1
|
Sun S, Zhang K, Zhang J, He P, Zhang P, Deng D, Chi C, Jiang S, Zheng W, Chen N, Zhu J. A nucleocapsid monoclonal antibody based sandwich ELISA for the general detection of both PRRSV-2 and PRRSV-1. Vet Microbiol 2025; 302:110399. [PMID: 39847872 DOI: 10.1016/j.vetmic.2025.110399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failure in sows and respiratory disease in growing pigs, leading to significant economic losses worldwide. Due to the constant mutation and recombination, PRRSV exhibits significant genetic diversity, the general detection of all PRRSV-2 and PRRSV-1 strains is thus needed. In our study, four monoclonal antibodies (mAbs) against PRRSV nucleocapsid (N) protein were generated and the precise and novel B cell epitopes (52KPHF55 and 109HHTVR113) were identified. The epitope 52KPHF55 is highly conserved across all strains of PRRSV-2 lineages and PRRSV-1 subtypes, and the corresponding two mAbs (6D7, 4D12) were selected to develop a sandwich ELISA that was able to detect all tested PRRSV-2 and PRRSV-1 strains. The developed sandwich ELISA demonstrated high specificity, sensitivity and repeatability. In detection of 133 clinical samples, the sandwich ELISA achieved 84.21 % coincidence with the real-time RT-PCR. In conclusion, the mAb based sandwich ELISA can be suitable for detection of potential all PRRSV-2 lineages and PRRSV-1 subtypes, providing a simple, quick and high content method for diagnosis of PRRS.
Collapse
Affiliation(s)
- Shaohua Sun
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Kaili Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Jiajia Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Ping He
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Pingping Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Dafu Deng
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Chenglin Chi
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Sen Jiang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Wanglong Zheng
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Nanhua Chen
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Jianzhong Zhu
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Li W, Li Y, Li M, Zhang H, Feng Z, Xu H, Li C, Guo Z, Gong B, Peng J, Zhou G, Tian Z, Wang Q. Development and application of a blocking ELISA based on a N protein monoclonal antibody for the antibody detection against porcine reproductive and respiratory syndrome virus 2. Int J Biol Macromol 2024; 269:131842. [PMID: 38679249 DOI: 10.1016/j.ijbiomac.2024.131842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most widespread illnesses in the world's swine business. To detect the antibodies against PRRSV-2, a blocking enzyme-linked immunosorbent assay (B-ELISA) was developed, utilizing a PRRSV-2 N protein monoclonal antibody as the detection antibody. A checkerboard titration test was used to determine the optimal detection antibody dilution, tested pig serum dilution and purified PRRSV coated antigen concentration. After analyzing 174 negative pig sera and 451 positive pig sera, a cutoff value of 40 % was selected to distinguish between positive and negative sera using receiver operating characteristic curve analysis. The specificity and sensitivity of the assay were evaluated to equal 99.8 % and 96 %, respectively. The method had no cross-reaction with PCV2, PRV, PPV, CSFV, PEDV, TGEV, and PRRSV-1 serum antibodies, and the coefficients of variation of intra-batch and inter-batch repeatability experiments were both <10 %. A total of 215 clinical serum samples were tested, and the relative coincidence rate with commercial ELISA kit was 99.06 %, and the kappa value was 0.989, indicating that these two detection results exhibited high consistency. Overall, the B-ELISA should serve as an ideal method for large-scale serological investigation of PRRSV-2 antibodies in domestic pigs.
Collapse
Affiliation(s)
- Wansheng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yanwei Li
- Beijing Biomedicine Technology Center of JoFunHwa Biotechnology (Nanjing Co. Ltd.), Beijing 102600, China
| | - Minhua Li
- Beijing IDEXX Laboratories, Co., Ltd, Beijing 101318, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zixuan Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Hu Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chao Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhenyang Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Bangjun Gong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jinmei Peng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Guohui Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhijun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Qian Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| |
Collapse
|
3
|
Martin-Valls GE, Li Y, Clilverd H, Soto J, Cortey M, Mateu E. Levels of neutralizing antibodies against resident farm strain or vaccine strain are not indicators of protection against PRRSV-1 vertical transmission under farm conditions. BMC Vet Res 2023; 19:217. [PMID: 37858141 PMCID: PMC10588270 DOI: 10.1186/s12917-023-03785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Vertical transmission is key for the maintenance of porcine reproductive and respiratory syndrome virus (PRRSV) infection. In vaccinated farms, vertical transmission can still occur despite sows having some level of immunity because of repeated vaccination or contact with the wild-type virus. The present study aimed to correlate the age of sows and the amplitude of neutralizing antibodies (Nab) (heterologous neutralization) with PRRSV-1 vertical transmission (VT). For this purpose, umbilical cords of 1,554 newborns (corresponding to 250 litters) were tested for PRRSV by RT-PCR in two PRRSV-unstable vaccinated farms. In parallel, the sows were bled after farrowing and the levels of antibodies were determined by ELISA and by the viral neutralization test against the vaccine virus, the virus circulating in the farm, and other unrelated contemporary PRRSV-1 strains. The relationship between the parity and the probability of delivering infected piglets and the presence of broadly Nabs examined. RESULTS The proportion of VT events in the two examined farms ranged from 18.9% to 23.0%. Young sows (parity 1-2) were 1.7 times more likely to have VT than older sows (p < 0.05). Despite higher ELISA S/P antibody ratios in younger sows (p < 0.05), NAb against the resident farm strain were at a similar level between sows delivering infected and healthy piglets regardless of age, mostly with low titers (2-3 log2). The titers of NAb against the vaccine virus were also low, and no correlations with VT were observed. When a panel of another 4 strains (1 isolated in the 1990s, and 3 contemporary strains) were used for the neutralization test, most sow sera were not capable of neutralizing the contemporary strains. CONCLUSIONS Titers of NAb could not be correlated with the occurrence of PRRSV VT. The amplitude of NAb present in most vaccinated sows is limited with a considerable proportion unresponsive regarding NAb production.
Collapse
Affiliation(s)
- Gerard Eduard Martin-Valls
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Travessera dels Turons S/N, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Yanli Li
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Travessera dels Turons S/N, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Hepzibar Clilverd
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Travessera dels Turons S/N, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Jordi Soto
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Travessera dels Turons S/N, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Martí Cortey
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Travessera dels Turons S/N, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Enric Mateu
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Travessera dels Turons S/N, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.
| |
Collapse
|
4
|
Osemeke OH, Cezar GA, Paiva RC, Moraes DCA, Machado IF, Magalhaes ES, Poeta Silva APS, Mil-Homens M, Peng L, Jayaraman S, Trevisan G, Silva GS, Gauger PC, Linhares DCL. A cross-sectional assessment of PRRSV nucleic acid detection by RT-qPCR in serum, ear-vein blood swabs, nasal swabs, and oral swabs from weaning-age pigs under field conditions. Front Vet Sci 2023; 10:1200376. [PMID: 37635762 PMCID: PMC10449646 DOI: 10.3389/fvets.2023.1200376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/10/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction The porcine reproductive and respiratory syndrome virus (PRRSV) continues to challenge swine production in the US and most parts of the world. Effective PRRSV surveillance in swine herds can be challenging, especially because the virus can persist and sustain a very low prevalence. Although weaning-age pigs are a strategic subpopulation in the surveillance of PRRSV in breeding herds, very few sample types have been validated and characterized for surveillance of this subpopulation. The objectives of this study, therefore, were to compare PRRSV RNA detection rates in serum, oral swabs (OS), nasal swabs (NS), ear-vein blood swabs (ES), and family oral fluids (FOF) obtained from weaning-age pigs and to assess the effect of litter-level pooling on the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) detection of PRRSV RNA. Methods Three eligible PRRSV-positive herds in the Midwestern USA were selected for this study. 666 pigs across 55 litters were sampled for serum, NS, ES, OS, and FOF. RT-qPCR tests were done on these samples individually and on the litter-level pools of the swabs. Litter-level pools of each swab sample type were made by combining equal volumes of each swab taken from the pigs within a litter. Results Ninety-six piglets distributed across 22 litters were positive by PRRSV RT-qPCR on serum, 80 piglets distributed across 15 litters were positive on ES, 80 piglets distributed across 17 litters were positive on OS, and 72 piglets distributed across 14 litters were positive on NS. Cohen's kappa analyses showed near-perfect agreement between all paired ES, OS, NS, and serum comparisons (). The serum RT-qPCR cycle threshold values (Ct) strongly predicted PRRSV detection in swab samples. There was a ≥ 95% probability of PRRSV detection in ES-, OS-, and NS pools when the proportion of positive swab samples was ≥ 23%, ≥ 27%, and ≥ 26%, respectively. Discussion ES, NS, and OS can be used as surveillance samples for detecting PRRSV RNA by RT-qPCR in weaning-age pigs. The minimum number of piglets to be sampled by serum, ES, OS, and NS to be 95% confident of detecting ≥ 1 infected piglet when PRRSV prevalence is ≥ 10% is 30, 36, 36, and 40, respectively.
Collapse
Affiliation(s)
| | - Guilherme A. Cezar
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Rodrigo C. Paiva
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Daniel C. A. Moraes
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Isadora F. Machado
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Edison S. Magalhaes
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | | | - Mafalda Mil-Homens
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Li Peng
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Swaminathan Jayaraman
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Giovani Trevisan
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Gustavo S. Silva
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Phillip C. Gauger
- Veterinary Diagnostic and Production Animal Medicine Department of the College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Daniel C. L. Linhares
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| |
Collapse
|
5
|
Kick AR, Grete AF, Crisci E, Almond GW, Käser T. Testable Candidate Immune Correlates of Protection for Porcine Reproductive and Respiratory Syndrome Virus Vaccination. Vaccines (Basel) 2023; 11:vaccines11030594. [PMID: 36992179 DOI: 10.3390/vaccines11030594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an on-going problem for the worldwide pig industry. Commercial and experimental vaccinations often demonstrate reduced pathology and improved growth performance; however, specific immune correlates of protection (CoP) for PRRSV vaccination have not been quantified or even definitively postulated: proposing CoP for evaluation during vaccination and challenge studies will benefit our collective efforts towards achieving protective immunity. Applying the breadth of work on human diseases and CoP to PRRSV research, we advocate four hypotheses for peer review and evaluation as appropriate testable CoP: (i) effective class-switching to systemic IgG and mucosal IgA neutralizing antibodies is required for protective immunity; (ii) vaccination should induce virus-specific peripheral blood CD4+ T-cell proliferation and IFN-γ production with central memory and effector memory phenotypes; cytotoxic T-lymphocytes (CTL) proliferation and IFN-γ production with a CCR7- phenotype that should migrate to the lung; (iii) nursery, finishing, and adult pigs will have different CoP; (iv) neutralizing antibodies provide protection and are rather strain specific; T cells confer disease prevention/reduction and possess greater heterologous recognition. We believe proposing these four CoP for PRRSV can direct future vaccine design and improve vaccine candidate evaluation.
Collapse
Affiliation(s)
- Andrew R Kick
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Department of Chemistry & Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Alicyn F Grete
- Department of Chemistry & Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Elisa Crisci
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Glen W Almond
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
6
|
Prajapati M, Acharya MP, Yadav P, Frossard J. Farm characteristics and sero-prevalence of porcine reproductive and respiratory syndrome virus (PRRSV) antibodies in pigs of Nepal. Vet Med Sci 2022; 9:174-180. [PMID: 36495175 PMCID: PMC9856976 DOI: 10.1002/vms3.1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome is a highly infectious disease of swine caused by PRRS virus (PRRSV). OBJECTIVES To evaluate the prevalence of PRRSV antibodies in the four districts of hilly and terai regions of Nepal. Toassess the farm characteristics through a questionnaire interview of farmersregarding management practices and PRRS. METHODS A cross-sectional study was conducted from July 2020 to June 2021 to determine the sero-prevalence of PRRSV in pigs. A total of 180 porcine serum samples were collected from 23 pig farms and tested for PRRSV antibodies by ELISA. Alongside, farm characteristics were also assessed through questionnaire to determine the level of biosecurity measures in the farm, knowledge of the disease and possible control mechanisms. RESULTS Out of 180 samples, 37 were tested positive resulting the overall sero-prevalence of 20.5%. There was significant association between different districts (p < 0.05) and PRRS prevalence. Prevalence of PRRSV antibody was found higher in Kaski district (10.5%) followed by Sunsari (8.8%) district. Based on age groups, highest prevalence was found in age groups of above 18 months (9.4%), followed by 13-18 months age groups (7.7%). Regarding the knowledge level of the disease, 43% of the farmers responded that they have heard about the disease. Biosecurity practices in the farm was found very poor where only 40% of the farms had disinfectant at the entrance of the farm and 25% pig farmers were found using separate boots while dealing with pigs. CONCLUSIONS The findings of this study reveal the presence of PRRSV antibodies in pigs of Nepal. In addition poor biosecurity measures, management practices and poor knowledge level about the disease among farmers highly affect in the control and prevention of disease thereby affecting the pig production and productivity. Therefore, government should develop and implement effective control measures and biosecurity programs.
