1
|
Pérez-Lázaro S, Barrio T, Bravo SB, Sevilla E, Otero A, Chantada-Vázquez MDP, Martín-Burriel I, Requena JR, Badiola JJ, Bolea R. New preclinical biomarkers for prion diseases in the cerebrospinal fluid proteome revealed by mass spectrometry. Vet Q 2024; 44:1-15. [PMID: 39520708 PMCID: PMC11552261 DOI: 10.1080/01652176.2024.2424837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/16/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
Current diagnostic methods for prion diseases only work in late stages of the disease when neurodegeneration is irreversible. Therefore, biomarkers that can detect the disease before the onset of clinical symptoms are necessary. High-throughput discovery proteomics is of great interest in the search for such molecules. Here we used mass spectrometry to analyse the cerebrospinal fluid proteome in an animal prion disease: preclinical and clinical sheep affected with natural scrapie, and healthy sheep. Interestingly, we found 46 proteins in the preclinical stage that were significantly altered (p < 0.01) compared to healthy sheep, mainly associated with biological processes such as stress and inflammatory responses. Five of them were selected for validation by enzyme-like immunosorbent assay: synaptotagmin binding, cytoplasmic RNA interacting protein (SYNCRIP), involved in nucleic acid metabolism; phospholipase D3 (PLD3) and cathepsin D (CTSD), both related to lysosomal apoptosis; complement component 4 (C4), an element of the classical immune response; and osteopontin (SPP1), a proinflammatory cytokine. These proteins significantly increased in the preclinical stage and maintained their levels in the clinical phase, except for CTSD, whose concentration returned to basal levels in the clinical group. Further research is ongoing to explore their potential as preclinical biomarkers of prion diseases.
Collapse
Affiliation(s)
- Sonia Pérez-Lázaro
- Centre for Encephalopathies and Emerging Transmissible Diseases, Faculty of Veterinary Sciences, University of Zaragoza – Agri-Food Institute of Aragon (IA2), Zaragoza, Spain
| | - Tomás Barrio
- UMR Institut National de La Recherche Pour L’Agriculture, L’Alimentation Et L’Environment (INRAE), École Nationale Vétérinaire de Toulouse (ENVT) 1225 IHAP (Interactions Hôtes-Agents Pathogènes), Toulouse, France
| | - Susana B. Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Eloisa Sevilla
- Centre for Encephalopathies and Emerging Transmissible Diseases, Faculty of Veterinary Sciences, University of Zaragoza – Agri-Food Institute of Aragon (IA2), Zaragoza, Spain
| | - Alicia Otero
- Centre for Encephalopathies and Emerging Transmissible Diseases, Faculty of Veterinary Sciences, University of Zaragoza – Agri-Food Institute of Aragon (IA2), Zaragoza, Spain
| | - María del Pilar Chantada-Vázquez
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Inmaculada Martín-Burriel
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary Sciences, University of Zaragoza – Agri-Food Institute of Aragon (IA2), Zaragoza, Spain
| | - Jesús R. Requena
- CIMUS Biomedical Research Institute & Department of Medical Sciences, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Juan J. Badiola
- Centre for Encephalopathies and Emerging Transmissible Diseases, Faculty of Veterinary Sciences, University of Zaragoza – Agri-Food Institute of Aragon (IA2), Zaragoza, Spain
| | - Rosa Bolea
- Centre for Encephalopathies and Emerging Transmissible Diseases, Faculty of Veterinary Sciences, University of Zaragoza – Agri-Food Institute of Aragon (IA2), Zaragoza, Spain
| |
Collapse
|
2
|
Huang B, Ou G, Zhang N. Identification of key regulatory molecules in the early development stage of Alzheimer's disease. J Cell Mol Med 2024; 28:e18151. [PMID: 38429903 PMCID: PMC10907834 DOI: 10.1111/jcmm.18151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 03/03/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, the incidence of which increases with age, and the pathological changes in the brain are irreversible. Recent studies have highlighted the essential role of long noncoding RNAs (lncRNAs) in AD by acting as competing endogenous RNAs (ceRNAs). Our aim was to construct lncRNA-associated ceRNA regulatory networks composed of potential biomarkers for the early stage of AD. AD related datasets come from AlzData and GEO databases. The R package 'Limma' identifies differentially expressed genes (DEGs), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases for functional enrichment analysis. Protein-protein interactions (PPIs) in DEGs were constructed in the STRING database, and Cytoscape software identified DEGs. Convergent functional genomics (CFG) analysis of differentially expressed hub genes (referred to as early-DEGs) in the brain before the development of AD pathology. The AlzData database analyses the expression levels of early-DEGs in different nerve cells. The lncRNA-miRNA-mRNA regulatory network was established according to the ceRNA hypothesis. We identified four lncRNAs (XIST, NEAT1, KCNQ1OT1 and HCG18) and four miRNAs (hsa-let-7c-5p, hsa-miR-107, hsa-miR-129-2-3p and hsa-miR-214-3p) were preliminarily identified as potential biomarkers for early AD, competitively regulating Atp6v0b, Atp6v1e1 Atp6v1f and Syt1. This study indicates that NEAT1, XIST, HCG18 and KCNQ1OT1 act as ceRNAs in competitive binding with miRNAs to regulate the expression of Atp6v0b, Atp6v1e1, Atp6v1f and Syt1 before the occurrence of pathological changes in AD.
Collapse
Affiliation(s)
- Bin Huang
- Clinical LaboratoryFifth Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Guan‐yong Ou
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Ni Zhang
- Department of PhysiologyShantou University Medical CollegeShantouChina
| |
Collapse
|
3
|
Hong GL, Tang YH, Li WW, Cao KQ, Tan JP, Hu LF, Chen LW, Zhao GJ, Lu ZQ. Vesicle transport related protein Synaptotagmin-1 mediates paraquat transport to antagonize paraquat toxicity. Toxicology 2022; 472:153180. [PMID: 35430322 DOI: 10.1016/j.tox.2022.153180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/30/2022] [Accepted: 04/10/2022] [Indexed: 11/28/2022]
Abstract
In this study, A549/PQ cells with moderate resistance to paraquat (PQ) were obtained by treating A549 cells with PQ, their growth rate was slowed down, the accumulation concentration of PQ and the levels of growth inhibition, injury and early apoptosis induced by PQ were significantly lower than those of parental A549 cells. Microarray screening and RT-qPCR detection found that Synaptotagmin-1 (SYT1) expression in drug-resistant cells was significantly increased, and PQ further enhanced its expression. After inhibiting SYT1 expression in A549/PQ cells, cell viability, intracellular PQ concentration and the expression of Bcl-2, SNAP25 and RAB26 were significantly reduced, while the mortality, early apoptosis rate and Bax expression were significantly increased. In vivo experiments also further showed that PQ promoted the expression of SYT1, SNAP25 and RAB26 in PQ-poisoned mice; when inhibiting SYT1 expression, PQ concentration in lung tissues was significantly increased, and the levels of lung injury and apoptosis were also significantly enhanced, while the expression of SNAP25 and RAB26 was significantly reduced. This indicates that PQ poisoning leads to compensatory up-regulation of vesicle transport related proteins such as SYT1 in vivo, thereby promoting PQ transmembrane transport, and then reducing the pulmonary accumulation of PQ and PQ-caused lung injury.
Collapse
Affiliation(s)
- Guang-Liang Hong
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Ya-Hui Tang
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Wen-Wen Li
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Kai-Qiang Cao
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Jia-Ping Tan
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Lu-Feng Hu
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Long-Wang Chen
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Guang-Ju Zhao
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Zhong-Qiu Lu
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China.
| |
Collapse
|
4
|
Shi L, Li J, Liang XF, He S, Dou Y, Peng J, Cai W, Liang H. Memory regulation in feeding habit transformation to dead prey fish of Chinese perch (Siniperca chuatsi). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1893-1907. [PMID: 34581919 DOI: 10.1007/s10695-021-01001-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Memory drove a critical process of feeding habit transformation in Chinese perch when they re-trained to eat dead prey fish. To investigate the regulatory mechanism of cAMP-response element-binding protein (CREB) signaling pathway on the memory of Chinese perch during feeding habit transformation, the phosphorylation levels of upstream signal proteins of CREB between the control group (trained once) and the experimental group (trained twice) were measured. The results illustrated that the re-training was correlated to phosphorylation of extracellular regulated protein kinase (ERK1/2) and calcium/calmodulin-dependent protein kinase II (CaMKII), and dephosphorylation of protein kinase A (PKA) of Chinese perch. Inhibition of ERK1/2-CREB pathway decreased the mRNA levels of memory-related genes ((fos-related antigen 2 (fra2), CCAAT enhancer-binding protein delta (c/ebpb), immediate-early gene zif268 (zif268), proto-oncogenes c-fos (c-fox) and synaptotagmin-IV (sytIV)) and mRNA levels of appetite-related genes (agouti-related peptide (agrp) and ghrelin), and activation of PP1-CREB pathway increased the phosphorylated levels of CREB, the mRNA levels of memory-related genes (fra2, c/ebpb, zif268, and c-fox), and the mRNA levels of appetite-related genes (pro-opiomelanocortin (pomc) and leptin) in primary brain cells of Chinese perch. The memory in Chinese perch feeding habit transformation was associated with the ERK1/2-CREB and PP1-CREB pathways, which could regulate the transcription of memory-related genes and appetite-related genes.
Collapse
Affiliation(s)
- Linjie Shi
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jiao Li
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| | - Yaqi Dou
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jian Peng
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Wenjing Cai
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Hui Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| |
Collapse
|
5
|
Wan B, Belghazi M, Lemauf S, Poirié M, Gatti JL. Proteomics of purified lamellocytes from Drosophila melanogaster HopT um-l identifies new membrane proteins and networks involved in their functions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 134:103584. [PMID: 34033897 DOI: 10.1016/j.ibmb.2021.103584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
In healthy Drosophila melanogaster larvae, plasmatocytes and crystal cells account for 95% and 5% of the hemocytes, respectively. A third type of hemocytes, lamellocytes, are rare, but their number increases after oviposition by parasitoid wasps. The lamellocytes form successive layers around the parasitoid egg, leading to its encapsulation and melanization, and finally the death of this intruder. However, the total number of lamellocytes per larva remains quite low even after parasitoid infestation, making direct biochemical studies difficult. Here, we used the HopTum-l mutant strain that constitutively produces large numbers of lamellocytes to set up a purification method and analyzed their major proteins by 2D gel electrophoresis and their plasma membrane surface proteins by 1D SDS-PAGE after affinity purification. Mass spectrometry identified 430 proteins from 2D spots and 344 affinity-purified proteins from 1D bands, for a total of 639 unique proteins. Known lamellocyte markers such as PPO3 and the myospheroid integrin were among the components identified with specific chaperone proteins. Affinity purification detected other integrins, as well as a wide range of integrin-associated proteins involved in the formation and function of cell-cell junctions. Overall, the newly identified proteins indicate that these cells are highly adapted to the encapsulation process (recognition, motility, adhesion, signaling), but may also have several other physiological functions (such as secretion and internalization of vesicles) under different signaling pathways. These results provide the basis for further in vivo and in vitro studies of lamellocytes, including the development of new markers to identify coexisting populations and their respective origins and functions in Drosophila immunity.
