1
|
Son D, Zheng J, Kim IY, Kang PJ, Park K, Priscilla L, Hong W, Yoon BS, Park G, Yoo JE, Song G, Lee JB, You S. Human induced neural stem cells support functional recovery in spinal cord injury models. Exp Mol Med 2023; 55:1182-1192. [PMID: 37258581 PMCID: PMC10318049 DOI: 10.1038/s12276-023-01003-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/16/2023] [Accepted: 03/08/2023] [Indexed: 06/02/2023] Open
Abstract
Spinal cord injury (SCI) is a clinical condition that leads to permanent and/or progressive disabilities of sensory, motor, and autonomic functions. Unfortunately, no medical standard of care for SCI exists to reverse the damage. Here, we assessed the effects of induced neural stem cells (iNSCs) directly converted from human urine cells (UCs) in SCI rat models. We successfully generated iNSCs from human UCs, commercial fibroblasts, and patient-derived fibroblasts. These iNSCs expressed various neural stem cell markers and differentiated into diverse neuronal and glial cell types. When transplanted into injured spinal cords, UC-derived iNSCs survived, engrafted, and expressed neuronal and glial markers. Large numbers of axons extended from grafts over long distances, leading to connections between host and graft neurons at 8 weeks post-transplantation with significant improvement of locomotor function. This study suggests that iNSCs have biomedical applications for disease modeling and constitute an alternative transplantation strategy as a personalized cell source for neural regeneration in several spinal cord diseases.
Collapse
Affiliation(s)
- Daryeon Son
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jie Zheng
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - In Yong Kim
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Phil Jun Kang
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Kyoungmin Park
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Lia Priscilla
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Wonjun Hong
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Byung Sun Yoon
- Institute of Regenerative Medicine, STEMLAB, Inc., Seoul, 02841, Republic of Korea
| | - Gyuman Park
- Institute of Future Medicine, STEMLAB, Inc., Seoul, 02841, Republic of Korea
| | - Jeong-Eun Yoo
- Institute of Future Medicine, STEMLAB, Inc., Seoul, 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Jang-Bo Lee
- Department of Neurosurgery, College of Medicine, Korea University Anam Hospital, Seoul, 02841, Republic of Korea.
| | - Seungkwon You
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
- Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Onifer SM, Cannon AB, Whittemore SR. Altered Differentiation of Cns Neural Progenitor Cells after Transplantation into the Injured Adult Rat Spinal Cord. Cell Transplant 2017; 6:327-38. [PMID: 9171165 DOI: 10.1177/096368979700600315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Denervation of CNS neurons and peripheral organs is a consequence of traumatic SCI. Intraspinal transplantation of embryonic CNS neurons is a potential strategy for reinnervating these targets. Neural progenitor cell lines are being investigated as alternates to embryonic CNS neurons. RN33B is an immortalized neural progenitor cell line derived from embryonic rat raphé nuclei following infection with a retrovirus encoding the temperature-sensitive mutant of SV40 large T-antigen. Transplantation studies have shown that local epigenetic signals in intact or partially neuron-depleted adult rat hippocampal formation or striatum direct RN33B cell differentiation to complex multipolar morphologies resembling endogenous neurons. After transplantation into neuron-depleted regions of the hippocampal formation or striatum, RN33B cells were relatively undifferentiated or differentiated with bipolar morphologies. The present study examines RN33B cell differentiation after transplantation into normal spinal cord and under different lesion conditions. Adult rats underwent either unilateral lesion of lumbar spinal neurons by intraspinal injection of kainic acid or complete transection at the T10 spinal segment. Neonatal rats underwent either unilateral lesion of lumbar motoneurons by sciatic nerve crush or complete transection at the T10 segment. At 2 or 6-7 wk postinjury, lacZ-labeled RN33B cells were transplanted into the lumbar enlargement of injured and age-matched normal rats. At 2 wk posttransplantation, bipolar and some multipolar RN33B cells were found throughout normal rat gray matter. In contrast, only bipolar RN33B cells were seen in gray matter of kainic acid lesioned, sciatic nerve crush, or transection rats. These observations suggest that RN33B cell multipolar morphological differentiation in normal adult spinal cord is mediated by direct cell-cell interaction through surface molecules on endogenous neurons and may be suppressed by molecules released after SCI. They also indicate that the fate of immortalized neural progenitor cell lines in injured CNS must be stringently characterized.
Collapse
Affiliation(s)
- S M Onifer
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, FL 33136, USA
| | | | | |
Collapse
|
3
|
Tønnesen J, Kokaia M. Electrophysiological investigations of synaptic connectivity between host and graft neurons. PROGRESS IN BRAIN RESEARCH 2013. [PMID: 23195416 DOI: 10.1016/b978-0-444-59575-1.00005-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The functional synaptic integration of grafted stem cell-derived neurons is one of the key aspects of neural cell replacement therapies for neurological disorders such as Parkinson's disease. However, little is currently known about the synaptic connectivity between graft and host cells after transplantation, not only in the settings of clinical trials but also in experimental studies. This knowledge gap is primarily due to the lack of experimental electrophysiological approaches allowing interrogation of synaptic connectivity between prospectively identified host and graft neurons and hampers our understanding of the mechanisms underlying functional integration of stem cell-derived neurons in the host brain, as well as the optimization of protocols for deriving stem cells for neural cell replacement therapy. Recent optogenetic tools allow for direct investigation of connectivity between host and graft neural populations and have already been applied to show bidirectional integration of dopaminergic neurons in a host tissue. These new tools have potential to advance our understanding of functional integration in the near future. Here, we provide an overview of the current literature addressing functional integration of stem cell-derived neurons in the settings of Parkinson's disease models and discuss some experimental paradigms to approach this issue.
Collapse
Affiliation(s)
- Jan Tønnesen
- Synaptic Plasticity and Superresolution Microscopy Group, Interdisciplinary Institute for Neurosciences, Université de Bordeaux Segalen, Bordeaux, France
| | | |
Collapse
|
4
|
Lin CS, Xin ZC, Dai J, Lue TF. Commonly used mesenchymal stem cell markers and tracking labels: Limitations and challenges. Histol Histopathol 2013; 28:1109-16. [PMID: 23588700 DOI: 10.14670/hh-28.1109] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Early observations that cultured mesenchymal stem cells (MSCs) could be induced to exhibit certain characteristics of osteocytes and chondrocytes led to the proposal that they could be transplanted for tissue repair through cellular differentiation. Therefore, many subsequent preclinical studies with transplanted MSCs have strived to demonstrate that cellular differentiation was the underlying mechanism for the therapeutic effect. These studies generally followed the minimal criteria set by The International Society for Cellular Therapy in assuring MSC identity by using CD70, CD90, and CD105 as positive markers and CD34 as a negative marker. However, the three positive markers are co-expressed in a wide variety of cells, and therefore, even when used in combination, they are certainly incapable of identifying MSCs in vivo. Another frequently used MSC marker, Stro-1, has been shown to be an endothelial antigen and whether it can identify MSCs in vivo remains unknown. On the other hand, the proposed negative marker CD34 has increasingly been shown to be expressed in native MSCs, such as in the adipose tissue. It has also helped establish that MSCs are likely vascular stem cells (VSCs) that reside in the capillaries and in the adventitia of larger blood vessels. These cells do not express CD31, CD104b, or α-SMA, and therefore are designated as CD34+CD31-CD140b-SMA-. Many preclinical MSC transplantation studies have also attempted to demonstrate cellular differentiation by using labeled MSCs. However, all commonly used labels have shortcomings that often complicate data interpretation. The β-gal (LacZ) gene as a label is problematic because many mammalian tissues have endogenous β-gal activities. The GFP gene is similarly problematic because many mammalian tissues are endogenously fluorescent. The cell membrane label DiI can be adsorbed by host cells, and nuclear stains Hoechst dyes and DAPI can be transferred to host cells. Thymidine analog BrdU is associated with loss of cellular protein antigenicity due to harsh histological conditions. Newer thymidine analog EdU is easier to detect by chemical reaction to azide-conjugated Alexa fluors, but certain bone marrow cells are reactive to these fluors in the absence of EdU. These caveats need to be taken into consideration when designing or interpreting MSC transplantation experiments.
Collapse
Affiliation(s)
- Ching-Shwun Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California 94143-0738, USA.
| | | | | | | |
Collapse
|
5
|
Ozdemir M, Attar A, Kuzu I, Ayten M, Ozgencil E, Bozkurt M, Dalva K, Uckan D, Kılıc E, Sancak T, Kanpolat Y, Beksac M. Stem cell therapy in spinal cord injury: in vivo and postmortem tracking of bone marrow mononuclear or mesenchymal stem cells. Stem Cell Rev Rep 2012; 8:953-62. [PMID: 22552878 DOI: 10.1007/s12015-012-9376-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of this study was to address the question of whether bone marrow-originated mononuclear cells (MNC) or mesenchymal stem cells (MSC) induce neural regeneration when implanted intraspinally. MATERIALS AND METHODS The study design included 4 groups of mice: Group 1, non-traumatized control group; Groups 2, 3 and 4 spinal cord traumatized mice with 1 g force Tator clips, which received intralesionally either no cellular implants (Group 2), luciferase (Luc) (+) MNC (Group 3) or MSC (Group 4) obtained from CMV-Luc or beta-actin Luc donor transgenic mice. Following the surgery until decapitation, periodical radioluminescence imaging (RLI) and Basso Mouse Scale (BMS) evaluations was performed to monitor neural activity. Postmortem immunohistochemical techniques were used to analyze the fate of donor type implanted cells. RESULTS All mice of Groups 3 and 4 showed various degrees of improvement in the BMS scores, whereas there was no change in Groups 1 and 2. The functional improvement was significantly better in Group 4 compared to Group 3 (18 vs 8, p=0.002). The immunohistochemical staining demonstrated GFP(+)Luc(+) neuronal/glial cells that were also positive with one or more of these markers: nestin, myelin associated glycoprotein, microtubule associated protein or myelin oligodendrocyte specific protein, which is considered as indicator of donor type neuronal regeneration. Frequency of donor type neuronal cells; Luc + signals and median BMS scores were observed 48-64% and 68-72%; 44-80%; 8 and 18 within Groups III and IV respectively. DISCUSSION MSCs were more effective than MNC in obtaining neuronal recovery. Substantial but incomplete functional improvement was associated with donor type in vivo imaging signals more frequently than the number of neuronal cells expressing donor markers in spinal cord sections in vitro. Our results are in favor of functional recovery arising from both donor MSC and MNCs, contributing to direct neuronal regeneration and additional indirect mechanisms.