Collapse
Affiliation(s)
- Meera Prajapati
- National Animal Health Research CentreNepal Agricultural Research CouncilKathmanduNepal
| | | | | | | |
Collapse
|
7
|
Welch M, Krueger K, Zhang J, Piñeyro P, Magtoto R, Wang C, Giménez-Lirola L, Strait E, Mogler M, Gauger P. Detection of porcine parainfluenza virus type-1 antibody in swine serum using whole-virus ELISA, indirect fluorescence antibody and virus neutralizing assays. BMC Vet Res 2022; 18:110. [PMID: 35313864 PMCID: PMC8935814 DOI: 10.1186/s12917-022-03196-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine parainfluenza virus 1 (PPIV-1) is a respiratory virus in the family Paramyxoviridae and genus Respirovirus. It is closely related to bovine parainfluenza virus 3, human parainfluenza virus 1, and Sendai virus. Recent reports suggest PPIV-1 is widespread in swine herds in the United States and abroad. However, seroprevalence studies and the ability to evaluate cross neutralization between heterologous strains is not possible without validated antibody assays. This study describes the development of an indirect fluorescence antibody (IFA) assay, a whole virus enzyme-linked immunosorbent assay (wv-ELISA) and a serum virus neutralization (SVN) assay for the detection of PPIV-1 antibodies using 521 serum samples collected from three longitudinal studies and two different challenge strains in swine. RESULTS The area under the curve (AUC) of the wv-ELISA (95% CI, 0.93-0.98) was significantly higher (p = 0.03) compared to the IFA (95% CI, 0.90-0.96). However, no significant difference was observed between the IFA and wv-ELISA when compared to the SVN (95% CI, 0.92-0.97). All three assays demonstrated relatively uniform results at a 99% true negative rate, with only 11 disagreements observed between the IFA, wv-ELISA and SVN. CONCLUSIONS All three serology assays detected PPIV-1 antibody in swine serum of known status that was collected from experimental studies. The SVN detected seroconversion earlier compared to the IFA and the wv-ELISA. Both the wv-ELISA and the SVN had similar diagnostic performance, while the IFA was not as sensitive as the wv-ELISA. All three assays are considered valid for routine diagnostic use. These assays will be important for future studies to screen seronegative swine for research, determine PPIV-1 seroprevalence, and to evaluate vaccine efficacy against PPIV-1 under experimental and field conditions.
Collapse
Affiliation(s)
- Michael Welch
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA
| | - Karen Krueger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA
| | - Ronaldo Magtoto
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA.,Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, 2438 Osborn Drive, Ames, IA, 50011, USA
| | - Luis Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA
| | - Erin Strait
- Merck Animal Health, Ames, IA, USA.,Ceva Animal Health, LLC, 8901 Rosehill Road, Lenexa, KS, 66215, USA
| | | | - Phillip Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA.
| |
Collapse
|
8
|
Schoneberg C, Böttcher J, Janowetz B, Rostalski A, Kreienbrock L, Campe A. An intercomparison study of ELISAs for the detection of porcine reproductive and respiratory syndrome virus – evaluating six conditionally dependent tests. PLoS One 2022; 17:e0262944. [PMID: 35077518 PMCID: PMC8789123 DOI: 10.1371/journal.pone.0262944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/08/2022] [Indexed: 11/18/2022] Open
Abstract
Latent class analysis is a widely used statistical method for evaluating diagnostic tests without any gold standard. It requires the results of at least two tests applied to the same individuals. Based on the resulting response patterns, the method estimates the test accuracy and the unknown disease status for all individuals in the sample. An important assumption is the conditional independence of the tests. If tests with the same biological principle are used, the assumption is not fulfilled, which may lead to biased results. In a recent publication, we developed a method that considers the dependencies in the latent class model and estimates all parameters using frequentist methods. Here, we evaluate the practicability of the method by applying it to the results of six ELISA tests for antibodies against the porcine reproductive and respiratory syndrome (PRRS) virus in pigs that generally follow the same biological principle. First, we present different methods of identifying suitable starting values for the algorithm and apply these to the dataset and a vaccinated subgroup. We present the calculated values of the test accuracies, the estimated proportion of antibody-positive animals and the dependency structure for both datasets. Different starting values led to matching results for the entire dataset. For the vaccinated subgroup, the results were more dependent on the selected starting values. All six ELISA tests are well suited to detect antibodies against PRRS virus, whereas none of the tests had the best values for sensitivity and specificity simultaneously. The results thus show that the method used is able to determine the parameter values of conditionally dependent tests with suitable starting values. The choice of test should be based on the general fit-for-purpose concept and the population under study.
Collapse
Affiliation(s)
- Clara Schoneberg
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health in the Human-Animal-Environment Interface, University for Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| | | | | | | | - Lothar Kreienbrock
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health in the Human-Animal-Environment Interface, University for Veterinary Medicine Hannover, Hannover, Germany
| | - Amely Campe
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health in the Human-Animal-Environment Interface, University for Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
9
|
Development of a Nanobody-Based Competitive Enzyme-Linked Immunosorbent Assay for Efficiently and Specifically Detecting Antibodies against Genotype 2 Porcine Reproductive and Respiratory Syndrome Viruses. J Clin Microbiol 2021; 59:e0158021. [PMID: 34524888 PMCID: PMC8601240 DOI: 10.1128/jcm.01580-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection causes considerable economic loss to the global pig industry. Efficient detection assay is very important for the prevention of the virus infection. Nanobodies are the advantages of small molecular weight, simple genetic engineering, and low production cost for promising diagnostic application. In this study, to develop a nanobody-based competitive ELISA (cELISA) for specifically detecting antibodies against PRRSV, three nanobodies against PRRSV-N protein were screened by camel immunization, library construction, and phage display. Subsequently, a recombinant HEK293S cell line stably secreting nanobody-horseradish peroxidase (HRP) fusion protein against PRRSV-N protein was successfully constructed using the lentivirus transduction assay. Using the cell lines, the fusion protein was easily produced. Then, a novel cELISA was developed using the nanobody-HRP fusion protein for detecting antibodies against PRRSV in pig sera, exhibiting a cut-off value of 23.19% and good sensitivity, specificity, and reproducibility. Importantly, the cELISA specifically detect anti-genotype 2 PRRSV antibodies. The cELISA showed more sensitive than the commercial IDEXX ELISA kit by detecting the sequential sera from the challenged pigs. The compliance rate of cELISA with the commercial IDEXX ELISA kit was 96.4%. In addition, the commercial IDEXX ELISA kit can be combined with the developed cELISA for the differential detection of antibodies against genotype 1 and 2 PRRSV in pig sera. Collectively, the developed nanobody-based cELISA showed advantages of simple operation and low production cost and can be as an assay for epidemiological investigation of genotype 2 PRRSV infection in pigs and evaluation after vaccination.
Collapse
|
10
|
Zhou L, Ge X, Yang H. Porcine Reproductive and Respiratory Syndrome Modified Live Virus Vaccine: A "Leaky" Vaccine with Debatable Efficacy and Safety. Vaccines (Basel) 2021; 9:vaccines9040362. [PMID: 33918580 PMCID: PMC8069561 DOI: 10.3390/vaccines9040362] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS virus (PRRSV) is one of the most economically important diseases, that has significantly impacted the global pork industry for over three decades, since it was first recognized in the United States in the late 1980s. Attributed to the PRRSV extensive genetic and antigenic variation and rapid mutability and evolution, nearly worldwide epidemics have been sustained by a set of emerging and re-emerging virus strains. Since the first modified live virus (MLV) vaccine was commercially available, it has been widely used for more than 20 years, for preventing and controlling PRRS. On the one hand, MLV can induce a protective immune response against homologous viruses by lightening the clinical signs of pigs and reducing the virus transmission in the affected herd, as well as helping to cost-effectively increase the production performance on pig farms affected by heterologous viruses. On the other hand, MLV can still replicate in the host, inducing viremia and virus shedding, and it fails to confer sterilizing immunity against PRRSV infection, that may accelerate viral mutation or recombination to adapt the host and to escape from the immune response, raising the risk of reversion to virulence. The unsatisfied heterologous cross-protection and safety issue of MLV are two debatable characterizations, which raise the concerns that whether it is necessary or valuable to use this leaky vaccine to protect the field viruses with a high probability of being heterologous. To provide better insights into the immune protection and safety related to MLV, recent advances and opinions on PRRSV attenuation, protection efficacy, immunosuppression, recombination, and reversion to virulence are reviewed here, hoping to give a more comprehensive recognition on MLV and to motivate scientific inspiration on novel strategies and approaches of developing the next generation of PRRS vaccine.
Collapse
|
11
|
Choi HY, Lee SH, Ahn SH, Choi JC, Jeong JY, Lee BJ, Kang YL, Hwang SS, Lee JK, Lee SW, Park SY, Song CS, Choi IS, Lee JB. A chimeric porcine reproductive and respiratory syndrome virus (PRRSV)-2 vaccine is safe under international guidelines and effective both in experimental and field conditions. Res Vet Sci 2021; 135:143-152. [PMID: 33517163 DOI: 10.1016/j.rvsc.2021.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Vaccination is currently the most effective strategy to control porcine reproductive and respiratory syndrome (PRRS). New-generation PRRS vaccines are required to be safe and broadly cross-protective. We have recently created the chimeric PRRS virus K418DM which proved to be a good vaccine candidate under field conditions. In the present study, we designed safety and efficacy tests under experimental and field conditions for further evaluation of K418DM1.1, a plaque-purified K418DM. In the homologous challenge study, K418DM1.1 induced high serum virus neutralization (SVN) antibody titers (i.e., 4.2 log2 ± 1.7) at 21 days post-challenge (dpc) and provided protection as demonstrated by the significantly lower levels of viremia at 3 and 7 dpc and significantly lower microscopic lung lesion scores compared to the unvaccinated group. K418DM1.1 was also protective in the heterologous challenge study, with vaccinated pigs showing significantly lower levels of viremia at 14 dpc compared to the unvaccinated pigs. A field study was performed to evaluate the efficacy of K418DM1.1 against heterologous exposure and vaccinated pigs presented significantly lower viremia than unvaccinated pigs. According to the safety test for the examination of virulence reversion, no infectivity was observed in tissue homogenate filtrate both in the vaccinated and comingled groups. Thus, the risk of virulence, as well as transmission, appeared negligible. These overall results indicate that K418DM1.1 is a good vaccine candidate based on its safety and protective efficacy.
Collapse
Affiliation(s)
- Hwi-Yeon Choi
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - So-Hyun Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - So-Hyeun Ahn
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jong-Chul Choi
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ji-Yun Jeong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Beom-Joo Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeong-Lim Kang
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seong-Soo Hwang
- Samhwa Breedings Agri. Inc., 435, Sinjin-ri, Gwangcheon-eup, Hongseong-gun, Chungcheongnam-Do 350-900, Republic of Korea
| | - Jung-Keun Lee
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555, North 59th Avenue, Glendale, AZ 85308, USA
| | - Sang-Won Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seung-Yong Park
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Chang-Seon Song
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - In-Soo Choi
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Joong-Bok Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
12
|
Evaluation of Antibody Response Directed against Porcine Reproductive and Respiratory Syndrome Virus Structural Proteins. Vaccines (Basel) 2020; 8:vaccines8030533. [PMID: 32947931 PMCID: PMC7564207 DOI: 10.3390/vaccines8030533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022] Open
Abstract
Luciferase-immunoprecipitation system (LIPS), a liquid phase immunoassay, was used to evaluate antibody responses directed against the structural proteins of PRRSV in pigs that were experimentally infected with virulent PRRSV strains. First, the viral N protein was used as a model antigen to validate the assay. The LIPS results were highly comparable to that of the commercial IDEXX PRRS X3 ELISA. Subsequently, the assay was applied to simultaneously measure antibody reactivity against all eight structural proteins of PRRSV. The highest immunoreactivities were detected against GP3, M, and N proteins while the lowest reactivity was detected against ORF5a protein. Comparative analysis of the kinetics of antibody appearance revealed that antibodies specific to N protein appeared earlier than antibodies against GP3. Finally, the assay was applied to measure immunoreactivities of clinical serum samples against N and GP3. The diagnostic sensitivity of the LIPS with N protein was superior to that of the LIPS with GP3. Collectively, the results provide additional information about the host antibody response to PRRSV infection.