Collapse
Affiliation(s)
- Bin Wan
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Maya Belghazi
- Institute of NeuroPhysiopathology (INP), UMR7051, CNRS, Aix-Marseille Université, Marseille, 13015, France
| | - Séverine Lemauf
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France.
| |
Collapse
|
6
|
Shi Z, Zhang K, Zhou H, Jiang L, Xie B, Wang R, Xia W, Yin Y, Gao Z, Cui D, Zhang R, Xu S. Increased miR-34c mediates synaptic deficits by targeting synaptotagmin 1 through ROS-JNK-p53 pathway in Alzheimer's Disease. Aging Cell 2020; 19:e13125. [PMID: 32092796 PMCID: PMC7059146 DOI: 10.1111/acel.13125] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) and cancer have inverse relationship in many aspects. Some tumor suppressors, including miR‐34c, are decreased in cancer but increased in AD. The upstream regulatory pathways and the downstream mechanisms of miR‐34c in AD remain to be investigated. The expression of miR‐34c was detected by RT–qPCR in oxidative stressed neurons, hippocampus of SAMP8 mice, or serum of patients with amnestic mild cognitive impairment (aMCI). Dual luciferase assay was performed to confirm the binding sites of miR‐34c in its target mRNA. The Morris water maze (MWM) was used to evaluate learning and memory in SAMP8 mice administrated with miR‐34c antagomir (AM34c). Golgi staining was used to evaluate the synaptic function and structure. The dramatically increased miR‐34c was mediated by ROS‐JNK‐p53 pathway and negatively regulated synaptotagmin 1 (SYT1) expression by targeting the 3′‐untranslated region (3′‐UTR) of syt1 in AD. The expression of SYT1 protein was reduced by over expression of miR‐34c in the HT‐22 cells and vice versa. Administration of AM34c by the third ventricle injection or intranasal delivery markedly increased the brain levels of SYT1 and ameliorated the cognitive function in SAMP8 mice. The serum miR‐34c was significantly increased in patients with aMCI and might be a predictive biomarker for diagnosis of aMCI. These results indicated that increased miR‐34c mediated synaptic and memory deficits by targeting SYT1 through ROS‐JNK‐p53 pathway and the miR‐34c/SYT1 pathway could be considered as a promising novel therapeutic target for patients with AD.
Collapse
Affiliation(s)
- Zhongli Shi
- Central Laboratory The First Hospital of Hebei Medical University Shijiazhuang China
- Hebei International Joint Research Center for Brain Science Shijiazhuang China
| | - Kaixia Zhang
- Central Laboratory The First Hospital of Hebei Medical University Shijiazhuang China
| | - Huimin Zhou
- Hebei International Joint Research Center for Brain Science Shijiazhuang China
| | - Lei Jiang
- Central Laboratory The First Hospital of Hebei Medical University Shijiazhuang China
- Hebei International Joint Research Center for Brain Science Shijiazhuang China
| | - Bing Xie
- Central Laboratory The First Hospital of Hebei Medical University Shijiazhuang China
| | - Ruiyuan Wang
- Central Laboratory The First Hospital of Hebei Medical University Shijiazhuang China
| | - Wenzhen Xia
- Central Laboratory The First Hospital of Hebei Medical University Shijiazhuang China
| | - Yajuan Yin
- Central Laboratory The First Hospital of Hebei Medical University Shijiazhuang China
| | - Zhaoyu Gao
- Central Laboratory The First Hospital of Hebei Medical University Shijiazhuang China
| | - Dongsheng Cui
- Central Laboratory The First Hospital of Hebei Medical University Shijiazhuang China
| | - Rui Zhang
- Central Laboratory The First Hospital of Hebei Medical University Shijiazhuang China
- Hebei International Joint Research Center for Brain Science Shijiazhuang China
| | - Shunjiang Xu
- Central Laboratory The First Hospital of Hebei Medical University Shijiazhuang China
- Hebei International Joint Research Center for Brain Science Shijiazhuang China
| |
Collapse
|
7
|
Zhou J, Liao Z, Jia J, Chen JL, Xiao Q. The effects of resveratrol feeding and exercise training on the skeletal muscle function and transcriptome of aged rats. PeerJ 2019; 7:e7199. [PMID: 31304063 PMCID: PMC6610545 DOI: 10.7717/peerj.7199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/27/2019] [Indexed: 02/05/2023] Open
Abstract
This study investigated the effects of resveratrol feeding and exercise training on the skeletal muscle function and transcriptome of aged rats. Male SD rats (25 months old) were divided into the control group (Old), the daily exercise training group (Trained), and the resveratrol feeding group (Resveratrol). After 6 weeks of intervention, the body mass, grip strength, and gastrocnemius muscle mass were determined, and the muscle samples were analyzed by transcriptome sequencing. The differentially expressed genes were analyzed followed by GO enrichment analysis and KEGG analysis. The Old group showed positive increases in body mass, while both the Trained and Resveratrol groups showed negative growth. No significant differences in the gastrocnemius muscle index and absolute grip strength were found among the three groups. However, the relative grip strength was higher in the Trained group than in the Old group. Only 21 differentially expressed genes were identified in the Trained group vs. the Old group, and 12 differentially expressed genes were identified in the Resveratrol group vs. the Old group. The most enriched GO terms in the Trained group vs. the Old group were mainly associated with RNA metabolic processes and transmembrane transporters, and the significantly upregulated KEGG pathways included mucin-type O-glycan biosynthesis, drug metabolism, and pyrimidine metabolism. The most enriched GO terms in the Resveratrol group vs. the Old group were primarily associated with neurotransmitter transport and synaptic vesicle, and the upregulated KEGG pathways included synaptic vesicle cycle, nicotine addiction, retinol metabolism, insulin secretion, retrograde endocannabinoid signaling, and glutamatergic synapse. Neither exercise training nor resveratrol feeding has a notable effect on skeletal muscle function and related gene expression in aged rats. However, both exercise training and resveratrol feeding have strong effects on weight loss, which is beneficial for reducing the exercise loads of the elderly.
Collapse
Affiliation(s)
- Jing Zhou
- Chongqing Medical and Pharmaceutical College, Chongqing, China.,Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyin Liao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Jia
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Jin-Liang Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Mysore K, Li P, Wang CW, Hapairai LK, Scheel ND, Realey JS, Sun L, Roethele JB, Severson DW, Wei N, Duman-Scheel M. Characterization of a yeast interfering RNA larvicide with a target site conserved in the synaptotagmin gene of multiple disease vector mosquitoes. PLoS Negl Trop Dis 2019; 13:e0007422. [PMID: 31107878 PMCID: PMC6544322 DOI: 10.1371/journal.pntd.0007422] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/31/2019] [Accepted: 04/29/2019] [Indexed: 01/29/2023] Open
Abstract
New mosquito control strategies are vitally needed to address established and emerging arthropod-borne infectious diseases. Here we describe the characterization of a yeast interfering RNA larvicide that was developed through the genetic engineering of Saccharomyces cerevisiae (baker's yeast) to express a short hairpin RNA targeting the Aedes aegypti synaptotagmin (Aae syt) gene. The larvicide effectively silences the Aae syt gene, causes defects at the larval neural synapse, and induces high rates of A. aegypti larval mortality in laboratory, simulated-field, and semi-field trials. Conservation of the interfering RNA target site in multiple mosquito species, but not in humans or other non-target species, suggested that it may function as a broad-range mosquito larvicide. In support of this, consumption of the yeast interfering RNA larvicide was also found to induce high rates of larval mortality in Aedes albopictus, Anopheles gambiae, and Culex quinquefasciatus mosquito larvae. The results of these studies suggest that this biorational yeast interfering RNA larvicide may represent a new intervention that can be used to combat multiple mosquito vectors of human diseases.
Collapse
Affiliation(s)
- Keshava Mysore
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, South Bend, IN, United States of America
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, United States of America
| | - Ping Li
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, South Bend, IN, United States of America
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, United States of America
| | - Chien-Wei Wang
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, United States of America
- The University of Notre Dame Department of Civil and Environmental Engineering and Earth Sciences, Notre Dame, IN, United States of America
| | - Limb K. Hapairai
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, South Bend, IN, United States of America
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, United States of America
| | - Nicholas D. Scheel
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, United States of America
- The University of Notre Dame Department of Biological Sciences, Notre Dame, IN, United States of America
| | - Jacob S. Realey
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, South Bend, IN, United States of America
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, United States of America
| | - Longhua Sun
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, South Bend, IN, United States of America
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, United States of America
| | - Joseph B. Roethele
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, South Bend, IN, United States of America
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, United States of America
| | - David W. Severson
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, South Bend, IN, United States of America
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, United States of America
- The University of Notre Dame Department of Biological Sciences, Notre Dame, IN, United States of America
- The University of the West Indies, Department of Life Sciences, St. Augustine, Trinidad, Trinidad and Tobago
| | - Na Wei
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, United States of America
- The University of Notre Dame Department of Civil and Environmental Engineering and Earth Sciences, Notre Dame, IN, United States of America
| | - Molly Duman-Scheel
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, South Bend, IN, United States of America
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, United States of America
- The University of Notre Dame Department of Civil and Environmental Engineering and Earth Sciences, Notre Dame, IN, United States of America
| |
Collapse
|
9
|
Abeti R, Zeitlberger A, Peelo C, Fassihi H, Sarkany RPE, Lehmann AR, Giunti P. Xeroderma pigmentosum: overview of pharmacology and novel therapeutic strategies for neurological symptoms. Br J Pharmacol 2019; 176:4293-4301. [PMID: 30499105 DOI: 10.1111/bph.14557] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/06/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022] Open
Abstract
Xeroderma pigmentosum (XP) encompasses a group of rare diseases characterized in most cases by malfunction of nucleotide excision repair (NER), which results in an increased sensitivity to UV radiation in affected individuals. Approximately 25-30% of XP patients present with neurological symptoms, such as sensorineural deafness, mental deterioration and ataxia. Although it is known that dysfunctional DNA repair is the primary pathogenesis in XP, growing evidence suggests that mitochondrial pathophysiology may also occur. This appears to be secondary to dysfunctional NER but may contribute to the neurodegenerative process in these patients. The available pharmacological treatments in XP mostly target the dermal manifestations of the disease. In the present review, we outline how current understanding of the pathophysiology of XP could be used to develop novel therapies to counteract the neurological symptoms. Moreover, the coexistence of cancer and neurodegeneration present in XP led us to focus on possible new avenues targeting mitochondrial pathophysiology. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Rosella Abeti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, University College London, Institute of Neurology London, London, UK
| | - Anna Zeitlberger
- Ataxia Centre, Department of Clinical and Movement Neurosciences, University College London, Institute of Neurology London, London, UK
| | - Colm Peelo
- Ataxia Centre, Department of Clinical and Movement Neurosciences, University College London, Institute of Neurology London, London, UK
| | - Hiva Fassihi
- National Xeroderma Pigmentosum Service, St John's Institute of Dermatology Guy's and St Thomas' Foundation Trust, London, UK
| | - Robert P E Sarkany
- National Xeroderma Pigmentosum Service, St John's Institute of Dermatology Guy's and St Thomas' Foundation Trust, London, UK
| | - Alan R Lehmann
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, University College London, Institute of Neurology London, London, UK.,National Xeroderma Pigmentosum Service, St John's Institute of Dermatology Guy's and St Thomas' Foundation Trust, London, UK
| |
Collapse
|
10
|
Xiao B, Li J, Fan Y, Ye M, Lv S, Xu B, Chai Y, Zhou Z, Wu M, Zhu X. Downregulation of SYT7 inhibits glioblastoma growth by promoting cellular apoptosis. Mol Med Rep 2017; 16:9017-9022. [PMID: 28990113 DOI: 10.3892/mmr.2017.7723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 08/17/2017] [Indexed: 11/06/2022] Open
Abstract
Synaptotagmin‑7 (SYT7) is a member of the synaptotagmin gene family, and encodes a protein that mediates the calcium‑dependent regulation of membrane trafficking during synaptic transmission. A previous study demonstrated that the expression of SYT7 is associated with prostate cancer and serves an important role in development of prostate cancer. However, the roles of SYT7 in the progression of glioma remain unknown. In the present study, reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis demonstrated that SYT7 was expressed in three human glioma cell lines. Western blotting and RT‑qPCR analysis demonstrated the knockdown efficiency of SYT7 shRNA in 293T cells and U87MG cells. Celigo Image Cytometer Analysis, a caspase‑3/7 assay, flow cytometry and an MTT assay demonstrated that the proliferation of U87MG cells was inhibited as SYT7 was downregulated by a lentiviral vector expressing SYT7 shRNA, via the promotion of cellular apoptosis. The results of the present study demonstrated that the downregulation of SYT7 inhibited glioblastoma growth by promoting cellular apoptosis, and that SYT7 may therefore be a potential target for glioma intervention.