Collapse
Affiliation(s)
- Mevci Ozdemir
- School of Medicine, Department of Neurosurgery, Pamukkale University, 20070, Kinikli, Denizli, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Cellek S, Bivalacqua TJ, Burnett AL, Chitaley K, Lin C. Common Pitfalls in Some of the Experimental Studies in Erectile Function and Dysfunction: A Consensus Article. J Sex Med 2012; 9:2770-84. [DOI: 10.1111/j.1743-6109.2012.02916.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Krause M, Ganser C, Kobayashi E, Papazoglou A, Nikkhah G. The Lewis GFP transgenic rat strain is a useful cell donor for neural transplantation. Cell Transplant 2012; 21:1837-51. [PMID: 22405077 DOI: 10.3727/096368911x627426] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stem cell transplantation is a promising therapeutic approach in neurodegenerative diseases. Studying graft survival and development has important implications for the further development of experimental and clinical transplantation protocols. Cellular elements in neural transplants are sometimes difficult to identify. The existing labeling methods cannot reliably provide stably labeled cells that can be detected in long-term experiments. Transgenic (tg) Lewis rats ubiquitously expressing green fluorescent protein (GFP) provide an ideal donor source. The aim of this project was to investigate the potential of GFP-tg Lewis rats to serve as donor tissue for neural stem cell transplantation. Ventral mesencephalon (VM) GFP-tg E14.5-derived cells were compared to wild-type (wt) in vitro and in vivo. Firstly, cells from GFP and non-GFP VM tissue were compared with regard to their proliferation and response towards 6-OHDA-toxicity in culture. Secondly, 6-OHDA-lesioned hemiparkinsonian Sprague-Dawley/Crl:CD(SD) rats received intrastriatal grafts derived from VM of E14.5 GFP-tg rats. Due to the fact that donor and recipient belong to two different rat strains, we focused on graft survival in correlation with immunosuppression and graft GFP and tyrosine hydroxylase (TH) expression. In summary, in vitro tg cells exhibited 98% GFP expression and did not differ from wt cells in any of the measured parameters. In vivo, all experimental groups showed a significant compensation in rotation behavior after transplantation. Furthermore, there was no difference on rotation behavior or graft morphology and survival pattern as well as GFP expression between immunosuppressed and nonimmunosuppressed animals. The GFP-positive population of the graft was composed of 13.3% GFAP-positive, 56.1% NeuN-positive, and 1.9% TH-positive cells. Analysis of graft subpopulations manifested that 70.6% of GFAP-positive, 86.9% of NeuN-positive, and 80.1% of TH-positive cells coexpressed GFP. In conclusion, our data show that the Lewis GFP-tg rats serve as an excellent cell source for studying primary neural precursor cells in the transplantation paradigm.
Collapse
Affiliation(s)
- Martin Krause
- Laboratory of Molecular Neurosurgery, Department of Stereotactic and Functional Neurosurgery, Neurocentre, University Hospital Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
8
|
Lin CS, Xin ZC, Wang Z, Deng C, Huang YC, Lin G, Lue TF. Stem cell therapy for erectile dysfunction: a critical review. Stem Cells Dev 2011; 21:343-51. [PMID: 21793654 DOI: 10.1089/scd.2011.0303] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Erectile dysfunction (ED) is a prevailing health problem that seriously impacts quality of life. Current treatment options are less effective for patients having cavernous nerve (CN) injury or diabetes mellitus-related ED. These 2 types of ED are thus the main focus of past and current stem cell (SC) therapy studies. In a total of 16 studies so far, rats were exclusively used as disease models and SCs were mostly derived from bone marrow, adipose tissue, or skeletal muscle. For tracking, SCs were labeled with LacZ, green fluorescent protein, 4',6-diamidino-2-phenylindole, DiI, bromodeoxyuridine, or 5-ethynyl-2-deoxyuridine, some of which might have led to data misinterpretation. SC transplantation was done exclusively by intracavernous (IC) injection, which has been recently shown to have systemic effects. Functional assessment was done exclusively by measuring increases of IC pressure during electrostimulation of CN. Histological assessment usually focused on endothelial, smooth muscle, and CN contents in the penis. In general, favorable outcomes have been obtained in all trials so far, although whether SCs had differentiated into specific cell lineages remains controversial. Recent studies have shown that intracavernously injected SCs rapidly escaped the penis and homed into bone marrow. This could perhaps explain why intracavernously injected SCs had systemic antidiabetic effects and prolonged anti-ED effects. These hypotheses and the differentiation-versus-paracrine debate require further investigation.
Collapse
Affiliation(s)
- Ching-Shwun Lin
- Department of Urology, School of Medicine, University of California, San Francisco, California 94143-0738, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Mejía-Toiber J, Castillo CG, Giordano M. Strategies for the Development of Cell Lines for Ex Vivo Gene Therapy in the Central Nervous System. Cell Transplant 2011; 20:983-1001. [DOI: 10.3727/096368910x546599] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Disorders of the central nervous system (CNS) as a result of trauma or ischemic or neurodegenerative processes still pose a challenge for modern medicine. Due to the complexity of the CNS, and in spite of the advances in the knowledge of its anatomy, pharmacology, and molecular and cellular biology, treatments for these diseases are still limited. The development of cell lines as a source for transplantation into the damaged CNS (cell therapy), and more recently their genetic modification to favor the expression and delivery of molecules with therapeutic potential (ex vivo gene therapy), are some of the techniques used in search of novel restorative strategies. This article reviews the different approaches that have been used and perfected during the last decade to generate cell lines and their use in experimental models of neuronal damage, and evaluates the prospects of applying these methods to treat CNS disorders.
Collapse
Affiliation(s)
- Jana Mejía-Toiber
- Laboratorio de Plasticidad Neuronal, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro, Mexico
| | - Claudia G. Castillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Magda Giordano
- Laboratorio de Plasticidad Neuronal, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro, Mexico
| |
Collapse
|
10
|
Pettersson J, Lobov S, Novikova LN. Labeling of olfactory ensheathing glial cells with fluorescent tracers for neurotransplantation. Brain Res Bull 2010; 81:125-32. [PMID: 19828127 DOI: 10.1016/j.brainresbull.2009.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 09/28/2009] [Accepted: 10/05/2009] [Indexed: 01/05/2023]
Abstract
Development of cell-based treatment strategies for repair of the injured nervous system requires cell tracing techniques to follow the fate of transplanted cells and their interaction with the host tissue. The present study investigates the efficacy of fluorescent cell tracers Fast Blue, PKH26, DiO and CMFDA for long-term labeling of olfactory ensheathing glial cells (OEC) in culture and following transplantation into the rat spinal cord. All tested dyes produced very efficient initial labeling of p75-positive OEC in culture. The number of Fast Blue-positive cells remained largely unchanged during the first 4 weeks but only about 21% of the cells retained tracer 6 weeks after labeling. In contrast, the number of cells labeled with PKH26 and DiO was reduced to 51-55% after 2 weeks in culture and reached 8-12% after 4-6 weeks. CMFDA had completely disappeared from the cells 2 weeks after labeling. AlamarBlue assay showed that among four tested tracers only CMFDA reduced proliferation rate of the OEC. After transplantation into spinal cord, Fast Blue-labeled OEC survived for at least 8 weeks but demonstrated very limited migration from the injection sites. Additional immunostaining with glial and neuronal markers revealed signs of dye leakage from the transplanted cells resulted in weak labeling of microglia and spinal neurons. The results show that Fast Blue is an efficient cell marker for cultured OEC. However, transfer of the dye from the transplanted cells to the host tissue should be considered and correctly interpreted.
Collapse
Affiliation(s)
- Jonas Pettersson
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden
| | | | | |
Collapse
|
11
|
Li Y, Song Y, Zhao L, Gaidosh G, Laties AM, Wen R. Direct labeling and visualization of blood vessels with lipophilic carbocyanine dye DiI. Nat Protoc 2008; 3:1703-8. [PMID: 18846097 DOI: 10.1038/nprot.2008.172] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We describe a protocol to rapidly and reliably visualize blood vessels in experimental animals. Blood vessels are directly labeled by cardiac perfusion using a specially formulated aqueous solution containing 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), a lipophilic carbocyanine dye, which incorporates into endothelial cell membranes upon contact. By lateral diffusion, DiI also stains membrane structures, including angiogenic sprouts and pseudopodial processes that are not in direct contact. Tissues can be immediately examined by conventional and confocal fluorescence microscopy. High-quality serial optical sections using confocal microscopy are obtainable from thick tissue sections, especially at low magnification, for three-dimensional reconstruction. It takes less than 1 h to stain the vasculature in a whole animal. Compared with alternative techniques to visualize blood vessels, including space-occupying materials such as India ink or fluorescent dye-conjugated dextran, the corrosion casting technique, endothelial cell-specific markers and lectins, the present method simplifies the visualization of blood vessels and data analysis.
Collapse
Affiliation(s)
- Yiwen Li
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, 506 McKnight Building, 1638 NW 10th Avenue, Miami, Florida 33136, USA
| | | | | | | | | | | |
Collapse
|
12
|
Kulbatski I, Mothe AJ, Parr AM, Kim H, Kang CE, Bozkurt G, Tator CH. Glial precursor cell transplantation therapy for neurotrauma and multiple sclerosis. ACTA ACUST UNITED AC 2008; 43:123-76. [PMID: 18706353 DOI: 10.1016/j.proghi.2008.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Accepted: 04/07/2008] [Indexed: 12/18/2022]
Abstract
Traumatic injury to the brain or spinal cord and multiple sclerosis (MS) share a common pathophysiology with regard to axonal demyelination. Despite advances in central nervous system (CNS) repair in experimental animal models, adequate functional recovery has yet to be achieved in patients in response to any of the current strategies. Functional recovery is dependent, in large part, upon remyelination of spared or regenerating axons. The mammalian CNS maintains an endogenous reservoir of glial precursor cells (GPCs), capable of generating new oligodendrocytes and astrocytes. These GPCs are upregulated following traumatic or demyelinating lesions, followed by their differentiation into oligodendrocytes. However, this innate response does not adequately promote remyelination. As a result, researchers have been focusing their efforts on harvesting, culturing, characterizing, and transplanting GPCs into injured regions of the adult mammalian CNS in a variety of animal models of CNS trauma or demyelinating disease. The technical and logistic considerations for transplanting GPCs are extensive and crucial for optimizing and maintaining cell survival before and after transplantation, promoting myelination, and tracking the fate of transplanted cells. This is especially true in trials of GPC transplantation in combination with other strategies such as neutralization of inhibitors to axonal regeneration or remyelination. Overall, such studies improve our understanding and approach to developing clinically relevant therapies for axonal remyelination following traumatic brain injury (TBI) or spinal cord injury (SCI) and demyelinating diseases such as MS.