Collapse
|
13
|
Hess AS, Trible BR, Hess MK, Rowland RR, Lunney JK, Plastow GS, Dekkers JCM. Genetic relationships of antibody response, viremia level, and weight gain in pigs experimentally infected with porcine reproductive and respiratory syndrome virus1. J Anim Sci 2020; 96:3565-3581. [PMID: 29905795 DOI: 10.1093/jas/sky229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/13/2018] [Indexed: 12/16/2022] Open
Abstract
Genetic and antigenic variability between Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) isolates has encumbered vaccine development. Here, the genetic basis of PRRSV antibody response was assessed using data from experimental infection trials of commercial crossbred weaner pigs across with one of two distinct PRRSV isolates, NVSL-97-7895 (~750 pigs) and KS-2006-72109 (~450 pigs). Objectives were to estimate the genetic parameters of antibody response, measured as the sample to positive ratio (S:P) of PRRSV N-protein specific IgG in serum at 42 d post infection (dpi); assess the relationship of S:P at 42 dpi with serum viremia and growth under infection; and identify genomic regions associated with S:P at 42 dpi. Estimates of heritability of S:P at 42 dpi for NVSL and KS06 were 0.31 ± 0.09 and 0.40 ± 0.10 and appeared to be under similar genetic control (genetic correlation 0.73 ± 0.39). Estimates of genetic correlations of S:P were generally weak with viral load (NVSL: -0.20 ± 0.18; KS06: -0.69 ± 0.20), measured as area under the curve of log10 serum viremia from 0 to 21 dpi, and with weight gain (WG) from 0 to 42 dpi (NVSL: -0.38 ± 0.19; KS06: -0.08 ± 0.25). However, genetic correlations of S:P at 42 dpi with daily serum viremia and with 3-d WG revealed dynamic relationships, with S:P at 42 dpi having the strongest negative genetic correlations with daily viremia when IgG production starts (10-20 dpi), and negative genetic correlations with WG early after infection but positive later on. This suggests that animals that placed more emphasis on immune response early in infection reaped benefits of that later in infection by more effectively clearing the virus. The WUR10000125 SNP on SSC4, previously associated with response to PRRSV, did not have a significant effect on S:P at 42 dpi (P > 0.05) but genotype-specific genetic correlations of S:P with daily viremia and 3-d WG suggested that the lower WG of pigs with the unfavorable AA WUR10000125 genotype may be due to their utilization of a more energetically costly host response compared to pigs with the favorable genotype. Genome-wide association studies identified three SNPs in the Major Histocompatibility Complex associated with S:P that explained ~10 (NVSL) and 45% (KS06) of the genetic variance but were not associated with viremia or WG. In conclusion, antibody response to PRRSV infection is a possible biomarker for improved host response to PRRSV infection.
Collapse
Affiliation(s)
- Andrew S Hess
- Department of Animal Science, Iowa State University, Ames, IA
| | - Ben R Trible
- College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Melanie K Hess
- Department of Animal Science, Iowa State University, Ames, IA
| | - Raymond R Rowland
- College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Joan K Lunney
- Animal Parasitic Diseases Laboratory, USDA, ARS, BARC, Beltsville, MD
| | - Graham S Plastow
- Department of Agriculture, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
14
|
Ilha M, Nara P, Ramamoorthy S. Early antibody responses map to non-protective, PCV2 capsid protein epitopes. Virology 2019; 540:23-29. [PMID: 31734380 DOI: 10.1016/j.virol.2019.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 11/19/2022]
Abstract
Porcine circovirus type 2 (PCV2) is an economically important cause of post-weaning multisystemic wasting syndrome (PMWS) in weanling piglets. Current commercial vaccines against PCV2 are highly effective. Yet, a recurring emergence of new genotypes in vaccinated herds necessitates a better understanding of protective immunity. The study objectives were to identify previously unrecognized decoy epitopes in the PCV2 capsid and test the hypothesis that early antibody responses would map to decoy epitopes and vice versa. Using a peptide library spanning the PCV2a capsid and weekly sera collections from PCV2a infected animals, three major immunodominant regions mapping the early responses to decoy epitopes were identified. Regions with potential decoy activity were mapped using peptide blocking fluorescent focus inhibition assays to residues 55 YTVKATTVRTPSWAVDMM 72, 106 WPCSPITQGDRGVGSTAV 123 and 124 ILDDNFVTKATALTYDPY 141. Post-vaccination responses largely recognized these same three identified regions and dominated the antibody responses to PCV2 in both infection and vaccination.
Collapse
Affiliation(s)
- M Ilha
- Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA, USA
| | - P Nara
- Biological Mimetics, Frederick, MD, USA
| | - S Ramamoorthy
- Department of Microbiological Sciences, North Dakota State University, Dakota State University, Fargo, ND, USA.
| |
Collapse
|
15
|
Charerntantanakul W, Pongjaroenkit S. Co-administration of saponin quil A and PRRSV-1 modified-live virus vaccine up-regulates gene expression of type I interferon-regulated gene, type I and II interferon, and inflammatory cytokines and reduces viremia in response to PRRSV-2 challenge. Vet Immunol Immunopathol 2018; 205:24-34. [PMID: 30458999 DOI: 10.1016/j.vetimm.2018.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/19/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a devastating virus which suppresses the expression of type I and II interferons (IFNs) as well as several pro-inflammatory cytokines. Our previous study reported that saponin quil A had a potential to up-regulate the expression of type I IFN-regulated genes and type I and II IFNs in porcine peripheral blood mononuclear cells (PBMC) inoculated with PRRSV. The present study evaluated the immunostimulatory effect of quil A on potentiating cross protective immunity of PRRSV-1 modified-live virus (MLV) vaccine against PRRSV-2 challenge. Twenty-four 4-week-old PRRSV-seronegative pigs were divided into four groups of six pigs. Group 1 and group 2 pigs were vaccinated with PRRSV-1 MLV vaccine at 0 dpv (day post vaccination), and additionally group 2 pigs were injected intramuscularly with quil A at -1, 0, 1 dpv. Group 3 pigs were injected with PRRSV-1 MLV vaccine solvent at 0 dpv and served as challenge control, while group 4 pigs served as strict control. Group 1-3 pigs were challenged intranasally with PRRSV-2 at 28 dpv and immune and clinical parameters were observed from 0 until 49 dpv. Group 1 pigs showed significantly reduced PRRSV viremia, number of viremic pigs, and clinical scores, and significantly improved average daily weight gain (ADWG), compared to group 3 pigs. Group 2 pigs showed significantly increased mRNA expressions of interferon regulatory factor 3, 2'-5'-oligoadenylatesynthetase 1, osteopontin, IFNα, IFNβ, IFNγ, interleukin-2 (IL-2), IL-13 and tumor necrosis factor alpha, compared to group 1 pigs. The animals demonstrated significantly reduced PRRSV viremia and number of viremic pigs, but did not demonstrate any further improved PRRSV-specific antibody levels, neutralizing antibody titers, rectal temperature, clinical scores, and ADWG as compared to group 1 pigs. Our findings suggest that quil A up-regulates type I IFN-regulated gene, type I and II IFNs, and inflammatory cytokine expressions which may contribute to further reducing PRRSV viremia and number of viremic pigs which were conferred by PRRSV-1 MLV vaccine. Our findings also suggest that quil A may serve as an effective immunostimulator for potentiating cell-mediated immune defense to PRRSV.
Collapse
Affiliation(s)
- Wasin Charerntantanakul
- Program of Biotechnology, Faculty of Science, Maejo University, Chiang Mai, 50290, Thailand.
| | | |
Collapse
|
16
|
Yu JE, Ouh IO, Kang H, Lee HY, Cheong KM, Cho IS, Cha SH. An enhanced immunochromatographic strip test using colloidal gold nanoparticle-labeled dual-type N proteins for detection of antibodies to PRRS virus. J Vet Sci 2018; 19:519-527. [PMID: 29510472 PMCID: PMC6070587 DOI: 10.4142/jvs.2018.19.4.519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/21/2018] [Accepted: 03/03/2018] [Indexed: 11/25/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is recognized as one of the most important infectious diseases causing serious economic loss in the swine industry worldwide. Due to its increasing genetic diversity, a rapid and accurate diagnosis is critical for PRRS control. The immunochromatographic strip test (ICST) is a rapid and convenient type of immunoassay. In this study, an on-site immunochromatographic assay-based diagnostic method was developed for detection of PRRS virus (PRRSV)-specific antibodies. The method utilized colloidal gold nanoparticle-labeled dual-type nucleocapsid proteins encoded by open reading frame 7. We evaluated 991 field samples from pig farms and 66 serum samples from experimentally PRRSV-inoculated pigs. Based on true PRRSV-specific antibody-positive or -negative sera determined by immunofluorescence assay and IgM enzyme-linked immunosorbent assay (ELISA), the specificity and sensitivity of the ICST were 97.5% and 91.1%, respectively, similar to those of a commercial ELISA (IDEXX PRRS X3 Ab). More importantly, the ICST was completed within 15 min and could detect the PRRSV-specific antibody at an earlier stage of infection (3-7 days) than that of ELISA (7+ days). The results demonstrate that the developed ICST has great potential as an on-farm diagnostic method, providing excellent diagnostic performance in a quick and convenient manner.
Collapse
Affiliation(s)
- Ji Eun Yu
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - In-Ohk Ouh
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Hyeonjeong Kang
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Hye-Young Lee
- Research Institution, MEDIAN Diagnostics, Chuncheon 24399, Korea
| | | | - In-Soo Cho
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Sang-Ho Cha
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| |
Collapse
|
17
|
Giles JC, Johnson W, Jones G, Heuer C, Dunowska M. Development of an indirect ELISA for detection of antibody to wobbly possum disease virus in archival sera of Australian brushtail possums (Trichosurus vulpecula) in New Zealand. N Z Vet J 2018; 66:186-193. [PMID: 29669478 DOI: 10.1080/00480169.2018.1465483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AIMS To develop an indirect ELISA based on recombinant nucleocapsid (rN) protein of wobbly possum disease (WPD) virus for investigation of the presence of WPD virus in Australian brushtail possums (Trichosurus vulpecula) in New Zealand. METHODS Pre- and post-infection sera (n=15 and 16, respectively) obtained from a previous experimental challenge study were used for ELISA development. Sera were characterised as positive or negative for antibody to WPD virus based on western-blot using WPD virus rN protein as antigen. An additional 215 archival serum samples, collected between 2000-2016 from five different regions of New Zealand, were also tested using the ELISA. Bayesian modelling of corrected optical density at 450 nm (OD450) results from the ELISA was used to obtain estimates of receiver operating characteristic (ROC) curves to establish cut-off values for the ELISA, and to estimate the prevalence of antibody to WPD virus. RESULTS Western blot analysis showed 5/14 (36%) pre-infection sera and 11/11 (100%) post-infection sera from experimentally infected possums were positive for antibodies to WPD virus. Bayesian estimates of the ROC curves established cut-off values of OD450≥0.41 for samples positive, and OD450<0.28 for samples negative for antibody to WPD virus, for sera diluted 1:100 for the ELISA. Based on the model, the estimated proportion of samples with antibodies to WPD virus was 0.30 (95% probability interval=0.196-0.418). Of the 230 archival serum samples tested using the ELISA, 48 (20.9%) were positive for antibody to WPD virus, 155 (67.4%) were negative and 27 (11.7%) equivocal, using the established cut-off values. The proportion of samples positive for WPD virus antibody differed between geographical regions (p<0.001). CONCLUSION The results suggested that WPD virus or a related virus has circulated among possums in New Zealand with differences in the proportion of antibody-positive samples from different geographical regions. Antibodies to WPD virus did not seem to protect possums from disease following experimental infection, as one third of possums from the previous challenge study showed evidence of pre-existing antibody at the time of challenge. These results provide further support for existence of different pathotypes of WPD virus, but the exact determinants of protection against WPD and epidemiology of infection in various regions of New Zealand remain to be established. CLINICAL RELEVANCE Availability of the indirect ELISA for detection of WPD virus antibody will facilitate prospective epidemiological investigation of WPD virus circulation in wild possum populations in New Zealand.
