1
|
Kang M, Nasrollahi A, Cheng F, Yao Y. Screening and Identification of Brain Pericyte-Selective Markers. CNS Neurosci Ther 2025; 31:e70247. [PMID: 39912338 PMCID: PMC11799917 DOI: 10.1111/cns.70247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Pericytes, a type of mural cells, exert important functions in the CNS. One major challenge in pericyte research is the lack of pericyte-specific and subpopulation-specific markers. METHODS To address this knowledge gap, we first generated a novel transgenic mouse line in which vascular smooth muscle cells (vSMCs) are permanently labeled with tdTomato. Next, we isolated PDGFRβ+tdTomato- pericytes and PDGFRβ+tdTomato+ vSMCs from the brains of these mice and subsequently performed RNAseq analysis to identify pericyte-enriched genes. RESULTS Using this approach, we successfully identified 40 pericyte-enriched genes and 158 vSMC-enriched genes, which are involved in different biological processes and molecular functions. Using ISH/IHC analysis, we found that Pla1a and Cox4i2 were predominantly enriched in subpopulations of brain pericytes, although they also marked some non-vascular parenchymal cells. CONCLUSIONS These findings suggest that Pla1a and Cox4i2 preferably label subpopulations of pericytes in the brain compared to vSMCs, and thus, they may be useful in distinguishing these populations.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Molecular Pharmacology and Physiology, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| | - Ava Nasrollahi
- Department of Molecular Pharmacology and Physiology, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| | - Feng Cheng
- Department of Pharmaceutical Science, College of PharmacyUniversity of South FloridaTampaFloridaUSA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
2
|
Sun Z, Zhao H, Yang S, Liu R, Yi L, Gao J, Liu S, Chen Y, Zhang Z. Edaravone Dexborneol protects against blood-brain barrier disruption following cerebral ischemia/reperfusion by upregulating pericyte coverage via vitronectin-integrin and PDGFB/PDGFR-β signaling. Free Radic Biol Med 2024; 225:758-766. [PMID: 39486750 DOI: 10.1016/j.freeradbiomed.2024.10.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Recent advancements in brain cytoprotection therapies following cerebral ischemia-reperfusion (I/R) injury have become an emerging interest. Pericytes were vulnerable during the early stages of ischemia. This study aims to explore the protective effects of Edaravone dexborneol (Eda.B) on pericyte loss, as well as and the underlying mechanisms, given its potential in alleviating I/R injury. METHODS The rat transient middle cerebral artery occlusion (tMCAO) model was established. Rats were randomly divided into Sham group (Sham, n = 24), tMCAO group (tMCAO, n = 24), Edaravone group (Eda, n = 24), Dexborneol group (Dexborneol, n = 24), and Eda.B group (Eda.B, n = 24). Neurological function recovery, infarct volume, and blood-brain barrier (BBB) disruption were assessed using Zea-Longa scoring, TTC staining, and Evans Blue extravasation, respectively. Alterations in Basement membrane (BM) and pericyte coverage were assessed by transmission electron microscopy (TEM). The expression levels of pericyte marker NG2 and PDGFR-β in the ischemic region, as well as BBB transcellular transport-related proteins vitronectin (VTN), α5 and PDGFB were detected by western blotting. Furthermore, a specific inhibitor of PDGFB, MOR8457, was employed (Eda.B + MOR8457, n = 8) to explore the protective effects of Eda.B on pericyte injury via PDGFB/PDGFR-β. RESULTS Eda.B significantly reduced cerebral infarct volume and promoted neurological function recovery in comparison to the tMCAO, Eda and Dexborneol groups. Additionally, Eda.B significantly ameliorated BBB leakage, mitigated the decrease in pericyte coverage, and reduced vesicle density in endothelial cells and BM thickness following I/R. Mechanically, Eda.B inhibited the downregulation of NG2, PDGFB/PDGFR-β, VTN, while preventing upregulation of α5 protein expression in tMCAO rats. Blocking PDGFB with MOR8457 demonstrated that Eda.B improved pericyte loss and BBB permeability by activating PDGFB/PDGFR-β signaling. CONCLUSIONS We elucidated that vitronectin-integrin and PDGFB/PDGFR-β signaling contributed to Eda.B's protective effects against pericyte loss and BBB permeability following I/R injury, unraveling new insights into mechanisms of pericyte as a promising therapeutic target.
Collapse
Affiliation(s)
- Zhiyu Sun
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, China; Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hanshu Zhao
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, China
| | - Shanshan Yang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, China
| | - Ruijia Liu
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, China
| | - Lian Yi
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, China
| | - Jiadi Gao
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, China
| | - Sihan Liu
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, China
| | - Yilin Chen
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, China
| | - Zhongling Zhang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, China.
| |
Collapse
|
3
|
Pang B, Wu L, Peng Y. In vitro modelling of the neurovascular unit for ischemic stroke research: Emphasis on human cell applications and 3D model design. Exp Neurol 2024; 381:114942. [PMID: 39222766 DOI: 10.1016/j.expneurol.2024.114942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/16/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Ischemic stroke has garnered global medical attention as one of the most serious cerebrovascular diseases. The mechanisms involved in both the development and recovery phases of ischemic stroke are complex, involving intricate interactions among different types of cells, each with its own unique functions. To better understand the possible pathogenesis, neurovascular unit (NVU), a concept comprising neurons, endothelial cells, mural cells, glial cells, and extracellular matrix components, has been used in analysing various brain diseases, particularly in ischemic stroke, aiming to depict the interactions between cerebral vasculature and neural cells. While in vivo models often face limitations in terms of reproducibility and the ability to precisely mimic human pathophysiology, it is now important to establish in vitro NVU models for ischemic stroke research. In order to accurately portray the pathological processes occurring within the brain, a diverse array of NVU 2D and 3D in vitro models, each possessing unique characteristics and advantages, have been meticulously developed. This review presents a comprehensive overview of recent advancements in in vitro models specifically tailored for investigating ischemic stroke. Through a systematic categorization of these developments, we elucidate the intricate links between NVU components and the pathogenesis of ischemic stroke. Furthermore, we explore the distinct advantages offered by innovative NVU models, notably 3D models, which closely emulate in vivo conditions. Additionally, an examination of current therapeutic modalities for ischemic stroke developed utilizing in vitro NVU models is provided. Serving as a valuable reference, this review aids in the design and implementation of effective in vitro models for ischemic stroke research.
Collapse
Affiliation(s)
- Bo Pang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
4
|
Wu B, Zhou D, Mei Z. Targeting the neurovascular unit: Therapeutic potential of traditional Chinese medicine for the treatment of stroke. Heliyon 2024; 10:e38200. [PMID: 39386825 PMCID: PMC11462356 DOI: 10.1016/j.heliyon.2024.e38200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Stroke poses a significant global health challenge due to its elevated disability and mortality rates, particularly affecting developing nations like China. The neurovascular unit (NVU), a new concept encompassing neurons, brain microvascular endothelial cells, pericytes, astrocytes, microglia, and the extracellular matrix, has gained prominence in recent years. Traditional Chinese medicine (TCM), deeply rooted in Chinese history, employs a combination of acupuncture and herbal treatments, demonstrating significant efficacy across all stages of stroke, notably during recovery. The holistic approach of TCM aligns with the NVU's comprehensive view of treating stroke by addressing neurons, surrounding cells, and blood vessels collectively. This review examines the role of NVU in stroke and endeavors to elucidate the mechanisms through which traditional Chinese medicine exerts its anti-stroke effects within the NVU framework. The NVU contributes to neuroinflammation, immune infiltration, blood-brain barrier permeability, oxidative stress, and Ca2+ overload during stroke occurs. Additionally, TCM targeting the NVU facilitates nerve repair post-stroke through various pathways and approaches. Specific herbs, including panax notoginseng, ginseng, and borneol, alleviate brain injury by enhancing brain-derived neurotrophic factor expression and targeting astrocytes and microglia to yield anti-inflammatory and antioxidant effects. Acupuncture, another facet of TCM, promotes brain injury repair by augmenting cerebral blood flow and improving circulation. This exploration aims to assess the viability of stroke treatment by directing TCM interventions toward the NVU, thus paving the way for its broader clinical application.
Collapse
Affiliation(s)
- Bingxin Wu
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, 430000, China
| | - Dabiao Zhou
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, 430000, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| |
Collapse
|
5
|
Nwokoye PN, Abilez OJ. Bioengineering methods for vascularizing organoids. CELL REPORTS METHODS 2024; 4:100779. [PMID: 38759654 PMCID: PMC11228284 DOI: 10.1016/j.crmeth.2024.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/01/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Abstract
Organoids, self-organizing three-dimensional (3D) structures derived from stem cells, offer unique advantages for studying organ development, modeling diseases, and screening potential therapeutics. However, their translational potential and ability to mimic complex in vivo functions are often hindered by the lack of an integrated vascular network. To address this critical limitation, bioengineering strategies are rapidly advancing to enable efficient vascularization of organoids. These methods encompass co-culturing organoids with various vascular cell types, co-culturing lineage-specific organoids with vascular organoids, co-differentiating stem cells into organ-specific and vascular lineages, using organoid-on-a-chip technology to integrate perfusable vasculature within organoids, and using 3D bioprinting to also create perfusable organoids. This review explores the field of organoid vascularization, examining the biological principles that inform bioengineering approaches. Additionally, this review envisions how the converging disciplines of stem cell biology, biomaterials, and advanced fabrication technologies will propel the creation of increasingly sophisticated organoid models, ultimately accelerating biomedical discoveries and innovations.
