1
|
Shirsath KR, Patil VK, Awathale SN, Goyal SN, Nakhate KT. Pathophysiological and therapeutic implications of neuropeptide S system in neurological disorders. Peptides 2024; 175:171167. [PMID: 38325715 DOI: 10.1016/j.peptides.2024.171167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Neuropeptide S (NPS) is a 20 amino acids-containing neuroactive molecule discovered by the reverse pharmacology method. NPS is detected in specific brain regions like the brainstem, amygdala, and hypothalamus, while its receptor (NPSR) is ubiquitously expressed in the central nervous system (CNS). Besides CNS, NPS and NPSR are also expressed in the peripheral nervous system. NPSR is a G-protein coupled receptor that primarily uses Gq and Gs signaling pathways to mediate the actions of NPS. In animal models of Parkinsonism and Alzheimer's disease, NPS exerts neuroprotective effects. NPS suppresses oxidative stress, anxiety, food intake, and pain, and promotes arousal. NPSR facilitates reward, reinforcement, and addiction-related behaviors. Genetic variation and single nucleotide polymorphism in NPSR are associated with depression, schizophrenia, rheumatoid arthritis, and asthma. NPS interacts with several neurotransmitters including glutamate, noradrenaline, serotonin, corticotropin-releasing factor, and gamma-aminobutyric acid. It also modulates the immune system via augmenting pro-inflammatory cytokines and plays an important role in the pathogenesis of rheumatoid arthritis and asthma. In the present review, we discussed the distribution profile of NPS and NPSR, signaling pathways, and their importance in the pathophysiology of various neurological disorders. We have also proposed the areas where further investigations on the NPS system are warranted.
Collapse
Affiliation(s)
- Kamini R Shirsath
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Vaishnavi K Patil
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sanjay N Awathale
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sameer N Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India.
| |
Collapse
|
2
|
Akçalı İ, Akkan SS, Bülbül M. The regulatory role of central neuropeptide-S in locomotion. Peptides 2023; 170:171110. [PMID: 37832875 DOI: 10.1016/j.peptides.2023.171110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Central exogenous Neuropeptide-S (NPS) was demonstrated to increase locomotor activity (LMA) in rodent studies. NPS receptor (NPSR) is produced in locomotion-related brain regions including basal ganglia while NPS mediates dopaminergic neurotransmission suggesting that endogenous brain NPS is involved in the regulation of locomotion. Aim of the study was to elucidate whether antagonism of NPSR impairs locomotion and to determine the neurochemical profile of NPSR-expressing cells in basal ganglia network. In the rats received intracerebroventricular injection of selective non-peptide NPSR antagonist ML154 (20 nmol/5 µL) or vehicle, in addition to measurement of catalepsy, motor performance, and motor coordination were evaluated by assessment of LMA and RR test, respectively. The immunoreactivities for NPSR, tyrosine hydroxylase (TH), glutamate decarboxylase 67 (GAD67), and choline acetyltransferase (ChAT) were detected by immunofluorescence in frozen sections. Compared to the control rats, total LMA was significantly declined following ML154 administration. The ML154-injected rats were more prone to fall in rotarod (RR) test, while they exhibited remarkably high catalepsy time. The most robust immunoreactivity for NPSR was detected in globus pallidus externa (GPe), while moderate levels of NPSR expression were observed in substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA), but not in striatum. The NPSR-ir cell bodies were found to express GAD67 in GPe and TH in SNpc and VTA, respectively. NPSR expression was detected in SNpc-projecting pallidal cells. The present findings indicate the regulatory role of central endogenous NPS in the control of locomotion. NPSR may be a potential therapeutic target for the treatment of movement disorders.
Collapse
Affiliation(s)
- İrem Akçalı
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Simla Su Akkan
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Mehmet Bülbül
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| |
Collapse
|
3
|
Neuropeptide S facilitates extinction of fear via modulation of mesolimbic dopaminergic circuitry. Neuropharmacology 2022; 221:109274. [DOI: 10.1016/j.neuropharm.2022.109274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
|
4
|
Maudsley S, Walter D, Schrauwen C, Van Loon N, Harputluoğlu İ, Lenaerts J, McDonald P. Intersection of the Orphan G Protein-Coupled Receptor, GPR19, with the Aging Process. Int J Mol Sci 2022; 23:ijms232113598. [PMID: 36362387 PMCID: PMC9653598 DOI: 10.3390/ijms232113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent one of the most functionally diverse classes of transmembrane proteins. GPCRs and their associated signaling systems have been linked to nearly every physiological process. They also constitute nearly 40% of the current pharmacopeia as direct targets of remedial therapies. Hence, their place as a functional nexus in the interface between physiological and pathophysiological processes suggests that GPCRs may play a central role in the generation of nearly all types of human disease. Perhaps one mechanism through which GPCRs can mediate this pivotal function is through the control of the molecular aging process. It is now appreciated that, indeed, many human disorders/diseases are induced by GPCR signaling processes linked to pathological aging. Here we discuss one such novel member of the GPCR family, GPR19, that may represent an important new target for novel remedial strategies for the aging process. The molecular signaling pathways (metabolic control, circadian rhythm regulation and stress responsiveness) associated with this recently characterized receptor suggest an important role in aging-related disease etiology.
Collapse
Affiliation(s)
- Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
- Correspondence:
| | - Deborah Walter
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Claudia Schrauwen
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Nore Van Loon
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - İrem Harputluoğlu
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Julia Lenaerts
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | | |
Collapse
|
5
|
Fischler PV, Soyka M, Seifritz E, Mutschler J. Off-label and investigational drugs in the treatment of alcohol use disorder: A critical review. Front Pharmacol 2022; 13:927703. [PMID: 36263121 PMCID: PMC9574013 DOI: 10.3389/fphar.2022.927703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Compounds known to be successful in the treatment of alcohol use disorder include the aversive agent, Disulfiram, the glutamatergic NMDA receptor antagonist, Acamprosate, and the opioid receptor antagonists, Naltrexone and Nalmefene. Although all four are effective in maintaining abstinence or reduction of alcohol consumption, only a small percentage of patients receive pharmacological treatment. In addition, many other medications have been investigated for their therapeutic potential in the treatment of alcohol use disorder. In this review we summarize and compare Baclofen, Gabapentin, Topiramate, Ondansetron, Varenicline, Aripiprazole, Quetiapine, Clozapine, Antidepressants, Lithium, Neuropeptide Y, Neuropeptide S, Corticotropin-releasing factor antagonists, Oxytocin, PF-05190457, Memantine, Ifenprodil, Samidorphan, Ondelopran, ABT-436, SSR149415, Mifepristone, Ibudilast, Citicoline, Rimonabant, Surinabant, AM4113 and Gamma-hydroxybutyrate While some have shown promising results in the treatment of alcohol use disorder, others have disappointed and should be excluded from further investigation. Here we discuss the most promising results and highlight medications that deserve further preclinical or clinical study. Effective, patient-tailored treatment will require greater understanding provided by many more preclinical and clinical studies.