Collapse
Affiliation(s)
- J C Giles
- a School of Veterinary Science, Massey University , Palmerston North , New Zealand
| | - W Johnson
- b Department of Statistics , University of California , Irvine , CA 92617 , USA
| | - G Jones
- c Institute of Fundamental Sciences, Massey University , Palmerston North , New Zealand
| | - C Heuer
- a School of Veterinary Science, Massey University , Palmerston North , New Zealand
| | - M Dunowska
- a School of Veterinary Science, Massey University , Palmerston North , New Zealand
| |
Collapse
|
18
|
Ke H, Han M, Zhang Q, Rowland R, Kerrigan M, Yoo D. Type I interferon suppression-negative and host mRNA nuclear retention-negative mutation in nsp1β confers attenuation of porcine reproductive and respiratory syndrome virus in pigs. Virology 2018; 517:177-187. [PMID: 29402432 DOI: 10.1016/j.virol.2018.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 12/20/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has the ability to suppress the type I interferons (IFNs-α/β) induction to facilitate its survival during infection, and the nsp1 protein of PRRSV has been identified as the potent IFN antagonist. The nsp1β subunit of nsp1 has also been shown to block the host mRNA nuclear export as one of the mechanisms to suppress host antiviral protein production. The SAP motif in nsp1β is the functional motif for both IFN suppression and host mRNA nuclear retention, and using infectious clones, two mutant viruses vL126A and vL135A have been generated. These mutants retain the infectivity, but the phenotype is negative for both IFN suppression and host mRNA nuclear retention due to the loss of the SAP motif. To examine the pathogenic role of IFN suppression in pigs, 40 piglets were allotted to four groups and each group was intramuscularly infected with vL126A, vL135A, wild-type (WT) PRRSV, and placebo. Pigs infected with vL126A or vL135A exhibited mild clinical signs with low viral titers and short duration of viremia. The levels of PRRSV-specific antibody remained comparable in all infected groups but the neutralizing antibody titers were high in vL126A-infected or vL135A-infected pigs. The IFN-α concentration was also high in pigs infected with the SAP mutants. Reversion to WT sequence was observed in the SAP motif in some animals, and the revertants regained the function to suppress IFN production and host mRNA nuclear export, indicating strong selection pressure in the SAP motif of nsp1β. Together, our data demonstrate that the IFN antagonism and host mRNA nuclear retention mediated by nsp1β contributes to viral virulence, and loss of these functions confers PRRSV attenuation.
Collapse
Affiliation(s)
- Hanzhong Ke
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mingyuan Han
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Qingzhan Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Raymond Rowland
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Maureen Kerrigan
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
19
|
Rotolo ML, Giménez-Lirola L, Ji J, Magtoto R, Henao-Díaz YA, Wang C, Baum DH, Harmon KM, Main RG, Zimmerman JJ. Detection of porcine reproductive and respiratory syndrome virus (PRRSV)-specific IgM-IgA in oral fluid samples reveals PRRSV infection in the presence of maternal antibody. Vet Microbiol 2017; 214:13-20. [PMID: 29408024 DOI: 10.1016/j.vetmic.2017.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 01/21/2023]
Abstract
The ontogeny of PRRSV antibody in oral fluids has been described using isotype-specific ELISAs. Mirroring the serum response, IgM appears in oral fluid by 7days post inoculation (DPI), IgA after 7 DPI, and IgG by 9 to 10 DPI. Commercial PRRSV ELISAs target the detection of IgG because the higher concentration of IgG relative to other isotypes provides the best diagnostic discrimination. Oral fluids are increasingly used for PRRSV surveillance in commercial herds, but in younger pigs, a positive ELISA result may be due either to maternal antibody or to antibody produced by the pigs in response to infection. To address this issue, a combined IgM-IgA PRRSV oral fluid ELISA was developed and evaluated for its capacity to detect pig-derived PRRSV antibody in the presence of maternal antibody. Two longitudinal studies were conducted. In Study 1 (modified-live PRRS vaccinated pigs), testing of individual pig oral fluid samples by isotype-specific ELISAs demonstrated that the combined IgM-IgA PRRSV ELISA provided better discrimination than individual IgM or IgA ELISAs. In Study 2 (field data), testing of pen-based oral fluid samples confirmed the findings in Study 1 and established that the IgM-IgA ELISA was able to detect antibody produced by pigs in response to wild-type PRRSV infection, despite the presence of maternal IgG. Overall, the combined PRRSV IgM-IgA oral fluid ELISA described in this study is a potential tool for PRRSV surveillance, particularly in populations of growing pigs originating from PRRSV-positive or vaccinated breeding herds.
Collapse
Affiliation(s)
- Marisa L Rotolo
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Luis Giménez-Lirola
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Ju Ji
- Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, IA, USA
| | - Ronaldo Magtoto
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Yuly A Henao-Díaz
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Chong Wang
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, USA; Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, IA, USA
| | - David H Baum
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Karen M Harmon
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Rodger G Main
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Jeffrey J Zimmerman
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
20
|
Han J, Zhou L, Ge X, Guo X, Yang H. Pathogenesis and control of the Chinese highly pathogenic porcine reproductive and respiratory syndrome virus. Vet Microbiol 2017; 209:30-47. [PMID: 28292547 DOI: 10.1016/j.vetmic.2017.02.020] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 12/24/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has remained a major threat to the worldwide swine industry ever since its first discovery in the early 1990s. Under the selective pressures in the field, this positive-stranded RNA virus undergoes rapid genetic evolution that eventually leads to emergence in 2006 of the devastating Chinese highly pathogenic PRRSV (HP-PRRSV). The atypical nature of HP-PRRSV has caused colossal economic losses to the swine producers in China and the surrounding countries. In this review, we summarize the recent advances in our understanding of the pathogenesis, evolution and ongoing field practices on the control of this troubling virus in China.
Collapse
Affiliation(s)
- Jun Han
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China.
| |
Collapse
|
21
|
Pileri E, Martín-Valls GE, Díaz I, Allepuz A, Simon-Grifé M, García-Saenz A, Casal J, Mateu E. Estimation of the transmission parameters for swine influenza and porcine reproductive and respiratory syndrome viruses in pigs from weaning to slaughter under natural conditions. Prev Vet Med 2017; 138:147-155. [PMID: 28237230 DOI: 10.1016/j.prevetmed.2017.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 01/10/2017] [Accepted: 01/15/2017] [Indexed: 01/16/2023]
Abstract
In the present study, the transmission parameters of swine influenza virus (SIV) and porcine reproductive and respiratory virus (PRRSV) have been calculated using the basic reproductive rate (R) parameter in two commercial pig farms (F1 and F2). In order to do this, a serological (PRRSV genotype 1 and SIV) and virological (SIV) follow-up of a batch of animals was carried out weekly from 3 weeks of age until the age of slaughter on each farm. Results of the analysis for SIV and PRRSV showed different transmission profiles depending on the farm, the pathogen, and time of transmission. In F1, transmission of both viruses was detected throughout the sampling. The Rt (R for a given period of time) value for SIV ranged from 1.5 [0.9-2.3] to 3.6 [2.3-4.9] from farrowing to the beginning of the fattening period, and the Rt value for PRRSV was 3.3 [2.9-4.3] to 3.5 [2.8-4.1] from farrowing until the slaughter age. These results indicated that both viruses were transmitted enzootically in that farm for these periods of time. A different transmission pattern with a higher incidence was also observed during the fattening period in F1 (after 15 weeks of age) for SIV, coinciding with the entrance of a new subtype. In this case, R value for SIV reached 3.3 [1.65-4.9]. On the other hand, in F2, SIV and PRRSV seemed to be restricted to the fattening period. R reached a value of 6.4 [4.1-8.8] for SIV and 7.1 [3.5-10.6] for PRRSV. These findings suggest a different origin of the virus, as well as a more epidemic circulation, especially for SIV, where most of the new cases were observed in a one week period. In conclusion, the present study offers a reliable estimation of the range of Rt values for SIV and genotype 1 PRRSV transmission under field conditions, suggesting that enzootic circulations of both viruses are similar in terms of transmission, probably higher for PRRSV, but also that transmission of SIV is more efficient (or epidemic) than transmission of a genotype 1 PRRSV isolate in naïve animals given the new cases observed in only in F2.
Collapse
Affiliation(s)
- Emanuela Pileri
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain,; Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Gerard E Martín-Valls
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain,; Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain.
| | - Ivan Díaz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Alberto Allepuz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain,; Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain.
| | - Meritxell Simon-Grifé
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Ariadna García-Saenz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain,; Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Jordi Casal
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain,; Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Enric Mateu
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain,; Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
22
|
Sattler T, Pikalo J, Wodak E, Schmoll F. Ability of ELISAs to detect antibodies against porcine respiratory and reproductive syndrome virus in serum of pigs after inactivated vaccination and subsequent challenge. BMC Vet Res 2016; 12:259. [PMID: 27871292 PMCID: PMC5117522 DOI: 10.1186/s12917-016-0888-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In this study, six enzyme-linked immunosorbent assays (ELISA), intended for routine porcine reproductive and respiratory syndrome virus (PRRSV) herd monitoring, are tested for their ability to detect PRRSV specific antibodies in the serum of pigs after vaccination with an inactivated PRRSV type 1 vaccine and subsequent infection with a highly pathogenic (HP) PRRSV field strain. For this reason, ten piglets (group V) from a PRRSV negative herd were vaccinated twice at the age of 2 and 4 weeks with an inactivated PRRSV vaccine. Ten additional piglets (group N) from the same herd remained unvaccinated. Three weeks after second vaccination, each of the piglets received an intradermal application of an HP PRRSV field strain. Serum samples were taken before first vaccination as well as before and 3, 7, 10 and 14 days after HP PRRSV application. All serum samples were tested for PRRSV RNA by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) as well as for PRRSV antibodies with all six study ELISAs. RESULTS At the beginning of the study (before vaccination), all of the piglets were PRRSV antibody negative with all study ELISAs. They also tested negative for PRRSV RNA measured by RT-qPCR. From day 3 after HP PRRSV application until the end of the study, a viremia was detected by RT-qPCR in all of the piglets. On day 0 (day of HP PRRSV application), nine out of ten piglets of the pre-vaccinated group tested PRRSV antibody positive with one of the tested ELISAs, although with lower S/P values than after infection. On day 10 after HP PRRSV application, all study ELISAs except one had significantly higher S/P or OD values, respectively more positive samples, in group V than in group N. CONCLUSIONS Only one of the tested ELISAs was able to detect reliably PRRSV antibodies in pigs vaccinated with an inactivated PRRSV vaccine. With most of the tested ELISAs, higher S/P values respectively more positive samples after PRRSV infection were seen in the pre-vaccinated group than in the non-vaccinated.