Collapse
Affiliation(s)
- Peter N Nwokoye
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oscar J Abilez
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; Division of Pediatric CT Surgery, Stanford University, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Maternal and Child Health Research Institute, Stanford University, Stanford, CA 94305, USA; Bio-X Program, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Nwokoye PN, Abilez OJ. Blood vessels in a dish: the evolution, challenges, and potential of vascularized tissues and organoids. Front Cardiovasc Med 2024; 11:1336910. [PMID: 38938652 PMCID: PMC11210405 DOI: 10.3389/fcvm.2024.1336910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/19/2024] [Indexed: 06/29/2024] Open
Abstract
Vascular pathologies are prevalent in a broad spectrum of diseases, necessitating a deeper understanding of vascular biology, particularly in overcoming the oxygen and nutrient diffusion limit in tissue constructs. The evolution of vascularized tissues signifies a convergence of multiple scientific disciplines, encompassing the differentiation of human pluripotent stem cells (hPSCs) into vascular cells, the development of advanced three-dimensional (3D) bioprinting techniques, and the refinement of bioinks. These technologies are instrumental in creating intricate vascular networks essential for tissue viability, especially in thick, complex constructs. This review provides broad perspectives on the past, current state, and advancements in key areas, including the differentiation of hPSCs into specific vascular lineages, the potential and challenges of 3D bioprinting methods, and the role of innovative bioinks mimicking the native extracellular matrix. We also explore the integration of biophysical cues in vascularized tissues in vitro, highlighting their importance in stimulating vessel maturation and functionality. In this review, we aim to synthesize these diverse yet interconnected domains, offering a broad, multidisciplinary perspective on tissue vascularization. Advancements in this field will help address the global organ shortage and transform patient care.
Collapse
Affiliation(s)
- Peter N. Nwokoye
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Oscar J. Abilez
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
- Division of Pediatric CT Surgery, Stanford University, Stanford, CA, United States
- Cardiovascular Institute, Stanford University, Stanford, CA, United States
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, United States
- Bio-X Program, Stanford University, Stanford, CA, United States
| |
Collapse
|
7
|
Di Martino E, Rayasam A, Vexler ZS. Brain Maturation as a Fundamental Factor in Immune-Neurovascular Interactions in Stroke. Transl Stroke Res 2024; 15:69-86. [PMID: 36705821 PMCID: PMC10796425 DOI: 10.1007/s12975-022-01111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 01/28/2023]
Abstract
Injuries in the developing brain cause significant long-term neurological deficits. Emerging clinical and preclinical data have demonstrated that the pathophysiology of neonatal and childhood stroke share similar mechanisms that regulate brain damage, but also have distinct molecular signatures and cellular pathways. The focus of this review is on two different diseases-neonatal and childhood stroke-with emphasis on similarities and distinctions identified thus far in rodent models of these diseases. This includes the susceptibility of distinct cell types to brain injury with particular emphasis on the role of resident and peripheral immune populations in modulating stroke outcome. Furthermore, we discuss some of the most recent and relevant findings in relation to the immune-neurovascular crosstalk and how the influence of inflammatory mediators is dependent on specific brain maturation stages. Finally, we comment on the current state of treatments geared toward inducing neuroprotection and promoting brain repair after injury and highlight that future prophylactic and therapeutic strategies for stroke should be age-specific and consider gender differences in order to achieve optimal translational success.
Collapse
Affiliation(s)
- Elena Di Martino
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | - Aditya Rayasam
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | - Zinaida S Vexler
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA.
| |
Collapse
|
8
|
Ma Y, Sun W, Bai J, Gao F, Ma H, Liu H, Hu J, Xu C, Zhang X, Liu Z, Yuan T, Sun C, Huang Y, Wang R. Targeting blood brain barrier-Remote ischemic conditioning alleviates cognitive impairment in female APP/PS1 rats. CNS Neurosci Ther 2024; 30:e14613. [PMID: 38379185 PMCID: PMC10879645 DOI: 10.1111/cns.14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/16/2023] [Accepted: 11/26/2023] [Indexed: 02/22/2024] Open
Abstract
AIMS Alzheimer's disease (AD) is a significant global health concern, and it is crucial that we find effective methods to prevent or slow down AD progression. Recent studies have highlighted the essential role of blood vessels in clearing Aβ, a protein that contributes to AD. Scientists are exploring blood biomarkers as a potential tool for future AD diagnosis. One promising method that may help prevent AD is remote ischemic conditioning (RIC). RIC involves using sub-lethal ischemic-reperfusion cycles on limbs. However, a comprehensive understanding of how RIC can prevent AD and its long-term effectiveness is still lacking. Further research is essential to fully comprehend the potential benefits of RIC in preventing AD. METHODS Female wild-type (WT) and APP/PS1 transgenic rats, aged 12 months, underwent ovariectomy and were subsequently assigned to WT, APP/PS1, and APP/PS1 + RIC groups. RIC was conducted five times a week for 4 weeks. The rats' depressive and cognitive behaviors were evaluated using force swimming, open-field tests, novel objective recognition, elevated plus maze, and Barnes maze tests. Evaluation of the neurovascular unit (NVU), synapses, vasculature, astrocytes, and microglia was conducted using immunofluorescence staining (IF), Western blot (WB), and transmission electron microscopy (TEM). Additionally, the cerebro-vasculature was examined using micro-CT, and cerebral blood flow (CBF) was measured using Speckle Doppler. Blood-brain barrier (BBB) permeability was determined by measuring the Evans blue leakage. Finally, Aβ levels in the rat frontal cortex were measured using WB, ELISA, or IF staining. RESULTS RIC enhanced memory-related protein expression and rescued depressive-like behavior and cognitive decline in APP/PS1 transgenic rats. Additionally, the intervention protected NVU in the rat frontal cortex, as evidenced by (1) increased expression of TJ (tight junction) proteins, pericyte marker PDGFRβ, and glucose transporter 1 (GLUT1), as well as decreased VCAM1; (2) mitigation of ultrastructure impairment in neuron, cerebral vascular, and astrocyte; (3) upregulation of A2 astrocyte phenotype markers and downregulation of A1 phenotype markers, indicating a shift toward a healthier phenotype. Correspondingly, RIC intervention alleviated neuroinflammation, as evidenced by the decreased Iba1 level, a microglia marker. Meanwhile, RIC intervention elevated CBF in frontal cortex of the rats. Notably, RIC intervention effectively suppressed Aβ toxicity, as demonstrated by the enhancement of α-secretase and attenuation of β-secretase (BACE1) and γ- secretase and Aβ1-42 and Aβ1-40 levels as well. CONCLUSION Chronic RIC intervention exerts vascular and neuroprotective roles, suggesting that RIC could be a promising therapeutic strategy targeting the BBB and NVU during AD development.
Collapse
Affiliation(s)
- Yuxuan Ma
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Wuxiang Sun
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Jing Bai
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Fujia Gao
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Haoran Ma
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Huiyu Liu
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Jiewei Hu
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Chao Xu
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Xin Zhang
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Zixuan Liu
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Tao Yuan
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Chenxu Sun
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Yuanyuan Huang
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Ruimin Wang
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| |
Collapse
|
9
|
Wu Y, Li P, Bhat N, Fan H, Liu M. Effects of repeated sleep deprivation on brain pericytes in mice. Sci Rep 2023; 13:12760. [PMID: 37550395 PMCID: PMC10406921 DOI: 10.1038/s41598-023-40138-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023] Open
Abstract
The damaging effects of sleep deprivation (SD) on brain parenchyma have been extensively studied. However, the specific influence of SD on brain pericytes, a primary component of the blood-brain barrier (BBB) and the neurovascular unit (NVU), is still unclear. The present study examined how acute or repeated SD impairs brain pericytes by measuring the cerebrospinal fluid (CSF) levels of soluble platelet-derived growth factor receptor beta (sPDGFRβ) and quantifying pericyte density in the cortex, hippocampus, and subcortical area of the PDGFRβ-P2A-CreERT2/tdTomato mice, which predominantly express the reporter tdTomato in vascular pericytes. Our results showed that a one-time 4 h SD did not significantly change the CSF sPDGFRβ level. In contrast, repeated SD (4 h/day for 10 consecutive days) significantly elevated the CSF sPDGFRβ level, implying explicit pericyte damages due to repeated SD. Furthermore, repeated SD significantly decreased the pericyte densities in the cortex and hippocampus, though the pericyte apoptosis status remained unchanged as measured with Annexin V-affinity assay and active Caspase-3 staining. These results suggest that repeated SD causes brain pericyte damage and loss via non-apoptosis pathways. These changes to pericytes may contribute to SD-induced BBB and NVU dysfunctions. The reversibility of this process implies that sleep improvement may have a protective effect on brain pericytes.
Collapse
Affiliation(s)
- Yan Wu
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Pengfei Li
- Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Narayan Bhat
- Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Hongkuan Fan
- Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Meng Liu
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
10
|
Brodeur KRN, Herculano A, Oliveira K. Clinical aspects of malarial retinopathy: a critical review. Pathog Glob Health 2023; 117:450-461. [PMID: 36262019 PMCID: PMC10262785 DOI: 10.1080/20477724.2022.2128568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
This review will provide a better understanding of a set of signs known as malarial retinopathy. The discovery of this retinopathy in association with cerebral malaria is important because it best distinguishes patients with true cerebral malaria from those with coma due to other causes and incidental Plasmodium falciparum parasitemia. Identifying a comatose patient with malarial retinopathy increases the likelihood of an accurate severe or cerebral malaria diagnosis. As the World Health Organization does not specify that malarial retinopathy is one of the factors included in determining a cerebral malaria diagnosis, there are significant false-positive diagnoses of cerebral malaria. Once a cerebral malaria diagnosis is assigned, other possibilities and treatments are often excluded making an incorrect diagnosis of cerebral malaria potentially fatal. However, Plasmodium falciparum may also contribute to coma in some children with retinopathy-negative cerebral malaria, as this group is still not clinically well characterized, so all children with the WHO definition of cerebral malaria should be treated for severe malaria. Nevertheless, by raising awareness about malarial retinopathy, there could be a greater potential to accurately diagnose cerebral malaria and thus achieve more positive patient outcomes in the future. This literary review aims to raise awareness of the retinopathy by defining what it is to non-experts, explaining its pathology, clarifying the techniques needed to accurately diagnose malarial retinopathy, as well as the barriers that prevent clinicians from providing a proper diagnosis in malaria-endemic regions; and finally, discuss future directions to continue the study of malarial retinopathy.
