Collapse
|
26
|
Zhang Y, Wang WT, Gong CR, Li C, Shi M. Combination of olfactory ensheathing cells and human umbilical cord mesenchymal stem cell-derived exosomes promotes sciatic nerve regeneration. Neural Regen Res 2020; 15:1903-1911. [PMID: 32246639 PMCID: PMC7513967 DOI: 10.4103/1673-5374.280330] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Olfactory ensheathing cells (OECs) are promising seed cells for nerve regeneration. However, their application is limited by the hypoxic environment usually present at the site of injury. Exosomes derived from human umbilical cord mesenchymal stem cells have the potential to regulate the pathological processes that occur in response to hypoxia. The ability of OECs to migrate is unknown, especially in hypoxic conditions, and the effect of OECs combined with exosomes on peripheral nerve repair is not clear. Better understanding of these issues will enable the potential of OECs for the treatment of nerve injury to be addressed. In this study, OECs were acquired from the olfactory bulb of Sprague Dawley rats. Human umbilical cord mesenchymal stem cell-derived exosomes (0–400 μg/mL) were cultured with OECs for 12–48 hours. After culture with 400 μg/mL exosomes for 24 hours, the viability and proliferation of OECs were significantly increased. We observed changes to OECs subjected to hypoxia for 24 hours and treatment with exosomes. Exosomes significantly promoted the survival and migration of OECs in hypoxic conditions, and effectively increased brain-derived neurotrophic factor gene expression, protein levels and secretion. Finally, using a 12 mm left sciatic nerve defect rat model, we confirmed that OECs and exosomes can synergistically promote motor and sensory function of the injured sciatic nerve. These findings show that application of OECs and exosomes can promote nerve regeneration and functional recovery. This study was approved by the Institutional Ethical Committee of the Air Force Medical University, China (approval No. IACUC-20181004) on October 7, 2018; and collection and use of human umbilical cord specimens was approved by the Ethics Committee of the Linyi People’s Hospital, China (approval No. 30054) on May 20, 2019.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Wen-Tao Wang
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chun-Rong Gong
- Rehabilitation Center, North District Hospital of the People's Hospital of Lin Yi City, Linyi, Shandong Province, China
| | - Chao Li
- Department of Orthopedics, The Eighth Medical Center of Chinese PLA general Hospital, Beijing, China
| | - Mei Shi
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
27
|
Reshamwala R, Shah M, St John J, Ekberg J. Survival and Integration of Transplanted Olfactory Ensheathing Cells are Crucial for Spinal Cord Injury Repair: Insights from the Last 10 Years of Animal Model Studies. Cell Transplant 2019; 28:132S-159S. [PMID: 31726863 PMCID: PMC7016467 DOI: 10.1177/0963689719883823] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/03/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
Olfactory ensheathing cells (OECs), the glial cells of the primary olfactory nervous system, support the natural regeneration of the olfactory nerve that occurs throughout life. OECs thus exhibit unique properties supporting neuronal survival and growth. Transplantation of OECs is emerging as a promising treatment for spinal cord injury; however, outcomes in both animals and humans are variable and the method needs improvement and standardization. A major reason for the discrepancy in functional outcomes is the variability in survival and integration of the transplanted cells, key factors for successful spinal cord regeneration. Here, we review the outcomes of OEC transplantation in rodent models over the last 10 years, with a focus on survival and integration of the transplanted cells. We identify the key factors influencing OEC survival: injury type, source of transplanted cells, co-transplantation with other cell types, number and concentration of cells, method of delivery, and time of transplantation after the injury. We found that two key issues are hampering optimization and standardization of OEC transplantation: lack of (1) reliable methods for identifying transplanted cells, and (2) three-dimensional systems for OEC delivery. To develop OEC transplantation as a successful and standardized therapy for spinal cord injury, we must address these issues and increase our understanding of the complex parameters influencing OEC survival.
Collapse
Affiliation(s)
- Ronak Reshamwala
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, Queensland, Australia
| | - Megha Shah
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, Queensland, Australia
| | - James St John
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, Queensland, Australia
| | - Jenny Ekberg
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
28
|
Delarue Q, Mayeur A, Chalfouh C, Honoré A, Duclos C, Di Giovanni M, Li X, Salaun M, Dampierre J, Vaudry D, Marie JP, Guérout N. Inhibition of ADAMTS-4 Expression in Olfactory Ensheathing Cells Enhances Recovery after Transplantation within Spinal Cord Injury. J Neurotrauma 2019; 37:507-516. [PMID: 31264504 DOI: 10.1089/neu.2019.6481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) induces permanent loss of sensitive and motor functions below the injury level. To date, a wide variety of cells has been used as biotherapies to cure SCI in different animal paradigms. Specifically, olfactory ensheathing cells (OECs) is one of the most promising. Indeed, OECs have been shown to enhance recovery in many animal studies. Moreover, OECs transplantation has been applied to a paraplegic patient and have shown beneficial effects. However, it has been reported that the significant level of recovery varies among different patients. Therefore, it is of primary importance to enhance the regenerative efficiency of OECs for better translations. Recently, it has been shown that inhibiting ADAMTS4 expression in glial cells in vitro increases their synthesis of neurotrophic factors. We hypothesized that the expression of neurotrophic factors secreted by OECs can be increased by the deletion of ADAMTS4. Taking advantage of ADAMTS4-/- mouse line, we produce ADAMTS4 deficient primary OEC cultures and then we investigated their regenerative potential after SCI. By using quantitative polymerase chain reaction, bioluminescence imaging, measurement of locomotor activity, electrophysiological studies, and immunohistochemistry, our results show that ADAMTS4-/- olfactory bulb OEC (bOECs) primary cultures upregulate their trophic factor expression in vitro, and that the transplantation of ADAMTS4-/- bOECs in a severe SCI model increases functional recovery and tissue repair in vivo. Altogether, our study reveals, for the first time, that primary bOEC cultures transplantation can be potentialized by inhibition of the expression of ADAMTS4.