Collapse
Affiliation(s)
- Bing Xiao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianbin Li
- Department of Neurosurgery, The Second Hospital of Nanchang, Nanchang, Jiangxi 330003, P.R. China
| | - Yanghua Fan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Minhua Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shigang Lv
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yi Chai
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiqing Zhou
- Department of Oncology, The Second People's Hospital of Huaihua City, Huaihua, Hunan 418000, P.R. China
| | - Miaojing Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
11
|
Lu Z, Sessler F, Holroyd N, Hahnel S, Quack T, Berriman M, Grevelding CG. Schistosome sex matters: a deep view into gonad-specific and pairing-dependent transcriptomes reveals a complex gender interplay. Sci Rep 2016; 6:31150. [PMID: 27499125 PMCID: PMC4976352 DOI: 10.1038/srep31150] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/12/2016] [Indexed: 12/25/2022] Open
Abstract
As a key event for maintaining life cycles, reproduction is a central part of platyhelminth biology. In case of parasitic platyhelminths, reproductive processes can also contribute to pathology. One representative example is the trematode Schistosoma, which causes schistosomiasis, an infectious disease, whose pathology is associated with egg production. Among the outstanding features of schistosomes is their dioecious lifestyle and the pairing-dependent differentiation of the female gonads which finally leads to egg synthesis. To analyze the reproductive biology of Schistosoma mansoni in-depth we isolated complete ovaries and testes from paired and unpaired schistosomes for comparative RNA-seq analyses. Of >7,000 transcripts found in the gonads, 243 (testes) and 3,600 (ovaries) occurred pairing-dependently. Besides the detection of genes transcribed preferentially or specifically in the gonads of both genders, we uncovered pairing-induced processes within the gonads including stem cell-associated and neural functions. Comparisons to work on neuropeptidergic signaling in planarian showed interesting parallels but also remarkable differences and highlights the importance of the nervous system for flatworm gonad differentiation. Finally, we postulated first functional hints for 235 hypothetical genes. Together, these results elucidate key aspects of flatworm reproductive biology and will be relevant for basic as well as applied, exploitable research aspects.
Collapse
Affiliation(s)
- Zhigang Lu
- BFS, Institute of Parasitology, Justus-Liebig-University, Giessen, Germany
| | - Florian Sessler
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Nancy Holroyd
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Steffen Hahnel
- BFS, Institute of Parasitology, Justus-Liebig-University, Giessen, Germany
| | - Thomas Quack
- BFS, Institute of Parasitology, Justus-Liebig-University, Giessen, Germany
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | | |
Collapse
|
12
|
Kedracka-Krok S, Swiderska B, Jankowska U, Skupien-Rabian B, Solich J, Dziedzicka-Wasylewska M. Stathmin reduction and cytoskeleton rearrangement in rat nucleus accumbens in response to clozapine and risperidone treatment - Comparative proteomic study. Neuroscience 2015; 316:63-81. [PMID: 26708747 DOI: 10.1016/j.neuroscience.2015.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 11/17/2022]
Abstract
The complex network of anatomical connections of the nucleus accumbens (NAc) makes it an interface responsible for the selection and integration of cognitive and affective information to modulate appetitive or aversively motivated behaviour. There is evidence for NAc dysfunction in schizophrenia. NAc also seems to be important for antipsychotic drug action, but the biochemical characteristics of drug-induced alterations within NAc remain incompletely characterized. In this study, a comprehensive proteomic analysis was performed to describe the differences in the mechanisms of action of clozapine (CLO) and risperidone (RIS) in the rat NAc. Both antipsychotics influenced the level of microtubule-regulating proteins, i.e., stathmin, and proteins of the collapsin response mediator protein family (CRMPs), and only CLO affected NAD-dependent protein deacetylase sirtuin-2 and septin 6. Both antipsychotics induced changes in levels of other cytoskeleton-related proteins. CLO exclusively up-regulated proteins involved in neuroprotection, such as glutathione synthetase, heat-shock 70-kDa protein 8 and mitochondrial heat-shock protein 75. RIS tuned cell function by changing the pattern of post-translational modifications of some proteins: it down-regulated the phosphorylated forms of stathmin and dopamine and the cyclic AMP-regulated phosphoprotein (DARPP-32) isoform but up-regulated cyclin-dependent kinase 5 (Cdk5). RIS modulated the level and phosphorylation state of synaptic proteins: synapsin-2, synaptotagmin-1 and adaptor-related protein-2 (AP-2) complex.
Collapse
Affiliation(s)
- S Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Structural Biology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - B Swiderska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - U Jankowska
- Department of Structural Biology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - B Skupien-Rabian
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - J Solich
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - M Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
13
|
Dnmts and Tet target memory-associated genes after appetitive olfactory training in honey bees. Sci Rep 2015; 5:16223. [PMID: 26531238 PMCID: PMC4632027 DOI: 10.1038/srep16223] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/08/2015] [Indexed: 11/09/2022] Open
Abstract
DNA methylation and demethylation are epigenetic mechanisms involved in memory formation. In honey bees DNA methyltransferase (Dnmt) function is necessary for long-term memory to be stimulus specific (i.e. to reduce generalization). So far, however, it remains elusive which genes are targeted and what the time-course of DNA methylation is during memory formation. Here, we analyse how DNA methylation affects memory retention, gene expression, and differential methylation in stimulus-specific olfactory long-term memory formation. Out of 30 memory-associated genes investigated here, 9 were upregulated following Dnmt inhibition in trained bees. These included Dnmt3 suggesting a negative feedback loop for DNA methylation. Within these genes also the DNA methylation pattern changed during the first 24 hours after training. Interestingly, this was accompanied by sequential activation of the DNA methylation machinery (i.e. Dnmts and Tet). In sum, memory formation involves a temporally complex epigenetic regulation of memory-associated genes that facilitates stimulus specific long-term memory in the honey bee.
Collapse
|
14
|
Bozzolan F, Duportets L, Limousin D, Wycke MA, Demondion E, François A, Abrieux A, Debernard S. Synaptotagmin I, a molecular target for steroid hormone signaling controlling the maturation of sexual behavior in an insect. FEBS J 2015; 282:1432-44. [DOI: 10.1111/febs.13231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/19/2014] [Accepted: 02/10/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Françoise Bozzolan
- Département d'Ecologie Sensorielle; UMR 1392; Institut d'Ecologie et des Sciences de l'Environnement de Paris; Université Paris VI; France
| | - Line Duportets
- Département d'Ecologie Sensorielle; UMR 1392; Institut d'Ecologie et des Sciences de l'Environnement de Paris; Université Paris VI; France
- Service d'Enseignement de Biologie Animale; Université Paris-Sud; Orsay France
| | - Denis Limousin
- Département d'Ecologie Sensorielle; UMR 1392; Institut d'Ecologie et des Sciences de l'Environnement de Paris; INRA; Versailles France
| | - Marie-Anne Wycke
- Département d'Ecologie Sensorielle; UMR 1392; Institut d'Ecologie et des Sciences de l'Environnement de Paris; INRA; Versailles France
| | - Elodie Demondion
- Département d'Ecologie Sensorielle; UMR 1392; Institut d'Ecologie et des Sciences de l'Environnement de Paris; INRA; Versailles France
| | - Adrien François
- INRA; UR1197; Jouy-en-Josas France
- Université de Versailles; France
| | - Antoine Abrieux
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM); Université d'Angers; UPRES-EA 2647 USC INRA 1330; France
| | - Stéphane Debernard
- Département d'Ecologie Sensorielle; UMR 1392; Institut d'Ecologie et des Sciences de l'Environnement de Paris; Université Paris VI; France
| |
Collapse
|
15
|
Koelzer S, Kölsch Y, Panfilio KA. Visualizing late insect embryogenesis: extraembryonic and mesodermal enhancer trap expression in the beetle Tribolium castaneum. PLoS One 2014; 9:e103967. [PMID: 25080214 PMCID: PMC4117572 DOI: 10.1371/journal.pone.0103967] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/07/2014] [Indexed: 12/25/2022] Open
Abstract
The beetle Tribolium castaneum has increasingly become a powerful model for comparative research on insect development. One recent resource is a collection of piggyBac transposon-based enhancer trap lines. Here, we provide a detailed analysis of three selected lines and demonstrate their value for investigations in the second half of embryogenesis, which has thus far lagged behind research on early stages. Two lines, G12424 and KT650, show enhanced green fluorescent protein (EGFP) expression throughout the extraembryonic serosal tissue and in a few discrete embryonic domains. Intriguingly, both lines show for the first time a degree of regionalization within the mature serosa. However, their expression profiles illuminate distinct aspects of serosal biology: G12424 tracks the tissue's rapid maturation while KT650 expression likely reflects ongoing physiological processes. The third line, G04609, is stably expressed in mesodermal domains, including segmental muscles and the heart. Genomic mapping followed by in situ hybridization for genes near to the G04609 insertion site suggests that the transposon has trapped enhancer information for the Tribolium orthologue of midline (Tc-mid). Altogether, our analyses provide the first live imaging, long-term characterizations of enhancer traps from this collection. We show that EGFP expression is readily detected, including in heterozygote crosses that permit the simultaneous visualization of multiple tissue types. The tissue specificity provides live, endogenous marker gene expression at key developmental stages that are inaccessible for whole mount staining. Furthermore, the nonlocalized EGFP in these lines illuminates both the nucleus and cytoplasm, providing cellular resolution for morphogenesis research on processes such as dorsal closure and heart formation. In future work, identification of regulatory regions driving these enhancer traps will deepen our understanding of late developmental control, including in the extraembryonic domain, which is a hallmark of insect development but which is not yet well understood.