Collapse
Affiliation(s)
- Pascal Valentin Fischler
- Department for Gynecology and Obstetrics, Women’s Clinic Lucerne, Cantonal Hospital of Lucerne, Lucerne, Switzerland
- *Correspondence: Pascal Valentin Fischler,
| | - Michael Soyka
- Psychiatric Hospital University of Munich, Munich, Germany
| | - Erich Seifritz
- Director of the Clinic for Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Clinic Zürich, Zürich, Switzerland
| | | |
Collapse
|
6
|
Li C, Wu XJ, Li W. Neuropeptide S promotes maintenance of newly formed dendritic spines and performance improvement after motor learning in mice. Peptides 2022; 156:170860. [PMID: 35970276 DOI: 10.1016/j.peptides.2022.170860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/18/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Neuropeptide S (NPS), an endogenous neuropeptide consisting of 20 amino acids, selectively binds and activates G protein-coupled receptor named neuropeptide S receptor (NPSR) to regulate a variety of physiological functions. NPS/NPSR system has been shown to play a pivotal role in regulating learning and memory in rodents. However, it remains unclear that how NPS/NPSR system affects neuronal functions and synaptic plasticity after learning. We found that intracerebroventricular (i.c.v.) injection of NPS promoted performance improvement and reduced sleep duration after motor learning, which could be blocked by pre-treatment with intraperitoneal (i.p.) injection of NPSR antagonist SHA 68. Using intravital two-photon imaging, we examined the effect of NPS on the postsynaptic dendritic spines of layer V pyramidal neurons in the mouse primary motor cortex after motor learning. We found that i.c.v. injection of NPS strengthened learning-induce new spines and facilitated their survival over time. Furthermore, i.c.v. injection of NPS increased calcium activity of apical dendrites and dendritic spines of layer V pyramidal neurons in the mouse primary motor cortex during the running period. These findings suggest that activation of NPSR by NPS increases synaptic calcium activity and learning-related synapse maintenance, thereby contributing to performance improvement after motor learning.
Collapse
Affiliation(s)
- Cong Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xu-Jun Wu
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Wei Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
7
|
Alhajeri MM, Alkhanjari RR, Hodeify R, Khraibi A, Hamdan H. Neurotransmitters, neuropeptides and calcium in oocyte maturation and early development. Front Cell Dev Biol 2022; 10:980219. [PMID: 36211465 PMCID: PMC9537470 DOI: 10.3389/fcell.2022.980219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
A primary reason behind the high level of complexity we embody as multicellular organisms is a highly complex intracellular and intercellular communication system. As a result, the activities of multiple cell types and tissues can be modulated resulting in a specific physiological function. One of the key players in this communication process is extracellular signaling molecules that can act in autocrine, paracrine, and endocrine fashion to regulate distinct physiological responses. Neurotransmitters and neuropeptides are signaling molecules that renders long-range communication possible. In normal conditions, neurotransmitters are involved in normal responses such as development and normal physiological aspects; however, the dysregulation of neurotransmitters mediated signaling has been associated with several pathologies such as neurodegenerative, neurological, psychiatric disorders, and other pathologies. One of the interesting topics that is not yet fully explored is the connection between neuronal signaling and physiological changes during oocyte maturation and fertilization. Knowing the importance of Ca2+ signaling in these reproductive processes, our objective in this review is to highlight the link between the neuronal signals and the intracellular changes in calcium during oocyte maturation and embryogenesis. Calcium (Ca2+) is a ubiquitous intracellular mediator involved in various cellular functions such as releasing neurotransmitters from neurons, contraction of muscle cells, fertilization, and cell differentiation and morphogenesis. The multiple roles played by this ion in mediating signals can be primarily explained by its spatiotemporal dynamics that are kept tightly checked by mechanisms that control its entry through plasma membrane and its storage on intracellular stores. Given the large electrochemical gradient of the ion across the plasma membrane and intracellular stores, signals that can modulate Ca2+ entry channels or Ca2+ receptors in the stores will cause Ca2+ to be elevated in the cytosol and consequently activating downstream Ca2+-responsive proteins resulting in specific cellular responses. This review aims to provide an overview of the reported neurotransmitters and neuropeptides that participate in early stages of development and their association with Ca2+ signaling.
Collapse
Affiliation(s)
- Maitha M. Alhajeri
- Department of Physiology and Immunology, College of Medicine and Health Sciences and Biotechnology Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Rayyah R. Alkhanjari
- Department of Physiology and Immunology, College of Medicine and Health Sciences and Biotechnology Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Ali Khraibi
- Department of Physiology and Immunology, College of Medicine and Health Sciences and Biotechnology Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences and Biotechnology Center, Khalifa University, Abu Dhabi, United Arab Emirates
- *Correspondence: Hamdan Hamdan,
| |
Collapse
|
8
|
Li C, Ma Y, Cai Z, Wan Q, Tian S, Ning H, Wang S, Chen JL, Yang G. Neuropeptide S and its receptor NPSR enhance the susceptibility of hosts to pseudorabies virus infection. Res Vet Sci 2022; 146:15-23. [PMID: 35298925 DOI: 10.1016/j.rvsc.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 11/18/2022]
Abstract
The neuropeptide S (NPS) and its receptor (NPSR) represent a signaling system in the brain. Increased levels of NPS and NPSR have been observed in PK15 cells and murine brains in response to pseudorabies virus (PRV) infection, but it remains unclear whether elevated levels of NPS and NPSR are involved in the pathogenic process of PRV infection. In this study, the activities of both NPS and NPSR during PRV pathogenesis were explored in vitro and in vivo by reverse transcription polymerase chain reaction (RT-PCR), PCR, real-time quantitative RT-PCR (qRT-PCR), qPCR, TCID50, and Western blotting methods. NPSR-deficient cells were less susceptible to PRV infection, as evidenced by decreased viral production and PRV-glycoprotein E (gE) expression. In vitro studies showed that exogenous NPS promoted the expression of interleukin 6 (IL-6) mRNA but inhibited interferon β (IFN-β) mRNA expression in PK15 cells after PRV infection. In vivo studies showed that NPS-treated mice were highly susceptible to PRV infection, with decreased survival rates and body weights. In addition, NPS-treated mice showed elevated levels of IL-6 mRNA and STAT3 phosphorylation. However, the expression of IFN-β mRNA was greatly decreased after virus challenge. Contrasting results were obtained from the NPSR-ir-treated groups, which further highlighted the effects of NPS. This study revealed that NPS-treated hosts are more susceptible to PRV infection than controls. Moreover, excessive IL-6/STAT3 and defective IFN-β responses in NPS-treated mice may contribute to the pathogenesis of PRV.