Collapse
Affiliation(s)
- Iris Kulbatski
- Krembil Neuroscience Centre, Toronto Western Research Institute, 399 Bathurst Street, McLaughlin Pavilion #12-423, Toronto, Ontario, Canada M5T-2S8.
| | | | | | | | | | | | | |
Collapse
|
13
|
Rampon C, Weiss N, Deboux C, Chaverot N, Miller F, Buchet D, Tricoire-Leignel H, Cazaubon S, Baron-Van Evercooren A, Couraud PO. Molecular mechanism of systemic delivery of neural precursor cells to the brain: assembly of brain endothelial apical cups and control of transmigration by CD44. Stem Cells 2008; 26:1673-82. [PMID: 18450824 DOI: 10.1634/stemcells.2008-0122] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Systemically injected neural precursor cells (NPCs) were unexpectedly shown to reach the cerebral parenchyma and induce recovery in various diffuse brain pathologies, including animal models of multiple sclerosis. However, the molecular mechanisms supporting NPC migration across brain endothelium remain elusive. Brain endothelium constitutes the blood-brain barrier, which uniquely controls the access of drugs and trafficking of cells, including leukocytes, from the blood to the brain. Taking advantage of the availability of in vitro models of human and rat blood-brain barrier developed in our laboratory and validated by us and others, we show here that soluble hyaluronic acid, the major ligand of the adhesion molecule CD44, as well as anti-CD44 blocking antibodies, largely prevents NPC adhesion to and migration across brain endothelium in inflammatory conditions. We present further evidence that NPCs, surprisingly, induce the formation of apical cups at the surface of brain endothelial cells, enriched in CD44 and other adhesion molecules, thus hijacking the endothelial signaling recently shown to be involved in leukocyte extravasation. These results demonstrate the pivotal role of CD44 in the trans-endothelial migration of NPCs across brain endothelial cells: we propose that they may help design new strategies for the delivery of therapeutic NPCs to the brain by systemic administration.
Collapse
|
14
|
Labeling stem cells in vitro for identification of their differentiated phenotypes after grafting into the CNS. Methods Mol Biol 2008; 438:361-74. [PMID: 18369771 DOI: 10.1007/978-1-59745-133-8_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Grafting neural stem cells is a widely used experimental approach to central nervous system (CNS) repair after trauma or neurodegeneration. It is likely to be a realistic clinical therapy for human CNS disorders in the near future. One of the challenges of this approach is the ability to identify both the survival and differentiated phenotype of various stem cell populations after engraftment into the CNS. There is no single protocol that will work for all cell types and all applications. Labeling stem cells for CNS grafting is an empirical process. The type of stem cell, its fate after engraftment, and the context in which it is anatomically and histologically evaluated all contribute to a decision as to the best approach to take. We have provided the range of conditions under which various labels have been successfully used in CNS grafting studies and delineated the parameters that have to be empirically established. Given a clear understanding of the limitations of the respective labels and the expected outcome of the grafting experiment, these labeling guidelines should enable any investigator to develop a successful approach. Our own personal bias is to use labels that cannot be transferred to host cells. Initially, we preferred 5-bromo-2'-deoxyuridine, or retrovirally delivered enhanced green fluorescent protein or lacZ. More recently, we have found syngeneic grafts of human placental alkaline phosphatase stem cells to work very well. However, each investigator will have to decide what is optimal for his or her cell population and experimental design. We summarize the various approaches to labeling and identifying stem cells, pointing out both the limitations and strengths of the various approaches delineated.
Collapse
|
15
|
Abstract
Cell-based therapies may gain future importance in defeating different kinds of diseases, including cancer, immunological disorders, neurodegenerative diseases, cardiac infarction and stroke. In this context, the noninvasive localization of the transplanted cells and the monitoring of their migration can facilitate basic research on the underlying mechanism and improve clinical translation. In this chapter, different ways to label and track cells in vivo are described. The oldest and only clinically established method is leukocyte scintigraphy, which enables a (semi)quantitative assessment of cell assemblies and, thus, the localization of inflammation foci. Noninvasive imaging of fewer or even single cells succeeds with MRI after labeling of the cells with (ultrasmall) superparamagentic iron oxide particles (SPIO and USPIO). However, in order to gain an acceptable signal-to-noise ratio, at a sufficiently high spatial resolution of the MR sequence to visualize a small amount of cells, experimental MR scanners working at high magnetic fields are usually required. Nevertheless, feasibility of clinical translation has been achieved by showing the localization of USPIO-labeled dendritic cells in cervical lymph nodes of patients by clinical MRI.Cell-tracking approaches using optical methods are important for preclinical research. Here, cells are labeled either with fluorescent dyes or quantum dots, or transfected with plasmids coding for fluorescent proteins such as green fluorescent protein (GFP) or red fluorescent protein (RFP). The advantage of the latter approach is that the label does not get lost during cell division and, thus, makes imaging of proliferating transplanted cells (e.g., tumor cells) possible. In summary, there are several promising options for noninvasive cell tracking, which have different strengths and limitations that should be considered when planning cell-tracking experiments.
Collapse
Affiliation(s)
- Fabian Kiessling
- Abteilung Medizinische Physik in der Radiologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg.
| |
Collapse
|
16
|
Mothe AJ, Kulbatski I, van Bendegem RL, Lee L, Kobayashi E, Keating A, Tator CH. Analysis of green fluorescent protein expression in transgenic rats for tracking transplanted neural stem/progenitor cells. J Histochem Cytochem 2005; 53:1215-26. [PMID: 15983120 DOI: 10.1369/jhc.5a6639.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Green fluorescent protein (GFP) expression was evaluated in tissues of different transgenic rodents--Sprague-Dawley (SD) rat strain [SD-Tg(GFP)Bal], W rat strain [Wistar-TgN(CAG-GFP)184ys], and M mouse strain [Tg(GFPU)5Nagy/J]--by direct fluorescence of native GFP expression and by immunohistochemistry. The constitutively expressing GFP transgenic strains showed tissue-specific differences in GFP expression, and GFP immunohistochemistry amplified the fluorescent signal. The fluorescence of stem/progenitor cells cultured as neurospheres from the ependymal region of the adult spinal cord from the GFP SD and W rat strains was assessed in vitro. After transplantation of the cells into wild-type spinal cord, the ability to track the grafted cells was evaluated in vivo. Cultured stem/progenitor cells from the SD strain required GFP immunostaining to be visualized. Likewise, after transplantation of SD cells into the spinal cord, immunohistochemical amplification of the GFP signal was required for detection. In contrast, GFP expression of stem/progenitor cells generated from the W strain was readily detected by direct fluorescence both in vitro and in vivo without the need for immunohistochemical amplification. The cultured stem/progenitor cells transplanted into the spinal cord survived for at least 49 days after transplantation, and continued to express GFP, demonstrating stable expression of the GFP transgene in vivo.
Collapse
Affiliation(s)
- Andrea J Mothe
- Division of Cellular and Molecular Biology, Toronto Western Research Institute, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Wojciechowski AB, Englund U, Lundberg C, Warfvinge K. Migratory capacity of the cell line RN33B and the host glial cell response after subretinal transplantation to normal adult rats. Glia 2004; 47:58-67. [PMID: 15139013 DOI: 10.1002/glia.20033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
As previously reported, the brain-derived precursor cell line RN33B has a great capacity to migrate when transplanted to adult brain or retina. This cell line is immortalized with the SV40 large T-antigen and carries the reporter gene LacZ and the green fluorescent protein GFP. In the present study, the precursor cells were transplanted to the subretinal space of adult rats and investigated early after grafting. The purpose was to demonstrate the migration of the grafted cells from the subretinal space into the retina and the glial cell response of the host retina. Detachment caused by the transplantation method was persistent up to 4 days after transplantation, and then reattachment occurred. The grafted cells were shown to migrate in between the photoreceptor cells before entering into the plexiform layers. Molecules involved in migration of immature neuronal cells as the polysialylated neural cell adhesion molecule (PSA-NCAM) and the collapsing response-mediated protein 4 (TUC-4) was found in the plexiform layers of the host retina, but not in the grafted cells. The expression of the intermediate filaments GFAP, vimentin, and nestin was intensely upregulated immediately after transplantation. A less pronounced upregulation was observed on sham-operated animals. In summary, the RN33B cell line migrated promptly posttransplantation and settled preferably into the plexiform layers of the retina, the same layers where the migration cues PSA-NCAM and TUC-4 were established. In addition, both the transplantation method per se and the implanted cells caused an intense glial cell response by the host retina.
Collapse
|
18
|
Wojciechowski AB, Englund U, Lundberg C, Warfvinge K. Survival and Long Distance Migration of Brain‐Derived Precursor Cells Transplanted to Adult Rat Retina. Stem Cells 2004; 22:27-38. [PMID: 14688389 DOI: 10.1634/stemcells.22-1-27] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neural precursor cells transplanted to adult retina can integrate into the host. This is especially true when the neural precursor rat cell line RN33B is used. This cell line carries the reporter genes LacZ and green fluorescent protein (GFP). In grafted rat eyes, RN33B cells are localized from one eccentricity to the other of the host retina. In the present study, whole-mounted retinas were analyzed to obtain a more appropriate evaluation of the amount of transgene-expressing cells and the migratory capacity of these cells 3 and 8 weeks post-transplantation. Quantification was made of the number of beta-galactosidase- and GFP-expressing cells with a semiautomatized stereological cell counting system. With the same system, delineation of the distribution area of the grafted cells was also performed. At 3 weeks, 68% of the grafted eyes contained marker-expressing cells, whereas at 8 weeks only 35% of the eyes contained such cells. Counting of marker-expressing cells demonstrated a lower number of transgene-expressing cells at 3 weeks compared with 8 weeks post-transplantation. The distribution pattern of marker gene-expressing cells revealed cells occupying up to 21% at 3 weeks and up to 68% at 8 weeks of the entire host retina post-grafting. The precursor cells survived well in the adult retina although the most striking feature of the RN33B cell line was its extraordinary migratory capacity. This capability could be useful if precursor cells are used to deliver necessary genes or gene products that need to be distributed over a large diseased area.