Collapse
Affiliation(s)
- Stefan Koelzer
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Yvonne Kölsch
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Kristen A. Panfilio
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Tratnjek L, Zivin M, Glavan G. Up-regulation of Synaptotagmin IV within amyloid plaque-associated dystrophic neurons in Tg2576 mouse model of Alzheimer's disease. Croat Med J 2014; 54:419-28. [PMID: 24170720 PMCID: PMC3816566 DOI: 10.3325/cmj.2013.54.419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIM To investigate the involvement of the vesicular membrane trafficking regulator Synaptotagmin IV (Syt IV) in Alzheimer's disease pathogenesis and to define the cell types containing increased levels of Syt IV in the β-amyloid plaque vicinity. METHODS Syt IV protein levels in wild type (WT) and Tg2576 mice cortex were determined by Western blot analysis and immunohistochemistry. Co-localization studies using double immunofluorescence staining for Syt IV and markers for astrocytes (glial fibrillary acidic protein), microglia (major histocompatibility complex class II), neurons (neuronal specific nuclear protein), and neurites (neurofilaments) were performed in WT and Tg2576 mouse cerebral cortex. RESULTS Western blot analysis showed higher Syt IV levels in Tg2576 mice cortex than in WT cortex. Syt IV was found only in neurons. In plaque vicinity, Syt IV was up-regulated in dystrophic neurons. The Syt IV signal was not up-regulated in the neurons of Tg2576 mice cortex without plaques (resembling the pre-symptomatic conditions). CONCLUSIONS Syt IV up-regulation within dystrophic neurons probably reflects disrupted vesicular transport or/and impaired protein degradation occurring in Alzheimer's disease and is probably a consequence but not the cause of neuronal degeneration. Hence, Syt IV up-regulation and/or its accumulation in dystrophic neurons may have adverse effects on the survival of the affected neuron.
Collapse
Affiliation(s)
- Larisa Tratnjek
- Gordana Glavan, Laboratory for Brain Research, Institute of Pathophysiology, Medical Faculty, Zaloska 4, Ljubljana 1000, Slovenia,
| | | | | |
Collapse
|
17
|
Muscular dystrophy in dysferlin-deficient mouse models. Neuromuscul Disord 2013; 23:377-87. [DOI: 10.1016/j.nmd.2013.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/09/2013] [Accepted: 02/05/2013] [Indexed: 11/17/2022]
|
18
|
dos Santos Coura R, Granon S. Prefrontal neuromodulation by nicotinic receptors for cognitive processes. Psychopharmacology (Berl) 2012; 221:1-18. [PMID: 22249358 DOI: 10.1007/s00213-011-2596-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/17/2011] [Indexed: 11/30/2022]
Abstract
RATIONALE The prefrontal cortex (PFC) mediates executive functions, a set of control processes that optimize performance on cognitive tasks. It enables appropriate decision-making and mediates adapted behaviors, all processes impaired in psychiatric or degenerative disorders. Key players of normal functioning of the PFC are neurotransmitter (NT) systems arising from subcortical nuclei and targeting PFC subareas and, also, neuronal nicotinic acetylcholine receptors (nAChRs). These ion channels, located on multiple cell compartments in all brain areas, mediate direct cholinergic transmission and modulate the release of NTs that cross onto PFC neurons or interneurons. OBJECTIVE We compiled current knowledge concerning the role of nAChRs in NT release, focusing on the PFC. We point out plausible mechanisms of interaction among PFC circuits implicated in executive functions and emphasized the role of β2-containing nAChRs, the high-affinity receptors for acetylcholine (ACh). These receptors are more directly implicated in behavioral flexibility either when located on PFC neurons or in the monoaminergic or cholinergic systems targeting the PFC. RESULTS We shed light on potentially crucial roles played by nAChRs in complex interactions between local and afferent NTs. We show how they could act on cognition via PFC networks. CONCLUSIONS nAChRs are crucial for decision-making, during integration of emotional and motivational features, both mediated by different NT pathways in the PFC. We review the knowledge recently gained on cognitive functions in mice and our current understanding of PFC NT modulation. The combination of these data is expected to provide new hypotheses concerning the role of AChRs in cognitive processes.
Collapse
|
19
|
Hernández LG, Lu B, da Cruz GCN, Calábria LK, Martins NF, Togawa R, Espindola FS, Yates JR, Cunha RB, de Sousa MV. Worker honeybee brain proteome. J Proteome Res 2012; 11:1485-93. [PMID: 22181811 DOI: 10.1021/pr2007818] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A large-scale mapping of the worker honeybee brain proteome was achieved by MudPIT. We identified 2742 proteins from forager and nurse honeybee brain samples; 17% of the total proteins were found to be differentially expressed by spectral count sampling statistics and a G-test. Sequences were compared with the EuKaryotic Orthologous Groups (KOG) catalog set using BLASTX and then categorized into the major KOG categories of most similar sequences. According to this categorization, nurse brain showed increased expression of proteins implicated in translation, ribosomal structure, and biogenesis (14.5%) compared with forager (1.8%). Experienced foragers overexpressed proteins involved in energy production and conversion, showing an extensive difference in this set of proteins (17%) in relation to the nurse subcaste (0.6%). Examples of proteins selectively expressed in each subcaste were analyzed. A comparison between these MudPIT experiments and previous 2-DE experiments revealed nine coincident proteins differentially expressed in both methodologies.
Collapse
|
20
|
Different types of exercise induce differential effects on neuronal adaptations and memory performance. Neurobiol Learn Mem 2012; 97:140-7. [DOI: 10.1016/j.nlm.2011.10.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/14/2011] [Accepted: 10/31/2011] [Indexed: 11/21/2022]
|
21
|
Asmat TM, Agarwal V, Räth S, Hildebrandt JP, Hammerschmidt S. Streptococcus pneumoniae infection of host epithelial cells via polymeric immunoglobulin receptor transiently induces calcium release from intracellular stores. J Biol Chem 2011; 286:17861-9. [PMID: 21454571 DOI: 10.1074/jbc.m110.212225] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The pneumococcal surface protein C (PspC) is a major adhesin of Streptococcus pneumoniae (pneumococci) that interacts in a human-specific manner with the ectodomain of the human polymeric immunoglobulin receptor (pIgR) produced by respiratory epithelial cells. This interaction promotes bacterial colonization and bacterial internalization by initiating host signal transduction cascades. Here, we examined alterations of intracellular calcium ([Ca(2+)](i)) levels in epithelial cells during host cell infections with pneumococci via the PspC-hpIgR mechanism. The release of [Ca(2+)](i) from intracellular stores in host cells was significantly increased by wild-type pneumococci but not by PspC-deficient pneumococci. The increase in [Ca(2+)](i) was dependent on phospholipase C as pretreatment of cells with a phospholipase C-specific inhibitor U73122 abolished the increase in [Ca(2+)](i). In addition, we demonstrated the effect of [Ca(2+)](i) on pneumococcal internalization by epithelial cells. Uptake of pneumococci was significantly increased after pretreatment of epithelial cells with the cell-permeable calcium chelator 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid-tetraacetoxymethyl ester or use of EGTA as an extracellular Ca(2+)-chelating agent. In contrast, thapsigargin, an inhibitor of endoplasmic reticulum Ca(2+)ATPase, which increases [Ca(2+)](i) in a sustained fashion, significantly reduced pIgR-mediated pneumococcal invasion. Importantly, pneumococcal adherence to pIgR-expressing cells was not altered in the presence of inhibitors as demonstrated by immunofluorescence microscopy. In conclusion, these results demonstrate that pneumococcal infections induce mobilization of [Ca(2+)](i) from intracellular stores. This may constitute a defense response of host cells as the experimental reduction of intracellular calcium levels facilitates pneumococcal internalization by pIgR-expressing cells, whereas elevated calcium levels diminished bacterial internalization by host epithelial cells.
Collapse
Affiliation(s)
- Tauseef M Asmat
- Department of Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D-17487 Greifswald, Germany
| | | | | | | | | |
Collapse
|
22
|
Allison JG, Das PM, Ma J, Inglis FM, Jones FE. The ERBB4 intracellular domain (4ICD) regulates NRG1-induced gene expression in hippocampal neurons. Neurosci Res 2011; 70:155-63. [PMID: 21352860 DOI: 10.1016/j.neures.2011.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/07/2011] [Accepted: 02/15/2011] [Indexed: 01/12/2023]
Abstract
The NRG1 growth factor and ERBB4 receptor have been identified as leading schizophrenia risk genes. Although NRG1 and ERBB4 have been shown to modulate neuronal functions involved in schizophrenia, including both GABAergic and glutamatergic synapses, the exact molecular mechanisms remain poorly understood. Here we investigated ERBB4 intracellular domain, 4ICD, transactivator function in rat hippocampal cultures by inhibiting γ-secretase mediated ERBB4 regulated intramembrane proteolysis (RIP). NRG1 stimulation resulted in a dramatic increase in the number of hippocampal cells displaying nuclear 4ICD which was abolished in cultures pretreated with the γ-secretase inhibitor compound E (CE). To identify NRG1-4ICD transactivated genes we compared global gene expression profiles of hippocampal cultures stimulated with NRG1 in the absence or presence of CE. In concordance with the contribution of NRG1-ERBB4 signaling to dendritic spine maturation and schizophrenia, global gene expression analysis followed by Ingenuity Pathway Analysis of the dataset identified NRG1-4ICD regulated genes significantly represented in semaphorin signaling and actin cytoskeletal plasticity and multiple genes with confirmed roles in dendritic spine morphogenesis. Using the power of global gene expression analysis our data provides a proof-of-concept supporting a role for non-canonical NRG1-4ICD signaling in the regulation of gene expression contributing to normal and schizophrenic neuronal function.
Collapse
Affiliation(s)
- June G Allison
- Department of Cell and Molecular Biology, Tulane University, 6400 Freret Street, New Orleans, LA 70118, USA
| | | | | | | | | |
Collapse
|
23
|
Wegrzyn JL, Bark SJ, Funkelstein L, Mosier C, Yap A, Kazemi-Esfarjani P, La Spada AR, Sigurdson C, O'Connor DT, Hook V. Proteomics of dense core secretory vesicles reveal distinct protein categories for secretion of neuroeffectors for cell-cell communication. J Proteome Res 2010; 9:5002-24. [PMID: 20695487 DOI: 10.1021/pr1003104] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Regulated secretion of neurotransmitters and neurohumoral factors from dense core secretory vesicles provides essential neuroeffectors for cell-cell communication in the nervous and endocrine systems. This study provides comprehensive proteomic characterization of the categories of proteins in chromaffin dense core secretory vesicles that participate in cell-cell communication from the adrenal medulla. Proteomic studies were conducted by nano-HPLC Chip MS/MS tandem mass spectrometry. Results demonstrate that these secretory vesicles contain proteins of distinct functional categories consisting of neuropeptides and neurohumoral factors, protease systems, neurotransmitter enzymes and transporters, receptors, enzymes for biochemical processes, reduction/oxidation regulation, ATPases, protein folding, lipid biochemistry, signal transduction, exocytosis, calcium regulation, as well as structural and cell adhesion proteins. The secretory vesicle proteomic data identified 371 proteins in the soluble fraction and 384 membrane proteins, for a total of 686 distinct secretory vesicle proteins. Notably, these proteomic analyses illustrate the presence of several neurological disease-related proteins in these secretory vesicles, including huntingtin interacting protein, cystatin C, ataxin 7, and prion protein. Overall, these findings demonstrate that multiple protein categories participate in dense core secretory vesicles for production, storage, and secretion of bioactive neuroeffectors for cell-cell communication in health and disease.