Collapse
Affiliation(s)
- Chunyu Li
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Yijie Ma
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Zifeng Cai
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Qianhui Wan
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Shimao Tian
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Hongxia Ning
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Song Wang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Guihong Yang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China.
| |
Collapse
|
9
|
Piwowarczyk-Nowak A, Pałasz A, Suszka-Świtek A, Della Vecchia A, Grajoszek A, Krzystanek M, Worthington JJ. Escitalopram alters local expression of noncanonical stress-related neuropeptides in the rat brain via NPS receptor signaling. Pharmacol Rep 2022; 74:637-653. [PMID: 35653031 DOI: 10.1007/s43440-022-00374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Neuropeptide S (NPS) is a multifunctional regulatory factor that exhibits a potent anxiolytic activity in animal models. However, there are no reports dealing with the potential molecular relationships between the anxiolytic activity of selective serotonin reuptake inhibitors (SSRIs) and NPS signaling, especially in the context of novel stress-related neuropeptides action. The present work therefore focused on gene expression of novel stress neuropeptides in the rat brain after acute treatment with escitalopram and in combination with neuropeptide S receptor (NPSR) blockade. METHODS Studies were carried out on adult, male Sprague-Dawley rats that were divided into five groups: animals injected with saline (control) and experimental rats treated with escitalopram (at single dose 10 mg/kg daily), escitalopram and SHA-68, a selective NPSR antagonist (at a single dose of 40 mg/kg), SHA-68 alone and corresponding vehicle (solvent SHA-68) control. To measure anxiety-like behavior and locomotor activity the open field test was performed. All individuals were killed under anaesthesia and the whole brain was excised. Total mRNA was isolated from homogenized samples of the amygdala, hippocampus, hypothalamus, thalamus, cerebellum, and brainstem. Real-time PCR was used for estimation of related NPS, NPSR, neuromedin U (NMU), NMU receptor 2 (NMUR2) and nesfatin-1 precursor nucleobindin-2 (NUCB2) gene expression. RESULTS Acute escitalopram administration affects the local expression of the examined neuropeptides mRNA in a varied manner depending on brain location. An increase in NPSR and NUCB2 mRNA expression in the hypothalamus and brainstem was abolished by SHA-68 coadministration, while NMU mRNA expression was upregulated after NPSR blockade in the hippocampus and cerebellum. CONCLUSIONS The pharmacological effects of escitalopram may be connected with local NPSR-related alterations in NPS/NMU/NMUR2 and nesfatin-1 gene expression at the level of selected rat brain regions. A novel alternative mode of SSRI action can be therefore cautiously proposed.
Collapse
Affiliation(s)
- Aneta Piwowarczyk-Nowak
- Department of Anatomy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland.
| | - Aleksandra Suszka-Świtek
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Alessandra Della Vecchia
- Section of Psychiatry, Department of Clinical and Experimental Medicine, University of Pisa, 67, Via Roma, 56100, Pisa, Italy
| | - Aniela Grajoszek
- Department for Experimental Medicine, Medical University of Silesia, ul. Medyków 4, 40-752, Katowice, Poland
| | - Marek Krzystanek
- Department of Psychiatry and Psychotherapy, Faculty of Medical Sciences in Katowice, Clinic of Psychiatric Rehabilitation, Medical University of Silesia, ul. Ziolowa 45/47, 40-635, Katowice, Poland
| | - John J Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
10
|
Piwowarczyk-Nowak A, Pałasz A, Suszka-Świtek A, Błaszczyk I, Bogus K, Łasut-Szyszka B, Krzystanek M, Worthington JJ. Effect of Escitalopram on the Number of DCX-Positive Cells and NMUR2 Receptor Expression in the Rat Hippocampus under the Condition of NPSR Receptor Blockade. Pharmaceuticals (Basel) 2022; 15:631. [PMID: 35631458 PMCID: PMC9143903 DOI: 10.3390/ph15050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Neuropeptide S (NPS) is a multifunctional regulatory factor that exhibits a potent anxiolytic activity in animal models. However, there are no reports dealing with the potential molecular interactions between the activity of selective serotonin reuptake inhibitors (SSRIs) and NPS signaling, especially in the context of adult neurogenesis and the expression of noncanonical stress-related neuropeptides such as neuromedin U (NMU). The present work therefore focused on immunoexpression of neuromedin U receptor 2 (NMUR2) and doublecortin (DCX) in the rat hippocampus after acute treatment with escitalopram and in combination with selective neuropeptide S receptor (NPSR) blockade. METHODS Studies were carried out on adult, male Sprague-Dawley rats that were divided into five groups: animals injected with saline (control) and experimental individuals treated with escitalopram (at single dose 10 mg/kg daily), escitalopram + SHA-68, a selective NPSR antagonist (at single dose 40 mg/kg), SHA-68 alone, and corresponding vehicle control. All animals were sacrificed under halothane anaesthesia. The whole hippocampi were quickly excised, fixed, and finally sliced for general qualitative immunohistochemical assessment of the NPSR and NMUR2 expression. The number of immature neurons was enumerated using immunofluorescent detection of doublecortin (DCX) expression within the subgranular zone (SGZ). RESULTS Acute escitalopram administration affects the number of DCX and NMUR2-expressing cells in the adult rat hippocampus. A decreased number of DCX-expressing neuroblasts after treatment with escitalopram was augmented by SHA-68 coadministration. CONCLUSIONS Early pharmacological effects of escitalopram may be at least partly connected with local NPSR-related alterations of neuroblast maturation in the rat hippocampus. Escitalopram may affect neuropeptide and DCX-expression starting even from the first dose. Adult neurogenesis may be regulated via paracrine neuropeptide S and NMU-related signaling.