Collapse
Affiliation(s)
- Anita Blixt Wojciechowski
- Wallenberg Retina Center, Department of Ophthalmology, Lund University Hospital, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
19
|
Borenstein N, Bruneval P, Hekmati M, Bovin C, Behr L, Pinset C, Laborde F, Montarras D. Noncultured, autologous, skeletal muscle cells can successfully engraft into ovine myocardium. Circulation 2003; 107:3088-92. [PMID: 12810607 DOI: 10.1161/01.cir.0000070948.37545.e0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND There is compelling evidence showing that cellular cardiomyoplasty can improve cardiac function. Considering the potential benefit of using noncultured muscle cells (little time, lower cost, reduced risk of contamination), we investigated the feasibility of grafting cells obtained directly after enzymatic dissociation of skeletal muscle biopsies into ovine myocardium. We hypothesized that those noncultured muscle cells would engraft massively. METHODS AND RESULTS Autologous, intramyocardial skeletal muscle cell implantation was performed in 8 sheep. A skeletal muscle biopsy sample ( approximately 10 g) was explanted from each animal. The sheep were left to recover for approximately 3 hours and reanesthetized when the cells were ready for implantation. A left fifth intercostal thoracotomy was performed, and 10 epicardial injections of the muscle preparation (between 10 and 20 million cells) were carried out. All sheep were euthanized 3 weeks after myocardial implantation. Immunohistochemistry was performed with monoclonal antibodies to a fast skeletal isoform of myosin heavy chain. Skeletal myosin heavy-chain expression was detected in all slides at 3 weeks after implantation in 8 of 8 animals, confirming engraftment of skeletal muscle cells. Massive areas of engraftment (from 2 to 9 mm in diameter) or discrete loci were noted within the myocardial wall. CONCLUSIONS Our results indicate that noncultured skeletal muscle cells can successfully and massively engraft in ovine myocardium. Thus, avoiding the cell culture expansion phase is feasible and could become a promising option for cellular cardiomyoplasty.
Collapse
|
20
|
Puigdellívol-Sánchez A, Valero-Cabré A, Prats-Galino A, Navarro X, Molander C. On the use of fast blue, fluoro-gold and diamidino yellow for retrograde tracing after peripheral nerve injury: uptake, fading, dye interactions, and toxicity. J Neurosci Methods 2002; 115:115-27. [PMID: 11992663 DOI: 10.1016/s0165-0270(01)00532-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The usefulness of three retrograde fluorescent dyes for tracing injured peripheral axons was investigated. The rat sciatic was transected bilaterally and the proximal end briefly exposed to either Fast Blue (FB), Fluoro-Gold (FG) or to Diamidino Yellow (DY) on the right side, and to saline on the left side, respectively. The nerves were then resutured and allowed to regenerate. Electrophysiological tests 3 months later showed similar latencies and amplitudes of evoked muscle and nerve action potentials between tracer groups. The nerves were then cut distal to the original injury and exposed to a second (different) dye. Five days later, retrogradely labelled neurones were counted in the dorsal root ganglia (DRGs) and spinal cord ventral horn. The number of neurones labelled by the first tracer was similar for all three dyes in the DRG and ventral horn except for FG, which labelled fewer motoneurones. When used as second tracer, DY labelled fewer neurones than FG and FB in some experimental situations. The total number of neurones labelled by the first and/or second tracer was reduced by about 30% compared with controls. The contributions of cell death as well as different optional tracer combinations for studies of nerve regeneration are discussed.
Collapse
Affiliation(s)
- Anna Puigdellívol-Sánchez
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Barcelona, c/Casanova no. 143, 08036, Barcelona, Spain
| | | | | | | | | |
Collapse
|
21
|
Nelms JL, LeSauter J, Silver R, Lehman MN. Biotinylated dextran amine as a marker for fetal hypothalamic homografts and their efferents. Exp Neurol 2002; 174:72-80. [PMID: 11869035 PMCID: PMC3281764 DOI: 10.1006/exnr.2001.7848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have explored the use of biotinylated dextran amine (BDA) as a marker for labeling fetal brain grafts and their connections with the host. As a model system we used transplantation of the hamster suprachiasmatic nucleus, the site of an endogenous biological clock governing circadian rhythms. Similar transplants into arrhythmic hosts have been shown to restore behavioral function with a period specific to the donor. For locomotor rhythms, efferent connections are not necessary. For other responses, including endocrine rhythms, efferent connections may be necessary. In order to visualize homografts and their efferents, injections of BDA, an anterograde tracer, were made into the anterior hypothalamic (AH) region containing the SCN or into the dorsal cortex (CTX) of fetal hamster brains. The fetal AH or CTX was microdissected out and stereotaxically implanted into the third ventricle of intact, adult hamsters. After 2, 4, 8, or 12 weeks, hosts were sacrificed and their brains were processed for detection of BDA by either histochemistry or immunofluorescence. BDA intensely labeled graft neurons, their dendrites, and axons with minimal or no spread to the adjacent host brain. Labeled graft axons could be followed for long distances (>1 mm) into the host brain and graft-derived varicosities formed close contacts with host neurons. BDA-labeled graft neurons, located at the perimeter of the graft, also extended dendrite-like processes into the host parenchyma. We conclude that BDA is a useful marker for fetal homografts and their efferents for survival times of less than 2 months.
Collapse
Affiliation(s)
- Jennifer L Nelms
- Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521, USA
| | | | | | | |
Collapse
|
22
|
Svendsen CN, Bhattacharyya A, Tai YT. Neurons from stem cells: preventing an identity crisis. Nat Rev Neurosci 2001; 2:831-4. [PMID: 11715059 DOI: 10.1038/35097581] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- C N Svendsen
- Stem Cell Research Program, Waisman Center and Department of Anatomy, University of Wisconsin, Madison, Wisconsin 53705-2280, USA.
| | | | | |
Collapse
|
23
|
Wang JS, Shum-Tim D, Chedrawy E, Chiu RC. The coronary delivery of marrow stromal cells for myocardial regeneration: pathophysiologic and therapeutic implications. J Thorac Cardiovasc Surg 2001; 122:699-705. [PMID: 11581601 DOI: 10.1067/mtc.2001.116317] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Bone marrow stromal cells contain "adult stem cells." We tested the hypothesis that coronary-infused bone marrow stromal cells may populate the infarcted heart and undergo milieu-dependent differentiation to regenerate functional tissues with different phenotypic features. METHODS Isogenic adult rats were used as donors and recipients to simulate autologous transplantation clinically. Myocardial infarction was created by proximal occlusion of left coronary artery in 12 recipient rats. Isolated bone marrow stromal cells were purified, expanded, and retrovirally transduced with LacZ reporter gene for cell labeling. Stromal cells were then infused into the briefly distally clamped ascending aorta of recipient rats 2 weeks after left coronary artery ligation. The hearts were harvested immediately (n = 2) or 4 weeks (n = 10) later to trace the implanted cells and identify their phenotypes. RESULTS Viable cells labeled with LacZ reporter gene were identified in 8 recipient hearts. Immediately after cell infusion, the labeled cells were trapped within the coronary capillaries. After 4 weeks, they could be detected individually or in clusters within myocardial scar expressing fibroblastic phenotype or outside the infarction area with morphologic features of normal cardiomyocytes. Some were incorporated into endocardium and capillary endothelium. CONCLUSIONS Our findings suggest that bone marrow stromal cells can traffic through the coronary system to the injured heart and form cardiomyocytes or fibroblasts, depending on the specific microenvironment. Endothelial progenitor cells in the stromal cell population may be involved in the postinfarction neovascularization process. Whether therapeutic use of bone marrow stromal cells can improve the myocardial healing and remodeling process after infarction is worthy of further investigation.
Collapse
Affiliation(s)
- J S Wang
- Division of Cardiothoracic Surgery, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
24
|
Whittemore SR, Onifer SM. Immortalized neural cell lines for CNS transplantation. PROGRESS IN BRAIN RESEARCH 2001; 127:49-65. [PMID: 11142044 DOI: 10.1016/s0079-6123(00)27005-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- S R Whittemore
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | | |
Collapse
|
25
|
Abstract
The location of stem cells within the adult CNS makes them impractical for surgical removal and autologous transplantation. Their limited availability and histocompatibility issues further restrict their use. In contrast, olfactory neuroepithelium (ONe) located in the nasal passageways has a continuous regenerative capability and can be biopsied readily. To investigate the potential of human ONe to provide viable populations of pluripotent cells, ONe was harvested from cadavers 6-18 h postmortem, dissociated, plated and fed every 3-4 days. Heterogeneous populations of neurons, glia, and epithelia were identified with lineage-specific markers. After several weeks, 5-10% of the cultures produced a population of rapidly dividing cells, which in turn, produced neurospheres containing at least two subpopulations based on neuronal and glial specific antigens. Most contained one or more neuronal markers; a few were positive for A2B5 and/or GFAP. To determine if growth modulators would affect the neurosphere forming cells, they were exposed to dibutyryl-cAMP. The nucleotide reduced cell division and increased process formation. Although the cells had been passaged more than 70 times, their viability remained constant as shown by the MTT viability index. Donor age or sex were not limiting factors, because neurospheres have been established from cadavers of both sexes from 50 to 95 years old at time of death. The ex vivo expansion of these cells will provide a patient-specific population of cells for immunological, genetic and pharmacological evaluation. Our long-term goal is to determine the utility of these cells to facilitate CNS repair.