Collapse
Affiliation(s)
- Tatjana Sattler
- Large Animal Clinic for Internal Medicine, University of Leipzig, An den Tierkliniken 11, 04103, Leipzig, Germany. .,Institute for Veterinary Disease Control, AGES, Robert-Koch-Gasse 17, 2340, Mödling, Austria.
| | - Jutta Pikalo
- Institute for Veterinary Disease Control, AGES, Robert-Koch-Gasse 17, 2340, Mödling, Austria
| | - Eveline Wodak
- Institute for Veterinary Disease Control, AGES, Robert-Koch-Gasse 17, 2340, Mödling, Austria
| | - Friedrich Schmoll
- Institute for Veterinary Disease Control, AGES, Robert-Koch-Gasse 17, 2340, Mödling, Austria
| |
Collapse
|
23
|
Chung CJ, Cha SH, Grimm AL, Chung G, Gibson KA, Yoon KJ, Parish SM, Ho CS, Lee SS. Recognition of Highly Diverse Type-1 and -2 Porcine Reproductive and Respiratory Syndrome Viruses (PRRSVs) by T-Lymphocytes Induced in Pigs after Experimental Infection with a Type-2 PRRSV Strain. PLoS One 2016; 11:e0165450. [PMID: 27798650 PMCID: PMC5087905 DOI: 10.1371/journal.pone.0165450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/12/2016] [Indexed: 11/18/2022] Open
Abstract
Background/Aim Live attenuated vaccines confer partial protection in pigs before the appearance of neutralizing antibodies, suggesting the contribution of cell-mediated immunity (CMI). However, PRRSV-specific T-lymphocyte responses and protective mechanisms need to be further defined. To this end, the hypothesis was tested that PRRSV-specific T-lymphocytes induced by exposure to type-2 PRRSV can recognize diverse isolates. Methods An IFN-gamma ELISpot assay was used to enumerate PRRSV-specific T-lymphocytes from PRRSVSD23983-infected gilts and piglets born after in utero infection against 12 serologically and genetically distinct type-1 and -2 PRRSV isolates. The IFN-gamma ELISpot assay using synthetic peptides spanning all open reading frames of PRRSVSD23983 was utilized to localize epitopes recognized by T-lymphocytes. Virus neutralization tests were carried out using the challenge strain (type-2 PRRSVSD23983) and another strain (type-2 PRRSVVR2332) with high genetic similarity to evaluate cross-reactivity of neutralizing antibodies in gilts after PRRSVSD23983 infection. Results At 72 days post infection, T-lymphocytes from one of three PRRSVSD23983-infected gilts recognized all 12 diverse PRRSV isolates, while T-lymphocytes from the other two gilts recognized all but one isolate. Furthermore, five of nine 14-day-old piglets infected in utero with PRRSVSD23983 had broadly reactive T-lymphocytes, including one piglet that recognized all 12 isolates. Overlapping peptides encompassing all open reading frames of PRRSVSD23983 were used to identify ≥28 peptides with T-lymphocyte epitopes from 10 viral proteins. This included one peptide from the M protein that was recognized by T-lymphocytes from all three gilts representing two completely mismatched MHC haplotypes. In contrast to the broadly reactive T-lymphocytes, neutralizing antibody responses were specific to the infecting PRRSVSD23983 isolate. Conclusion These results demonstrated that T-lymphocytes recognizing antigenically and genetically diverse isolates were induced by infection with a type 2 PRRSV strain (SD23983). If these reponses have cytotoxic or other protective functions, they may help overcome the suboptimal heterologous protection conferred by conventional vaccines.
Collapse
Affiliation(s)
- Chungwon J. Chung
- VMRD Inc., Pullman, WA 99163, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99163, United States of America
- * E-mail:
| | - Sang-Ho Cha
- Department of Virology, Animal and Plant Quarantine Agency, Anyang, Republic of Korea
| | | | - Grace Chung
- VMRD Inc., Pullman, WA 99163, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99163, United States of America
| | - Kathleen A. Gibson
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States of America
| | - Kyoung-Jin Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States of America
| | - Steven M. Parish
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, United States of America
| | - Chak-Sum Ho
- Gift of Life Michigan, Ann Arbor, MI 48108, United States of America
| | - Stephen S. Lee
- Department of Statistics, University of Idaho, Moscow, ID 83844, United States of America
| |
Collapse
|
24
|
Lyoo YS, Kleiboeker SB, Jang KY, Shin NK, Kang JM, Kim CH, Lee SJ, Sur JH. A Simple and Rapid Chromatographic Strip Test for Detection of Antibody to Porcine Reproductive and Respiratory Syndrome Virus. J Vet Diagn Invest 2016; 17:469-73. [PMID: 16312241 DOI: 10.1177/104063870501700512] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a major economic problem for swine industries worldwide despite several disease-reduction strategies such as age-segregated early weaning and all-in-all-out pig movement. Routine diagnosis of PRRSV is carried out by the combined use of an antibody-detecting enzyme-linked immunosorbent assay (ELISA), immunofluorescence, reverse transcription-polymerase chain reaction, and virus isolation. These assays require specialized laboratory equipment in addition to multistep sample handling and sample preparation. The objective of this study was to evaluate a simple pen-side assay (BioSign™ PRRSV) for rapid detection of PRRSV antibody based on a lateral flow chromatographic strip immunoassay system. This assay uses Escherichia coli–expressed viral nucleocapsid protein antigen for detecting antibodies against PRRSV in swine sera. In this report, the authors describe the evaluation of this assay using sera from both clinical samples and experimentally infected piglets. The results were compared with those of a standard, commercially available antibody ELISA (HerdChek®PRRS ELISA) and an indirect immunofluorescence assay using the same serum samples. The BioSign™ PRRSV assay was capable of detecting antibodies in sera known to contain antibodies to PRRSV, resulting in 93.2% sensitivity for samples from experimentally infected pigs and 98.7% sensitivity for clinical serum samples. For sera that did not contain antibodies to PRRSV, the specificity was found to be 98.5% and 99.2% for clinical and experimental serum samples, respectively.
Collapse
Affiliation(s)
- Y S Lyoo
- Department of Veterinary Pathology, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bonckaert C, van der Meulen K, Rodríguez-Ballarà I, Pedrazuela Sanz R, Martinez MF, Nauwynck HJ. Modified-live PRRSV subtype 1 vaccine UNISTRAIN ® PRRS provides a partial clinical and virological protection upon challenge with East European subtype 3 PRRSV strain Lena. Porcine Health Manag 2016; 2:12. [PMID: 28405438 PMCID: PMC5382438 DOI: 10.1186/s40813-016-0029-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/10/2016] [Indexed: 01/12/2023] Open
Abstract
Background Western European porcine reproductive and respiratory syndrome virus (PRRSV) strains cause limited and mild clinical signs whereas more virulent strains are circulating in Eastern Europe. The emergence of such highly virulent strains in Western Europe might result in severe clinical problems and a financial disaster. In this context, the efficacy of the commercial modified-live PRRSV subtype 1 vaccine UNISTRAIN® PRRS was tested upon challenge with the East European subtype 3 PRRSV strain Lena. Results The mean duration of fever was shortened and the number of fever days was significantly lower in vaccinated pigs than in control pigs. Moreover, a lower number of vaccinated animals showed fever, respiratory disorders and conjunctivitis. The mean virus titers in the nasal secretions post challenge (AUC) were significantly lower in the vaccinated group than in the control group. The duration of viremia was slightly shorter (not significantly different) in the vaccinated group as compared to the control group. Conclusions Vaccination of pigs with the modified-live vaccine UNISTRAIN® PRRS provides a partial clinical and virological protection against the PRRSV subtype 3 strain Lena.
Collapse
Affiliation(s)
- Caroline Bonckaert
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Karen van der Meulen
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | | | | | | | - Hans J Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| |
Collapse
|
26
|
Antunes ACL, Halasa T, Lauritsen KT, Kristensen CS, Larsen LE, Toft N. Spatial analysis and temporal trends of porcine reproductive and respiratory syndrome in Denmark from 2007 to 2010 based on laboratory submission data. BMC Vet Res 2015; 11:303. [PMID: 26689831 PMCID: PMC4687366 DOI: 10.1186/s12917-015-0617-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/16/2015] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome (PRRS) has been a cause for great concern to the Danish pig industry since it was first diagnosed in 1992. The causative agent of PRRS is an RNA virus which is divided into different genotypes. The clinical signs, as well as its morbidity and mortality, is highly variable between herds and regions. Two different genotypes of PRRS virus (PRRSV) are found in Denmark: type 1 and type 2. Approximately 40% of Danish swine herds are seropositive for one or both PRRSV types. The objective of this study was to describe the temporal trend and spatial distribution of PRRSV in Danish swine herds from 2007 to 2010, based on type-specific serological tests from the PRRS surveillance and control program in Denmark using the results stored in the information management system at the National Veterinary Institute, Technical University of Denmark (DTU Vet). RESULTS The average monthly seroprevalence of PRRSV type 1 was 9% (minimum of 5%; maximum of 13%) in breeding herds, and 20% (minimum of 14%; maximum of 26%) in production herds; PRRSV type 2 had an average seroprevalence of 3% (minimum of 1%; maximum of 9%) in breeding herds and of 9% (minimum of 5%; maximum of 13%) within production herds. The seroconversion rate followed a similar and consistent pattern, being higher for type 1 than for type 2 for both PRRSV types. Regarding the spatiotemporal results, the relative risk distribution maps changed over time as a consequence of the changes in PRRSV seroprevalence, suggesting a general decline in the extent of areas with higher relative risk for both type 1 and 2. Local spatial analysis results demonstrated the existence of statistically significant clusters in areas where the relative risk was higher for both herds. CONCLUSIONS PRRSV type 1 seroprevalence was constantly higher than for PRRSV type 2 in both herd types. Significant spatial clusters were consistently found in Denmark, suggesting that PRRSV is endemic in these areas. Furthermore, relative risk distribution maps revealed different patterns over time as a consequence of the changes in seroprevalence.
Collapse
Affiliation(s)
- Ana Carolina Lopes Antunes
- Section for Epidemiology, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, Denmark.
| | - Tariq Halasa
- Section for Epidemiology, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, Denmark.
| | - Klara Tølbøl Lauritsen
- Section for Diagnostic and Scientific Advice, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, Denmark.
| | | | - Lars Erik Larsen
- Section for Virology, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, Denmark.
| | - Nils Toft
- Section for Epidemiology, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
27
|
Seo BJ, Kim H, Cho HS, Park BY, Kim WI. Evaluation of two commercial PRRSV antibody ELISA kits with samples of known status and singleton reactors. J Vet Med Sci 2015; 78:133-8. [PMID: 26290128 PMCID: PMC4751132 DOI: 10.1292/jvms.15-0126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Two commercial PRRSV ELISA kits (IDEXX and Bionote) were evaluated for their sensitivity
and specificity using 476 PRRS-positive serum samples collected from 7 animal challenge
experiments and 1,000 PRRS-negative sera. Both ELISA kits exhibited 100% sensitivity with
sera collected 14 to 42 days post-infection, and the results from the kits were highly
correlated (R2=0.9207). The specificity of IDEXX or Bionote kit was 99.9% or
99.7%, respectively. In addition, the Bionote ELISA kit was used to examine 100 sera that
were determined to be falsely positive either by IDEXX 2XR or 3XR ELISA, and only 7 of
these samples were found to be positive. These results indicate that both ELISA kits
exhibited similar levels of sensitivity and specificity and would complement one another
for the verification of false-positive samples.
Collapse
Affiliation(s)
- Byoung-Joo Seo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Korea
| | | | | | | | | |
Collapse
|
28
|
Regulation and evasion of antiviral immune responses by porcine reproductive and respiratory syndrome virus. Virus Res 2014; 202:101-11. [PMID: 25529442 PMCID: PMC7132515 DOI: 10.1016/j.virusres.2014.12.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 12/13/2022]
Abstract
Five PRRSV viral proteins are shown to inhibit type I IFN induction and signaling by targeting different intracellular signaling intermediates. PRRSV regulates the expression of IL-10 and TNFα. PRRSV modulates apoptosis during infection. MicroRNAs might play significant roles in subverting immunity for PRRSV. PRRSV escapes from adaptive immunity by impairing antigen presentation, activating Tregs, and ADE.
Virus infection of mammalian cells triggers host innate immune responses to restrict viral replication and induces adaptive immunity for viral elimination. In order to survive and propagate, viruses have evolved sophisticated mechanisms to subvert host defense system by encoding proteins that target key components of the immune signaling pathways. Porcine reproductive and respiratory syndrome virus (PRRSV), a RNA virus, impairs several processes of host immune responses including interfering with interferon production and signaling, modulating cytokine expression, manipulating apoptotic responses and regulating adaptive immunity. In this review, we highlight the molecular mechanisms of how PRRSV interferes with the different steps of initial antiviral host responses to establish persistent infection in pigs. Dissection of the PRRSV–host interaction is the key in understanding PRRSV pathogenesis and will provide a basis for the rational design of vaccines.