Collapse
Affiliation(s)
- Aneta Piwowarczyk-Nowak
- Department of Anatomy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland;
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland; (A.S.-Ś.); (I.B.); (K.B.)
| | - Aleksandra Suszka-Świtek
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland; (A.S.-Ś.); (I.B.); (K.B.)
| | - Iwona Błaszczyk
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland; (A.S.-Ś.); (I.B.); (K.B.)
| | - Katarzyna Bogus
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland; (A.S.-Ś.); (I.B.); (K.B.)
| | - Barbara Łasut-Szyszka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland;
| | - Marek Krzystanek
- Clinic of Psychiatric Rehabilitation, Department of Psychiatry and Psychotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Ziolowa 45/47, 40-635 Katowice, Poland;
| | - John J. Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK;
| |
Collapse
|
11
|
Fang C, Zhang J, Wan Y, Li Z, Qi F, Dang Y, Li J, Wang Y. Neuropeptide S (NPS) and its receptor (NPSR1) in chickens: cloning, tissue expression, and functional analysis. Poult Sci 2021; 100:101445. [PMID: 34634709 PMCID: PMC8507198 DOI: 10.1016/j.psj.2021.101445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/12/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
Neuropeptide S (NPS) and its receptor neuropeptide S receptor 1 (NPSR1) have been suggested to regulate many physiological processes in the central nervous system (CNS), such as arousal, anxiety, and food intake in mammals and birds, however, the functionality and tissue expression of this NPS-NPSR1 system remain unknown in birds. Here, we cloned NPS and NPSR1 cDNAs from the chicken brain and reported their functionality and tissue expression. The cloned chicken NPS is predicted to encode a mature NPS peptide of 20 amino acids, which shows a remarkable sequence identity (∼94%) among tetrapod species examined, while NPSR1 encodes a receptor of 373 amino acids conserved across vertebrates. Using cell-based luciferase reporter systems, we demonstrated that chicken NPS could potently activate NPSR1 expressed in vitro and thus stimulates multiple signaling pathways, including calcium mobilization, cyclic adenosine monophosphate/protein kinase A (cAMP/PKA), and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathways, indicating that NPS actions could be mediated by NPSR1 in birds. Quantitative real-time PCR revealed that NPS and NPSR1 are widely expressed in chicken tissues, including the hypothalamus, and NPSR1 expression is likely controlled by a promoter upstream exon 1, which shows strong promoter activities in cultured DF-1 cells. Taken together, our data provide the first proof that the avian NPS-NPSR1 system is functional and helps to explore the conserved role of NPS and NPSR1 signaling in tetrapods.
Collapse
Affiliation(s)
- Chao Fang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; The Brain Cognition & Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiannan Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yiping Wan
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Zejiao Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Feiyang Qi
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yuanhao Dang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
12
|
Bülbül M, Sinen O, Bayramoğlu O. Central neuropeptide-S administration alleviates stress-induced impairment of gastric motor functions through orexin-A. TURKISH JOURNAL OF GASTROENTEROLOGY 2021; 31:65-72. [PMID: 32009616 DOI: 10.5152/tjg.2020.18626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND/AIMS The novel brain peptide neuropeptide-S (NPS) is produced exclusively by a small group of cells adjacent to the noradrenergic locus coeruleus. The NPSR mRNA has been detected in several brain areas involved in stress response and autonomic outflow, such as amygdala and hypothalamus, suggesting that central NPS may play a regulatory role in stress-induced changes in gastrointestinal (GI) motor functions. In rodents, exogenous central NPS was shown to inhibit stress-stimulated fecal output. Moreover, exogenous NPS was demonstrated to activate hypothalamic neurons that produce orexin-A (OXA), which has been shown to stimulate postprandial gastric motor functions via central vagal pathways. Therefore, we tested whether OXA mediates the NPS-induced alterations in gastric motor functions under stressed conditions. MATERIALS AND METHODS We investigated the effect of central exogenous NPS on solid gastric emptying (GE) and gastric postprandial motility in acute restraint stress (ARS)-loaded conscious rats. The OXA receptor antagonist SB-334867 was administered centrally prior to the central NPS injection. The expression of NPSR in the hypothalamus and dorsal vagal complex was analyzed by immunofluorescence. RESULTS Central administration of NPS restored the ARS-induced delayed GE and uncoordinated postprandial antro-pyloric contractions. The alleviative effect of NPS on GE was abolished by pretreatment of the OX1R antagonist SB-334867. In addition to hypothalamus, NPSR was detected in the dorsal motor nucleus of vagus, which suggest a direct stimulatory action of exogenous NPS on gastric motility. CONCLUSION NPS may be a novel candidate for the treatment of stress-related gastric disorders.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Department of Physiology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Osman Sinen
- Department of Physiology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Onur Bayramoğlu
- Department of Physiology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
13
|
Holanda VAD, Didonet JJ, Costa MBB, do Nascimento Rangel AH, da Silva ED, Gavioli EC. Neuropeptide S Receptor as an Innovative Therapeutic Target for Parkinson Disease. Pharmaceuticals (Basel) 2021; 14:ph14080775. [PMID: 34451872 PMCID: PMC8401573 DOI: 10.3390/ph14080775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
Parkinson disease (PD) is a neurodegenerative disease mainly characterized by the loss of nigral dopaminergic neurons in the substantia nigra pars compacta. Patients suffering from PD develop severe motor dysfunctions and a myriad of non-motor symptoms. The treatment mainly consists of increasing central dopaminergic neurotransmission and alleviating motor symptoms, thus promoting severe side effects without modifying the disease’s progress. A growing body of evidence suggests a close relationship between neuropeptide S (NPS) and its receptor (NPSR) system in PD: (i) double immunofluorescence labeling studies showed that NPSR is expressed in the nigral tyrosine hydroxylase (TH)-positive neurons; (ii) central administration of NPS increases spontaneous locomotion in naïve rodents; (iii) central administration of NPS ameliorates motor and nonmotor dysfunctions in animal models of PD; (iv) microdialysis studies showed that NPS stimulates dopamine release in naïve and parkinsonian rodents; (v) central injection of NPS decreases oxidative damage to proteins and lipids in the rodent brain; and, (vi) 7 days of central administration of NPS protects from the progressive loss of nigral TH-positive cells in parkinsonian rats. Taken together, the NPS/NPSR system seems to be an emerging therapeutic strategy for alleviating motor and non-motor dysfunctions of PD and, possibly, for slowing disease progress.