Collapse
Affiliation(s)
- Jill L Wegrzyn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Liebl FLW, McKeown C, Yao Y, Hing HK. Mutations in Wnt2 alter presynaptic motor neuron morphology and presynaptic protein localization at the Drosophila neuromuscular junction. PLoS One 2010; 5:e12778. [PMID: 20856675 PMCID: PMC2939895 DOI: 10.1371/journal.pone.0012778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 08/24/2010] [Indexed: 01/02/2023] Open
Abstract
Wnt proteins are secreted proteins involved in a number of developmental processes including neural development and synaptogenesis. We sought to determine the role of the Drosophila Wnt7b ortholog, Wnt2, using the neuromuscular junction (NMJ). Mutations in wnt2 produce an increase in the number of presynaptic branches and a reduction in immunolabeling of the active zone proteins, Bruchpilot and synaptobrevin, at the NMJ. There was no change, however, in immunolabeling for the presynaptic proteins cysteine-string protein (CSP) and synaptotagmin, nor the postsynaptic proteins GluRIIA and DLG at the NMJ. Consistent with the presynaptic defects, wnt2 mutants exhibit approximately a 50% reduction in evoked excitatory junctional currents. Rescue, RNAi, and tissue-specific qRT-PCR experiments indicate that Wnt2 is expressed by the postsynaptic cell where it may serve as a retrograde signal that regulates presynaptic morphology and the localization of presynaptic proteins.
Collapse
Affiliation(s)
- Faith L W Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America.
| | | | | | | |
Collapse
|
25
|
Abstract
Synaptotagmins (Syts) are transmembrane proteins involved in the regulation of membrane trafficking. Here, we summarize literature data that provide growing evidence that several Syts are involved in the pathophysiological mechanisms of temporal lobe epilepsy and Parkinson's disease, as well as few reports related to brain ischemia and Alzheimer's disease (AD). We also report new data from our laboratories, showing changes of the expression of several Syts in Tg2576 mouse model of AD that may be related to neuroinflammation surrounding the beta-amyloid plaques. Furthermore, we demonstrate N-methyl-D-aspartate receptor-mediated upregulation of Syt 4 mRNA in a model of excitotoxic striatal lesion induced by unilateral striatal injection of quinolinic acid, associating the upregulation of Syt 4 with mechanisms of excitotoxicity. We propose that pharmacological manipulation of Syt expression in animal models of neurodegeneration should be further explored, as it may help to clarify the role of individual Syt isoforms in the regulation of membrane trafficking in neurodegeneration.
Collapse
Affiliation(s)
- Gordana Glavan
- Medical Faculty, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | | | | |
Collapse
|
26
|
Fenner BJ, Scannell M, Prehn JHM. Expanding the substantial interactome of NEMO using protein microarrays. PLoS One 2010; 5:e8799. [PMID: 20098747 PMCID: PMC2808332 DOI: 10.1371/journal.pone.0008799] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 12/24/2009] [Indexed: 11/18/2022] Open
Abstract
Signal transduction by the NF-kappaB pathway is a key regulator of a host of cellular responses to extracellular and intracellular messages. The NEMO adaptor protein lies at the top of this pathway and serves as a molecular conduit, connecting signals transmitted from upstream sensors to the downstream NF-kappaB transcription factor and subsequent gene activation. The position of NEMO within this pathway makes it an attractive target from which to search for new proteins that link NF-kappaB signaling to additional pathways and upstream effectors. In this work, we have used protein microarrays to identify novel NEMO interactors. A total of 112 protein interactors were identified, with the most statistically significant hit being the canonical NEMO interactor IKKbeta, with IKKalpha also being identified. Of the novel interactors, more than 30% were kinases, while at least 25% were involved in signal transduction. Binding of NEMO to several interactors, including CALB1, CDK2, SAG, SENP2 and SYT1, was confirmed using GST pulldown assays and coimmunoprecipitation, validating the initial screening approach. Overexpression of CALB1, CDK2 and SAG was found to stimulate transcriptional activation by NF-kappaB, while SYT1 overexpression repressed TNFalpha-dependent NF-kappaB transcriptional activation in human embryonic kidney cells. Corresponding with this finding, RNA silencing of CDK2, SAG and SENP2 reduced NF-kappaB transcriptional activation, supporting a positive role for these proteins in the NF-kappaB pathway. The identification of a host of new NEMO interactors opens up new research opportunities to improve understanding of this essential cell signaling pathway.
Collapse
Affiliation(s)
- Beau J. Fenner
- Centre for Human Proteomics and Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michael Scannell
- Centre for Human Proteomics and Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jochen H. M. Prehn
- Centre for Human Proteomics and Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- * E-mail:
| |
Collapse
|
27
|
Calcium-sensing beyond neurotransmitters: functions of synaptotagmins in neuroendocrine and endocrine secretion. Biosci Rep 2009; 29:245-59. [PMID: 19500075 DOI: 10.1042/bsr20090031] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neurotransmitters, neuropeptides and hormones are released through the regulated exocytosis of SVs (synaptic vesicles) and LDCVs (large dense-core vesicles), a process that is controlled by calcium. Synaptotagmins are a family of type 1 membrane proteins that share a common domain structure. Most synaptotagmins are located in brain and endocrine cells, and some of these synaptotagmins bind to phospholipids and calcium at levels that trigger regulated exocytosis of SVs and LDCVs. This led to the proposed synaptotagmin-calcium-sensor paradigm, that is, members of the synaptotagmin family function as calcium sensors for the regulated exocytosis of neurotransmitters, neuropeptides and hormones. Here, we provide an overview of the synaptotagmin family, and review the recent mouse genetic studies aimed at understanding the functions of synaptotagmins in neurotransmission and endocrine-hormone secretion. Also, we discuss potential roles of synaptotagmins in non-traditional endocrine systems.
Collapse
|
28
|
Tegenge MA, Stern M, Bicker G. Nitric oxide and cyclic nucleotide signal transduction modulates synaptic vesicle turnover in human model neurons. J Neurochem 2009; 111:1434-46. [PMID: 19807845 DOI: 10.1111/j.1471-4159.2009.06421.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human Ntera2 (NT2) teratocarcinoma cell line can be induced to differentiate into post-mitotic neurons. Here, we report that the human NT2 neurons generated by a spherical aggregate cell culture method express increasing levels of typical pre-synaptic proteins (synapsin and synaptotagmin I) along the neurite depending on the length of in vitro culture. By employing an antibody directed against the luminal domain of synaptotagmin I and the fluorescent dye N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide, we show that depolarized NT2 neurons display calcium-dependent exo-endocytotic synaptic vesicle recycling. NT2 neurons express the neuronal isoform of neuronal nitric oxide synthase and soluble guanylyl cyclase (sGC), the major receptor for nitric oxide (NO). We tested whether NO signal transduction modulates synaptic vesicle turnover in human NT2 neurons. NO donors and cylic guanosine-monophosphate analogs enhanced synaptic vesicle recycling while a sGC inhibitor blocked the effect of NO donors. Two NO donors, sodium nitroprusside, and and N-Ethyl-2-(1-ethyl-2-hydroxy-2-nitrosohydrazino) ethanamine evoked vesicle exocytosis which was partially blocked by the sGC inhibitor. The activator of adenylyl cyclase, forskolin, and a cAMP analog induced synaptic vesicle recycling and exocytosis via a parallel acting protein kinase A pathway. Our data from NT2 neurons suggest that NO/cyclic nucleotide signaling pathways may facilitate neurotransmitter release in human brain cells.
Collapse
Affiliation(s)
- Million Adane Tegenge
- Division of Cell Biology, Institute of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | |
Collapse
|
29
|
New insights into molecular pathways associated with flatfish ovarian development and atresia revealed by transcriptional analysis. BMC Genomics 2009; 10:434. [PMID: 19754951 PMCID: PMC2751788 DOI: 10.1186/1471-2164-10-434] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 09/15/2009] [Indexed: 12/16/2022] Open
Abstract
Background The Senegalese sole (Solea senegalensis) is a marine flatfish of increasing commercial interest. However, the reproduction of this species in captivity is not yet controlled mainly because of the poor knowledge on its reproductive physiology, as it occurs for other non-salmonid marine teleosts that exhibit group-synchronous ovarian follicle development. In order to investigate intra-ovarian molecular mechanisms in Senegalese sole, the aim of the present study was to identify differentially expressed genes in the ovary during oocyte growth (vitellogenesis), maturation and ovarian follicle atresia using a recently developed oligonucleotide microarray. Results Microarray analysis led to the identification of 118 differentially expressed transcripts, of which 20 and 8 were monitored by real-time PCR and in situ hybridization, respectively. During vitellogenesis, many up-regulated ovarian transcripts had putative mitochondrial function/location suggesting high energy production (NADH dehydrogenase subunits, cytochromes) and increased antioxidant protection (selenoprotein W2a), whereas other regulated transcripts were related to cytoskeleton and zona radiata organization (zona glycoprotein 3, alpha and beta actin, keratin 8), intracellular signalling pathways (heat shock protein 90, Ras homolog member G), cell-to-cell and cell-to-matrix interactions (beta 1 integrin, thrombospondin 4b), and the maternal RNA pool (transducer of ERBB2 1a, neurexin 1a). Transcripts up-regulated in the ovary during oocyte maturation included ion transporters (Na+-K+-ATPase subunits), probably required for oocyte hydration, as well as a proteinase inhibitor (alpha-2-macroglobulin) and a vesicle calcium sensor protein (extended synaptotagmin-2-A). During follicular atresia, few transcripts were found to be up-regulated, but remarkably most of them were localized in follicular cells of atretic follicles, and they had inferred roles in lipid transport (apolipoprotein C-I), chemotaxis (leukocyte cell-derived chemotaxin 2,), angiogenesis (thrombospondin), and prevention of apoptosis (S100a10 calcium binding protein). Conclusion This study has identified a number of differentially expressed genes in the ovary that were not previously found to be regulated during ovarian development in marine fish. Specifically, we found evidence, for the first time in teleosts, of the activation of chemoattractant, angiogenic and antiapoptotic pathways in hypertrophied follicular cells at the onset of ovarian atresia.