Collapse
Affiliation(s)
- F J Roisen
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, 500 S. Preston St., Louisville, KY 40202, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Iwashita Y, Fawcett JW, Crang AJ, Franklin RJ, Blakemore WF. Schwann cells transplanted into normal and X-irradiated adult white matter do not migrate extensively and show poor long-term survival. Exp Neurol 2000; 164:292-302. [PMID: 10915568 DOI: 10.1006/exnr.2000.7440] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although Schwann cells are able to enter the central nervous system (CNS) when the integrity of the glia limitans is disrupted, their ability to migrate through intact CNS remains unclear. We have addressed this issue by transplanting lacZ-labeled Schwann cells into normal adult spinal cord white matter, and into X-irradiated spinal cord (an environment that, unlike normal spinal cord, permits the migration of transplanted oligodendrocyte progenitors). Schwann cell cultures, obtained from neonatal rat sciatic nerve and expanded using bovine pituitary extract and forskolin, were transfected by repeated exposure to retroviral vectors encoding the Escherichia coli lacZ gene. The normal behavior of the transduced cells was confirmed by transplantation into a nonrepairing area of demyelination in the spinal cord, where they formed myelin sheaths around demyelinated axons. A single microliter containing 4 x 10(4) cells was then transplanted into unlesioned normal and X-irradiated white matter of the spinal cord of adult syngeneic rats. One hour after injection, blue cells were observed as a discrete mass within the dorsal funiculus with a longitudinal distribution of 2-3 mm, indicating the extent of passive spread of the injected cells. At subsequent survival times (1, 2, and 4 weeks posttransplantation) blue cells had a distribution that was no more extensive than that seen 1 h after transplantation. However, the number of Schwann cells declined with time following transplantation such that at 4 weeks there were few surviving Schwann cells in both X-irradiated and nonirradiated spinal cord. These results indicate that transplanted Schwann cells do not migrate extensively and show poor long-term survival when introduced into a normal CNS environment.
Collapse
Affiliation(s)
- Y Iwashita
- Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Takahashi E, Miyamoto N, Kajiwara N, Furuya K, Yanai-Taniguchi K, Sugiyama F, Yagami K. Expression analysis of Escherichia coli lacZ reporter gene in transgenic mice. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2000; 5:159-66. [PMID: 10775836 DOI: 10.1016/s1385-299x(00)00009-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To define a gene expression mechanism, it is often advantageous to use a reporter gene and transgenic mouse. The lacZ reporter gene is particularly useful for studies of the cis-regulatory element for tissue-specific expression in transgenic mice because of the ease of the enzyme assay and visualization on sections. In this report, we describe our method for examining the cis-regulatory element in transgenic mice, including choice of the lacZ gene, generation of transgenic mice, and analysis of beta-galactosidase activity.
Collapse
Affiliation(s)
- E Takahashi
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Tsukuba, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
|
30
|
Vercelli A, Repici M, Garbossa D, Grimaldi A. Recent techniques for tracing pathways in the central nervous system of developing and adult mammals. Brain Res Bull 2000; 51:11-28. [PMID: 10654576 DOI: 10.1016/s0361-9230(99)00229-4] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Over the last 20 years, the choice of neural tracers has increased manyfold, and includes newly introduced anterograde tracers that allow quantitation of single-axon morphologies, and retrograde tracers that can be combined with intracellular fills for the study of dendritic arbors of neurons which have a specific projection pattern. The combination of several different tracers now permits the comparison of multiple connections in the same animal, both quantitatively and qualitatively. Moreover, the finding of new virus strains, which infect neural cells without killing them, provides a tool for studying multisynaptic connections that participate in a circuit. In this paper, the labeling characteristics, mechanism of transport and advantages/disadvantages of use are discussed for the following recently introduced neural tracers: carbocyanine dyes, fluorescent latex microspheres, fluorescent dextrans, biocytin, dextran amines, Phaseolus vulgaris leucoagglutinin, cholera toxin and viruses. We also suggest the choice of specific tracers, depending on the experimental animal, age and type of connection to be studied, and discuss quantitative methodologies.
Collapse
Affiliation(s)
- A Vercelli
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Torino, Italy.
| | | | | | | |
Collapse
|
31
|
Yadid G, Fitoussi N, Kinor N, Geffen R, Gispan I. Astrocyte line SVG-TH grafted in a rat model of Parkinson's disease. Prog Neurobiol 1999; 59:635-61. [PMID: 10845756 DOI: 10.1016/s0301-0082(99)00013-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present review describes gene transfer into the brain using extraneuronal cells with an ex vivo approach. The mild immunological reactions in the central nervous system to grafts provided the rationale and empirical basis for brain-transplantation, to replace dying cells, of potential clinical relevance. Fetal human astrocytes were genetically engineered to express tyrosine hydroxylase, the rate-limiting enzyme for the synthesis of catecholamines. These cells were also found to produce constitutively and secrete GDNF and interleukins. Therefore, these cells may prove as a drug-delivery system for the treatment of neurological degenerative conditions such as Parkinson's disease (PD). The field of neuronal reconstruction has reached a critical threshold and there is a need to evaluate the variables that will become critical as the field matures. One of the needs is to characterize the neurochemical alterations in the microenvironment in the context of grafted-host connectivity. This review discusses the functional effects of the pharmacologically-active construct, which consists of astrocytes producing L-DOPA and GDNF. The striatum in PD that lacks the dopaminergic projection from the substantia nigra metabolizes and releases dopamine differently from normal tissue and may react to different factors released by the grafted cells. Moreover, neurochemicals of the host tissue may effect grafted cells as well. An understanding of the way in which these neurochemicals are abnormal in PD and their role in the grafted brain is critical to the improvement of reconstructive strategies using cellular therapeutic strategies.
Collapse
Affiliation(s)
- G Yadid
- Faculty of Life Sciences, Neuropharmacology Section, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | |
Collapse
|
32
|
Foster GA, Stringer BM. Genetic regulatory elements introduced into neural stem and progenitor cell populations. Brain Pathol 1999; 9:547-67. [PMID: 10416993 PMCID: PMC8098454 DOI: 10.1111/j.1750-3639.1999.tb00541.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The genetic manipulation of neural cells has advantage in both basic biology and medicine. Its utility has provided a clearer understanding of how the survival, connectivity, and chemical phenotype of neurones is regulated during, and after, embryogenesis. Much of this achievement has come from the recent generation by genetic means of reproducible and representative supplies of precursor cells which can then be analyzed in a variety of paradigms. Furthermore, advances made in the clinical use of transplantation for neurodegenerative disease have created a demand for an abundant, efficacious and safe supply of neural cells for grafting. This review describes how genetic methods, in juxtaposition to epigenetic means, have been used advantageously to achieve this goal. In particular, we detail how gene transfer techniques have been developed to enable cell immortalization, manipulation of cell differentiation and commitment, and the controlled selection of cells for purification or safety purposes. In addition, it is now also possible to genetically modify antigen presentation on cell surfaces. Finally, there is detailed the transfer of therapeutic products to discrete parts of the central nervous system (CNS), using neural cells as elegant and sophisticated delivery vehicles. In conclusion, once the epigenetic and genetic controls over neural cell production, differentiation and death have been more fully determined, providing a mixture of hard-wired elements and more flexibly expressed characteristics becomes feasible. Optimization of the contributions and interactions of these two controlling systems should lead to improved cell supplies for neurotransplantation.
Collapse
Affiliation(s)
- G A Foster
- Cardiff School of Biosciences, University of Wales, UK.
| | | |
Collapse
|
33
|
Eaton MJ, Plunkett JA, Martinez MA, Lopez T, Karmally S, Cejas P, Whittemore SR. Transplants of neuronal cells bioengineered to synthesize GABA alleviate chronic neuropathic pain. Cell Transplant 1999; 8:87-101. [PMID: 10338278 DOI: 10.1177/096368979900800102] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The use of cell lines utilized as biologic "minipumps" to provide antinociceptive molecules, such as GABA, in animal models of pain is a newly developing area in transplantation biology. The neuronal cell line, RN33B, derived from E13 brain stem raphe and immortalized with the SV40 temperature-sensitive allele of large T antigen (tsTag), was transfected with rat GAD67 cDNA (glutamate decarboxylase, the synthetic enzyme for GABA), and the GABAergic cell line, 33G10.17, was isolated. The 33G10.17 cells transfected with the GAD67 gene expressed GAD67 protein and synthesized low levels of GABA at permissive temperature (33 degrees C), when the cells were proliferating, and increased GAD67 and GABA during differentiation at nonpermissive temperature (39 degrees C) in vitro, because GAD67 protein expression was upregulated with differentiation. A control cell line, 33V1, transfected with the vector alone, contained no GAD67 or GABA at either temperature. These cell lines were used as grafts in a model of chronic neuropathic pain induced by unilateral chronic constriction injury (CCI) of the sciatic nerve. Pain-related behaviors, including cold and tactile allodynia and thermal and tactile hyperalgesia, were evaluated after CCI in the affected hind paw. When 33G10.17 and 33V1 cells were transplanted in the lumbar subarachnoid space of the spinal cord 1 week after CCI, they survived greater than 7 weeks on the pia mater around the spinal cord. Furthermore, the tactile and cold allodynia and tactile and thermal hyperalgesia induced by CCI was significantly reduced during the 2-7-week period after grafts of 33G10.17 cells. The maximal effect on chronic pain behaviors with the GABAergic grafts occurred 2-3 weeks after transplantation. Transplants of 33V1 control cells had no effect on the allodynia and hyperalgesia induced by CCI. These data suggest that a chronically applied, low local dose of GABA presumably supplied by transplanted cells near the spinal dorsal horn was able to reverse the development of chronic neuropathic pain following CCI. The use of neural cell lines that are able to deliver inhibitory neurotransmitters, such as GABA, in a model of chronic pain offers a novel approach to pain management.