Collapse
Affiliation(s)
- Victor A. D. Holanda
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | - Julia J. Didonet
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | - Manara B. B. Costa
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | | | - Edilson D. da Silva
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | - Elaine C. Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
- Correspondence:
| |
Collapse
|
14
|
The Neural Network of Neuropeptide S (NPS): Implications in Food Intake and Gastrointestinal Functions. Pharmaceuticals (Basel) 2021; 14:ph14040293. [PMID: 33810221 PMCID: PMC8065993 DOI: 10.3390/ph14040293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The Neuropeptide S (NPS), a 20 amino acids peptide, is recognized as the endogenous ligand of a previously orphan G protein-coupled receptor, now termed NPS receptor (NPSR). The limited distribution of the NPS-expressing neurons in few regions of the brainstem is in contrast with the extensive expression of NPSR in the rodent central nervous system, suggesting the involvement of this receptor in several brain functions. In particular, NPS promotes locomotor activity, behavioral arousal, wakefulness, and unexpectedly, at the same time, it exerts anxiolytic-like properties. Intriguingly, the NPS system is implicated in the rewarding properties of drugs of abuse and in the regulation of food intake. Here, we focus on the anorexigenic effect of NPS, centrally injected in different brain areas, in both sated and fasted animals, fed with standard or palatable food, and, in addition, on its influence in the gastrointestinal tract. Further investigations, regarding the role of the NPS/NPSR system and its potential interaction with other neurotransmitters could be useful to understand the mechanisms underlying its action and to develop novel pharmacological tools for the treatment of aberrant feeding patterns and obesity.
Collapse
|
15
|
Batran RZ, Gugnani KS, Maher TJ, Khedr MA. New quinolone derivatives as neuropeptide S receptor antagonists: Design, synthesis, homology modeling, dynamic simulations and modulation of Gq/Gs signaling pathways. Bioorg Chem 2021; 111:104817. [PMID: 33848721 DOI: 10.1016/j.bioorg.2021.104817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/16/2021] [Accepted: 03/06/2021] [Indexed: 01/04/2023]
Abstract
In a search for new neuropeptide S receptor antagonists, we have described a new series of quinolone-pyranopyrimidine hybrid derivatives aiming to modify the inhibitory characters towards NPSR to develop new therapeutic strategies against anxiety, addiction and food disorders. We identified six potent antagonists 3, 4b, 6, 8, 9 and 10 which counteracted the stimulatory effect of NPS at both Gq and Gs pathways, at low micromolar concentrations, through modulation of Ca2+ and cAMP signaling, respectively. Molecular docking predicted the orientation mode of the top active compounds; 10 and 4b with ΔG value of -23.94 and -23.87 kcal/mol, respectively that is considered good when compared to that of the reference compound ML154 (ΔG = -25.75 kcal/mol) . Molecular dynamic simulations confirmed the stability of binding of compound 10 to the homology model of NPSR as it reached the equilibrium after 4 ns at RMSD of 1.00 Å while ML154 was faster to achieve the equilibrium after 2 ns at RMSD of 1.00 Å.
Collapse
Affiliation(s)
- Rasha Z Batran
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. Box 12622, Egypt.
| | - Kuljeet S Gugnani
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, USA
| | - Timothy J Maher
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, USA
| | - Mohammed A Khedr
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, P.O. Box 11795, Egypt
| |
Collapse
|
16
|
Chauveau F, Claverie D, Lardant E, Varin C, Hardy E, Walter A, Canini F, Rouach N, Rancillac A. Neuropeptide S promotes wakefulness through the inhibition of sleep-promoting ventrolateral preoptic nucleus neurons. Sleep 2020; 43:5547657. [PMID: 31403694 DOI: 10.1093/sleep/zsz189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
STUDY OBJECTIVES The regulation of sleep-wake cycles is crucial for the brain's health and cognitive skills. Among the various substances known to control behavioral states, intraventricular injection of neuropeptide S (NPS) has already been shown to promote wakefulness. However, the NPS signaling pathway remains elusive. In this study, we characterized the effects of NPS in the ventrolateral preoptic nucleus (VLPO) of the hypothalamus, one of the major brain structures regulating non-rapid eye movement (NREM) sleep. METHODS We combined polysomnographic recordings, vascular reactivity, and patch-clamp recordings in mice VLPO to determine the NPS mode of action. RESULTS We demonstrated that a local infusion of NPS bilaterally into the anterior hypothalamus (which includes the VLPO) significantly increases awakening and specifically decreases NREM sleep. Furthermore, we established that NPS application on acute brain slices induces strong and reversible tetrodotoxin (TTX)-sensitive constriction of blood vessels in the VLPO. This effect strongly suggests that the local neuronal network is downregulated in the presence of NPS. At the cellular level, we revealed by electrophysiological recordings and in situ hybridization that NPSR mRNAs are only expressed by non-Gal local GABAergic neurons, which are depolarized by the application of NPS. Simultaneously, we showed that NPS hyperpolarizes sleep-promoting neurons, which is associated with an increased frequency in their spontaneous IPSC inputs. CONCLUSION Altogether, our data reveal that NPS controls local neuronal activity in the VLPO. Following the depolarization of local GABAergic neurons, NPS indirectly provokes feed-forward inhibition onto sleep-promoting neurons, which translates into a decrease in NREM sleep to favor arousal.
Collapse
Affiliation(s)
- Frédéric Chauveau
- IRBA (Armed Biomedical Research Institute), Brétigny-sur-Orge, France
| | - Damien Claverie
- IRBA (Armed Biomedical Research Institute), Brétigny-sur-Orge, France
| | - Emma Lardant
- IRBA (Armed Biomedical Research Institute), Brétigny-sur-Orge, France
| | - Christophe Varin
- Brain Plasticity Unit, CNRS, UMR 8249, ESPCI-ParisTech, PSL Research University, Paris, France.,Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Eléonore Hardy
- Neuroglial Interactions in Cerebral Physiopathology, CIRB, Collège de France, CNRS UMR 7241/Inserm U1050, Labex Memolife, PSL Research University, Paris, France
| | - Augustin Walter
- Neuroglial Interactions in Cerebral Physiopathology, CIRB, Collège de France, CNRS UMR 7241/Inserm U1050, Labex Memolife, PSL Research University, Paris, France
| | - Frédéric Canini
- IRBA (Armed Biomedical Research Institute), Brétigny-sur-Orge, France.,Ecole du Val de Grâce, Laveran, Paris
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, CIRB, Collège de France, CNRS UMR 7241/Inserm U1050, Labex Memolife, PSL Research University, Paris, France
| | - Armelle Rancillac
- Brain Plasticity Unit, CNRS, UMR 8249, ESPCI-ParisTech, PSL Research University, Paris, France.,Neuroglial Interactions in Cerebral Physiopathology, CIRB, Collège de France, CNRS UMR 7241/Inserm U1050, Labex Memolife, PSL Research University, Paris, France
| |
Collapse
|
17
|
Kolodziejczyk MH, Fendt M. Corticosterone Treatment and Incubation Time After Contextual Fear Conditioning Synergistically Induce Fear Memory Generalization in Neuropeptide S Receptor-Deficient Mice. Front Neurosci 2020; 14:128. [PMID: 32231512 PMCID: PMC7081924 DOI: 10.3389/fnins.2020.00128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Fear memory generalization is a learning mechanism that promotes flexible fear responses to novel situations. While fear generalization has adaptive value, overgeneralization of fear memory is a characteristic feature of the pathology of anxiety disorders. The neuropeptide S (NPS) receptor (NPSR) has been shown to be associated with anxiety disorders and has recently been identified as a promising target for treating anxiety disorders. Moreover, stress hormones play a role in regulating both physiological and pathological fear memories and might therefore also be involved in anxiety disorders. However, little is known about the interplay between stress hormone and the NPS system in the development of overgeneralized fear. Here, we hypothesize that NPSR-deficient mice with high corticosterone (CORT) levels during the fear memories consolidation are more prone to develop generalized fear. To address this hypothesis, NPSR-deficient mice were submitted to a contextual fear conditioning procedure. Immediately after conditioning, mice received CORT injections (2.5 or 5 mg/kg). One day and 1 month later, the mice were tested for the specificity and strength of their fear memory, their anxiety level, and their startle response. Moreover, CORT blood levels were monitored throughout the experiment. Using this protocol, a specific contextual fear memory was observed in all experimental groups, despite the 5-mg/kg CORT-treated NPSR-deficient mice. This group of mice showed a generalization of contextual fear memory and a decreased startle response, and the females of this group had significantly less body weight gain. These findings indicate that interplay between CORT and the NPS system during the consolidation of fear memories is critical for the generalization of contextual fear.