Collapse
|
30
|
Figueiredo JF, Barhoumi R, Raffatellu M, Lawhon SD, Rousseau B, Burghardt RC, Tsolis RM, Bäumler AJ, Adams LG. Salmonella enterica serovar Typhimurium-induced internalization and IL-8 expression in HeLa cells does not have a direct relationship with intracellular Ca(2+) levels. Microbes Infect 2009; 11:850-8. [PMID: 19450704 DOI: 10.1016/j.micinf.2009.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 05/02/2009] [Accepted: 05/04/2009] [Indexed: 10/20/2022]
Abstract
The invasion-associated type III secretion system (T3SS-1) of S. Typhimurium is required to initiate and sustain an acute inflammatory response in the intestine. We investigated the relationship of S. Typhimurium T3SS-1-induced IL-8 expression and invasion with intracellular Ca(2+) mobilization in HeLa cells. Compared to the sipAsopABDE2 mutant, strains carrying a mutation in sipA, or mutations in sopABDE2 induced higher levels of IL-8 and greater bacterial internalization despite the fact that these mutants elicited similarly low intracellular concentrations of Ca(2+). Likewise, complemented sipAsopABDE2 mutant with sopE2 did not affect intracellular Ca(2+) concentrations or IL-8 expression, but significantly increased bacterial internalization. Treating HeLa cells with the calcium chelator BAPTA-AM or with D-BAPTA-AM, a derivative with greatly reduced Ca(2+) chelating activity, yielded strong evidence that BAPTA-AM does not affect invasion and inhibits IL-8 secretion by a calcium-dependent mechanism. These findings suggest that, although wild-type S. Typhimurium-induced IL-8 expression and bacterial internalization in HeLa cells coincides with increased cytosolic Ca(2+), the differing levels of IL-8 and invasion induced by strains carrying different effector proteins are unrelated to levels of intracellular Ca(2+).
Collapse
Affiliation(s)
- Josely F Figueiredo
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Transcriptome analysis of Schistosoma mansoni larval development using serial analysis of gene expression (SAGE). Parasitology 2009; 136:469-85. [PMID: 19265565 DOI: 10.1017/s0031182009005733] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARY Infection of the snail, Biomphalaria glabrata, by the free-swimming miracidial stage of the human blood fluke, Schistosoma mansoni, and its subsequent development to the parasitic sporocyst stage is critical to establishment of viable infections and continued human transmission. We performed a genome-wide expression analysis of the S. mansoni miracidia and developing sporocyst using Long Serial Analysis of Gene Expression (LongSAGE). Five cDNA libraries were constructed from miracidia and in vitro cultured 6- and 20-day-old sporocysts maintained in sporocyst medium (SM) or in SM conditioned by previous cultivation with cells of the B. glabrata embryonic (Bge) cell line. We generated 21 440 SAGE tags and mapped 13 381 to the S. mansoni gene predictions (v4.0e) either by estimating theoretical 3' UTR lengths or using existing 3' EST sequence data. Overall, 432 transcripts were found to be differentially expressed amongst all 5 libraries. In total, 172 tags were differentially expressed between miracidia and 6-day conditioned sporocysts and 152 were differentially expressed between miracidia and 6-day unconditioned sporocysts. In addition, 53 and 45 tags, respectively, were differentially expressed in 6-day and 20-day cultured sporocysts, due to the effects of exposure to Bge cell-conditioned medium.
Collapse
|
32
|
Genetic analysis of synaptotagmin-7 function in synaptic vesicle exocytosis. Proc Natl Acad Sci U S A 2008; 105:3986-91. [PMID: 18308933 DOI: 10.1073/pnas.0712372105] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptotagmin-7 is a candidate Ca(2+) sensor for exocytosis that is at least partly localized to synapses. Similar to synaptotagmin-1, which functions as a Ca(2+) sensor for fast synaptic vesicle (SV) exocytosis, synaptotagmin-7 contains C(2)A and C(2)B domains that exhibit Ca(2+)-dependent phospholipid binding. However, synaptotagmin-7 cannot replace synaptotagmin-1 as a Ca(2+) sensor for fast SV exocytosis, raising questions about the physiological significance of its Ca(2+)-binding properties. Here, we examine how synaptotagmin-7 binds Ca(2+) and test whether this Ca(2+) binding regulates Ca(2+)-triggered SV exocytosis. We show that the synaptotagmin-7 C(2)A domain exhibits a Ca(2+)-binding mode similar to that of the synaptotagmin-1 C(2)A domain, suggesting that the synaptotagmin-1 and -7 C(2) domains generally employ comparable Ca(2+)-binding mechanisms. We then generated mutant mice that lack synaptotagmin-7 or contain point mutations inactivating Ca(2+) binding either to both C(2) domains of synaptotagmin-7 or only to its C(2)B domain. Synaptotagmin-7-mutant mice were viable and fertile. Inactivation of Ca(2+) binding to both C(2) domains caused an approximately 70% reduction in synaptotagmin-7 levels, whereas inactivation of Ca(2+) binding to only the C(2)B domain did not alter synaptotagmin-7 levels. The synaptotagmin-7 deletion did not change fast synchronous release, slow asynchronous release, or short-term synaptic plasticity of release of neurotransmitters. Thus, our results show that Ca(2+) binding to the synaptotagmin-7 C(2) domains is physiologically important for stabilizing synaptotagmin-7, but that Ca(2+) binding by synaptotagmin-7 likely does not regulate SV exocytosis, consistent with a role for synaptotagmin-7 in other forms of Ca(2+)-dependent synaptic exocytosis.
Collapse
|
33
|
Zougman A, Pilch B, Podtelejnikov A, Kiehntopf M, Schnabel C, Kumar C, Mann M. Integrated Analysis of the Cerebrospinal Fluid Peptidome and Proteome. J Proteome Res 2008; 7:386-99. [DOI: 10.1021/pr070501k] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Intracellular complexes of the beta2 subunit of the nicotinic acetylcholine receptor in brain identified by proteomics. Proc Natl Acad Sci U S A 2007; 104:20570-5. [PMID: 18077321 DOI: 10.1073/pnas.0710314104] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nicotine acetylcholine receptors (nAChRs) comprise a family of ligand-gated channels widely expressed in the mammalian brain. The beta2 subunit is an abundant protein subunit critically involved in the cognitive and behavioral properties of nicotine as well as in the mechanisms of nicotine addiction. In this work, we used matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF-TOF MS/MS) to uncover protein interactions of the intracellular loop of the beta2 subunit and components of immunoprecipitated beta2-nAChR complexes from mouse brain. Using the beta2-knockout mouse to exclude nonspecific binding to the beta2 antibody, we identify 21 nAChR-interacting proteins (NIPs) expressed in brain. Western blot analysis confirmed the association between the beta2 subunit and candidate NIPs. Based on their functional profiles, the hypothesis is suggested that the identified NIPs can regulate the trafficking and signaling of the beta2-nAChR. Interactions of the beta2 subunit with NIPs such as G protein alpha, G protein-regulated inducer of neurite outgrowth 1, and G protein-activated K(+) channel 1 suggest a link between nAChRs and cellular G protein pathways. These findings reveal intracellular interactions of the beta2 subunit and may contribute to the understanding of the mechanisms of nAChR signaling and trafficking in neurons.
Collapse
|
35
|
JNK phosphorylates synaptotagmin-4 and enhances Ca2+-evoked release. EMBO J 2007; 27:76-87. [PMID: 18046461 DOI: 10.1038/sj.emboj.7601935] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 11/06/2007] [Indexed: 11/08/2022] Open
Abstract
Ca2+ influx induced by membrane depolarization triggers the exocytosis of secretory vesicles in various cell types such as endocrine cells and neurons. Peptidyl growth factors enhance Ca2+-evoked release, an effect that may underlie important adaptive responses such as the long-term potentiation of synaptic transmission induced by growth factors. Here, we show that activation of the c-Jun N-terminal kinase (JNK) plays an essential role in nerve growth factor (NGF) enhancement of Ca2+-evoked release in PC12 neuroendocrine cells. Moreover, JNK associated with phosphorylated synaptotagmin-4 (Syt 4), a key mediator of NGF enhancement of Ca2+-evoked release in this system. NGF treatment led to phosphorylation of endogenous Syt 4 at Ser135 and translocation of Syt 4 from immature to mature secretory vesicles in a JNK-dependent manner. Furthermore, mutation of Ser135 abrogated enhancement of Ca2+-evoked release by Syt 4. These results provide a molecular basis for the effect of growth factors on Ca2+-mediated secretion.
Collapse
|
36
|
Chen H, Ordög T, Chen J, Young DL, Bardsley MR, Redelman D, Ward SM, Sanders KM. Differential gene expression in functional classes of interstitial cells of Cajal in murine small intestine. Physiol Genomics 2007; 31:492-509. [PMID: 17895395 DOI: 10.1152/physiolgenomics.00113.2007] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interstitial cells of Cajal (ICC) have important functions in regulation of motor activity in the gastrointestinal tract. In murine small intestine, ICC are gathered in the regions of the myenteric plexus (ICC-MY) and the deep muscular plexus (ICC-DMP). These two classes of ICC have different physiological functions. ICC-MY are pacemaker cells and generate the slow-wave electrical rhythmicity of gastrointestinal organs. ICC-DMP form synaptic connections with the varicose nerve terminals of enteric motor neurons and are involved in reception and transduction of motor neurotransmission. Gene expression underlying specific functions of ICC classes is incompletely understood. In the present study, we used recently developed highly selective techniques to isolate the two functional ICC classes from enzymatically dispersed intestinal muscles by fluorescence-activated cell sorting. The transcriptomes of ICC-MY and ICC-DMP were investigated using oligonucleotide microarray analysis. Differential expression of functional groups of genes defined by standard gene ontology terms was also studied. There were substantial numbers of genes expressed more abundantly in ICC than in the tunica muscularis, and we also detected marked phenotypic differences between ICC-MY and ICC-DMP. Notably, genes related to cell junction, process guidance, and vesicle trafficking were upregulated in ICC. Consistent with their specific functions, metabolic and Ca(2+) transport genes were relatively upregulated in ICC-MY, whereas genes for signaling proteins involved in transduction of neurotransmitter functions were relatively upregulated in ICC-DMP. Our results may lead to the identification of novel biomarkers for ICC and provide directions for further studies designed to understand ICC function in health and disease.
Collapse
Affiliation(s)
- Hui Chen
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, Reno, NV 89557, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Cutillas PR, Vanhaesebroeck B. Quantitative profile of five murine core proteomes using label-free functional proteomics. Mol Cell Proteomics 2007; 6:1560-73. [PMID: 17565973 DOI: 10.1074/mcp.m700037-mcp200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Analysis of primary animal and human tissues is key in biological and biomedical research. Comparative proteomics analysis of primary biological material would benefit from uncomplicated experimental work flows capable of evaluating an unlimited number of samples. In this report we describe the application of label-free proteomics to the quantitative analysis of five mouse core proteomes. We developed a computer program and normalization procedures that allow exploitation of the quantitative data inherent in LC-MS/MS experiments for relative and absolute quantification of proteins in complex mixtures. Important features of this approach include (i) its ability to compare an unlimited number of samples, (ii) its applicability to primary tissues and cultured cells, (iii) its straightforward work flow without chemical reaction steps, and (iv) its usefulness not only for relative quantification but also for estimation of absolute protein abundance. We applied this approach to quantitatively characterize the most abundant proteins in murine brain, heart, kidney, liver, and lung. We matched 8,800 MS/MS peptide spectra to 1,500 proteins and generated 44,000 independent data points to profile the approximately 1,000 most abundant proteins in mouse tissues. This dataset provides a quantitative profile of the fundamental proteome of a mouse, identifies the major similarities and differences between organ-specific proteomes, and serves as a paradigm of how label-free quantitative MS can be used to characterize the phenotype of mammalian primary tissues at the molecular level.