Collapse
Affiliation(s)
- M J Eaton
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, FL 33136, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Sekerková G, Katarova Z, Szabó G. Using GADlacZ transgenic mice as a marker system for homotopic transplantation. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 1998; 3:107-18. [PMID: 9767140 DOI: 10.1016/s1385-299x(98)00032-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Olfactory bulb (OB) transplantation is a well characterized model that has been widely used for studying neuronal plasticity and regeneration [G. Sekerková, Z. Katarova, E. Mugnaini, F. Joó, J.R. Wolff, S. Prodan, G. Szabó, Intrinsically labeled relay neurons of homotopic olfactory bulb transplants establish proper afferent and afferent synaptic connections with host neurons, Neuroscience, 80 (1997) 973-979 [10]; G. Sekerková, Z. Malatová, J. Orendácová, T. Zigová, Transplantation of dorsal root ganglion into the olfactory bulb of neonatal rats: a histochemical study, Restor. Neurol. Neurosci., 6 (1993) 1-8 [11]; E. Raceková, I. Vanický, T. Zigová, Correlation of functional alteration with lesion extent after olfactory bulbectomy in rats, Int. J. Neurosci., 79 (1994) 13-20 [12]; T. Zigová, P.P.C. Graziadei, A.G. Monti Graziadei, Olfactory bulb transplantation into the olfactory bulb of neonatal rats: an autoradiographic study, Brain Res., 539 (1991) 51-58 [13]]. In previous studies, the OB grafts have been routinely labeled by tritiated thymidine [S.M. Onifer, L.A. White, S.R. Whittemore, V.R. Holets, In vitro labelling strategies for identifying primary neural tissue and neuronal cell line after transplantation in the CNS, Cell Transplant., 2 (1993) 131-149 [7]; [13]] allowing distinction of graft from the surrounding tissue by the presence of silver grains over the cell nuclei of the transplant. However, this approach has some disadvantages, namely: partial or insufficient labeling of a defined neuronal subclasses due to the length of the period of their generation, variation in the number of labeled cells due to differences in the gestation stage between individual embryos at the time of i.p. injection of tritiated thymidine, inability to follow the dendritic arborization and axonal outgrowth of the transplanted neurons or to detect directly their actual synaptic contacts, and finally, the need to work with radioactive isotopes. In this paper, we describe an alternative approach, in which the donor OBs in a homotopic OB transplantation were derived from transgenic mice carrying the bacterial gene lacZ under control from the regulatory region of GAD67 gene. In these mice, beta-galactosidase (beta-gal), encoded by lacZ is stably, ectopically expressed in the vast majority of mitral/tufted (M/T) cells of the OB and served as their intrinsic cellular marker in the OB transplant. By using a simple histochemical reaction for beta-gal or immunocytochemistry with anti-beta-gal antibody, we could detect the cell bodies and processes of the donor M/T cells and their synaptic contacts with host neurons after long-term survival using both light and electron microscopy. Given the great number of existing transgenic mouse lines that express in the nervous system, this approach may have an even wider application in neural transplantation.
Collapse
Affiliation(s)
- G Sekerková
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, PO Box 521, Temesvári krt. 62, 6701, Szeged, Hungary
| | | | | |
Collapse
|
35
|
Asch J, Weinberg RS, Mueller L, Galperin Y, Kiang L, Jolly D, Isola LM. Retroviral gene transfer into cord blood stem/progenitor cells using purified vector stocks. Am J Hematol 1998; 57:16-23. [PMID: 9423811 DOI: 10.1002/(sici)1096-8652(199801)57:1<16::aid-ajh3>3.0.co;2-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cord blood (CB) progenitor/stem cells (P/SC) are ideal targets for early gene therapy in individuals prenatally diagnosed with genetic disorders. Most retroviral transduction protocols were developed using adult peripheral blood stem cells (PBSC) and bone marrow (BM). Less is known about retroviral transduction of CB P/SC. We examined how timing, multiplicity of infection (MOI), and polycations in the transduction media affect transduction efficiency. Rates of transduction were determined in recently isolated CD34+ enriched CB cells and in colonies derived after various times in liquid cultures (LC). CB mononuclear cells (MNC) were separated by ficoll-hypaque centrifugation and enriched for CD34+ cells. Purity was assessed by flow cytometry. Transduction were performed with clinical-grade retroviral stocks at MOIs of 1-20. Transduction was performed with fetal bovine serum (FBS) or autologous plasma, IL-3, GM-CSF, IL-6, and SCF. The retroviral vector contained LacZ and neomycin resistance (neo) reporter genes. Transduction was determined by X-gal stain and by PCR amplification of the reporter genes. No drug selection was used. Twenty-five experiments were done. CB volumes ranged from 35-150 ml. MNC and CD34+ cell counts ranges were: 0.14-840 x 10(6) and 0.1-4.2 x 10(6), respectively. Transduction efficiency in liquid cultures ranged from 4-63%. Higher rates were seen using MOI > or = 10, 2 microg/ml polybrene, and 10% autologous CB plasma. In colonies, transduction rates were 63 to 72% by PCR and 32% by X-gal staining. In LTC-IC derived colonies, transduction was 7% by PCR. Short incubations of CD34+ CB cells with purified retroviral stocks, polybrene, and autologous sera result in high transduction rates of committed progenitors and moderately low efficiencies of transduction of LTC-IC in the absence of drug selection.
Collapse
Affiliation(s)
- J Asch
- Department of Pediatrics, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Novikova L, Novikov L, Kellerth JO. Persistent neuronal labeling by retrograde fluorescent tracers: a comparison between Fast Blue, Fluoro-Gold and various dextran conjugates. J Neurosci Methods 1997; 74:9-15. [PMID: 9210570 DOI: 10.1016/s0165-0270(97)02227-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The permanence of retrograde neuronal labeling by the fluorescent tracers Fast Blue, Fluoro-Gold, Mini-Ruby, Fluoro-Ruby and Fluoro-Emerald was investigated in adult rat spinal motorneurons at 1, 4, 12 and 24 weeks after tracer application to a transected muscle nerve. After 1 week, the largest number of retrogradely labeled motoneurons was found with Mini-Ruby, Fluoro-Gold and Fluoro-Ruby, while Fluoro-Emerald yielded a smaller number of labeled cells. With increasing survival time, all of these tracers exhibited a marked decrease in the number of labeled neurons. Fast Blue also produced very efficient staining after 1 week and, in addition, the number of Fast Blue-labeled cells remained constant over the entire time period studied. Also in embryonic spinal cord tissue exposed to Fast Blue. the label persisted for at least 6 months after transplantation into adult spinal cord. Double-labeling experiments combining Fast Blue with Fluoro-Gold, Mini-Ruby, Fluoro-Ruby or Fluoro-Emerald showed that all these substances were non-toxic and that the time-related decrease in the number of neurons labeled by the latter tracers was due to degradation or leakage of the dyes. Thus, Fast Blue would be the tracer of choice for motoneuronal labeling in long-term experiments, whereas the usage of the other tracers should be restricted to experiments of limited duration.
Collapse
Affiliation(s)
- L Novikova
- Department of Anatomy, Umeå University, Sweden
| | | | | |
Collapse
|
37
|
Onifer SM, Cannon AB, Whittemore SR. Potential of immortalized neural progenitor cells to replace lost adult central nervous system neurons. Transplant Proc 1997; 29:2221-3. [PMID: 9193602 DOI: 10.1016/s0041-1345(97)00308-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- S M Onifer
- Department of Neurological Surgery, University of Miami School of Medicine, Florida 33136, USA
| | | | | |
Collapse
|
38
|
Lundberg C, Martínez-Serrano A, Cattaneo E, McKay RD, Björklund A. Survival, integration, and differentiation of neural stem cell lines after transplantation to the adult rat striatum. Exp Neurol 1997; 145:342-60. [PMID: 9217071 DOI: 10.1006/exnr.1997.6503] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The in vivo properties of four different neural stem cell lines, generated from embryonic striatum or hippocampus by immortalization with the temperature-sensitive (s) A58/U19 allele of the SV40 Large T-antigen, have been studied with respect to their ability to survive, differentiate, and integrate after transplantation to the adult rat striatum. The cells were labeled with [3H]thymidine prior to grafting, and combined autoradiography and immunohistochemistry was used to characterize their phenotypic differentiation within the adult brain environment. The results show that all four types of cells survived well, up to at least 1.5-6 months postgrafting, without any signs of tissue perturbation or tumor formation. The cells underwent, on average, 2-3 cell divisions during the first 5 days after implantation and exhibited extensive migration over a distance of 1-1.5 mm from the injection site to become morphologically integrated with the surrounding host striatum. The cell number and tissue distribution attained by 2 weeks remained stable for up to 6 months postgrafting with the exception of one cell line, which showed a 40% loss of cells between 2 and 6 weeks. Twice the number of [3H]thymidine-labeled cells were recovered when the cells were grafted into a 1-week-old excitotoxic striatal lesion, probably due to an increased proliferation of the cells in response to the neuron-depleting depleting lesion. The immortalized cells behaved as multipotent neural progenitors. The vast majority of the cells developed a glial-like morphology, 6-14% being clearly GFAP-positive; however, a small but consistent proportion of them (1-3%) expressed MAP-2 and exhibited neuron-like morphology. In mature transplants about 75-80% of the grafted cells were located in the striatal grey matter, and 10-15% in white matter, some of which are proposed to have differentiated into oligodendrocytes. Remaining 5-10% occurred around small blood vessels (resembling pericytes) and in the subventricular zone underneath the ependyma of the lateral ventricle. It is concluded that the ts cell lines are highly suitable for intracerebral transplantation and that they allow the creation of a regionally confined cellular chimeras where the graft-derived glial cells become stably integrated with the resident glial cell matrix.