Collapse
|
29
|
Sattler T, Wodak E, Revilla-Fernández S, Schmoll F. Comparison of different commercial ELISAs for detection of antibodies against porcine respiratory and reproductive syndrome virus in serum. BMC Vet Res 2014; 10:300. [PMID: 25518885 PMCID: PMC4276257 DOI: 10.1186/s12917-014-0300-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/11/2014] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND In recent years, several new ELISAs for the detection of antibodies against the porcine reproductive and respiratory disease virus (PRRSV) in pig serum have been developed. To interpret the results, specificity and sensitivity data as well as agreement to a reference ELISA must be available. In this study, three commercial ELISAs (INgezim PRRS 2.0 - ELISA II, Priocheck® PRRSV Ab porcine - ELISA III and CIVTEST suis PRRS E/S PLUS - ELISA IV, detecting PRRSV type 1 antibodies) were compared to a standard ELISA (IDEXX PRRS X3 Ab Test - ELISA I). The serum of three pigs vaccinated with an attenuated PRRSV live vaccine (genotype 2) was tested prior to and several times after the vaccination. Furthermore, serum samples of 245 pigs of PRRSV positive herds, 309 pigs of monitored PRRSV negative herds, 256 fatteners of assumed PRRSV negative herds with unknown herd history and 92 wild boars were tested with all four ELISAs. RESULTS ELISAs II and III were able to detect seroconversion of vaccinated pigs with a similar reliability. According to kappa coefficient, the results showed an almost perfect agreement between ELISA I as reference and ELISA II and III (kappa > 0.8), and substantial agreement between ELISA I and ELISA IV (kappa = 0.71). Sensitivity of ELISA II, III and IV was 96.0%, 100% and 91.5%, respectively. The specificity of the ELISAs determined in samples of monitored PRRSV negative herds was 99.0%, 95.1% and 96.4%, respectively. In assumed negative farms that were not continually monitored, more positive samples were found with ELISA II to IV. The reference ELISA I had a specificity of 100% in this study. CONCLUSIONS All tested ELISAs were able to detect a PRRSV positive herd. The specificity and sensitivity of the tested commercial ELISAs, however, differed. ELISA II had the highest specificity and ELISA III had the highest sensitivity in comparison to the reference ELISA. ELISA IV had a lower sensitivity and specificity than the other ELISAs.
Collapse
Affiliation(s)
- Tatjana Sattler
- Large Animal Clinic for Internal Medicine, University of Leipzig, An den Tierkliniken 11, 04103, Leipzig, Germany.
| | - Eveline Wodak
- Institute for Veterinary Disease Control, AGES, Robert-Koch-Gasse 17, 2340, Mödling, Austria.
| | | | - Friedrich Schmoll
- Institute for Veterinary Disease Control, AGES, Robert-Koch-Gasse 17, 2340, Mödling, Austria.
| |
Collapse
|
30
|
Jeong J, Aly SS, Cano JP, Polson D, Kass PH, Perez AM. Stochastic model of porcine reproductive and respiratory syndrome virus control strategies on a swine farm in the United States. Am J Vet Res 2014; 75:260-7. [PMID: 24564311 DOI: 10.2460/ajvr.75.3.260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To use mathematical modeling to assess the effectiveness of control strategies for porcine reproductive and respiratory syndrome (PRRS) virus on a swine farm. SAMPLE A hypothetical small, medium, or large farrow-to-weaning swine farm in the Midwestern United States. PROCEDURES Stochastic models were formulated to simulate an outbreak of PRRS on a farm. Control strategies assessed in those models included none (baseline) and various combinations of mass immunization, herd closure, and gilt acclimatization. Nine different models resulting from the combination of low, moderate, or high PRRS virus virulence and small, medium, or large herd size were simulated. A stabilized status, the outcome of interest, was defined as the absence of positive PCR assay results for PRRS virus in 3-week-old piglets. For each scenario, the percentage of simulations with a stabilized status was used as a proxy for the probability of disease control. RESULTS Increasing PRRS virus virulence and herd size were negatively associated with the probability of achieving a stabilized status. Repeated mass immunization with herd closure or gilt acclimitization was a better alternative than was single mass immunization for disease control within a farm. CONCLUSIONS AND CLINICAL RELEVANCE Repeated mass immunization with a PRRS modified-live virus vaccine with herd closure or gilt acclimitization was the scenario most likely to achieve a stabilized status. Estimation of the cost of various PRRS control strategies is necessary.
Collapse
Affiliation(s)
- Jaewoon Jeong
- Graduate Group in Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616
| | | | | | | | | | | |
Collapse
|
31
|
Xu S, Zhao Y, Shen J, Lin Y, Fang Z, Che L, Wu D. Threonine and tryptophan supplementation enhance porcine respiratory and reproductive syndrome (PRRS) vaccine-induced immune responses of growing pigs. Anim Sci J 2014; 86:294-304. [PMID: 25186185 DOI: 10.1111/asj.12272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 06/06/2014] [Indexed: 11/30/2022]
Abstract
The aim of the present study was to investigate influences of threonine and tryptophan supplementation (TTS) on immune response of growing pigs inoculated with modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine. Twenty growing barrows (Landrace × Yorkshire) were randomly assigned to four groups according to the PRRS vaccination and TTS. Serum samples were collected from all pigs at days 0, 7, 14, 21, 28, 35, 49 post-vaccination (day 0 defined as the day of vaccination). Pigs were euthanized and samples collected at day 49 post-vaccination. The results showed that TTS tended to increase weight gain and average daily gain (ADG) of pigs (P < 0.1). PRRS vaccine enhanced serum PRRSV-specific antibody, serum virus neutralizing (SVN) antibody and interferon-γ, interleukin (IL)-10 and IL-1β concentrations (P < 0.05). The expression of TLR3 and TLR7 mRNA in lymph nodes were higher in TTS than in the control group after PRRS vaccine inoculation (P < 0.05). TTS diet mitigated lung damage which is induced by PRRS vaccination from microscopic evaluation. These results suggest that dietary TTS could improve growth performance of growing pigs, which may be ascribed to the improved immune response and mitigated lung damage.
Collapse
Affiliation(s)
- Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Liang H, Wang H, Zhang L, Gu H, Zhang G. Development of a novel immunoperoxidase monolayer assay for detection of swine Hepatitis E virus antibodies based on stable cell lines expressing the ORF3 protein. Acta Vet Hung 2014; 62:243-56. [PMID: 24334082 DOI: 10.1556/avet.2013.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatitis E virus (HEV) strains are classified into 4 genotypes by nucleotide sequencing. Genotypes 3 and 4 infect humans and animals via HEV-contaminated food or water. HEV RNA was detected by PCR and antibodies were detected by ELISA. Since human studies showed that HEV IgG antibodies in sera can persist for extended periods, diagnosis of HEV infection in swine or humans is mainly based on serological detection using commercial ELISA kits. However, there is no supplemental method to verify ELISA results. Hence, we developed a novel method used for mutual correction of these common processes. Here, a modified stable HepG2 cell line was transfected with pcDNA3.1-ORF3 to express the swine HEV ORF3 protein. Based on this cell line, a novel immunoperoxidase monolayer assay (IPMA) was developed to detect antibodies against HEV. The results show that this method has good specificity, sensitivity and repeatability. When used to investigate 141 porcine serum samples, the IPMA had a coincidence rate of 92.2% with a commercial ELISA kit. The established IPMA described herein is valuable as a supplemental method to ELISA and can differentiate infections by HEV and other viruses.
Collapse
Affiliation(s)
- Huanbin Liang
- 1 South China Agricultural University MOA Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine 483 Wushan Road, Tianhe District Guangzhou 510642 China
| | - Heng Wang
- 1 South China Agricultural University MOA Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine 483 Wushan Road, Tianhe District Guangzhou 510642 China
| | - Liangquan Zhang
- 1 South China Agricultural University MOA Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine 483 Wushan Road, Tianhe District Guangzhou 510642 China
| | - Honglang Gu
- 1 South China Agricultural University MOA Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine 483 Wushan Road, Tianhe District Guangzhou 510642 China
| | - Guihong Zhang
- 1 South China Agricultural University MOA Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine 483 Wushan Road, Tianhe District Guangzhou 510642 China
| |
Collapse
|
33
|
Protective humoral immune response induced by an inactivated porcine reproductive and respiratory syndrome virus expressing the hypo-glycosylated glycoprotein 5. Vaccine 2014; 32:3617-22. [PMID: 24814552 DOI: 10.1016/j.vaccine.2014.04.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 11/22/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) causes significant economic losses to the swine industry worldwide. Although inactivated and live vaccines are commercially available for the control of PRRS, both types of vaccine have not always proven successful in terms of generating a protective immune response, particularly in the case of inactivated vaccines. In this study, we tested whether an inactivated vaccine could induce a humoral immune response to PRRS during a homologous challenge. Amino acid substitutions were introduced into glycoprotein (GP) 5 of the FL12 strain of the PRRS virus (PRRSV) using site-directed mutagenesis with a pFL12 infectious clone. The substitutions led to double deglycosylation in the putative glycosylation moieties on GP5. The mutant virus was subsequently inactivated with binary ethylenimine. The efficacy of the inactivated mutant virus was compared with that of the inactivated wild-type PRRSV. Only the inactivated mutant PRRSV induced serum neutralizing antibodies at six weeks post-vaccination. The group that was administered the inactivated mutant virus twice exhibited a significantly increased neutralizing antibody titer after a challenge with the virulent homologous strain and exhibited more rapid clearing of viremia compared to other groups, including the groups that were administered either the inactivated mutant or wild-type virus only once and the group that was administered the inactivated wild-type virus twice. Histopathological examination of lung tissue sections revealed that the group that was administered the inactivated mutant virus twice exhibited significantly thinner alveolar septa, whereas the thickness of the alveolar septa of the other groups were markedly increased due to lymphocyte infiltration. These results indicated that the deglycosylation of GP5 enhanced the immunogenicity of the inactivated mutant PRRSV and that twice administrations of the inactivated mutant virus conferred better protection against the homologous challenge. These findings suggest that the inactivated PRRSV that expresses a hypo-glycosylated GP5 is a potential inactivated vaccine candidate and a valuable tool for controlling PRRS for the swine industry.
Collapse
|
34
|
Characterization of a serologic marker candidate for development of a live-attenuated DIVA vaccine against porcine reproductive and respiratory syndrome virus. Vaccine 2013; 31:4330-7. [PMID: 23892102 DOI: 10.1016/j.vaccine.2013.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/16/2013] [Accepted: 07/10/2013] [Indexed: 11/21/2022]
Abstract
DIVA (differentiating infected from vaccinated animals) vaccines have proven extremely useful for control and eradication of infectious diseases in livestock. We describe here the characterization of a serologic marker epitope, so-called epitope-M201, which can be a potential target for development of a live-attenuated DIVA vaccine against porcine reproductive and respiratory syndrome virus (PRRSV). Epitope-M201 is located at the carboxyl terminus (residues 161-174) of the viral M protein. The epitope is highly immunodominant and well-conserved among type-II PRRSV isolates. Rabbit polyclonal antibodies prepared against this epitope are non-neutralizing; thus, the epitope does not seem to contribute to the protective immunity against PRRSV infection. Importantly, the immunogenicity of epitope-M201 can be disrupted through the introduction of a single amino acid mutation which does not adversely affect the viral replication. All together, our results provide an important starting point for the development of a live-attenuated DIVA vaccine against type-II PRRSV.
Collapse
|
35
|
Kittawornrat A, Engle M, Panyasing Y, Olsen C, Schwartz K, Rice A, Lizano S, Wang C, Zimmerman J. Kinetics of the porcine reproductive and respiratory syndrome virus (PRRSV) humoral immune response in swine serum and oral fluids collected from individual boars. BMC Vet Res 2013; 9:61. [PMID: 23537175 PMCID: PMC3666961 DOI: 10.1186/1746-6148-9-61] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/21/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The object of this study was to describe and contrast the kinetics of the humoral response in serum and oral fluid specimens during acute porcine reproductive and respiratory syndrome virus (PRRSV) infection. The study involved three trials of 24 boars each. Boars were intramuscularly inoculated with a commercial modified live virus (MLV) vaccine (Trial 1), a Type 1 PRRSV field isolated (Trial 2), or a Type 2 PRRSV field isolate (Trial 3). Oral fluid samples were collected from individual boars on day post inoculation (DPI) -7 and 0 to 21. Serum samples were collected from all boars on DPI -7, 0, 7, 14, 21 and from 4 randomly selected boars on DPI 3, 5, 10, and 17. Thereafter, serum and oral fluid were assayed for PRRSV antibody using antibody isotype-specific ELISAs (IgM, IgA, IgG) adapted to serum or oral fluid. RESULTS Statistically significant differences in viral replication and antibody responses were observed among the three trials in both serum and oral fluid specimens. PRRSV serum IgM, IgA, and IgG were first detected in samples collected on DPI 7, 10, and 10, respectively. Oral fluid IgM, IgA, and IgG were detected in samples collected between DPI 3 to 10, 7 to 10, and 8 to 14, respectively. CONCLUSIONS This study enhanced our knowledge of the PRRSV humoral immune response and provided a broader foundation for the development and application of oral fluid antibody-based diagnostics.