Collapse
Affiliation(s)
- Pedro R Cutillas
- Cell Signalling Group, Ludwig Institute for Cancer Research, London, UK.
| | | |
Collapse
|
38
|
Abstract
We have investigated whether Ca(2+)-binding proteins, which have been implicated in the control of neurons and neuroendocrine secretion, play a role in controlling mast cell function. These studies have identified synaptotagmins (Syts) II, III, and IX as well as neuronal Ca(2+) sensor 1 (NCS-1) as important regulators of mast cell function. Strikingly, we find that these Ca(2+)-binding proteins contribute to mast cell function by regulating specific endocytic pathways. Syt II, the most abundant Syt homologue in mast cells, resides in an amine-free lysosomal compartment. Studying the function of Syt II-knocked down rat basophilic leukemia cells has shown a dual function of this homologue. Syt II is required for the downregulation of protein kinase Calpha, but it negatively regulates lysosomal exocytosis. Syt III, the next most abundant homologue, localizes to early endosomes and is required for the formation of the endocytic recycling compartment (ERC). Syt IX and NCS-1 localize to the ERC and regulate ERC export, NCS-1 by activating phosphatidylinositol 4-kinase beta. Finally, we show that recycling through the ERC is needed for secretory granule protein sorting as well as for the activation of the mitogen-activated protein kinases, extracellular signal-regulated kinase 1 and 2. Accordingly, NCS-1 stimulates Fc epsilon RI-triggered exocytosis and release of arachidonic acid metabolites.
Collapse
Affiliation(s)
- Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
39
|
Wegrzyn J, Lee J, Neveu JM, Lane WS, Hook V. Proteomics of neuroendocrine secretory vesicles reveal distinct functional systems for biosynthesis and exocytosis of peptide hormones and neurotransmitters. J Proteome Res 2007; 6:1652-65. [PMID: 17408250 DOI: 10.1021/pr060503p] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regulated secretory vesicles produce, store, and secrete active peptide hormones and neurotransmitters that function in cell-cell communication. To gain knowledge of the protein systems involved in such secretory vesicle functions, we analyzed proteins in the soluble and membrane fractions of dense core secretory vesicles purified from neuroendocrine chromaffin cells. Soluble and membrane fractions of these vesicles were subjected to SDS-PAGE separation, and proteins from systematically sectioned gel lanes were identified by microcapillary LC-MS/MS (microLC-MS/MS) of tryptic peptides. The identified proteins revealed functional categories of prohormones, proteases, catecholamine neurotransmitter metabolism, protein folding, redox regulation, ATPases, calcium regulation, signaling components, exocytotic mechanisms, and related functions. Several novel secretory vesicle components involved in proteolysis were identified consisting of cathepsin B, cathepsin D, cystatin C, ubiquitin, and TIMP, as well carboxypeptidase E/H and proprotein convertases that are known to participate in prohormone processing. Significantly, the membrane fraction exclusively contained an extensive number of GTP nucleotide-binding proteins related to Rab, Rho, and Ras signaling molecules, together with SNARE-related proteins and annexins that are involved in trafficking and exocytosis of secretory vesicle components. Membranes also preferentially contained ATPases that regulate proton translocation. These results implicate membrane-specific functions for signaling and exocytosis that allow these secretory vesicles to produce, store, and secrete active peptide hormones and neurotransmitters released from adrenal medulla for the control of physiological functions in health and disease. In summary, this proteomic study illustrates secretory vesicle protein systems utilized for the production and secretion of regulatory factors that control neuroendocrine functions.
Collapse
Affiliation(s)
- Jill Wegrzyn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
40
|
Kobayashi T, Yamada Y, Fukao M, Tsutsuura M, Tohse N. Regulation of Cav1.2 current: interaction with intracellular molecules. J Pharmacol Sci 2007; 103:347-53. [PMID: 17409629 DOI: 10.1254/jphs.cr0070012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Ca(V)1.2 (alpha(1c)) is a pore-forming subunit of the voltage-dependent L-type calcium channel and is expressed in many tissues. The beta and alpha(2)/delta subunits are auxiliary subunits that affect the kinetics and the expression of Ca(V)1.2. In addition to the beta and alpha(2)/delta subunits, several molecules have been reported to be involved in the regulation of Ca(V)1.2 current. Calmodulin, CaBP1 (calcium-binding protein-1), CaMKII (calcium/calmodulin-dependent protein kinase II), AKAPs (A-kinase anchoring proteins), phosphatases, Caveolin-3, beta(2)-adrenergic receptor, PDZ domain proteins, sorcin, SNARE proteins, synaptotagmin, CSN5, RGK family, and AHNAK1 have all been reported to interact with Ca(V)1.2 and the beta subunit. This review focuses on the effect of these molecules on Ca(V)1.2 current.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
41
|
Lachman HM, Fann CSJ, Bartzis M, Evgrafov OV, Rosenthal RN, Nunes EV, Miner C, Santana M, Gaffney J, Riddick A, Hsu CL, Knowles JA. Genomewide suggestive linkage of opioid dependence to chromosome 14q. Hum Mol Genet 2007; 16:1327-34. [PMID: 17409192 DOI: 10.1093/hmg/ddm081] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The genetic predisposition to addiction to opioids and other substances is transmitted as a complex genetic trait, which investigators are attempting to characterize using genetic linkage and association. We now report a high-density genome-wide linkage study of opioid dependence. We ascertained 305 DSM-IV opioid dependent affected sibling pairs from an ethnically mixed population of methadone maintained subjects and genotyped their DNA using Affymetrix 10K v2 arrays. Analysis with MERLIN identified a region on chromosome 14q with a non-parametric lod (NPL) of 3.30. Secondary analyses indicated that this locus was relatively specific to the self-identified Puerto Rican subset, as the NPL increased from 3.30 to 5.00 (NPL(Caucasian) = 0.05 and NPL(African Amer.) = 0.15). The 14q peak encompasses the NRXN3 gene (neurexin 3), which was previously identified as a potential candidate gene for addiction. Secondary analyses also identified several regions with gender-specific NPL scores greater than 2.00. The most significant was a peak on (10q) that increased from 0.90 to 3.22 when only males were considered (NPL(female) = 0.05). Our linkage data suggest specific chromosomal loci for future fine-mapping genetic analysis and support the hypothesis that ethnic and gender specific genes underlie addiction susceptibility.
Collapse
Affiliation(s)
- Herbert M Lachman
- Division of Basic Research, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of MedicineBronx, NY 10461, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Buff H, Smith AC, Korey CA. Genetic modifiers of Drosophila palmitoyl-protein thioesterase 1-induced degeneration. Genetics 2007; 176:209-20. [PMID: 17409080 PMCID: PMC1893024 DOI: 10.1534/genetics.106.067983] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Infantile neuronal ceroid lipofuscinosis (INCL) is a pediatric neurodegenerative disease caused by mutations in the human CLN1 gene. CLN1 encodes palmitoyl-protein thioesterase 1 (PPT1), suggesting an important role for the regulation of palmitoylation in normal neuronal function. To further elucidate Ppt1 function, we performed a gain-of-function modifier screen in Drosophila using a collection of enhancer-promoter transgenic lines to suppress or enhance the degeneration produced by overexpression of Ppt1 in the adult visual system. Modifier genes identified in our screen connect Ppt1 function to synaptic vesicle cycling, endo-lysosomal trafficking, synaptic development, and activity-dependent remodeling of the synapse. Furthermore, several homologs of the modifying genes are known to be regulated by palmitoylation in other systems and may be in vivo substrates for Ppt1. Our results complement recent work on mouse Ppt1(-/-) cells that shows a reduction in synaptic vesicle pools in primary neuronal cultures and defects in endosomal trafficking in human fibroblasts. The pathways and processes implicated by our modifier loci shed light on the normal cellular function of Ppt1. A greater understanding of Ppt1 function in these cellular processes will provide valuable insight into the molecular etiology of the neuronal dysfunction underlying the disease.
Collapse
Affiliation(s)
- Haley Buff
- Department of Biology, The College of Charleston, Charleston, South Carolina 29424, USA
| | | | | |
Collapse
|
43
|
Glitsch MD. Spontaneous neurotransmitter release and Ca2+--how spontaneous is spontaneous neurotransmitter release? Cell Calcium 2007; 43:9-15. [PMID: 17382386 DOI: 10.1016/j.ceca.2007.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Indexed: 11/15/2022]
Abstract
Neurotransmitter release from neurons takes place at specialized structures called synapses. Action potential-evoked exocytosis requires Ca(2+) influx through voltage-gated Ca(2+) channels. Spontaneous vesicle fusion occurs both in the absence of action potentials and without any apparent stimulus and is hence thought to be Ca(2+)-independent. However, increasing evidence shows that this form of neurotransmitter discharge can be modulated by changes in intracellular Ca(2+) concentration, suggesting that it is not truly spontaneous. This idea is supported by the fact that spontaneous release can be modulated by interfering with proteins involved in the exocytotic process. Interestingly, modulation of spontaneous discharge at the level of the release machinery is not always accompanied by corresponding modulation of action potential-evoked release, suggesting that two independent processes may underlie spontaneous and action potential-evoked exocytosis, at least at some synapses. This provides an attractive model whereby cells can modulate the two forms of neurotransmitter liberation, which often serve different physiological roles, independently of each other.
Collapse
Affiliation(s)
- Maike D Glitsch
- University of Oxford, Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford OX1 3PT, United Kingdom.
| |
Collapse
|
44
|
Nichols CD. Drosophila melanogaster neurobiology, neuropharmacology, and how the fly can inform central nervous system drug discovery. Pharmacol Ther 2006; 112:677-700. [PMID: 16935347 DOI: 10.1016/j.pharmthera.2006.05.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 05/24/2006] [Indexed: 01/25/2023]
Abstract
Central nervous system (CNS) drug discovery in the post-genomic era is rapidly evolving. Older empirical methods are giving way to newer technologies that include bioinformatics, structural biology, genetics, and modern computational approaches. In the search for new medical therapies, and in particular treatments for disorders of the central nervous system, there has been increasing recognition that identification of a single biological target is unlikely to be a recipe for success; a broad perspective is required. Systems biology is one such approach, and has been increasingly recognized as a very important area of research, as it places specific molecular targets within a context of overall biochemical action. Understanding the complex interactions between the components within a given biological system that lead to modifications in output, such as changes in behavior or development, may be important avenues of discovery to identify new therapies. One avenue to drug discovery that holds tremendous potential is the use of model genetic organisms such as the fruit fly, Drosophila melanogaster. The similarity between mode of drug action, behavior, and gene response in D. melanogaster and mammalian systems, combined with the power of genetics, have recently made the fly a very attractive system to study fundamental neuropharmacological processes relevant to human diseases. The promise that the use of model organisms such as the fly offers is speed, high throughput, and dramatically reduced overall costs that together should result in an enhanced rate of discovery.