Collapse
Affiliation(s)
- C Lundberg
- Wallenberg Neuroscience Center, Department of Physiology and Neuroscience, University of Lund, Sweden
| | | | | | | | | |
Collapse
|
39
|
Use of Conditionally Immortalized Neural Progenitors for Transplantation and Gene Transfer to the CNS. ISOLATION, CHARACTERIZATION AND UTILIZATION OF CNS STEM CELLS 1997. [DOI: 10.1007/978-3-642-80308-6_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
40
|
Fisher LJ. Neural precursor cells: applications for the study and repair of the central nervous system. Neurobiol Dis 1997; 4:1-22. [PMID: 9258907 DOI: 10.1006/nbdi.1997.0137] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A combination of gene transfer and intracerebral transplantation techniques has been used in studies of CNS development to provide the most compelling evidence to date that the broad diversity of cell types that exist in the CNS arises from single precursor cells. Although the factors that influence cellular differentiation in vivo remain to be clarified, work conducted in vitro with neural precursors has demonstrated that environmental signals (both soluble factors and substrate molecules) play a pivotal role in these decisions. In particular, FGF-2 appears to be one of the prominent influential factors involved in CNS development (see Temple & Qian, 1995). The generation of immortalized precursor populations that are capable of differentiating into multiple CNS cell types in vivo has significant implications for the treatment of neural dysfunction. Such cells may be manipulated toward a lineage that synthesizes factors of interest and used in grafting strategies to replace substances that are lost after injury or in neurodegenerative disease. Alternatively, precursor cells may be directed to a neuronal lineage and used to functionally repair damaged neural systems. Finally, genetic modification of precursor populations provides a method for introducing therapeutic gene products both into discrete regions of the brain and into widely dispersed areas of the CNS. In considering applications to human disease, it has been reported that nestin is expressed in human neuroepithelial cells (Tohyama et al., 1992), suggesting the existence of neural precursors. Recently, such precursors were in fact isolated by two separate groups (Kirschenbaum et al., 1994; Sabaté et al., 1995) and shown to be amenable to gene transfer and to successfully survive transplantation into the brain of experimental animals (Sabaté et al., 1995). Such findings encourage the possibility that precursor cells from the human CNS may be utilized in cell replacement or gene therapy strategies directed toward human neurodegenerative disorders. While immortalization techniques have been essential for generating large quantities of precursor cells for study and transplantation, the genetic modification of cells may alter vital cellular properties. Thus, the ability to induce the proliferation of nonimmortalized neural populations in vitro with the use of growth factors (see section on CNS precursor cells above) provides an important alternative approach for developing perpetual neural cell lines. Recent work with such growth factor-responsive precursor cells has suggested their therapeutic potential in the CNS, as evidenced by the finding that FGF-2-responsive cells can successfully engraft and express transgenes in the adult brain (Gage et al., 1995; Sabaté et al., 1995; Suhonen et al., 1996). Continuing studies with these cells will provide additional insight into the properties of primary CNS stem cells and increase the range of precursor populations that are useful for exploring the development, function, and plasticity of the CNS.
Collapse
Affiliation(s)
- L J Fisher
- Laboratory of Genetics, Salk Institute for Biological Sciences, San Diego, California 92186-5800, USA
| |
Collapse
|
41
|
Miyazono M, Nowell PC, Finan JL, Lee VM, Trojanowski JQ. Long-term integration and neuronal differentiation of human embryonal carcinoma cells (NTera-2) transplanted into the caudoputamen of nude mice. J Comp Neurol 1996; 376:603-13. [PMID: 8978473 DOI: 10.1002/(sici)1096-9861(19961223)376:4<603::aid-cne8>3.0.co;2-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
NTera-2 (NT2) cells are a human embryonal carcinoma (EC) cell line derived from a teratocarcinoma that differentiate exclusively into postmitotic neurons in vitro following retinoic acid (RA) treatment. Like other EC cell lines, NT2 cells rapidly form lethal tumors following transplantation into peripheral sites or many regions of the brain. However, when grafts are confined to the caudoputamen (CP), the NT2 cells differentiate into postmitotic neuronlike cells and do not form lethal tumors. To examine the long-term fate of such grafts, we studied NT2 cell transplants in the CP of nude mice that survived for > 1 year. NT2 cells in these grafts acquired molecular markers of fully mature neurons including the low, middle, and high molecular weight neurofilament proteins, microtubule-associated protein 2, tau, and synaptophysin. Furthermore, neuronlike cells in long-term CP grafts formed synaptic structures, and their processes became myelinated, whereas tyrosine hydroxylase (TH)-positive neuronlike cells in the grafts increased with progressively longer postimplantation survival times. Soluble extracts of the adult mouse CP augmented TH expression in RA-treated NT2 cells in vitro. These data suggest that the adult mouse CP is a source of factor(s) that inhibits tumor formation and induce a catecholaminergic neuronal phenotype in these human NT2 cells in vivo and in vitro. Identification of these factors could accelerate efforts to elucidate mechanisms that regulate progenitor cell fate and the commitment of neurons to specific neurotransmitter phenotypes.
Collapse
Affiliation(s)
- M Miyazono
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, School of Medicine, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Functional recovery observed in Parkinson's disease patients following grafting of fetal substantia nigra has encouraged the development of similar grafting therapy for other neurological disorders. Fetal hippocampal grafting paradigms are of considerable significance because of their potential to treat neurological disorders affecting primarily hippocampus, including temporal lobe epilepsy, cerebral ischemia, stroke, and head injury. Since many recent studies of hippocampal transplants were carried out with an aim of laying the foundation for future clinical applications, an overview of the development of fetal hippocampal transplants, and their capability for inducing functional recovery under different host conditions is timely. In this review, we will summarize recent developments in hippocampal transplants, especially the anatomical and/or functional integration of grafts within the host brain under specific host conditions, including a comparison of intact hippocampus with various types of hippocampal lesions or injury. Improvements in grafting techniques, methods for analysis of graft integration and graft function will be summarized, in addition to critical factors which enhance the survival and integration of grafted cells and alternative sources of donor cells currently being tested or considered for hippocampal transplantation. Viewed collectively, hippocampal grafting studies show that fetal hippocampal tissue/cells survive grafting, establish both afferent and efferent connections with the host brain, and are also capable of ameliorating certain learning and memory deficits in some models. However, the efficacy of intracerebral fetal hippocampal grafts varies considerably in different animal models, depending on several factors: the mode of donor tissue preparation, the method of grafting, the state of host hippocampus at the time of grafting, and the placement of grafts within the hippocampus. Functional improvement in many models appeared to be caused partially by re-establishment of damaged circuitry and partially by a trophic action of grafts. However, exact mechanisms of graft-mediated behavioral recovery remain to be clarified due to the lack of correlative analysis in the same animal between the degree of graft integration and behavioral recovery. Issues of mechanisms of action, degree of restoration of host circuitry and amelioration of host pathological conditions will need to be sorted out clearly prior to clinical use of fetal hippocampal transplants for susceptible neurological conditions.
Collapse
Affiliation(s)
- A K Shetty
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, NC, USA.
| | | |
Collapse
|
43
|
Tornatore C, Baker-Cairns B, Yadid G, Hamilton R, Meyers K, Atwood W, Cummins A, Tanner V, Major E. Expression of tyrosine hydroxylase in an immortalized human fetal astrocyte cell line; in vitro characterization and engraftment into the rodent striatum. Cell Transplant 1996. [PMID: 8689028 DOI: 10.1016/0963-6897(95)02041-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The use of primary human fetal tissue in the treatment of neurodegenerative disorders, while promising, faces several difficult technical and ethical issues. An alternative approach that would obviate these problems would be to use immortalized cell lines of human fetal central nervous system origin. An immortalized human fetal astrocyte cell line (SVG) has been established (45) and herein we describe the in vitro and in vivo characteristics of this cell line which suggest that it may be a useful vehicle for neural transplantation. The SVG cell line is vimentin, GFAP, Thy 1.1 and MHC class I positive, and negative for neurofilament and neuron specific enolase, consistent with its glial origin. To determine whether the cell line could be used as a drug delivery system, a cDNA expression vector for tyrosine hydroxylase was constructed (phTH/Neo) and stably expressed in the SVG cells for over 18 months as demonstrated by immunohistochemistry and Western blotting of the stable transfectants. HPLC analysis of the supernatant from these cells, termed SVG-TH, consistently found 4-6 pmol/ml/min of l-dopa produced with the addition of BH4 to the media. Furthermore, in cocultivation experiments with hNT neurons, PC-12 cells and primary rat fetal mesencephalic tissue, both the SVG and SVG-TH cells demonstrated neurotrophic potential, suggesting that they constituitively express factors with neuroregenerative potential. To determine the viability of these cells in vivo, SVG-TH cells were grafted into the striatum of Sprague-Dawley rats and followed over time. A panel of antibodies was used to unequivocally differentiate the engrafted cells from the host parenchyma, including antibodies to: SV40 large T antigen (expressed in the SVG-TH cells), human and rat MHC class 1, vimentin, GFAP, and tyrosine hydroxylase. While the graft was easily identified with the first week, over the course of a four week period of time the engrafted cells decreased in number. Concomittantly, rat CD4 and CD8 expression in the vicinity of the graft increased, consistent with xenograft rejection. When the SVG-TH cells were grafted to the lesioned striatum of a 6-hydroxydopamine lesioned rats, rotational behavior of the rat decreased as much as 80% initially, then slowly returned to baseline over the next four weeks, parallelling graft rejection. Thus, the SVG-TH cells can induce a functional recovery in an animal model of Parkinson's disease, however as a xenograft, the SVG cells are recognized by the immune system.
Collapse
Affiliation(s)
- C Tornatore
- Molecular Therapeutics Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tornatore C, Baker-Cairns B, Yadid G, Hamilton R, Meyers K, Atwood W, Cummins A, Tanner V, Major E. Expression of Tyrosine Hydroxylase in an Immortalized Human Fetal Astrocyte Cell Line; in Vitro Characterization and Engraftment into the Rodent Striatum. Cell Transplant 1996; 5:145-63. [PMID: 8689028 DOI: 10.1177/096368979600500206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The use of primary human fetal tissue in the treatment of neurodegenerative disorders, while promising, faces several difficult technical and ethical issues. An alternative approach that would obviate these problems would be to use immortalized cell lines of human fetal central nervous system origin. An immortalized human fetal astrocyte cell line (SVG) has been established (45) and herein we describe the in vitro and in vivo characteristics of this cell line which suggest that it may be a useful vehicle for neural transplantation. The SVG cell line is vimentin, GFAP, Thy 1.1 and MHC class I positive, and negative for neurofilament and neuron specific enolase, consistent with its glial origin. To determine whether the cell line could be used as a drug delivery system, a cDNA expression vector for tyrosine hydroxylase was constructed (phTH/Neo) and stably expressed in the SVG cells for over 18 months as demonstrated by immunohistochemistry and Western blotting of the stable transfectants. HPLC analysis of the supernatant from these cells, termed SVG-TH, consistently found 4-6 pmol/ml/min of 1-dopa produced with the addition of BH4to the media. Furthermore, in cocultivation experiments with hNT neurons, PC-12 cells and primary rat fetal mesencephalic tissue, both the SVG and SVG-TH cells demonstrated neurotrophic potential, suggesting that they constituitively express factors with neuroregenerative potential. To determine the viability of these cells in vivo, SVG-TH cells were grafted into the striatum of Sprague-Dawley rats and followed over time. A panel of antibodies was used to unequivocally differentiate the engrafted cells from the host parenchyma, including antibodies to: SV40 large T antigen (expressed in the SVG-TH cells), human and rat MHC class 1, vimentin, GFAP, and tyrosine hydroxylase. While the graft was easily identified with the first week, over the course of a four week period of time the engrafted cells decreased in number. Concomittantly, rat CD4 and CD8 expression in the vicinity of the graft increased, consistent with xenograft rejection. When the SVG-TH cells were grafted to the lesioned striatum of a 6-hydroxydopamine lesioned rats, rotational behavior of the rat decreased as much as 80% initially, then slowly returned to baseline over the next four weeks, parallelling graft rejection. Thus, the SVG-TH cells can induce a functional recovery in an animal model of Parkinson's disease, however as a xenograft, the SVG cells are recognized by the immune system.