Collapse
Affiliation(s)
- Ketan Raymond Nair Brodeur
- Laboratory of Experimental Neuropharmacology, Federal University of Pará, Belém, Pará, Brazil
- Fulbright US Student Program
- University of Michigan – Ann Arbor, Michigan, USA
| | - Anderson Herculano
- Laboratory of Experimental Neuropharmacology, Federal University of Pará, Belém, Pará, Brazil
| | - Karen Oliveira
- Laboratory of Experimental Neuropharmacology, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
11
|
Ding J, Lee SJ, Vlahos L, Yuki K, Rada CC, van Unen V, Vuppalapaty M, Chen H, Sura A, McCormick AK, Tomaske M, Alwahabi S, Nguyen H, Nowatzke W, Kim L, Kelly L, Vollrath D, Califano A, Yeh WC, Li Y, Kuo CJ. Therapeutic blood-brain barrier modulation and stroke treatment by a bioengineered FZD 4-selective WNT surrogate in mice. Nat Commun 2023; 14:2947. [PMID: 37268690 PMCID: PMC10238527 DOI: 10.1038/s41467-023-37689-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/27/2023] [Indexed: 06/04/2023] Open
Abstract
Derangements of the blood-brain barrier (BBB) or blood-retinal barrier (BRB) occur in disorders ranging from stroke, cancer, diabetic retinopathy, and Alzheimer's disease. The Norrin/FZD4/TSPAN12 pathway activates WNT/β-catenin signaling, which is essential for BBB and BRB function. However, systemic pharmacologic FZD4 stimulation is hindered by obligate palmitoylation and insolubility of native WNTs and suboptimal properties of the FZD4-selective ligand Norrin. Here, we develop L6-F4-2, a non-lipidated, FZD4-specific surrogate which significantly improves subpicomolar affinity versus native Norrin. In Norrin knockout (NdpKO) mice, L6-F4-2 not only potently reverses neonatal retinal angiogenesis deficits, but also restores BRB and BBB function. In adult C57Bl/6J mice, post-stroke systemic delivery of L6-F4-2 strongly reduces BBB permeability, infarction, and edema, while improving neurologic score and capillary pericyte coverage. Our findings reveal systemic efficacy of a bioengineered FZD4-selective WNT surrogate during ischemic BBB dysfunction, with potential applicability to adult CNS disorders characterized by an aberrant blood-brain barrier.
Collapse
Affiliation(s)
- Jie Ding
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sung-Jin Lee
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Lukas Vlahos
- Department of Systems Biology, Columbia University, Columbia, NY, 10032, USA
| | - Kanako Yuki
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Cara C Rada
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Vincent van Unen
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Hui Chen
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Asmiti Sura
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Aaron K McCormick
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Madeline Tomaske
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Samira Alwahabi
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Huy Nguyen
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - William Nowatzke
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Lily Kim
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lisa Kelly
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Douglas Vollrath
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, Columbia, NY, 10032, USA
| | - Wen-Chen Yeh
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Yang Li
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
12
|
Fujimoto K, Erickson S, Nakayama M, Ihara H, Sugihara K, Nashimoto Y, Nishiyama K, Miura T, Yokokawa R. Pericytes and shear stress each alter the shape of a self-assembled vascular network. LAB ON A CHIP 2023; 23:306-317. [PMID: 36537555 DOI: 10.1039/d2lc00605g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Blood vessel morphology is dictated by mechanical and biochemical cues. Flow-induced shear stress and pericytes both play important roles, and they have previously been studied using on-chip vascular networks to uncover their connection to angiogenic sprouting and network stabilization. However, it is unknown which shear stress values promote angiogenesis, how pericytes are directed to sprouts, and how shear stress and pericytes affect the overall vessel morphology. Here, we employed a microfluidic device to study these phenomena in three-dimensional (3D) self-assembled vasculature. Computational fluid dynamics solver (COMSOL) simulations indicated that sprouts form most frequently at locations of relatively low shear stresses (0.5-1.5 dyn cm-2). Experimental results show that pericytes limit vascular diameter. Interestingly, when treated with imatinib or crenolanib, which are chemotherapeutic drugs and inhibitors of platelet-derived growth factor receptor β (PDGFRβ), the pericyte coverage of vessels decreased significantly but vessel diameter remained unchanged. This furthers our understanding of the mechanisms underlying vascular development and demonstrates the value of this microfluidic device in future studies on drug development and vascular biology.
Collapse
Affiliation(s)
- Kazuya Fujimoto
- Department of Micro Engineering, Kyoto University, Kyoto, Japan.
| | - Scott Erickson
- Department of Micro Engineering, Kyoto University, Kyoto, Japan.
| | | | - Hiroki Ihara
- Department of Micro Engineering, Kyoto University, Kyoto, Japan.
| | - Kei Sugihara
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Nashimoto
- Department of Micro Engineering, Kyoto University, Kyoto, Japan.
| | - Koichi Nishiyama
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Takashi Miura
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto, Japan.
| |
Collapse
|
13
|
Gürler G, Soylu KO, Yemisci M. Importance of Pericytes in the Pathophysiology of Cerebral Ischemia. Noro Psikiyatr Ars 2022; 59:S29-S35. [PMID: 36578988 PMCID: PMC9767130 DOI: 10.29399/npa.28171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/02/2022] [Indexed: 12/31/2022] Open
Abstract
Various cell types contribute to pathological changes observed in the brain following cerebral ischemia. Pericytes, as a component of neurovascular unit (NVU) and blood brain barrier (BBB), play a key role for cerebral blood flow control and regulation of vessel permeability. It was shown that pericytes can control cerebral blood flow at the level of capillaries, by their contractile property. Their role in BBB development and maintenance are crucial for guidance of brain vessel development, new vessel formation and stabilization of the newly formed vessels. Additionally, they can contribute to inflammation in response to inflammatory stimuli and can differentiate to various cell types by their multipotent differentiation properties. This cell type which is intimately associated with cerebral circulation also plays important roles during cerebral ischemia. Here, we review the properties and physiological functions of pericytes, how these functions change during ischemia to affect the pathophysiology of ischemic stroke and post stroke cognitive impairment. Pericytes are a neglected cell type and they are not unambiguously characterized which in turn led to contradictory findings in the literature. Clear characterization of pericytes by current methods will help better understanding of their role in the pathophysiology of stroke. With the information gained from these efforts it will be possible to develop pericyte specific therapeutic targets and achieve important breakthroughs in clinical recovery in ischemic stroke treatment.
Collapse
Affiliation(s)
- Gökçe Gürler
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| | - Kadir Oğuzhan Soylu
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| | - Müge Yemisci
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey,Hacettepe University, Faculty of Medicine, Department of Neurology, Ankara, Turkey,Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey,Correspondence Address: Müge Yemişci, Hacettepe Üniversitesi Nörolojik Bilimler ve Psikiyatri Enstitüsü, 06230 Sıhhiye Ankara, Turkey • E-mail:
| |
Collapse
|
14
|
Ruan J, McKee KK, Yurchenco PD, Yao Y. Exogenous laminin exhibits a unique vascular pattern in the brain via binding to dystroglycan and integrins. Fluids Barriers CNS 2022; 19:97. [PMID: 36463265 PMCID: PMC9719645 DOI: 10.1186/s12987-022-00396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Unlike other proteins that exhibit a diffusion pattern after intracerebral injection, laminin displays a vascular pattern. It remains unclear if this unique vascular pattern is caused by laminin-receptor interaction or laminin self-assembly. METHODS We compared the distribution of various wild-type laminin isoforms in the brain after intracerebral injection. To determine what causes the unique vascular pattern of laminin in the brain, laminin mutants with impaired receptor-binding and/or self-assembly activities and function-blocking antibodies to laminin receptors were used. In addition, the dynamics of laminin distribution and elimination were examined at multiple time points after intracerebral injection. RESULTS We found that β2-containing laminins had higher affinity for the vessels compared to β1-containing laminins. In addition, laminin mutants lacking receptor-binding domains but not that lacking self-assembly capability showed substantially reduced vascular pattern. Consistent with this finding, dystroglycan (DAG1) function-blocking antibody significantly reduced the vascular pattern of wild-type laminin-111. Although failed to affect the vascular pattern when used alone, integrin-β1 function-blocking antibody further decreased the vascular pattern when combined with DAG1 antibody. EDTA, which impaired laminini-DAG1 interaction by chelating Ca2+, also attenuated the vascular pattern. Immunohistochemistry revealed that laminins were predominantly located in the perivascular space in capillaries and venules/veins but not arterioles/arteries. The time-course study showed that laminin mutants with impaired receptor-engaging activity were more efficiently eliminated from the brain compared to their wild-type counterparts. Concordantly, significantly higher levels of mutant laminins were detected in the cerebral-spinal fluid (CSF). CONCLUSIONS These findings suggest that intracerebrally injected laminins are enriched in the perivascular space in a receptor (DAG1/integrin)-dependent rather than self-assembly-dependent manner and eliminated from the brain mainly via the perivascular clearance system.