Collapse
Affiliation(s)
- Charles D Nichols
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA.
| |
Collapse
|
45
|
Therrien C, Dodig D, Karpati G, Sinnreich M. Mutation impact on dysferlin inferred from database analysis and computer-based structural predictions. J Neurol Sci 2006; 250:71-8. [PMID: 16996541 DOI: 10.1016/j.jns.2006.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 07/06/2006] [Accepted: 07/09/2006] [Indexed: 10/24/2022]
Abstract
Dysferlin is a large sarcolemmal protein implicated in the repair of surface membrane tears in muscle cells. Mutations in dysferlin result in limb girdle muscular dystrophy type 2B and Miyoshi myopathy. Using a cDNA based approach we identified eight new pathogenic dysferlin alleles. To better understand how missense mutations could lead to reduced or absent dysferlin expression levels, we mapped missense mutations from our own and from published databases (n=55) to the secondary protein structure of dysferlin, deduced by computerized structural prediction tools. We found the protein to be very sensitive to the alteration of residues that were predicted to be buried inside the protein structure. We identified seven putative C2 domains, one more than commonly reported, of both type I and type II topology in dysferlin. Missense mutations often affected those structures as well as residues that were highly conserved between members of the ferlin family. Thus, alteration of structurally important residues in dysferlin could lead to improper folding and degradation of the mutant protein.
Collapse
MESH Headings
- Adolescent
- Adult
- Amino Acid Sequence/genetics
- Child
- Conserved Sequence
- DNA Mutational Analysis
- DNA, Complementary/analysis
- Dysferlin
- Evolution, Molecular
- Genetic Predisposition to Disease/genetics
- Humans
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Molecular Sequence Data
- Muscle Proteins/chemistry
- Muscle Proteins/genetics
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Muscular Dystrophies, Limb-Girdle/genetics
- Muscular Dystrophies, Limb-Girdle/metabolism
- Muscular Dystrophies, Limb-Girdle/physiopathology
- Mutation, Missense/genetics
- Phylogeny
- Protein Folding
- Protein Structure, Quaternary/genetics
- Protein Structure, Tertiary/genetics
- Proteomics
Collapse
Affiliation(s)
- Christian Therrien
- Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec Canada H3A 2B4
| | | | | | | |
Collapse
|
46
|
Vohra BP, Tsuji K, Nagashimada M, Uesaka T, Wind D, Armon J, Enomoto H, Heuckeroth RO. Differential gene expression and functional analysis implicate novel mechanisms in enteric nervous system precursor migration and neuritogenesis. Dev Biol 2006; 298:259-71. [PMID: 16904662 PMCID: PMC1952185 DOI: 10.1016/j.ydbio.2006.06.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 05/17/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
Enteric nervous system (ENS) development requires complex interactions between migrating neural-crest-derived cells and the intestinal microenvironment. Although some molecules influencing ENS development are known, many aspects remain poorly understood. To identify additional molecules critical for ENS development, we used DNA microarray, quantitative real-time PCR and in situ hybridization to compare gene expression in E14 and P0 aganglionic or wild type mouse intestine. Eighty-three genes were identified with at least two-fold higher expression in wild type than aganglionic bowel. ENS expression was verified for 39 of 42 selected genes by in situ hybridization. Additionally, nine identified genes had higher levels in aganglionic bowel than in WT animals suggesting that intestinal innervation may influence gene expression in adjacent cells. Strikingly, many synaptic function genes were expressed at E14, a time when the ENS is not needed for survival. To test for developmental roles for these genes, we used pharmacologic inhibitors of Snap25 or vesicle-associated membrane protein (VAMP)/synaptobrevin and found reduced neural-crest-derived cell migration and decreased neurite extension from ENS precursors. These results provide an extensive set of ENS biomarkers, demonstrate a role for SNARE proteins in ENS development and highlight additional candidate genes that could modify Hirschsprung's disease penetrance.
Collapse
Affiliation(s)
- Bhupinder P.S. Vohra
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO 63110 U.S.A
| | - Keiji Tsuji
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Mayumi Nagashimada
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihiro Uesaka
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Daniel Wind
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO 63110 U.S.A
| | - Jennifer Armon
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO 63110 U.S.A
| | - Hideki Enomoto
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Robert O. Heuckeroth
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO 63110 U.S.A
| |
Collapse
|
47
|
Montes M, Fuson KL, Sutton RB, Robert JJ. Purification, crystallization and X-ray diffraction analysis of human synaptotagmin 1 C2A-C2B. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:926-9. [PMID: 16946482 PMCID: PMC2242877 DOI: 10.1107/s1744309106029253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 07/28/2006] [Indexed: 11/10/2022]
Abstract
Synaptotagmin acts as the Ca(2+) sensor for neuronal exocytosis. The cytosolic domain of human synaptotagmin 1 is composed of tandem C2 domains: C2A and C2B. These C2 domains modulate the interaction of synaptotagmin with the phospholipid bilayer of the presynaptic terminus and effector proteins such as the SNARE complex. Human synaptotagmin C2A-C2B has been expressed as a glutathione-S-transferase fusion protein in Escherichia coli. The purification, crystallization and preliminary X-ray analysis of this protein are reported here. The crystals diffract to 2.7 A and belong to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 82.37, b = 86.31, c = 140.2 A. From self-rotation function analysis, there are two molecules in the asymmetric unit. The structure determination of the protein using this data is ongoing.
Collapse
Affiliation(s)
- Miguel Montes
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX 77555-0437, USA
| | - Kerry L. Fuson
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555-0437, USA
| | - R. Bryan Sutton
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX 77555-0437, USA
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555-0437, USA
| | - J. Justin Robert
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555-0437, USA
| |
Collapse
|
48
|
Graziani I, Bagalá C, Duarte M, Soldi R, Kolev V, Tarantini F, Suresh Kumar TK, Doyle A, Neivandt D, Yu C, Maciag T, Prudovsky I. Release of FGF1 and p40 synaptotagmin 1 correlates with their membrane destabilizing ability. Biochem Biophys Res Commun 2006; 349:192-9. [PMID: 16930531 PMCID: PMC1779946 DOI: 10.1016/j.bbrc.2006.08.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 08/04/2006] [Indexed: 10/24/2022]
Abstract
Fibroblast growth factor (FGF)1 is released from cells as a constituent of a complex that contains the small calcium binding protein S100A13, and the p40 kDa form of synaptotagmin (Syt)1, through an ER-Golgi-independent stress-induced pathway. FGF1 and the other components of its secretory complex are signal peptide-less proteins. We examined their capability to interact with lipid bilayers by studying protein-induced carboxyfluorescein release from liposomes of different phospholipid (pL) compositions. FGF1, p40 Syt1, and S100A13 induced destabilization of liposomes composed of acidic but not of zwitterionic pL. We produced mutants of FGF1 and p40 Syt1, in which specific basic amino acid residues in the regions that bind acidic pL were substituted. The ability of these mutants to induce liposomes destabilization was strongly attenuated, and they exhibited drastically diminished spontaneous and stress-induced release. Apparently, the non-classical release of FGF1 and p40 Syt1 involves destabilization of membranes containing acidic pL.
Collapse
Affiliation(s)
- Irene Graziani
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | - Cinzia Bagalá
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | - Maria Duarte
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | - Raffaella Soldi
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | - Vihren Kolev
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | - Francesca Tarantini
- Department of Critical Care Medicine and Surgery, Gerontology and Geriatrics Unit, University of Florence, Florence 50139, Italy
| | | | - Andrew Doyle
- Department of Chemical and Biological Engineering, and Functional Genomics Program, University of Maine, Orono, ME 04469 USA
| | - David Neivandt
- Department of Chemical and Biological Engineering, and Functional Genomics Program, University of Maine, Orono, ME 04469 USA
| | - Chin Yu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30043, Taiwan
| | - Thomas Maciag
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | - Igor Prudovsky
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
- * To whom correspondence should be addressed. Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough ME 04074. Telephone: 207-885-8146; Fax 201-885-8179;
| |
Collapse
|
49
|
Hinderliter A, May S. Cooperative adsorption of proteins onto lipid membranes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2006; 18:S1257-S1270. [PMID: 21690839 DOI: 10.1088/0953-8984/18/28/s09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The adsorption of proteins onto a lipid membrane depends on and thus reflects the energetics of the underlying substrate. This is particularly relevant for mixed membranes that contain lipid species with different affinities for the adsorbed proteins. In this case, there is an intricate interplay between lateral membrane organization and the number of adsorbed proteins. Most importantly, proteins often tend to enhance the propensity of the lipid mixture to form clusters, domains, or to macroscopically phase separate. Sigmoidal binding isotherms are the typical signature of the corresponding cooperativity in protein adsorption. We discuss the underlying thermodynamic basis, and compare various theoretical binding models for protein adsorption onto mixed membranes. We also present experimental data for the adsorption of the C2A protein motif and analyse to what extent these data reflect cooperative binding.
Collapse
Affiliation(s)
- Anne Hinderliter
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | | |
Collapse
|
50
|
Robay D, Patel H, Simpson MA, Brown NA, Crosby AH. Endogenous spartin, mutated in hereditary spastic paraplegia, has a complex subcellular localization suggesting diverse roles in neurons. Exp Cell Res 2006; 312:2764-77. [PMID: 16781711 DOI: 10.1016/j.yexcr.2006.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 05/03/2006] [Accepted: 05/05/2006] [Indexed: 11/28/2022]
Abstract
Mutation of spartin (SPG20) underlies a complicated form of hereditary spastic paraplegia, a disorder principally defined by the degeneration of upper motor neurons. Using a polyclonal antibody against spartin to gain insight into the function of the endogenous molecule, we show that the endogenous molecule is present in two main isoforms of 85 kDa and 100 kDa, and 75 kDa and 85 kDa in human and murine, respectively, with restricted subcellular localization. Immunohistochemical studies on human and mouse embryo sections and in vitro cell studies indicate that spartin is likely to possess both nuclear and cytoplasmic functions. The nuclear expression of spartin closely mirrors that of the snRNP (small nuclear ribonucleoprotein) marker alpha-Sm, a component of the spliceosome. Spartin is also enriched at the centrosome within mitotic structures. Notably we show that spartin protein undergoes dynamic positional changes in differentiating human SH-SY5Y cells. In undifferentiated non-neuronal cells, spartin displays a nuclear and diffuse cytosolic profile, whereas spartin transiently accumulates in the trans-Golgi network and subsequently decorates discrete puncta along neurites in terminally differentiated neuroblastic cells. Investigation of these spartin-positive vesicles reveals that a large proportion colocalizes with the synaptic vesicle marker synaptotagmin. Spartin is also enriched in synaptic-like structures and in synaptic vesicle-enriched fraction.
Collapse
Affiliation(s)
- Dimitri Robay
- Medical Genetics, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | | | | | | | | |
Collapse
|