Collapse
Affiliation(s)
- Apisit Kittawornrat
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Mark Engle
- PIC North America, 100 Bluegrass Commons Blvd, Hendersonville, TN, 37075, USA
| | - Yaowalak Panyasing
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Chris Olsen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Kent Schwartz
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Anna Rice
- IDEXX Laboratories, Inc, Westbrook, ME, 04092, USA
| | | | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
- Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Jeffrey Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
36
|
Chen C, Fan W, Jia X, Li J, Bi Y, Liu W. Development of a recombinant N-Gp5c fusion protein-based ELISA for detection of antibodies to porcine reproductive and respiratory syndrome virus. J Virol Methods 2013; 189:213-20. [PMID: 23439032 DOI: 10.1016/j.jviromet.2013.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 11/29/2022]
Abstract
The recent dramatic increase in reported cases of porcine reproductive and respiratory syndrome (PRRS) in pig farms is a potential threat to the global swine industry, and thus, detecting PRRS virus (PRRSV) in pig herds is essential to help control the spread of PRRS. IDEXX HerdChek™ PRRS, a commercially available indirect enzyme-linked immunosorbent assay (iELISA), is the industry standard for detection of antibodies against PRRSV. In the present study, an effective iELISA for detection of PRRSV antibodies was developed using a recombinant fusion protein N-Gp5c (rN5c, a combination of the nucleocapsid protein and the C-terminal 78 aa of Gp5) produced in Escherichia coli. This assay was validated by comparison with an immunofluorescent assay and IDEXX-ELISA. The diagnostic specificity, sensitivity, and accuracy of the rN5c-iELISA method were 94.8, 95.6, and 95.1%, respectively. Cross-reactivity assays demonstrated that iELISA was PRRSV-specific. Repeatability tests revealed that the coefficients of variation of positive sera within and between runs were less than 13 and 22%, respectively. The rN5c-iELISA is simpler to produce and perform, time-saving, and suitable for large scale surveys of PRRSV infection at lower cost.
Collapse
Affiliation(s)
- Caiwei Chen
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
37
|
Manickam C, Dwivedi V, Miller J, Papenfuss T, Renukaradhya GJ. Mycobacterium tuberculosis whole cell lysate enhances proliferation of CD8 positive lymphocytes and nitric oxide secretion in the lungs of live porcine respiratory and reproductive syndrome virus vaccinated pigs. Viral Immunol 2013; 26:102-8. [PMID: 23308386 DOI: 10.1089/vim.2012.0065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Porcine respiratory and reproductive syndrome (PRRS) is an economically important disease of pigs worldwide. Currently used PRRSV vaccines provide incomplete protection. Recently, we identified Mycobacterium tuberculosis whole cell lysate (Mtb WCL) as a potent mucosal adjuvant to modified live PRRSV vaccine (PRRS-MLV). In this study, pigs were unvaccinated or vaccinated with PRRS-MLV plus Mtb WCL, intranasally, and challenged with either homologous (strain VR2332) or virulent heterologous (strain MN184) PRRSV; subsequently, euthanized at three time points post-challenge to evaluate lung immune responses. Microscopic examination of lung sections revealed reduced disruption of the lung architecture and less of interstitial pneumonia in vaccinated, compared to unvaccinated MN184 challenged pigs. The restimulated lung and peripheral blood mononuclear cells revealed increased proliferation of CD8(+) lymphocytes, and in the lung homogenate increased secretion of nitric oxide was detected in vaccinated MN184 challenged pigs. In summary, the adjuvant effects of Mtb WCL to PRRS-MLV resulted in favorable anti-PRRSV immune microenvironment in the lungs to help better viral clearance.
Collapse
Affiliation(s)
- Cordelia Manickam
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue,Wooster, OH 44691, USA
| | | | | | | | | |
Collapse
|
38
|
Xiao YH, Wang TT, Zhao Q, Wang CB, Lv JH, Nie L, Gao JM, Ma XC, Hsu WH, Zhou EM. Development of indirect ELISAs for differential serodiagnosis of classical and highly pathogenic porcine reproductive and respiratory syndrome virus. Transbound Emerg Dis 2012; 61:341-9. [PMID: 23217174 DOI: 10.1111/tbed.12040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Indexed: 11/28/2022]
Abstract
The objective of this study was to develop two indirect enzyme-linked immunosorbent assays (iELISAs) for detection of serum antibodies against classical vaccine strain of porcine reproductive and respiratory syndrome virus (PRRSV) and highly pathogenic PRRSV (HP-PRRSV). To detect the common antibodies against classical and HP-PRRSV, the coating antigen used in the iELISA (designated iELISA-180) was the antigen of Nsp2-180, the 180aa at amino terminal of Nsp2. To detect the different antibodies against classical and HP-PRRSV, the coating antigen in the second iELISA (designated iELISA-D29) was Nsp2-D29, the deleted 29aa in Nsp2 of HP-PRRSV. The antigen concentration and serum dilutions were optimized using a draughtboard titration. The cut-off values of 0.361 at OD(450nm) for the iELISA-180 and 0.27 at OD(450nm) for the iELISA-D29 were determined by testing a panel of 120 classical PRRSV positive and 198 PRRSV negative pig serum samples, which generated the specificity of 97.1% and 96.7%, the sensitivity of 96.9% and 96.3% for iELISA-180 and iELISA-D29, respectively. The agreements between the Western blot and iELISA-180 and iELISA-D29 were 98%, 96.7%, respectively. The developed iELISAs can be used to differentiate serologically HP-PRRSV from the vaccinated or classical PRRSV in clinical serum samples.
Collapse
Affiliation(s)
- Y H Xiao
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Shandong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Reproductive parameters following a PRRS outbreak where a whole-herd PRRS MLV vaccination strategy was instituted post-outbreak. Trop Anim Health Prod 2012; 45:1099-106. [DOI: 10.1007/s11250-012-0332-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2012] [Indexed: 02/06/2023]
|
40
|
Increased pathogenicity of European porcine reproductive and respiratory syndrome virus is associated with enhanced adaptive responses and viral clearance. Vet Microbiol 2012; 163:13-22. [PMID: 23313323 DOI: 10.1016/j.vetmic.2012.11.024] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/06/2012] [Accepted: 11/22/2012] [Indexed: 11/21/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important diseases of swine worldwide. Since its first emergence in 1987 the PRRS virus (PRRSV) has become particularly divergent with highly pathogenic strains appearing in both Europe and Asia. However, the underlying mechanisms of PRRSV pathogenesis are still unclear. This study sets out to determine the differences in pathogenesis between subtype 1 and 3 strains of European PRRSV (PRRSV-I), and compare the immune responses mounted against these strains. Piglets were infected with 3 strains of PRRSV-I: Lelystad virus, 215-06 a British field strain and SU1-bel from Belarus. Post-mortem examinations were performed at 3 and 7 days post-infection (dpi), and half of the remaining animals in each group were inoculated with an Aujeszky's disease (ADV) vaccine to investigate possible immune suppression resulting from PRRSV infection. The subtype 3 SU1-bel strain displayed greater clinical signs and lung gross pathology scores compared with the subtype 1 strains. This difference did not appear to be caused by higher virus replication, as viraemia and viral load in broncho-alveolar lavage fluid (BALF) were lower in the SU1-bel group. Infection with SU1-bel induced an enhanced adaptive immune response with greater interferon (IFN)-γ responses and an earlier PRRSV-specific antibody response. Infection with PRRSV did not affect the response to vaccination against ADV. Our results indicate that the increased clinical and pathological effect of the SU1-bel strain is more likely to be caused by an enhanced inflammatory immune response rather than higher levels of virus replication.
Collapse
|
41
|
Charpin C, Mahé S, Keranflec'h A, Belloc C, Cariolet R, Le Potier MF, Rose N. Infectiousness of pigs infected by the Porcine Reproductive and Respiratory Syndrome virus (PRRSV) is time-dependent. Vet Res 2012; 43:69. [PMID: 23061672 PMCID: PMC3497607 DOI: 10.1186/1297-9716-43-69] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 09/04/2012] [Indexed: 12/16/2022] Open
Abstract
The time-dependent transmission rate of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and the correlation between infectiousness, virological parameters and antibody responses of the infected pigs were studied in experimental conditions. Seven successive transmission trials involving a total of 77 specific pathogen-free piglets were carried out from 7 to 63 days post-inoculation (dpi). A semi-quantitative real time RT-PCR was developed to assess the evolution of the viral genome load in blood and nasal swabs from inoculated and contact pigs, with time. Virus genome in blood was detectable in inoculated pigs from 7 to 77 dpi, whereas viral genome shedding was detectable from nasal swabs from 2 to 48 dpi. The infectiousness of inoculated pigs, assessed from the frequency of occurrence of infected pigs in susceptible groups in each contact trial, increased from 7 to 14 dpi and then decreased slowly until 42 dpi (3, 7, 2, 1 and 0 pigs infected at 7, 14, 21, 28 and 42 dpi, respectively). These data were used to model the time-dependent infectiousness by a lognormal-like function with a latency period of 1 day and led to an estimated basic reproduction ratio, R0 of 2.6 [1.8, 3.3]. The evolution of infectiousness was mainly correlated with the time-course of viral genome load in the blood whereas the decrease of infectiousness was strongly related to the increase in total antibodies.
Collapse
Affiliation(s)
- Céline Charpin
- Anses - laboratoire de Ploufragan-Plouzané, BP53, 22440, Ploufragan, France.
| | | | | | | | | | | | | |
Collapse
|
42
|
Kittawornrat A, Prickett J, Wang C, Olsen C, Irwin C, Panyasing Y, Ballagi A, Rice A, Main R, Johnson J, Rademacher C, Hoogland M, Rowland R, Zimmerman J. Detection of Porcine reproductive and respiratory syndrome virus (PRRSV) antibodies in oral fluid specimens using a commercial PRRSV serum antibody enzyme-linked immunosorbent assay. J Vet Diagn Invest 2012; 24:262-9. [PMID: 22379043 DOI: 10.1177/1040638711435679] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The purpose of the present study was to evaluate the diagnostic performance of a commercial serum antibody enzyme-linked immunosorbent assay (ELISA) modified to detect anti-Porcine reproductive and respiratory syndrome virus (PRRSV) antibodies in pen-based oral fluid specimens. Experimental and field oral fluid samples of defined status in reference to exposure of swine with PRRSV were used to derive the kinetics of detectable concentrations of antibody against PRRSV. Immunoglobulin (Ig)M and IgA were readily detected in oral fluid specimens from populations in which PRRSV infection was synchronized among all individuals but not in samples collected in commecial herds. In contrast, IgG was readily detected at diagnostically useful levels in both experimental and field samples for up to 126 days. Estimates of the IgG oral fluid ELISA performance were based on results from testing positive oral fluid samples (n = 492) from experimentally inoculated pigs (n = 251) and field samples (n = 241) and negative oral fluid samples (n = 367) from experimentally inoculated pigs (n = 84) and field samples (n = 283). Receiver operating characteristic analysis estimated the diagnostic sensitivity and specificity of the assay as 94.7% (95% confidence interval [CI]: 92.4, 96.5) and 100% (95% CI: 99.0, 100.0), respectively, at a sample-to-positive ratio cutoff of ≥0.40. The results of the study suggest that the IgG oral fluid ELISA can provide efficient, cost-effective PRRSV monitoring in commercial herds and PRRSV surveillance in elimination programs.
Collapse
Affiliation(s)
- Apisit Kittawornrat
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1240, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mucosal vaccines to prevent porcine reproductive and respiratory syndrome: a new perspective. Anim Health Res Rev 2012; 13:21-37. [PMID: 22717576 DOI: 10.1017/s1466252312000023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically important infectious disease of swine. Constant emergence of variant strains of PRRS virus (PPRSV) and virus-mediated immune evasion followed by viral persistence result in increased incidence and recurrence of PRRS in swine herds. Current live and killed PRRSV vaccines administered by a parenteral route are ineffective in inducing complete protection. Thus, new approaches in design and delivery of PRRSV vaccines are needed to reduce the disease burden of the swine industry. Induction of an effective mucosal immunity to several respiratory pathogens by direct delivery of a vaccine to mucosal sites has proven to be effective in a mouse model. However, there are challenges in eliciting mucosal immunity to PRRS due to our limited understanding of safe and potent mucosal adjuvants, which could potentiate the mucosal immune response to PRRSV. The purpose of this review is to discuss methods for induction of protective mucosal immune responses in the respiratory tract of pigs. The manuscript also discusses how PRRSV modulates innate, adaptive and immunoregulatory responses at both mucosal and systemic sites of infected and/or vaccinated pigs. This information may help in the design of innovative mucosal vaccines to elicit superior cross-protective immunity against divergent field strains of PRRSV.