Collapse
Affiliation(s)
- Jingsong Ruan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, 33612, USA
| | - Karen K McKee
- Department of Pathology and Laboratory Medicine, Rutgers University-Robert W. Johnson Medical School, Piscataway, NJ, USA
| | - Peter D Yurchenco
- Department of Pathology and Laboratory Medicine, Rutgers University-Robert W. Johnson Medical School, Piscataway, NJ, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, 33612, USA.
| |
Collapse
|
15
|
Components of Salvia miltiorrhiza and Panax notoginseng Protect Pericytes Against OGD/R-Induced Injury via Regulating the PI3K/AKT/mTOR and JNK/ERK/P38 Signaling Pathways. J Mol Neurosci 2022; 72:2377-2388. [PMID: 36394713 DOI: 10.1007/s12031-022-02082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
Salvia miltiorrhiza (SAL) and Panax notoginseng (PNS) are widely used in treating of ischemic stroke. However, it is unknown which components of SAL and PNS protect brain microvascular pericytes after an ischemic stroke. We evaluated the protective effects and mechanisms of SAL and PNS components in pericytes subjected to oxygen-glucose deprivation/reoxygenation (OGD/R). Pericytes were subjected to OGD/R. Cell Counting Kit-8 (CCK-8) was used to evaluate cell viability. ROS and SOD kits were used to detect oxidative stress. Flow cytometry was performed to analyze cell apoptosis. To evaluate cell migration, a scratch assay was performed. Expression of cleaved caspase-3, Bcl-2, Bax, VEGF, Ang-1, PDGFR-β, PI3K/AKT/mTOR, and JNK/ERK/P38 signaling pathways were identified using western blot. The results revealed that salvianolic acid B (Sal B), salvianolic acid D (Sal D), notoginsenoside R1 (R1), ginsenoside Rb1 (Rb1), and ginsenoside Rg1 (Rg1) increased the cell viability of pericytes subjected to OGD/R, reduced the level of ROS, and increased the expression of SOD. The components reduced cell apoptosis, increased the protein level of Bcl-2/Bax, reduced the level of cleaved caspase-3/caspase-3, increased cell migration, and enhanced the levels of Ang-1, PDGFR-β, and VEGF. The components could activate PI3K/AKT/mTOR pathway while inhibiting the JNK/ERK/P38 pathway. Studies found that Sal B, Sal D, R1, Rb1, and Rg1 inhibited oxidative stress and apoptosis while increasing the release of pro-angiogenic regulators of pericytes related to the PI3K/AKT/mTOR and JNK/ERK/P38 signaling pathways. This provides a potential foundation for developing monomeric drugs for treating ischemic stroke.
Collapse
|
16
|
Xu L, Nirwane A, Xu T, Kang M, Devasani K, Yao Y. Fibroblasts repair blood-brain barrier damage and hemorrhagic brain injury via TIMP2. Cell Rep 2022; 41:111709. [DOI: 10.1016/j.celrep.2022.111709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 09/11/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
|
17
|
Pang J, Matei N, Peng J, Zheng W, Yu J, Luo X, Camara R, Chen L, Tang J, Zhang JH, Jiang Y. Macrophage Infiltration Reduces Neurodegeneration and Improves Stroke Recovery after Delayed Recanalization in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6422202. [PMID: 36035227 PMCID: PMC9402313 DOI: 10.1155/2022/6422202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/27/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022]
Abstract
Background Recent cerebrovascular recanalization therapy clinical trials have validated delayed recanalization in patients outside of the conventional window. However, a paucity of information on the pathophysiology of delayed recanalization and favorable outcomes remains. Since macrophages are extensively studied in tissue repair, we anticipate that they may play a critical role in delayed recanalization after ischemic stroke. Methods In adult male Sprague-Dawley rats, two ischemic stroke groups were used: permanent middle cerebral artery occlusion (pMCAO) and delayed recanalization at 3 days following middle cerebral artery occlusion (rMCAO). To evaluate outcome, brain morphology, neurological function, macrophage infiltration, angiogenesis, and neurodegeneration were reported. Confirming the role of macrophages, after their depletion, we assessed angiogenesis and neurodegeneration after delayed recanalization. Results No significant difference was observed in the rate of hemorrhage or animal mortality among pMCAO and rMCAO groups. Delayed recanalization increased angiogenesis, reduced infarct volumes and neurodegeneration, and improved neurological outcomes compared to nonrecanalized groups. In rMCAO groups, macrophage infiltration contributed to increased angiogenesis, which was characterized by increased vascular endothelial growth factor A and platelet-derived growth factor B. Confirming these links, macrophage depletion reduced angiogenesis, inflammation, neuronal survival in the peri-infarct region, and favorable outcome following delayed recanalization. Conclusion If properly selected, delayed recanalization at day 3 postinfarct can significantly improve the neurological outcome after ischemic stroke. The sanguineous exposure of the infarct/peri-infarct to macrophages was essential for favorable outcomes after delayed recanalization at 3 days following ischemic stroke.
Collapse
Affiliation(s)
- Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Nathanael Matei
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wen Zheng
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jing Yu
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Xu Luo
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Richard Camara
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jiping Tang
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - John H. Zhang
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
18
|
Laminin as a Biomarker of Blood-Brain Barrier Disruption under Neuroinflammation: A Systematic Review. Int J Mol Sci 2022; 23:ijms23126788. [PMID: 35743229 PMCID: PMC9224176 DOI: 10.3390/ijms23126788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 01/01/2023] Open
Abstract
Laminin, a non-collagenous glycoprotein present in the brain extracellular matrix, helps to maintain blood–brain barrier (BBB) integrity and regulation. Neuroinflammation can compromise laminin structure and function, increasing BBB permeability. The aim of this paper is to determine if neuroinflammation-induced laminin functional changes may serve as a potential biomarker of alterations in the BBB. The 38 publications included evaluated neuroinflammation, BBB disruption, and laminin, and were assessed for quality and risk of bias (protocol registered in PROSPERO; CRD42020212547). We found that laminin may be a good indicator of BBB overall structural integrity, although changes in expression are dependent on the pathologic or experimental model used. In ischemic stroke, permanent vascular damage correlates with increased laminin expression (β and γ subunits), while transient damage correlates with reduced laminin expression (α subunits). Laminin was reduced in traumatic brain injury and cerebral hemorrhage studies but increased in multiple sclerosis and status epilepticus studies. Despite these observations, there is limited knowledge about the role played by different subunits or isoforms (such as 411 or 511) of laminin in maintaining structural architecture of the BBB under neuroinflammation. Further studies may clarify this aspect and the possibility of using laminin as a biomarker in different pathologies, which have alterations in BBB function in common.
Collapse
|
19
|
Nirwane A, Yao Y. SMA low/undetectable pericytes differentiate into microglia- and macrophage-like cells in ischemic brain. Cell Mol Life Sci 2022; 79:264. [PMID: 35482211 PMCID: PMC11073453 DOI: 10.1007/s00018-022-04322-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/23/2022]
Abstract
Pericytes are multipotent perivascular cells that play important roles in CNS injury. However, controversial findings exist on how pericytes change and whether they differentiated into microglia-like cells after ischemic stroke. This discrepancy is mainly due to the lack of pericyte-specific markers: the "pericyte" population identified in previous studies contained vascular smooth muscle cells (vSMCs) and/or fibroblasts. Therefore, it remains unclear which cell type differentiates into microglia-like cells after stroke. In this study, lineage-tracing technique was used to mark α-smooth muscle actin (SMA)low/undetectable pericytes, vSMCs, and fibroblasts, and their fates were analyzed after ischemic stroke. We found that SMAlow/undetectable pericytes and fibroblasts but not vSMCs substantially proliferated at the subacute phase after injury, and that SMAlow/undetectable pericyte but not vSMCs or fibroblasts differentiated into Iba1+ cells after ischemic stroke. Further imaging flow cytometry analysis revealed that SMAlow/undetectable pericytes differentiated into both microglia and macrophages at day 7 after stroke. These results demonstrate that SMAlow/undetectable pericytes rather than vSMCs or fibroblasts differentiate into both microglia-like and macrophage-like cells after stroke, suggesting that these pericytes may be targeted in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Abhijit Nirwane
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC8, Tampa, FL, 33612, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC8, Tampa, FL, 33612, USA.
| |
Collapse
|
20
|
Zhang S, Liao XJ, Wang J, Shen Y, Shi HF, Zou Y, Ma CY, Wang XQ, Wang QG, Wang X, Xu MY, Cheng FF, Bai WZ. Temporal alterations in pericytes at the acute phase of ischemia/reperfusion in the mouse brain. Neural Regen Res 2022; 17:2247-2252. [PMID: 35259845 PMCID: PMC9083170 DOI: 10.4103/1673-5374.336876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Pericytes, as the mural cells surrounding the microvasculature, play a critical role in the regulation of microcirculation; however, how these cells respond to ischemic stroke remains unclear. To determine the temporal alterations in pericytes after ischemia/reperfusion, we used the 1-hour middle cerebral artery occlusion model, which was examined at 2, 12, and 24 hours after reperfusion. Our results showed that in the reperfused regions, the cerebral blood flow decreased and the infarct volume increased with time. Furthermore, the pericytes in the infarct regions contracted and acted on the vascular endothelial cells within 24 hours after reperfusion. These effects may result in incomplete microcirculation reperfusion and a gradual worsening trend with time in the acute phase. These findings provide strong evidence for explaining the "no-reflow" phenomenon that occurs after recanalization in clinical practice.