Collapse
Affiliation(s)
- Malgorzata H Kolodziejczyk
- Neuropharmaclogy of Emotional Systems, Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Markus Fendt
- Neuropharmaclogy of Emotional Systems, Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
18
|
Kreutzmann JC, Khalil R, Köhler JC, Mayer D, Florido A, Nadal R, Andero R, Fendt M. Neuropeptide‐S‐receptor deficiency affects sex‐specific modulation of safety learning by pre‐exposure to electric stimuli. GENES BRAIN AND BEHAVIOR 2020; 19:e12621. [DOI: 10.1111/gbb.12621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/28/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Judith C. Kreutzmann
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
- Department of Systems Physiology of LearningLeibniz Institute for Neurobiology Magdeburg Germany
| | - Radwa Khalil
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Jana C. Köhler
- Institute of PhysiologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
- Center of Behavioral Brain SciencesOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Dana Mayer
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Antonio Florido
- Institut de NeurocièncesUniversitat Autònoma de Barcelona Bellaterra Spain
| | - Roser Nadal
- Institut de NeurocièncesUniversitat Autònoma de Barcelona Bellaterra Spain
- CIBERSAMInstituto de Salud Carlos III, Universitat Autònoma de Barcelona Bellaterra Spain
- Department of Psychobiology and Methodology in Health SciencesUniversitat Autònoma de Barcelona Bellaterra Spain
| | - Raül Andero
- Institut de NeurocièncesUniversitat Autònoma de Barcelona Bellaterra Spain
- CIBERSAMInstituto de Salud Carlos III, Universitat Autònoma de Barcelona Bellaterra Spain
- Department of Psychobiology and Methodology in Health SciencesUniversitat Autònoma de Barcelona Bellaterra Spain
| | - Markus Fendt
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
- Center of Behavioral Brain SciencesOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| |
Collapse
|
19
|
Zhang ZR, Tao YX. Physiology, pharmacology, and pathophysiology of neuropeptide S receptor. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 161:125-148. [PMID: 30711025 DOI: 10.1016/bs.pmbts.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neuropeptide S receptor 1 (NPSR1), originally named G protein-coupled receptor 154 (GPR154), was deorphanized in 2002 with neuropeptide S identified as the endogenous ligand. NPSR1 is primarily expressed in bronchus, brain as well as immune cells. It regulates multiple physiological processes, including immunoregulation, locomotor activity, anxiety, arousal, learning and memory, and food intake and energy balance. SNPs of NPSR1 are significantly associated with several diseases, including asthma, anxiolytic and arousal disorders, and rheumatoid arthritis. This chapter will summarize studies on NPSR1, including its molecular structure, tissue distribution, physiology, pharmacology, and pathophysiology.
Collapse
Affiliation(s)
- Zheng-Rui Zhang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States; Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States; Center for Neuroscience Initiative, Auburn University, Auburn, AL, United States.
| |
Collapse
|
20
|
Grund T, Neumann ID. Brain neuropeptide S: via GPCR activation to a powerful neuromodulator of socio-emotional behaviors. Cell Tissue Res 2018; 375:123-132. [PMID: 30112573 DOI: 10.1007/s00441-018-2902-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/21/2018] [Indexed: 12/19/2022]
Abstract
Neuropeptide S (NPS) has attracted the attention of the scientific community due to its potent anxiolytic-like and fear-attenuating effects studied in rodents. Therefore, NPS might represent a treatment option for neuropsychiatric disorders, such as anxiety disorders, even more so as single nucleotide polymorphisms in the human NPS receptor gene have been associated with increased anxiety traits that contribute to the pathogenesis of fear- and anxiety-related disorders. However, the signaling mechanisms underlying the behavioral effects of NPS and the interaction with other brain neuropeptides are still rather unknown. To illuminate how NPS modulates the expression of selected emotional and social behaviors, the present review focuses on neuroanatomical and electrophysiological studies, as well as intracellular signaling mechanisms following NPS receptor stimulation in rodents. We will also discuss interactions of the NPS system with two well-described neuropeptides, namely corticotropin-releasing factor and oxytocin, which may contribute to the fear- and anxiety-reducing effects.