Collapse
Affiliation(s)
- Quentin Delarue
- Normandie Univ, UNIROUEN, GRHV EA3830; Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Anne Mayeur
- Normandie Univ, UNIROUEN, GRHV EA3830; Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Chaima Chalfouh
- Normandie Univ, UNIROUEN, GRHV EA3830; Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Axel Honoré
- Normandie Univ, UNIROUEN, GRHV EA3830; Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Célia Duclos
- Normandie Univ, UNIROUEN, GRHV EA3830; Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Marine Di Giovanni
- Normandie Univ, UNIROUEN, PRIMACEN; Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France
| | - Xiaofei Li
- Department of Neurobiology, Care Sciences and Society, BioClinicum, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Mathieu Salaun
- Normandie Univ, UNIROUEN, LITIS EA 4108; Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Justine Dampierre
- Normandie Univ, UNIROUEN, LITIS EA 4108; Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - David Vaudry
- Normandie Univ, UNIROUEN, PRIMACEN; Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France
| | - Jean-Paul Marie
- Normandie Univ, UNIROUEN, GRHV EA3830; Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Nicolas Guérout
- Normandie Univ, UNIROUEN, GRHV EA3830; Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| |
Collapse
|
29
|
Stepanova OV, Voronova AD, Chadin AV, Valikhov MP, Semkina AS, Karsuntseva EK, Chekhonin IV, Shishkina VS, Reshetov IV, Chekhonin VP. Efficiency of Human Olfactory Ensheathing Cell Transplantation into Spinal Cysts to Improve Mobility of the Hind Limbs. Stem Cells Dev 2019; 28:1253-1263. [PMID: 31310179 DOI: 10.1089/scd.2019.0092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pathological processes developing after spinal cord injuries often lead to formation of cysts. Existing surgical and medical methods are insufficient for treatment of post-traumatic spinal cord cysts. One of the emerging tools is cell therapy. Olfactory ensheathing cells (OECs) are perspective cells for cell therapy. In this study, we demonstrated that human OEC transplantation is effective in experimental spinal cysts. For our experiments, we selected animals only at the intermediate stage of recovery with scores from 8 to 13 according to the Basso, Beattie, and Bresnahan (BBB) scale. Cells were transplanted in different quantities (0.75 and 1.5 million) into the fully formed cysts and in the areas of injury without cysts. Improvement of limb mobility after human OEC transplantation into post-traumatic cysts was shown. In the group of rats with cysts, time-dependent increase in the BBB score was observed in subgroups treated with 0.75 and 1.5 million OECs with no statistically significant time-dependent dynamics of BBB values in the control group. When all three subgroups (control and two OEC doses) were compared, the Kruskal-Wallis test showed the presence of differences between subgroups after 1, 3, and 4 weeks of treatment with evidence of divergence increase. There was no statistically significant difference between the two doses of OEC treatment. The human OECs in the experiments without cysts were not effective. It was also shown that PKH26-labeled human OECs survive throughout the experiment and migrate to nearby areas of the cyst. Therefore, it was found that it is effective to transplant human OECs into fully formed cysts. In the future, autologous OECs can be used to personalize the treatment of patients with spinal cysts.