Collapse
Affiliation(s)
- Shuang Zhang
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xue-Jing Liao
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Shen
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Han-Fen Shi
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zou
- Shineway Pharmaceutical Group Ltd., Shijiazhuang, Hebei Province, China
| | - Chong-Yang Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xue-Qian Wang
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Guo Wang
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xu Wang
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ming-Yang Xu
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Fa-Feng Cheng
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wan-Zhu Bai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Chen Y, Yao Y, Zhang JH, Hao S. Editorial: Pluripotent Cells for Stroke: From Mechanism to Therapeutic Strategies. Front Cell Neurosci 2021; 15:738240. [PMID: 34421546 PMCID: PMC8371199 DOI: 10.3389/fncel.2021.738240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - John H Zhang
- Neuroscience Research Center, Loma Linda University, Loma Linda, CA, United States
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
22
|
Eltanahy AM, Koluib YA, Gonzales A. Pericytes: Intrinsic Transportation Engineers of the CNS Microcirculation. Front Physiol 2021; 12:719701. [PMID: 34497540 PMCID: PMC8421025 DOI: 10.3389/fphys.2021.719701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Pericytes in the brain are candidate regulators of microcirculatory blood flow because they are strategically positioned along the microvasculature, contain contractile proteins, respond rapidly to neuronal activation, and synchronize microvascular dynamics and neurovascular coupling within the capillary network. Analyses of mice with defects in pericyte generation demonstrate that pericytes are necessary for the formation of the blood-brain barrier, development of the glymphatic system, immune homeostasis, and white matter function. The development, identity, specialization, and progeny of different subtypes of pericytes, however, remain unclear. Pericytes perform brain-wide 'transportation engineering' functions in the capillary network, instructing, integrating, and coordinating signals within the cellular communicome in the neurovascular unit to efficiently distribute oxygen and nutrients ('goods and services') throughout the microvasculature ('transportation grid'). In this review, we identify emerging challenges in pericyte biology and shed light on potential pericyte-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ahmed M. Eltanahy
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Yara A. Koluib
- Tanta University Hospitals, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Albert Gonzales
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| |
Collapse
|
23
|
Moon S, Chang MS, Koh SH, Choi YK. Repair Mechanisms of the Neurovascular Unit after Ischemic Stroke with a Focus on VEGF. Int J Mol Sci 2021; 22:ijms22168543. [PMID: 34445248 PMCID: PMC8395233 DOI: 10.3390/ijms22168543] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
The functional neural circuits are partially repaired after an ischemic stroke in the central nervous system (CNS). In the CNS, neurovascular units, including neurons, endothelial cells, astrocytes, pericytes, microglia, and oligodendrocytes maintain homeostasis; however, these cellular networks are damaged after an ischemic stroke. The present review discusses the repair potential of stem cells (i.e., mesenchymal stem cells, endothelial precursor cells, and neural stem cells) and gaseous molecules (i.e., nitric oxide and carbon monoxide) with respect to neuroprotection in the acute phase and regeneration in the late phase after an ischemic stroke. Commonly shared molecular mechanisms in the neurovascular unit are associated with the vascular endothelial growth factor (VEGF) and its related factors. Stem cells and gaseous molecules may exert therapeutic effects by diminishing VEGF-mediated vascular leakage and facilitating VEGF-mediated regenerative capacity. This review presents an in-depth discussion of the regeneration ability by which endogenous neural stem cells and endothelial cells produce neurons and vessels capable of replacing injured neurons and vessels in the CNS.
Collapse
Affiliation(s)
- Sunhong Moon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea;
| | - Mi-Sook Chang
- Department of Oral Anatomy, Seoul National University School of Dentistry, Seoul 03080, Korea;
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea;
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea;
- Correspondence: ; Tel.: +82-2-450-0558; Fax: +82-2-444-3490
| |
Collapse
|
24
|
Cao L, Zhou Y, Chen M, Li L, Zhang W. Pericytes for Therapeutic Approaches to Ischemic Stroke. Front Neurosci 2021; 15:629297. [PMID: 34239409 PMCID: PMC8259582 DOI: 10.3389/fnins.2021.629297] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Pericytes are perivascular multipotent cells located on capillaries. Although pericytes are discovered in the nineteenth century, recent studies have found that pericytes play an important role in maintaining the blood—brain barrier (BBB) and regulating the neurovascular system. In the neurovascular unit, pericytes perform their functions by coordinating the crosstalk between endothelial, glial, and neuronal cells. Dysfunction of pericytes can lead to a variety of diseases, including stroke and other neurological disorders. Recent studies have suggested that pericytes can serve as a therapeutic target in ischemic stroke. In this review, we first summarize the biology and functions of pericytes in the central nervous system. Then, we focus on the role of dysfunctional pericytes in the pathogenesis of ischemic stroke. Finally, we discuss new therapies for ischemic stroke based on targeting pericytes.
Collapse
Affiliation(s)
- Lu Cao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanbo Zhou
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengguang Chen
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Hoque MM, Abdelazim H, Jenkins-Houk C, Wright D, Patel BM, Chappell JC. The cerebral microvasculature: Basic and clinical perspectives on stroke and glioma. Microcirculation 2021; 28:e12671. [PMID: 33171539 PMCID: PMC11064683 DOI: 10.1111/micc.12671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/13/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Microvascular networks are vital components of the cardiovascular system, performing many key roles in maintaining the health and homeostasis of the tissues and organs in which they develop. As discussed in this review, the molecular and cellular components within the microcirculation orchestrate critical processes to establish functional capillary beds, including organization of endothelial cell (EC) polarity, guiding investment of vascular pericytes (PCs), and building the specialized extracellular matrix (ECM) that comprises the vascular basement membrane (vBM). Herein, we further discuss the unique features of the microvasculature in the central nervous system (CNS), focusing on the cells contributing to the neurovascular unit (NVU) that form and maintain the blood-brain barrier (BBB). With a focus on vascular PCs, we offer basic and clinical perspectives on neurovascular-related pathologies that involve defects within the cerebral microvasculature. Specifically, we present microvascular anomalies associated with glioblastoma multiforme (GBM) including defects in vascular-immune cell interactions and associated clinical therapies targeting microvessels (ie, vascular-disrupting/anti-angiogenic agents and focused ultrasound). We also discuss the involvement of the microcirculation in stroke responses and potential therapeutic approaches. Our goal was to compare the cellular and molecular changes that occur in the microvasculature and NVU, and to provide a commentary on factors driving disease progression in GBM and stroke. We conclude with a forward-looking perspective on the importance of microcirculation research in developing clinical treatments for these devastating conditions.
Collapse
Affiliation(s)
- Maruf M. Hoque
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA 24061, USA
| | - Hanaa Abdelazim
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Dawn Wright
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
| | - Biraj M. Patel
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Department of Radiology, Carilion Clinic, Roanoke, VA, 24016, USA
| | - John C. Chappell
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
26
|
Treatment with Atorvastatin During Vascular Remodeling Promotes Pericyte-Mediated Blood-Brain Barrier Maturation Following Ischemic Stroke. Transl Stroke Res 2021; 12:905-922. [PMID: 33423214 DOI: 10.1007/s12975-020-00883-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
We previously showed that newly formed vessels in ischemic rat brain have high blood-brain barrier (BBB) permeability at 3 weeks after stroke due to a lack of major endothelial tight junction proteins (TJPs), which may exacerbate edema in stroke patients. Atorvastatin was suggested a dose-dependent pro-angiogenic effect and ameliorating BBB permeability beyond its cholesterol-lowering effects. This study examined our hypothesis that, during vascular remodeling after stroke, treatment with atorvastatin could facilitate BBB maturation in remodeling vasculature in ischemic brain. Adult spontaneously hypertensive rats underwent middle cerebral artery occlusion with reperfusion (MCAO/RP). Atorvastatin, at dose of 3 mg/kg, was delivered daily starting at 14 days after MCAO/RP onset for 7 days. The rats were studied at multiple time points up to 8 weeks with multimodal-MRI, behavior tests, immunohistochemistry, and biochemistry. The delayed treatment of atorvastatin significantly reduced infarct size and BBB permeability, restored cerebral blood flow, and improved the neurological outcome at 8 weeks after MCAO/RP. Postmortem studies showed that atorvastatin promoted angiogenesis and stabilized the newly formed vessels in peri-infarct areas. Importantly, atorvastatin facilitated maturation of BBB properties in the new vessels by promoting endothelial tight junction (TJ) formation. Further in vivo and in vitro studies demonstrated that proliferating peri-vascular pericytes expressing neural-glial antigen 2 (NG2) mediated the role of atorvastatin on BBB maturation through regulating endothelial TJ strand formations. Our results suggested a therapeutic potential of atorvastatin in facilitating a full BBB integrity and functional stroke recovery, and an essential role for pericyte-mediated endothelial TJ formation in remodeling vasculature.