Collapse
Affiliation(s)
- C Tornatore
- Molecular Therapeutics Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shihabuddin LS, Brunschwig JP, Holets VR, Bunge MB, Whittemore SR. Induction of mature neuronal properties in immortalized neuronal precursor cells following grafting into the neonatal CNS. JOURNAL OF NEUROCYTOLOGY 1996; 25:101-11. [PMID: 8699192 DOI: 10.1007/bf02284789] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
RN33B, a conditionally-immortalized neuronal cell line, survives and differentiates following grafting into the neocortex and hippocampus of adult and neonatal rat hosts. We have previously shown that these cells assume shapes characteristic of endogenous neurons at the integration site and persist up to 24 weeks post-grafting. In the present study we use electron microscopy and immunohistochemistry to characterize such cells. Differentiated RN33B cells were identical in size to endogenous neurons and their sizes depended on the specific location of integration. RN33B cells in the granule cell layer of the dentate gyrus and CA3 and CA1 pyramidal layers were 9.0, 15.3, and 12.6 microns in diameter, respectively. Grafted RN33B cells received synapses from fibres of host origin. Differentiated cells expressed neuronal markers, but not glial markers. Some differentiated cells expressed glutamate both in vitro and in vivo whereas undifferentiated cells did not. Grafted RN33B cells that differentiated with morphologies similar to CA3 pyramidal neurons and pyramidal cortical neurons expressed Py antigen, a neuronal marker that is differentially expressed in endogenous large pyramidal neurons of the cerebral cortex and large pyramids of hippocampal field CA3. This Py immunoreactivity was region-specific and corresponded to the endogenous pattern of Py immunostaining. Collectively, these data indicate that RN33B cells are capable of region-specific differentiation and have the potential to integrate functionally into the host CNS.
Collapse
Affiliation(s)
- L S Shihabuddin
- Neuroscience Program, University of Miami School of Medicine, Fl 33136, USA
| | | | | | | | | |
Collapse
|
46
|
Kleppner SR, Robinson KA, Trojanowski JQ, Lee VM. Transplanted human neurons derived from a teratocarcinoma cell line (NTera-2) mature, integrate, and survive for over 1 year in the nude mouse brain. J Comp Neurol 1995; 357:618-32. [PMID: 7673487 DOI: 10.1002/cne.903570410] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Retinoic acid (RA) induces a human teratocarcinoma cell line (NTera-2 or NT2) to give rise exclusively to post-mitotic neuron-like (NT2N) cells, but NT2N cells never acquire a fully mature neuronal phenotype in vitro. To determine whether NT2N cells can mature into adult neuron-like cells in vivo, purified NT2N cells were grafted into different regions of the central nervous system (CNS) of adult and neonatal athymic mice, and the grafts were examined immunohistochemically by light, confocal, and electron microscopy using antibodies to a panel of developmentally regulated neuronal polypeptides. NT2N grafts were distinguished from endogenous mouse neurons with antibodies that recognize human or murine specific epitopes in selected neuronal polypeptides. Viable NT2N cells were identified in > 89% of graft recipients (N = 90), and some grafts survived 14 months. Within 3 weeks of implantation, grafted NT2N cells re-extended their processes, and the location of the grafts (e.g., septum versus neocortex) appeared to determine the extent to which processes were elaborated. Within the early post-transplantation period, grafted NT2N cells expressed the same neuronal polypeptides as their in vitro counterparts. However, between 6 weeks and 4-6 months post-implantation, the grafted NT2N cells progressively acquired the molecular phenotype of fully mature in vivo neurons as evidenced by dramatically increased expression of the most highly phosphorylated isoforms of the heavy neurofilament subunit, and the de novo expression of adult CNS tau. Notably, the time course for the extension of processes and the expression of neuronal polypeptides by NT2N grafts was similar in neonatal and adult mice. Although grafted NT2N cells formed synapse-like structures and elaborated dendrites and axons, these axons remained unmyelinated. Finally, none of the transplanted NT2N cells reverted to a neoplastic state. These studies demonstrate that pure populations of grafted human NT2N cells acquire a fully mature neuronal phenotype in vivo, and that these cells integrate and survive for > 1 year post-implantation in the mouse CNS. These human neuron-like cells are an attractive model system for studies of neuronal development, polarity and transplantation.
Collapse
Affiliation(s)
- S R Kleppner
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical School, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
47
|
Whittemore SR, Neary JT, Kleitman N, Sanon HR, Benigno A, Donahue RP, Norenberg MD. Isolation and characterization of conditionally immortalized astrocyte cell lines derived from adult human spinal cord. Glia 1994; 10:211-26. [PMID: 8194863 DOI: 10.1002/glia.440100308] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
As an approach to develop both oligodendrocytic and astrocytic cell lines from adult human spinal cord, a cellular preparation of highly enriched oligodendrocytes and their precursors was infected with a replication-deficient retrovirus containing DNA sequences encoding the temperature-sensitive mutant of SV40 large T antigen. Six immortal cell lines were obtained. At both permissive (33 degrees C) and non-permissive (38.5 degrees C) temperatures, all cell lines were positive for vimentin, two demonstrated glial fibrillary acidic protein (GFAP) immunoreactivity, and none expressed oligodendrocyte or microglial markers. The 2 GFAP-positive cell lines [human spinal cord (HSC)2 and HSC6] were further characterized. Karyotype analysis revealed that both HSC2 and HSC6 cells showed gain of chromosomal material and structural chromosomal abnormalities. However, at non-permissive temperature both cell lines were indistinguishable from primary human astrocytes by a number of criteria. These properties included glutamine synthetase activity, Na(+)-dependent glutamate uptake, K+ flux, purine-evoked Ca2+ mobilization and entry, and the ability to support neurite outgrowth from embryonic rat retinal explants. The HSC2 and HSC6 cell lines may prove to be valuable models for studying the physiological properties of adult human astrocytes.
Collapse
Affiliation(s)
- S R Whittemore
- Department of Neurological Surgery, University of Miami School of Medicine, Florida 33136
| | | | | | | | | | | | | |
Collapse
|
48
|
White LA, Keane RW, Whittemore SR. Differentiation of an immortalized CNS neuronal cell line decreases their susceptibility to cytotoxic T cell lysis in vitro. J Neuroimmunol 1994; 49:135-43. [PMID: 7905006 DOI: 10.1016/0165-5728(94)90189-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
RN33B cells are a temperature-sensitive neuronal cell line derived from rat E12 medullary raphe nucleus (Whittemore and White (1993) Brain Research 615, 27-40). Undifferentiated RN33B cells express class I but not class II antigens of the major histocompatibility complex (MHC), and intercellular adhesion molecule-1 (ICAM-1), a ligand for lymphocyte function associated antigen-1 (LFA-1), expressed on cytotoxic T lymphocytes (CTLs). Treatment of undifferentiated RN33B cells with interferon-gamma (IFN-gamma) upregulated both class I MHC and ICAM-1. After neuronal differentiation, expression of class I MHC antigens or ICAM-1 was undetected, even after IFN-gamma treatment. The neuronally differentiated RN33B cells were also markedly less susceptible to lysis by alloantigen-specific CTLs. These data suggest that intrinsic to the differentiation of CNS neurons is a mechanism to escape CTL-mediated cell lysis.
Collapse
Affiliation(s)
- L A White
- Miami Project, University of Miami School of Medicine, FL 33136
| | | | | |
Collapse
|
49
|
Whittemore SR, White LA. Target regulation of neuronal differentiation in a temperature-sensitive cell line derived from medullary raphe. Brain Res 1993; 615:27-40. [PMID: 8364724 DOI: 10.1016/0006-8993(93)91111-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Following infection of dissociated embryonic day 13 rat medullary raphe cells with a retrovirus encoding the temperature-sensitive mutant of SV40 large T antigen, a clonal cell line, RN33B, was isolated by serial dilution. At 33 degrees C, RN33B cells divide with a doubling time of 48 h and show T antigen, vimentin, nestin, diffuse neuron-specific enolase, and low and medium molecular weight neurofilament immunoreactivities. RN33B cells are immortal, but not transformed, as they will not grow in soft agar. At non-permissive temperature (38.5 degrees C), T antigen expression is markedly decreased and RN33B cells cease mitotic activity and differentiate with phase bright cell bodies and 'neuritic-like' processes. Differentiated RN33B cells express enhanced neuronal-specific protein expression but do not synthesize astrocytic or oligodendrocytic-specific proteins. Moreover, differentiated RN33B cells returned to 33 degrees C re-express T antigen, but do not de-differentiate or begin dividing. Co-culture with embryonic hippocampus and cerebral cortex, but not medullary raphe or spinal cord, resulted in significantly greater survival, more complex neuronal morphology, and enhanced expression of neuronal-specific antigens. Immunohistochemical and Northern blot analysis revealed high levels of low affinity NGF receptor protein and mRNA in differentiated RN33B cells. PCR analysis demonstrated the presence of trkB, but not trkA or trkC, mRNA in both undifferentiated and differentiated RN33B cells. These data suggest that the observed target regulation of RN33B cell neuronal differentiation in co-culture may be mediated by neurotrophin(s).
Collapse
Affiliation(s)
- S R Whittemore
- Miami Project, University of Miami School of Medicine, FL 33136
| | | |
Collapse
|