Collapse
|
44
|
The presence of alpha interferon at the time of infection alters the innate and adaptive immune responses to porcine reproductive and respiratory syndrome virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:508-14. [PMID: 22301694 DOI: 10.1128/cvi.05490-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most devastating and costly diseases to the swine industry worldwide. Overall, the adaptive immune response to PRRS virus (PRRSV) is weak, which results in delayed elimination of virus from the host and inferior vaccine protection. PRRSV has been shown to induce a meager alpha interferon (IFN-α) response, and we hypothesized that elevated IFN-α levels early in infection would shorten the induction time and increase elements of the adaptive immune response. To test this, we measured both antibody and cell-mediated immunity in pigs after the administration of a nonreplicating human adenovirus type 5 vector expressing porcine IFN-α (Ad5-pIFN-α) at the time of PRRSV infection and compared the results to those for pigs infected with PRRSV alone. Viremia was delayed, and there was a decrease in viral load in the sera of pigs administered the Ad5-pIFN-α. Although seroconversion was slightly delayed in pigs receiving Ad5-pIFN-α, probably due to the early reduction in viral replication, little difference in the overall or neutralizing antibody response was seen. However, there was an increase in the number of virus-specific IFN-γ-secreting cells detected in the pigs receiving Ad5-pIFN-α, as well as an altered cytokine profile in the lung at 14 days postinfection, indicating that the presence of IFN-α at the time of infection can alter innate and adaptive immune responses to PRRSV.
Collapse
|
45
|
Linhares DCL, Cano JP, Wetzell T, Nerem J, Torremorell M, Dee SA. Effect of modified-live porcine reproductive and respiratory syndrome virus (PRRSv) vaccine on the shedding of wild-type virus from an infected population of growing pigs. Vaccine 2011; 30:407-13. [PMID: 22063389 DOI: 10.1016/j.vaccine.2011.10.075] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/07/2011] [Accepted: 10/27/2011] [Indexed: 11/15/2022]
Abstract
There are ongoing efforts to eliminate porcine reproductive and respiratory syndrome virus (PRRSv) from regions in the United States swine industry. However, an important challenge for the accomplishment of those efforts is the re-infection of pig units due to the area spread of PRRSv. The objective of this study was to evaluate the effect of PRRS modified-live virus vaccine (MLV) on viral shedding and on dynamics of PRRSv infection in pig populations raised under commercial conditions. The study composed of two rooms of 1000 pigs each. Ten percent of pigs of each room were inoculated with a field isolate of PRRSv. Rooms had separate air spaces and strict scientifically validated biosecurity protocols were adopted to avoid movement of pathogens between rooms. At 8 and 36 dpi (days post inoculation), all pigs of the challenge-vaccine group were inoculated with a MLV vaccine. Pigs of the challenge-control group were placebo-inoculated. Blood and oral fluid samples were collected from each room at 0, 8, 36, 70, 96 and 118 dpi for PRRSv RNA detection using PCR. PRRSv-antibodies were also screened from blood serum samples with a commercially available ELISA test. Additionally, tonsil scraping samples were collected from both groups at 70, 96 and 118 dpi. Moreover, air samples were collected 6 times per week from 0 to 118 dpi and were tested for PRRSv RNA using qPCR assay. There was no difference in the PRRSv infection dynamics measured as duration and magnitude of viremia and seroconversion. Also, there was no difference in the frequency of tonsil scraping samples PRRSv-positive by PCR. However, the challenge-vaccine group had significantly less PRRSv shed compared to the challenge-control group. The challenge-vaccine group had significant less PRRSv-positive oral fluids at 36 dpi. Moreover, the challenge-vaccine group had significant reduction in the cumulative PRRSv shed in the air.
Collapse
Affiliation(s)
- Daniel C L Linhares
- Swine Disease Eradication Center, University of Minnesota, College of Veterinary Medicine, 385C Animal Science Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
46
|
Vanhee M, Van Breedam W, Costers S, Geldhof M, Noppe Y, Nauwynck H. Characterization of antigenic regions in the porcine reproductive and respiratory syndrome virus by the use of peptide-specific serum antibodies. Vaccine 2011; 29:4794-804. [PMID: 21554913 DOI: 10.1016/j.vaccine.2011.04.071] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/12/2011] [Accepted: 04/19/2011] [Indexed: 12/22/2022]
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus that causes reproductive failure in sows and boars, and respiratory disease in pigs of all ages. Antibodies against several viral envelope proteins are produced upon infection, and the glycoproteins GP4 and GP5 are known targets for virus neutralization. Still, substantial evidence points to the presence of more, yet unidentified neutralizing antibody targets in the PRRSV envelope proteins. The current study aimed to identify and characterize linear antigenic regions (ARs) within the entire set of envelope proteins of the European prototype PRRSV strain Lelystad virus (LV). Seventeen LV-specific antisera were tested in pepscan analysis on GP2, E, GP3, GP4, GP5 and M, resulting in the identification of twenty-one ARs that are capable of inducing antibodies upon infection in pigs. A considerable number of these ARs correspond to previously described epitopes in different European- and North-American-type PRRSV strains. Remarkably, the largest number of ARs was found in GP3, and two ARs in the GP3 ectodomain consistently induced antibodies in a majority of infected pigs. In contrast, all remaining ARs, except for a highly immunogenic epitope in GP4, were only recognized by one or a few infected animals. Sensitivity to antibody-mediated neutralization was tested for a selected number of ARs by in vitro virus-neutralization tests on alveolar macrophages with peptide-purified antibodies. In addition to the known neutralizing epitope in GP4, two ARs in GP2 and one in GP3 turned out to be targets for virus-neutralizing antibodies. No virus-neutralizing antibody targets were found in E, GP5 or M. Since the neutralizing AR in GP3 induced antibodies in a majority of infected pigs, the immunogenicity of this AR was studied more extensively, and it was demonstrated that the corresponding region in GP3 of virus strains other than LV also induces virus-neutralizing antibodies. This study provides new insights into PRRSV antigenicity, and contributes to the knowledge on protective immunity and immune evasion strategies of the virus.
Collapse
Affiliation(s)
- Merijn Vanhee
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
47
|
Dwivedi V, Manickam C, Patterson R, Dodson K, Weeman M, Renukaradhya GJ. Intranasal delivery of whole cell lysate of Mycobacterium tuberculosis induces protective immune responses to a modified live porcine reproductive and respiratory syndrome virus vaccine in pigs. Vaccine 2011; 29:4067-76. [PMID: 21419164 PMCID: PMC7126640 DOI: 10.1016/j.vaccine.2011.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/15/2011] [Accepted: 03/02/2011] [Indexed: 12/28/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically important disease to pork producers worldwide. Commercially, both live and killed PRRSV vaccines are available to control PRRS, but they are not always successful. Based on the results of mucosal immunization studies in other viral models, a good mucosal vaccine may be an effective way to elicit protective immunity to control PRRS outbreaks. In the present study, mucosal adjuvanticity of Mycobacterium tuberculosis whole cell lysate (Mtb WCL) was evaluated in pigs administered a modified live PRRS virus vaccine (PRRS-MLV) intranasally. A Mtb WCL mediated increase in the frequency of NK cells, CD8(+)and CD4(+) T cells, and γδ T cells in pig lungs were detected. Importantly, an increased and early generation of PRRSV specific neutralizing antibodies were detected in PRRS-MLV+ Mtb WCL compared to pigs inoculated with vaccine alone. In addition, there was an increased secretion of Th1 cytokines (IFNγ and IL-12) that correlated with a reciprocal reduction in the production of immunosuppressive cytokines (IL-10 and TGFβ) as well as T-regulatory cells in pigs vaccinated with PRRS-MLV+ Mtb WCL. Further, a complete rescue in arginase levels in the lungs mediated through Mtb WCL was observed in pigs inoculated with PRRS-MLV. In conclusion, Mtb WCL may be a potent mucosal adjuvant for PRRS-MLV in order to potentiate the anti-PRRSV specific immune responses to control PRRS effectively.
Collapse
Affiliation(s)
- Varun Dwivedi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | | | | | | | | | | |
Collapse
|
48
|
Halbur PG, Rothschild MF, Thacker BJ, Meng XJ, Paul PS, Bruna JD. Differences in susceptibility of Duroc, Hampshire, and Meishan pigs to infection with a high virulence strain (VR2385) of porcine reproductive and respiratory syndrome virus (PRRSV). J Anim Breed Genet 2011. [DOI: 10.1111/j.1439-0388.1998.tb00341.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Van Breedam W, Costers S, Vanhee M, Gagnon CA, Rodríguez-Gómez IM, Geldhof M, Verbeeck M, Van Doorsselaere J, Karniychuk U, Nauwynck HJ. Porcine reproductive and respiratory syndrome virus (PRRSV)-specific mAbs: supporting diagnostics and providing new insights into the antigenic properties of the virus. Vet Immunol Immunopathol 2011; 141:246-57. [PMID: 21470695 DOI: 10.1016/j.vetimm.2011.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 03/02/2011] [Accepted: 03/06/2011] [Indexed: 01/27/2023]
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important viral pathogens in the swine industry. Despite great efforts of pig holders, veterinarians, researchers and vaccine developers, the virus still causes major production losses. It is clear that efficient and correct monitoring and rational development of vaccines are crucial in the combat against this pathogen. PRRSV-specific monoclonal antibodies (mAbs) are essential tools for both diagnostic and research purposes. This study describes the production of PRRSV GP3-, GP5- and N-specific hybridomas and an extensive characterization of the mAbs. The N-specific mAbs generated in this study appear to be useful tools for diagnostics, as they were found to react with genetically very different PRRSV isolates and may serve to discriminate between European and American type PRRSV isolates. These mAbs also allowed detection of the PRRSV N protein in both formalin-fixed, paraffin-embedded tissue sections and frozen tissue sections of PRRSV-infected lungs, further illustrating their diagnostic value. Different neutralization assays pointed out that none of the GP3- and GP5-specific mAbs tested shows virus-neutralizing capacity. This is noteworthy, as these mAbs recognize epitopes in the predicted ectodomains of their target protein and since the GP5-specific antibodies specifically react with the antigenic region that corresponds to the "major neutralizing epitope" suggested for American type PRRSV. The current findings argue against an important role of the identified antigenic regions in direct antibody-mediated neutralization of European type PRRSV in vivo. However, it is also clear that findings concerning a specific PRRSV epitope cannot always be generalized, as the antigenic determinants and their biological properties may differ radically between different virus isolates.
Collapse
Affiliation(s)
- Wander Van Breedam
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Charerntantanakul W, Kasinrerk W. Interleukin-10 antisense oligodeoxynucleotide suppresses IL-10 expression and effects on proinflammatory cytokine responses to porcine reproductive and respiratory syndrome virus. Viral Immunol 2011; 23:425-35. [PMID: 20712487 DOI: 10.1089/vim.2009.0066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Upregulation of interleukin-10 (IL-10) expression has been suggested to be the mechanism by which the porcine reproductive and respiratory syndrome virus (PRRSV) suppresses the innate and adaptive immune response in infected pigs. In this study we evaluated the potential of phosphorothioate-modified IL-10 antisense oligodeoxynucleotide specific to the translation initiation region of porcine IL-10 mRNA (IL-10AS) in enhancing proinflammatory cytokine responses to PRRSV. Naïve peripheral blood mononuclear cells from eight PRRSV-seronegative pigs were transfected with IL-10AS in vitro prior to PRRSV inoculation and phorbol 12-myristate 13-acetate plus ionomycin or concanavalin A stimulation. The effects of IL-10AS on mRNA expression of IL-10, interferon-gamma (IFN-gamma), IFN-alpha, tumor necrosis factor-alpha (TNF-alpha), IL-2, and IL-4 were tested by real-time PCR. The percentages of IFN-gamma-producing T-cell subsets were determined by flow cytometry. Compared to the controls, the levels of IL-10 and IL-2 mRNA were significantly reduced, while those of IFN-gamma mRNA were increased, and TNF-alpha, IFN-alpha, and IL-4 mRNA were unchanged. An increase in the percentage of the IFN-gamma+ population was also observed in lymphocytes and CD8beta+ T cells. Our results suggest that IL-10AS has the potential to enhance proinflammatory cytokine responses to PRRSV infection.
Collapse
|