Collapse
|
27
|
Yang Y, Torbey MT. Angiogenesis and Blood-Brain Barrier Permeability in Vascular Remodeling after Stroke. Curr Neuropharmacol 2020; 18:1250-1265. [PMID: 32691713 PMCID: PMC7770645 DOI: 10.2174/1570159x18666200720173316] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/27/2020] [Accepted: 07/11/2020] [Indexed: 11/22/2022] Open
Abstract
Angiogenesis, the growth of new blood vessels, is a natural defense mechanism helping to restore oxygen and nutrient supply to the affected brain tissue following an ischemic stroke. By stimulating vessel growth, angiogenesis may stabilize brain perfusion, thereby promoting neuronal survival, brain plasticity, and neurologic recovery. However, therapeutic angiogenesis after stroke faces challenges: new angiogenesis-induced vessels have a higher than normal permeability, and treatment to promote angiogenesis may exacerbate outcomes in stroke patients. The development of therapies requires elucidation of the precise cellular and molecular basis of the disease. Microenvironment homeostasis of the central nervous system is essential for its normal function and is maintained by the blood-brain barrier (BBB). Tight junction proteins (TJP) form the tight junction (TJ) between vascular endothelial cells (ECs) and play a key role in regulating the BBB permeability. We demonstrated that after stroke, new angiogenesis-induced vessels in peri-infarct areas have abnormally high BBB permeability due to a lack of major TJPs in ECs. Therefore, promoting TJ formation and BBB integrity in the new vessels coupled with speedy angiogenesis will provide a promising and safer treatment strategy for improving recovery from stroke. Pericyte is a central neurovascular unite component in vascular barriergenesis and are vital to BBB integrity. We found that pericytes also play a key role in stroke-induced angiogenesis and TJ formation in the newly formed vessels. Based on these findings, in this article, we focus on regulation aspects of the BBB functions and describe cellular and molecular special features of TJ formation with an emphasis on role of pericytes in BBB integrity during angiogenesis after stroke.
Collapse
Affiliation(s)
- Yi Yang
- Department of Neurology, University of New Mexico Health Sciences Center; Albuquerque, New Mexico, 87131, United States
| | - Michel T Torbey
- Department of Neurology, University of New Mexico Health Sciences Center; Albuquerque, New Mexico, 87131, United States
| |
Collapse
|
28
|
Zong X, Li Y, Liu C, Qi W, Han D, Tucker L, Dong Y, Hu S, Yan X, Zhang Q. Theta-burst transcranial magnetic stimulation promotes stroke recovery by vascular protection and neovascularization. Theranostics 2020; 10:12090-12110. [PMID: 33204331 PMCID: PMC7667689 DOI: 10.7150/thno.51573] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/26/2020] [Indexed: 12/18/2022] Open
Abstract
Rationale: The integrity and function of the blood-brain barrier (BBB) is compromised after stroke. The current study was performed to examine potential beneficial effects and underlying mechanisms of repetitive transcranial magnetic stimulation (rTMS) on angiogenesis and vascular protection, function, and repair following stroke, which are largely unknown. Methods: Using a rat photothrombotic (PT) stroke model, continuous theta-burst rTMS was administered once daily to the infarcted hemisphere for 5 min, beginning 3 h after PT stroke. This treatment was applied for 6 days. BBB integrity, blood flow, vascular associated proteins, angiogenesis, integrity of neuronal morphology and structure, and behavioral outcome were measured and analyzed at 6 and/or 22 days after PT stroke. Results: We report that rTMS significantly mitigated BBB permeabilization and preserved important BBB components ZO-1, claudin-5, occludin, and caveolin-1 from PT-induced degradation. Damage to vascular structure, morphology, and perfusion was ameliorated by rTMS, resulting in improved local tissue oxygenation. This was accompanied with robust protection of critical vascular components and upregulation of regulatory factors. A complex cytokine response was induced by PT, particularly at the late phase. Application of rTMS modulated this response, ameliorating levels of cytokines related to peripheral immune cell infiltration. Further investigation revealed that rTMS promoted and sustained post-ischemic angiogenesis long-term and reduced apoptosis of newborn and existing vascular endothelial cells. Application of rTMS also inhibited PT-induced excessive astrocyte-vasculature interactions and stimulated an A1 to A2 shift in vessel-associated astrocytes. Mechanistic studies revealed that rTMS dramatically increased levels of PDGFRβ associated with A2 astrocytes and their adjacent vasculature. As well, A2 astrocytes displayed marked amplification of the angiogenesis-related factors VEGF and TGFβ. PT induced a rise in vessel-associated expression of HIF-1α that was starkly intensified by rTMS treatment. Finally, rTMS preserved neuronal morphology, synaptic structure integrity and behavioral outcome. Conclusions: These results indicate that rTMS can exert powerful protective and restorative effects on the peri-infarct microvasculature after PT stroke by, in part, promoting HIF-1α signaling and shifting vessel-associated astrocytic polarization to the A2 phenotype. This study provides further support for the potent protective effects of rTMS in the context of ischemic stroke, and these findings implicate vascular repair and protection as an important underlying phenomenon.
Collapse
|
29
|
Yang H, An J, Choi I, Lee K, Park SM, Jou I, Joe EH. Region-specific astrogliosis: differential vessel formation contributes to different patterns of astrogliosis in the cortex and striatum. Mol Brain 2020; 13:103. [PMID: 32698847 PMCID: PMC7374828 DOI: 10.1186/s13041-020-00642-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/14/2020] [Indexed: 11/10/2022] Open
Abstract
Brain injury causes astrocytes to become reactive (astrogliosis). In this study, we compared astrogliosis in acutely injured cortex and striatum of adult FVB/N mice induced by stereotaxic injection of ATP, a component of danger-associated molecular patterns (DAMPs). Interestingly, MR analysis showed that same amount of ATP induced smaller damage in the cortex than in the striatum. However, in histological analysis, thick and dense scar-like astrogliosis was found in the injured cortex near meninges within 2 wk., but not in other regions, including the striatum and even the cortex near the corpus callosum for up to 30 d. There was little regional difference in the number of Ki67(+)-proliferating astrocytes or mRNA expression of inflammatory cytokines. The most prominent difference between regions with and without scar-like astrogliosis was blood vessel formation. Blood vessels highly expressing collagen 1A1 formed densely near meninges, and astrocytes converged on them. In other regions, however, both blood vessels and astrocytes were relatively evenly distributed. Consistent with this, inhibition of blood vessel formation with the vascular endothelial growth factor (VEGF)-blocking antibody, Avastin, attenuated scar-like astrogliosis near meninges. These results indicate that region-specific astrogliosis occurs following brain injury, and that blood vessel formation plays a critical role in scar formation.
Collapse
Affiliation(s)
- Haijie Yang
- Department of Pharmacology/Neuroscience Graduate Program, National Research Lab of Brain Inflammation, Ajou University School of Medicine, Worldcup-ro 164, Youngtong-gu, Suwon, Kyunggi-do, 16499, South Korea.,Department of Brain Science, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Jiawei An
- Department of Pharmacology/Neuroscience Graduate Program, National Research Lab of Brain Inflammation, Ajou University School of Medicine, Worldcup-ro 164, Youngtong-gu, Suwon, Kyunggi-do, 16499, South Korea.,Department of Brain Science, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea.,Department of Biomedical Sciences, Neuroscience Graduate Program, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Insup Choi
- Department of Pharmacology/Neuroscience Graduate Program, National Research Lab of Brain Inflammation, Ajou University School of Medicine, Worldcup-ro 164, Youngtong-gu, Suwon, Kyunggi-do, 16499, South Korea.,Department of Brain Science, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea.,Department of Biomedical Sciences, Neuroscience Graduate Program, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Kihwang Lee
- Department of Ophthalmology, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Sang-Myun Park
- Department of Pharmacology/Neuroscience Graduate Program, National Research Lab of Brain Inflammation, Ajou University School of Medicine, Worldcup-ro 164, Youngtong-gu, Suwon, Kyunggi-do, 16499, South Korea.,Department of Biomedical Sciences, Neuroscience Graduate Program, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Ilo Jou
- Department of Pharmacology/Neuroscience Graduate Program, National Research Lab of Brain Inflammation, Ajou University School of Medicine, Worldcup-ro 164, Youngtong-gu, Suwon, Kyunggi-do, 16499, South Korea.,Department of Biomedical Sciences, Neuroscience Graduate Program, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Eun-Hye Joe
- Department of Pharmacology/Neuroscience Graduate Program, National Research Lab of Brain Inflammation, Ajou University School of Medicine, Worldcup-ro 164, Youngtong-gu, Suwon, Kyunggi-do, 16499, South Korea. .,Department of Brain Science, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea. .,Department of Biomedical Sciences, Neuroscience Graduate Program, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea. .,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea.
| |
Collapse
|
30
|
Andrzejewska A, Dabrowska S, Nowak B, Walczak P, Lukomska B, Janowski M. Mesenchymal stem cells injected into carotid artery to target focal brain injury home to perivascular space. Am J Cancer Res 2020; 10:6615-6628. [PMID: 32550893 PMCID: PMC7295043 DOI: 10.7150/thno.43169] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
Rationale: The groundbreaking discovery of mesenchymal stem cells (MSCs) with their multifaceted benefits led to their widespread application in experimental medicine, including neurology. Efficient delivery of MSCs to damaged regions of the central nervous system may be a critical factor in determining outcome. Integrin VLA-4 (α4β1) coded by ITGA4 and ITGB1 genes is an adhesion molecule expressed by leukocytes, which is responsible for initiation of their diapedesis through cell docking to the inflamed vessel wall expressing VCAM1 receptor. This function of VLA-4 has been recapitulated in neural stem cells and glial progenitors. Thus, it was prudent to investigate this tool as a vehicle driving extravasation of MSCs. Since MSCs naturally express ITGB1 subunit, we decided to supplement them with ITGA4 only. The purpose of our current study is to investigate the eventual fate of IA delivered ITGA4 engineered and naive MSCs. Methods: mRNA-ITGA4 transfected and naive MSCs were injected to right internal carotid artery of rats with focal brain injury. Through next three days MSC presence in animals' brain was navigated by magnetic resonance imaging. Transplanted cell location relative to the brain blood vessels and host immunological reaction were analyzed post-mortem by immunohistochemistry. The chemotaxis of modified and naive MSCs was additionally examined in in vitro transwell migration assay. Results: Both naïve and ITGA4-overexpressing cells remained inside the vascular lumen over the first two days after IA infusion. On the third day, 39% of mRNA-ITGA4 modified and 51% naïve MSCs homed to perivascular space in the injury region (p=NS). The gradual decrease of both naive and mRNA-ITGA4 transfected hBM-MSCs in the rat brain was observed. mRNA-ITGA4 transfected MSCs appeared to be more vulnerable to phagocytosis than naïve cells. Moreover, in vitro study revealed that homogenate from the injured brain repels migration of MSCs, corroborating the incomplete extravasation observed in vivo. Conclusions: In summary, IA transplanted MSCs are capable of homing to the perivascular space, an integral part of neurovascular unit, which might contribute to the replacement of injured pericytes, a critical element facilitating restoration of CNS function. The mRNA-ITGA4 transfection improves cell docking to vessel but this net benefit vanishes over the next two days due to fast clearance from cerebral vessels of the majority of transplanted cells, regardless of their engineering status. The drawbacks of mRNA-ITGA4 transfection become apparent on day 3 post transplantation due to the lower survival and higher vulnerability to host immune attack.