Collapse
Affiliation(s)
- Thomas Grund
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, 93040, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
21
|
Grund T, Neumann ID. Neuropeptide S Induces Acute Anxiolysis by Phospholipase C-Dependent Signaling within the Medial Amygdala. Neuropsychopharmacology 2018; 43:1156-1163. [PMID: 28805209 PMCID: PMC5854792 DOI: 10.1038/npp.2017.169] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022]
Abstract
Neuropeptide S (NPS) is an important anxiolytic substance of the brain. However, the signaling pathways downstream of NPS receptor (NPSR) activation, underlying the behavioral effect of NPS, remain largely unknown. Here, we show that bilateral microinfusion of NPS (0.2 nmol/0.5 μl) into the medial amygdala (MeA) of male adult Wistar rats reduced anxiety-related behavior on both the elevated plus-maze and the open field. Moreover, as shown in amygdala tissue micropunches intracerebroventricular infusion of NPS (1 nmol/5 μl) (1) evoked phosphorylation and synthesis of CaMKIIα in relation to reference protein β-tubulin representing Ca2+ influx, and (2) induced phosphorylation of mitogen-activated protein kinase ERK1/2. The NPS-induced anxiolysis was prevented by local inhibition of phospholipase C signaling using U73122 (0.5 nmol/0.5 μl) in the MeA, indicating the behavioral relevance of this pathway. Conversely, local pharmacological blockade of adenylyl cyclase signaling using 2',5'-dideoxyadenosine (12.5 nmol/0.5 μl) failed to inhibit the anxiolytic effect of NPS infused into the MeA. Hence, NPS promotes acute anxiolysis within the MeA dependent on NPSR-mediated phospholipase C signaling. Taken together, our study extends the knowledge about the intracellular signaling mechanisms underlying the potent anxiolytic profile of NPS.
Collapse
Affiliation(s)
- Thomas Grund
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany,Department of Behavioural and Molecular Neurobiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany, Tel: +49 941 943 3053, Fax: +49 941 943 3052, E-mail:
| |
Collapse
|
22
|
Zhang S, You Z, Wang S, Yang J, Yang L, Sun Y, Mi W, Yang L, McCabe MF, Shen S, Chen L, Mao J. Neuropeptide S modulates the amygdaloidal HCN activities (Ih) in rats: Implication in chronic pain. Neuropharmacology 2016; 105:420-433. [PMID: 26855147 DOI: 10.1016/j.neuropharm.2016.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
Abstract
Neuropeptide S (NPS), an endogenous anxiolytic, has been shown to protect against chronic pain through interacting with its cognate NPS receptor (NPSR) in the brain. However, the cellular mechanism of this NPS action remains unclear. We report that NPS inhibits hyperpolarization-activated cyclic nucleotide-gated (HCN) channel current (Ih) in the rat's amygdala through activation of NPSR. This NPS effect is mediated through ERK1/2 phosphorylation in a subset of pyramidal-like neurons located in the medial amygdala. The characters of the recorded Ih suggest a major role for HCN1 activity in this process. Inhibition of Ih by NPS stimulates the glutamatergic drive onto fast spiking intra-amygdalolidal GABAergic interneurons, which in turn facilitates GABA release onto pyramidal-like neurons. Moreover, the HCN1 expression is increased in the amygdala of rats with peripheral nerve injury and intra-amygdaloidal administration of the HCN channel inhibitor ZD7288 attenuates nociceptive behavior in these rats. These results suggest that NPS-mediated modulation of intra-amygdaloidal HCN channel activities may be an important central inhibitory mechanism for regulation of chronic pain.
Collapse
Affiliation(s)
- Shuzhuo Zhang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Zerong You
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shuxing Wang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jinsheng Yang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lujia Yang
- Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Yan Sun
- Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Wenli Mi
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Liling Yang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael F McCabe
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shiqian Shen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lucy Chen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jianren Mao
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
23
|
Adori C, Barde S, Bogdanovic N, Uhlén M, Reinscheid RR, Kovacs GG, Hökfelt T. Neuropeptide S- and Neuropeptide S receptor-expressing neuron populations in the human pons. Front Neuroanat 2015; 9:126. [PMID: 26441556 PMCID: PMC4585187 DOI: 10.3389/fnana.2015.00126] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/07/2015] [Indexed: 01/26/2023] Open
Abstract
Neuropeptide S (NPS) is a regulatory peptide with potent pharmacological effects. In rodents, NPS is expressed in a few pontine cell clusters. Its receptor (NPSR1) is, however, widely distributed in the brain. The anxiolytic and arousal-promoting effects of NPS make the NPS–NPSR1 system an interesting potential drug target in mood-related disorders. However, so far possible disease-related mechanisms involving NPS have only been studied in rodents. To validate the relevance of these animal studies for i.a. drug development, we have explored the distribution of NPS-expressing neurons in the human pons using in situ hybridization and stereological methods and we compared the distribution of NPS mRNA expressing neurons in the human and rat brain. The calculation revealed a total number of 22,317 ± 2411 NPS mRNA-positive neurons in human, bilaterally. The majority of cells (84%) were located in the parabrachial area in human: in the extension of the medial and lateral parabrachial nuclei, in the Kölliker-Fuse nucleus and around the adjacent lateral lemniscus. In human, in sharp contrast to the rodents, only very few NPS-positive cells (5%) were found close to the locus coeruleus. In addition, we identified a smaller cell cluster (11% of all NPS cells) in the pontine central gray matter both in human and rat, which has not been described previously even in rodents. We also examined the distribution of NPSR1 mRNA-expressing neurons in the human pons. These cells were mainly located in the rostral laterodorsal tegmental nucleus, the cuneiform nucleus, the microcellular tegmental nucleus region and in the periaqueductal gray. Our results show that both NPS and NPSR1 in the human pons are preferentially localized in regions of importance for integration of visceral autonomic information and emotional behavior. The reported interspecies differences must, however, be considered when looking for targets for new pharmacotherapeutical interventions.
Collapse
Affiliation(s)
- Csaba Adori
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| | - Nenad Bogdanovic
- Geriatric Department, Institute for Clinical Medicine, Oslo University Oslo, Norway
| | - Mathias Uhlén
- Science for Life Laboratory, Department of Neuroscience, Karolinska Institutet Stockholm, Sweden ; Science for Life Laboratory, Albanova University Center, Royal Institute of Technology Stockholm, Sweden
| | - Rainer R Reinscheid
- Department of Pharmaceutical Sciences, University of California, Irvine Irvine, CA, USA ; Department of Pharmacology, University of California, Irvine Irvine, CA, USA ; Department of Molecular Biology and Biochemistry, University of California, Irvine Irvine, CA, USA
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna Vienna, Austria
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
24
|
Hassler C, Zhang Y, Gilmour B, Graf T, Fennell T, Snyder R, Deschamps J, Reinscheid RK, Garau C, Runyon SP. Identification of neuropeptide S antagonists: structure-activity relationship studies, X-ray crystallography, and in vivo evaluation. ACS Chem Neurosci 2014; 5:731-44. [PMID: 24964000 PMCID: PMC4140596 DOI: 10.1021/cn500113c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/24/2014] [Indexed: 12/16/2022] Open
Abstract
Modulation of the neuropeptide S (NPS) system has been linked to a variety of CNS disorders such as panic disorder, anxiety, sleeping disorders, asthma, obesity, PTSD, and substance abuse. In this study, a series of diphenyltetrahydro-1H-oxazolo[3,4-α]pyrazin-3(5H)-ones were synthesized and evaluated for antagonist activity at the neuropeptide S receptor. The absolute configuration was determined by chiral resolution of the key synthetic intermediate, followed by analysis of one of the individual enantiomers by X-ray crystallography. The R isomer was then converted to a biologically active compound (34) that had a Ke of 36 nM. The most potent compound displayed enhanced aqueous solubility compared with the prototypical antagonist SHA-68 and demonstrated favorable pharmacokinetic properties for behavioral assessment. In vivo analysis in mice indicated a significant blockade of NPS induced locomotor activity at an ip dose of 50 mg/kg. This suggests that analogs having improved drug-like properties will facilitate more detailed studies of the neuropeptide S receptor system.