Collapse
Affiliation(s)
- Olga V Stepanova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, Moscow, Russia
| | - Anastasia D Voronova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Medical Nanobiotechnologies, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Andrey V Chadin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Marat P Valikhov
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, Moscow, Russia
| | - Alevtina S Semkina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Medical Nanobiotechnologies, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Ivan V Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | | | - Igor V Reshetov
- Department of Plastic Surgery, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir P Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Medical Nanobiotechnologies, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
30
|
Collins A, Ibrahim A, Li D, Liadi M, Li Y. Reconstruction of the Damaged Dorsal Root Entry Zone by Transplantation of Olfactory Ensheathing Cells. Cell Transplant 2019; 28:1212-1219. [PMID: 31271055 PMCID: PMC6767882 DOI: 10.1177/0963689719855938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The dorsal root entry zone is often used in research to examine the disconnection between
the central and peripheral parts of the nervous system which occurs following injury. Our
laboratory and others have used transplantation of olfactory ensheathing cells (OECs) to
repair experimental spinal cord injuries. We have previously used a four dorsal root
(C6–T1) transection model to show that transplantation of OECs can reinstate rat forelimb
proprioception in a climbing task. Until now, however, we have not looked in detail at the
anatomical interaction between OECs and the peripheral/central nervous system regions
which form the transitional zone. In this study, we compared short- and long-term OEC
survival and their interaction with the surrounding dorsal root tissue. We reveal how
transplanted OECs orient toward the spinal cord and allow newly formed axons to travel
across into the dorsal horn of the spinal cord. Reconstruction of the dorsal root entry
zone was supported by OEC ensheathment of axons at the injured site and also at around 3
mm further away at the dorsal root ganglion. Quantitative analysis revealed no observable
difference in dorsal column axonal loss between transplanted and control groups of
rats.
Collapse
Affiliation(s)
- Andrew Collins
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Ahmed Ibrahim
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Daqing Li
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Modinat Liadi
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Ying Li
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| |
Collapse
|
31
|
Zhang L, Li B, Liu B, Dong Z. Co-transplantation of Epidermal Neural Crest Stem Cells and Olfactory Ensheathing Cells Repairs Sciatic Nerve Defects in Rats. Front Cell Neurosci 2019; 13:253. [PMID: 31244611 PMCID: PMC6582070 DOI: 10.3389/fncel.2019.00253] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022] Open
Abstract
Cell-based therapy is an alternative strategy to improve outcomes of peripheral nerve injury (PNI). Epidermal neural crest stem cell (EPI-NCSC) is obtained from autologous tissue without immunological rejection, which could expand quickly in vitro and is suitable candidate for cell-based therapy. Olfactory ensheathing cell (OEC) could secrete multiple neurotrophic factors (NTFs), which is often used to repair PNI individually. However, whether the combination of EPI-NCSC and OEC have better effects on PNI repair remains unclear. Here we use EPI-NCSC and OEC co-transplantation in a rat sciatic nerve defect model to ascertain the effects and potential mechanisms of cells co-transplantation on PNI. The effect of EPI-NCSC and OEC co-transplantation on PNI is assessed by using a combination of immunohistochemistry (IHC), electrophysiological recording and neural function test. Co-transplantation of EPI-NCSC and OEC exerts a beneficial effect upon PNI such as better organized structure, nerve function recovery, and lower motoneuron apoptosis. IHC and enzyme-linked immuno sorbent assay (ELISA) further demonstrate that cells co-transplantation may improve PNI via the expression of brain derived growth factor (BDNF) and nerve growth factor (NGF) up-regulated by EPI-NCSC and OEC synergistically. Eventually, the results from this study reveal that EPI-NCSC and OEC co-transplantation effectively repairs PNI through enhancing the level of BDNF and NGF, indicating that cells co-transplantation may serve as a fruitful avenue for PNI in clinic treatment.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Bingcang Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Bin Liu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhifang Dong
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| |
Collapse
|
32
|
He M, Xiang Z, Xu L, Duan Y, Li F, Chen J. Lipopolysaccharide induces human olfactory ensheathing glial apoptosis by promoting mitochondrial dysfunction and activating the JNK-Bnip3-Bax pathway. Cell Stress Chaperones 2019; 24:91-104. [PMID: 30374881 PMCID: PMC6363633 DOI: 10.1007/s12192-018-0945-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
Olfactory ensheathing glia (OEG) play an important role in regulating the regeneration of an injured nervous system. However, chronic inflammation damage reduces the viability of OEG via poorly understood mechanisms. We aimed to investigate the pathological responses of OEG in response to LPS-mediated inflammation stress in vitro. The results indicated that lipopolysaccharide (LPS) treatment significantly reduced the viability of OEG in a dose-dependent fashion. Mechanistically, LPS stimuli induced mitochondrial oxidative damage, mitochondrial fragmentation, mitochondrial metabolism disruption, and mitochondrial apoptosis activation. Furthermore, we verified that LPS modulated mitochondrial apoptosis by promoting Bax upregulation, and this process was regulated by the JNK-Bnip3 pathway. Inhibition of the JNK-Bnip3 pathway prevented LPS-mediated Bax activation, thus attenuating OEG apoptosis. Altogether, our data illustrated that LPS-mediated inflammation injury evoked mitochondrial abnormalities in OEG damage via the JNK-Bnip3-Bax pathway. This finding provides a potential target to protect OEG against chronic inflammation stress.
Collapse
Affiliation(s)
- Maowei He
- Bengbu Medical College, Affiliated Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA, Fuzhou, 350025, China
| | - Zimin Xiang
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA, Fuzhou, 350025, China
| | - Libin Xu
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA, Fuzhou, 350025, China
| | - Yanting Duan
- Bengbu Medical College, Affiliated Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA, Fuzhou, 350025, China
| | - Fangqin Li
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jianmei Chen
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA, Fuzhou, 350025, China.
| |
Collapse
|