Collapse
|
31
|
Famakin BM, Vemuganti R. Toll-Like Receptor 4 Signaling in Focal Cerebral Ischemia: a Focus on the Neurovascular Unit. Mol Neurobiol 2020; 57:2690-2701. [PMID: 32306272 DOI: 10.1007/s12035-020-01906-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
A robust innate immune activation leads to downstream expression of inflammatory mediators that amplify tissue damage and consequently increase the morbidity after stroke. The Toll-like receptor 4 (TLR4) pathway is a major innate immune pathway activated acutely and chronically after stroke. Hence, understanding the intricacies of the temporal profile, specific control points, and cellular specificity of TLR4 activation is crucial for the development of any novel therapeutics targeting the endogenous innate immune response after focal cerebral ischemia. The goal of this review is to summarize the current findings related to TLR4 signaling after stroke with a specific focus on the components of the neurovascular unit such as astrocytes, neurons, endothelial cells, and pericytes. In addition, this review will examine the effects of focal cerebral ischemia on interaction of these neurovascular unit components.
Collapse
Affiliation(s)
| | - R Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- William S. Middleton VA Hospital, Madison, WI, USA
| |
Collapse
|
32
|
Uemura MT, Maki T, Ihara M, Lee VMY, Trojanowski JQ. Brain Microvascular Pericytes in Vascular Cognitive Impairment and Dementia. Front Aging Neurosci 2020; 12:80. [PMID: 32317958 PMCID: PMC7171590 DOI: 10.3389/fnagi.2020.00080] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 12/19/2022] Open
Abstract
Pericytes are unique, multi-functional mural cells localized at the abluminal side of the perivascular space in microvessels. Originally discovered in 19th century, pericytes had drawn less attention until decades ago mainly due to lack of specific markers. Recently, however, a growing body of evidence has revealed that pericytes play various important roles: development and maintenance of blood–brain barrier (BBB), regulation of the neurovascular system (e.g., vascular stability, vessel formation, cerebral blood flow, etc.), trafficking of inflammatory cells, clearance of toxic waste products from the brain, and acquisition of stem cell-like properties. In the neurovascular unit, pericytes perform these functions through coordinated crosstalk with neighboring cells including endothelial, glial, and neuronal cells. Dysfunction of pericytes contribute to a wide variety of diseases that lead to cognitive impairments such as cerebral small vessel disease (SVD), acute stroke, Alzheimer’s disease (AD), and other neurological disorders. For instance, in SVDs, pericyte degeneration leads to microvessel instability and demyelination while in stroke, pericyte constriction after ischemia causes a no-reflow phenomenon in brain capillaries. In AD, which shares some common risk factors with vascular dementia, reduction in pericyte coverage and subsequent microvascular impairments are observed in association with white matter attenuation and contribute to impaired cognition. Pericyte loss causes BBB-breakdown, which stagnates amyloid β clearance and the leakage of neurotoxic molecules into the brain parenchyma. In this review, we first summarize the characteristics of brain microvessel pericytes, and their roles in the central nervous system. Then, we focus on how dysfunctional pericytes contribute to the pathogenesis of vascular cognitive impairment including cerebral ‘small vessel’ and ‘large vessel’ diseases, as well as AD. Finally, we discuss therapeutic implications for these disorders by targeting pericytes.
Collapse
Affiliation(s)
- Maiko T Uemura
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,JSPS Overseas Research Fellowship Program, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takakuni Maki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Virginia M Y Lee
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John Q Trojanowski
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
33
|
Gautam J, Xu L, Nirwane A, Nguyen B, Yao Y. Loss of mural cell-derived laminin aggravates hemorrhagic brain injury. J Neuroinflammation 2020; 17:103. [PMID: 32252790 PMCID: PMC7133020 DOI: 10.1186/s12974-020-01788-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/25/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Mural cells synthesize and deposit laminin to the basement membrane. To investigate the function of mural cell-derived laminin, we generated a mutant mouse line lacking mural cell-derived laminin (termed PKO). In a previous study, we showed that the PKO mice were grossly normal under homeostatic condition, but developed blood-brain barrier (BBB) breakdown with advanced age (> 8 months), suggesting that these mutants are intrinsically weak. Based on these findings, we hypothesized that PKO mice have exacerbated injuries in pathological conditions. METHODS Using collagenase-induced intracerebral hemorrhage (ICH) as an injury model, we examined various stroke outcomes, including hematoma volume, neurological function, neuronal death, BBB integrity, paracellular/transcellular transport, inflammatory cell infiltration, and brain water content, in PKO mice and their wildtype littermates at young age (6-8 weeks). In addition, transmission electron microscopy (TEM) analysis and an in vitro ICH model were used to investigate the underlying molecular mechanisms. RESULTS Compared to age-matched wildtype littermates, PKO mice display aggravated stroke outcomes, including larger hematoma size, worse neurological function, increased neuronal cell death, enhanced BBB permeability, increased transcytosis, and elevated inflammatory cell infiltration. These mutants also exhibit high baseline brain water content independent of aquaporin-4 (AQP4). In addition, mural cell-derived laminin significantly reduced caveolin-1 without affecting tight junction proteins in the in vitro ICH model. CONCLUSIONS These results suggest that mural cell-derived laminin attenuates BBB damage in ICH via decreasing caveolin-1 and thus transcytosis, regulates brain water homeostasis, and plays a beneficial role in ICH.
Collapse
Affiliation(s)
- Jyoti Gautam
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA, 30602, USA
| | - Lingling Xu
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA, 30602, USA
| | - Abhijit Nirwane
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA, 30602, USA
| | - Benjamin Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA, 30602, USA
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA, 30602, USA.
| |
Collapse
|
34
|
Zhang Y, Zhang X, Wei Q, Leng S, Li C, Han B, Bai Y, Zhang H, Yao H. Activation of Sigma-1 Receptor Enhanced Pericyte Survival via the Interplay Between Apoptosis and Autophagy: Implications for Blood-Brain Barrier Integrity in Stroke. Transl Stroke Res 2020; 11:267-287. [PMID: 31290080 DOI: 10.1007/s12975-019-00711-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/21/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
Abstract
Stroke is a cerebrovascular disorder that affects many people worldwide. Pericytes play an important role in stroke progression and recovery. The sigma-1 receptor (σ-1R) signaling pathway has been suggested as having promising neuroprotective potential in treating stroke; however, whether σ-1R activation regulates pericyte function remains unknown. The aim of this study was to elucidate the role of σ-1R and a novel σ-1R agonist in pericytes following ischemic stroke. An ischemic stroke animal model was induced by photothrombotic middle cerebral artery occlusion (pMCAO) in σ-1R knockout (KO) and wild-type (WT) mice. After pMCAO, there was significant pericyte loss and coverage in σ-1R KO mice compared with WT mice as determined using transmission electron microscopy, immunofluorescence staining, and western blot. Interestingly, a novel σ-1R agonist decreased infarct volume and blood-brain barrier damage with a concomitant amelioration of pericyte loss, as determined by western blot. Further studies indicated that cell apoptosis and autophagy were induced in an in vivo pMCAO ischemic stroke animal model and an in vitro oxygen glucose deprivation-treatment group. Inhibition of autophagy using a pharmacological approach significantly mitigated pericyte apoptosis, suggesting that autophagy was upstream of apoptosis in pericytes. Both in vivo and in vitro studies indicated that the σ-1R agonist significantly decreased cell apoptosis via inhibition of autophagy with a subsequent enhancement of pericyte survival. This study identified the unique roles for σ-1R in mediating pericyte survival via the regulation of the interplay between apoptosis and autophagy, suggesting that a novel σ-1R agonist may be a promising therapeutic agent for the treatment of stroke patients.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| | | | - Qiangqiang Wei
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Shuo Leng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Cai Li
- Department of Neurology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, 276800, Shandong, China
| | - Bing Han
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ying Bai
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
35
|
Rust R, Kirabali T, Grönnert L, Dogancay B, Limasale YDP, Meinhardt A, Werner C, Laviña B, Kulic L, Nitsch RM, Tackenberg C, Schwab ME. A Practical Guide to the Automated Analysis of Vascular Growth, Maturation and Injury in the Brain. Front Neurosci 2020; 14:244. [PMID: 32265643 PMCID: PMC7099171 DOI: 10.3389/fnins.2020.00244] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
The distinct organization of the brain's vasculature ensures the adequate delivery of oxygen and nutrients during development and adulthood. Acute and chronic pathological changes of the vascular system have been implicated in many neurological disorders including stroke and dementia. Here, we describe a fast, automated method that allows the highly reproducible, quantitative assessment of distinct vascular parameters and their changes based on the open source software Fiji (ImageJ). In particular, we developed a practical guide to reliably measure aspects of growth, repair and maturation of the brain's vasculature during development and neurovascular disease in mice and humans. The script can be used to assess the effects of different external factors including pharmacological treatments or disease states. Moreover, the procedure is expandable to blood vessels of other organs and vascular in vitro models.
Collapse
Affiliation(s)
- Ruslan Rust
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Tunahan Kirabali
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Lisa Grönnert
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Berre Dogancay
- Neuroscience Center Zurich, University of Zurich and ETH Zürich, Zurich, Switzerland
| | | | | | - Carsten Werner
- Leibniz Institute for Polymer Research, Dresden, Germany
| | - Bàrbara Laviña
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Luka Kulic
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Christian Tackenberg
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Martin E Schwab
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zürich, Zurich, Switzerland
| |
Collapse
|
36
|
Pericyte-Mediated Tissue Repair through PDGFRβ Promotes Peri-Infarct Astrogliosis, Oligodendrogenesis, and Functional Recovery after Acute Ischemic Stroke. eNeuro 2020; 7:ENEURO.0474-19.2020. [PMID: 32046974 PMCID: PMC7070447 DOI: 10.1523/eneuro.0474-19.2020] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022] Open
Abstract
Post-stroke functional recovery can occur spontaneously during the subacute phase; however, how post-stroke fibrotic repair affects functional recovery is highly debated. Platelet-derived growth factor receptor β (PDGFRβ)-expressing pericytes are responsible for post-stroke fibrotic repair within infarct areas; therefore, we examined peri-infarct neural reorganization and functional recovery after permanent middle cerebral artery occlusion (pMCAO) using pericyte-deficient Pdgfrb+/- mice. Time-dependent reduction of infarct area sizes, i.e., repair, was significantly impaired in Pdgfrb+/- mice with recovery of cerebral blood flow (CBF) in ischemic areas attenuated by defective leptomeningeal arteriogenesis and intrainfarct angiogenesis. Peri-infarct astrogliosis, accompanied by increased STAT3 phosphorylation, was attenuated in Pdgfrb+/- mice. Pericyte-conditioned medium (PCM), particularly when treated with platelet-derived growth factor subunit B (PDGFB) homodimer (PDGF-BB; PCM/PDGF-BB), activated STAT3 and enhanced the proliferation and activity of cultured astrocytes. Although peri-infarct proliferation of oligodendrocyte (OL) precursor cells (OPCs) was induced promptly after pMCAO regardless of intrainfarct repair, OPC differentiation and remyelination were significantly attenuated in Pdgfrb+/- mice. Consistently, astrocyte-CM (ACM) promoted OPC differentiation and myelination, which were enhanced remarkably by adding PCM/PDGF-BB to the medium. Post-stroke functional recovery correlated well with the extent and process of intrainfarct repair and peri-infarct oligodendrogenesis. Overall, pericyte-mediated intrainfarct fibrotic repair through PDGFRβ may promote functional recovery through enhancement of peri-infarct oligodendrogenesis as well as astrogliosis after acute ischemic stroke.
Collapse
|
37
|
Ago T. [Why are pericytes important for brain functions?]. Rinsho Shinkeigaku 2019; 59:707-715. [PMID: 31656270 DOI: 10.5692/clinicalneurol.cn-001357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pericytes are mural cells embedded in the basal membrane surrounding endothelial cells in capillary and small vessels (from precapillary arterioles to postcapillary venules). They exist with a high coverage ratio to endothelial cells in the brain and play crucial roles in the formation and maintenance of the blood-brain barrier and the control of blood flow through a close interaction with endothelial cells. Thus, intactness of pericyte is absolutely needed for neuronal/brain functions. Ageing, life-style diseases, hypoperfusion/ischemia, drugs, and genetic factors can primarily cause pericyte dysfunctions, thereby leading to the development or progression of various brain disorders, including cerebrovascular diseases. Because pericytes also play an important role in tissue repair after brain injuries, they have received much attention as a therapeutic target even from the standpoint of functional recovery.
Collapse
Affiliation(s)
- Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
38
|
Kanazawa M, Takahashi T, Ishikawa M, Onodera O, Shimohata T, Del Zoppo GJ. Angiogenesis in the ischemic core: A potential treatment target? J Cereb Blood Flow Metab 2019; 39:753-769. [PMID: 30841779 PMCID: PMC6501515 DOI: 10.1177/0271678x19834158] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ischemic penumbra is both a concept in understanding the evolution of cerebral tissue injury outcome of focal ischemia and a potential therapeutic target for ischemic stroke. In this review, we examine the evidence that angiogenesis can contribute to beneficial outcomes following focal ischemia in model systems. Several studies have shown that, following cerebral ischemia, endothelial proliferation and subsequent angiogenesis can be detected beginning four days after cerebral ischemia in the border of the ischemic core, or in the ischemic periphery, in rodent and non-human primate models, although initial signals appear within hours of ischemia onset. Components of the neurovascular unit, its participation in new vessel formation, and the nature of the core and penumbra responses to experimental focal cerebral ischemia, are considered here. The potential co-localization of vascular remodeling and axonal outgrowth following focal cerebral ischemia based on the definition of tissue remodeling and the processes that follow ischemic stroke are also considered. The region of angiogenesis in the ischemic core and its surrounding tissue (ischemic periphery) may be a novel target for treatment. We summarize issues that are relevant to model studies of focal cerebral ischemia looking ahead to potential treatments.
Collapse
Affiliation(s)
- Masato Kanazawa
- 1 Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tetsuya Takahashi
- 1 Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masanori Ishikawa
- 1 Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- 1 Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takayoshi Shimohata
- 2 Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Gregory J Del Zoppo
- 3 Department of Medicine (Division of Hematology), University of Washington, Seattle, WA, USA.,4 Department of Neurology, University of Washington, Seattle, WA, USA
| |
Collapse
|
39
|
Zhang W, Krafft PR, Wang T, Zhang JH, Li L, Tang J. Pathophysiology of Ganglioside GM1 in Ischemic Stroke: Ganglioside GM1: A Critical Review. Cell Transplant 2019; 28:657-661. [PMID: 30666888 PMCID: PMC6686431 DOI: 10.1177/0963689718822782] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ganglioside GM1 is a member of the ganglioside family which has been used in many countries and is thought of as a promising alternative treatment for preventing several neurological diseases, including cerebral ischemic injury. The therapeutic effects of GM1 have been proved both in neonates and in adults following ischemic brain damage; however, its clinical efficacy in patients with ischemic stroke is still uncertain. This review examines the recent knowledge of the neuroprotective properties of GM1 in ischemic stroke, collected in the past two decades. We conclude that GM1 may have potential for stroke treatment, although we need to be cautious in respect of its complications.
Collapse
Affiliation(s)
- Wenchao Zhang
- 1 Department of Anesthesiology, Beijing Jishuitan Hospital, People's Republic of China
| | - Paul R Krafft
- 2 Department of Neurological Surgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Tianlong Wang
- 3 Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - John H Zhang
- 4 Department of Physiology & Pharmacology, Loma Linda University School of Medicine, USA.,5 Department of Anesthesiology, Loma Linda University School of Medicine, USA
| | - Li Li
- 6 Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, People's Republic of China.,Both the authors contributed equally to this work
| | - Jiping Tang
- 4 Department of Physiology & Pharmacology, Loma Linda University School of Medicine, USA.,Both the authors contributed equally to this work
| |
Collapse
|
40
|
Galaris G, Thalgott JH, Lebrin FPG. Pericytes in Hereditary Hemorrhagic Telangiectasia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:215-246. [PMID: 31147880 DOI: 10.1007/978-3-030-16908-4_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a genetic disorder characterized by multi-systemic vascular dysplasia affecting 1 in 5000 people worldwide. Individuals with HHT suffer from many complications including nose and gastrointestinal bleeding, anemia, iron deficiency, stroke, abscess, and high-output heart failure. Identification of the causative gene mutations and the generation of animal models have revealed that decreased transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) signaling and increased vascular endothelial growth factor (VEGF) signaling activity in endothelial cells are responsible for the development of the vascular malformations in HHT. Perturbations in these key pathways are thought to lead to endothelial cell activation resulting in mural cell disengagement from the endothelium. This initial instability state causes the blood vessels to response inadequately when they are exposed to angiogenic triggers resulting in excessive blood vessel growth and the formation of vascular abnormalities that are prone to bleeding. Drugs promoting blood vessel stability have been reported as effective in preclinical models and in clinical trials indicating possible interventional targets based on a normalization approach for treating HHT. Here, we will review how disturbed TGF-β and VEGF signaling relates to blood vessel destabilization and HHT development and will discuss therapeutic opportunities based on the concept of vessel normalization to treat HHT.
Collapse
Affiliation(s)
- Georgios Galaris
- Department of Internal Medicine (Nephrology), Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jérémy H Thalgott
- Department of Internal Medicine (Nephrology), Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Franck P G Lebrin
- Department of Internal Medicine (Nephrology), Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- Physics for Medicine, ESPCI, INSERM U1273, CNRS, Paris, France.
- MEMOLIFE Laboratory of Excellence and PSL Research University, Paris, France.
| |
Collapse
|