Collapse
Affiliation(s)
- Carla Hassler
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Yanan Zhang
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Brian Gilmour
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Tyler Graf
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Timothy Fennell
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Rodney Snyder
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Jeffrey
R. Deschamps
- Center
for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6930, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Rainer K. Reinscheid
- Department
of Pharmaceutical Sciences, University of
California, Irvine, 2214
Natural Sciences I, Mail Code: 3958, Irvine, California 92697-3958, United States
| | - Celia Garau
- Department
of Pharmaceutical Sciences, University of
California, Irvine, 2214
Natural Sciences I, Mail Code: 3958, Irvine, California 92697-3958, United States
| | - Scott P. Runyon
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| |
Collapse
|
25
|
Zhang S, Jin X, You Z, Wang S, Lim G, Yang J, McCabe M, Li N, Marota J, Chen L, Mao J. Persistent nociception induces anxiety-like behavior in rodents: role of endogenous neuropeptide S. Pain 2014; 155:1504-1515. [PMID: 24793908 DOI: 10.1016/j.pain.2014.04.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/17/2014] [Accepted: 04/23/2014] [Indexed: 11/30/2022]
Abstract
Anxiety disorder is a comorbid condition of chronic pain. Analgesics and anxiolytics, subject to addiction and abuse, are currently used to manage pain and anxiety symptoms. However, the cellular mechanism underlying chronic pain and anxiety interaction remains to be elucidated. We report that persistent nociception following peripheral nerve injury induced anxiety-like behavior in rodents. Brain expression and release of neuropeptide S (NPS), a proposed endogenous anxiolytic peptide, was diminished in rodents with coexisting nociceptive and anxiety-like behaviors. Intracerebroventricular administration of exogenous NPS concurrently improved both nociceptive and anxiety-like behaviors. At the cellular level, NPS enhanced intra-amygdaloidal inhibitory transmission by increasing presynaptic gamma-aminobutyric acid (GABA) release from interneurons. These findings indicate that the interaction between nociceptive and anxiety-like behaviors in rodents may be regulated by the altered NPS-mediated intra-amygdaloidal GABAergic inhibition. The data suggest that enhancing the brain NPS function may be a new strategy to manage comorbid pain and anxiety.
Collapse
Affiliation(s)
- Shuzhuo Zhang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA Department of Anesthesia and Pain Therapy, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100050, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
A novel brain penetrant NPS receptor antagonist, NCGC00185684, blocks alcohol-induced ERK-phosphorylation in the central amygdala and decreases operant alcohol self-administration in rats. J Neurosci 2013; 33:10132-42. [PMID: 23761908 DOI: 10.1523/jneurosci.4742-12.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Neuropeptide S receptor, a Gs/Gq-coupled GPCR expressed in brain regions involved in mediating drug reward, has recently emerged as a candidate therapeutic target in addictive disorders. Here, we describe the in vitro and in vivo pharmacology of a novel, selective and brain penetrant NPSR antagonist with nanomolar affinity for the NPSR, NCGC00185684. In vitro, NCGC00185684 shows biased antagonist properties, and preferentially blocks ERK-phosphorylation over intracellular cAMP or calcium responses to NPS. In vivo, systemic NCGC00185684 blocks alcohol-induced ERK-phosphorylation in the rat central amygdala, a region involved in regulation of alcohol intake. NCGC00185684 also decreases operant alcohol self-administration, and lowers motivation for alcohol reward as measured using progressive ratio responding. These effects are behaviorally specific, in that they are observed at doses that do not influence locomotor activity or reinstatement responding following extinction. Together, these data provide an initial validation of the NPSR as a therapeutic target in alcoholism.
Collapse
|
27
|
Ghazal P, Ciccocioppo R, Ubaldi M. Morphine dependence is associated with changes in neuropeptide S receptor expression and function in rat brain. Peptides 2013; 46:6-12. [PMID: 23684726 DOI: 10.1016/j.peptides.2013.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/08/2013] [Accepted: 05/08/2013] [Indexed: 10/26/2022]
Abstract
Neuropeptide S (NPS) is a newly identified ligand for the previously discovered G-protein coupled receptor 154 now named NPSR. Recently, it has been found that NPSR gene expression is altered during ethanol withdrawal. In this study we tried to elucidate if NPSR gene expression is modified in response to morphine withdrawal and its protracted abstinence. To induce opioid dependence Wistar rats were treated for 7 days with morphine. Twelve hours and 7 days after the last morphine administration brains were removed and the expression of NPSR mRNA was analyzed by in situ hybridization (ISH). Successful induction of opioid dependence was confirmed by the naloxone-precipitated withdrawal test 2 h after the last morphine administration. Moreover, 7 days after the last morphine dose animals were checked for signs of anxiety and for intracerebroventricular (ICV) NPS (0.3 and 1.0 nmol) induced anxiolytic effects by elevated plus maze (EPM). Results showed that in morphine treated rats strong somatic signs of naloxone-precipitated withdrawal occurred. ISH data revealed changes in NPSR gene expression in the ventral tegmental area as well as in the basolateral amygdaloid and bed nucleus of stria terminalis at 12 h and 7 days into abstinence, respectively. At 7 days into abstinence post dependent animals showed higher levels of anxiety than controls which were significantly attenuated by NPS. These results demonstrated that morphine dependence induction led to (i) changes in NPSR mRNA expression; (ii) increased anxiety; and (iii) more potent anxiolytic-like effect of NPS.
Collapse
Affiliation(s)
- Pasha Ghazal
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | | | | |
Collapse
|
28
|
Martelli D, Stanić D, Dutschmann M. The emerging role of the parabrachial complex in the generation of wakefulness drive and its implication for respiratory control. Respir Physiol Neurobiol 2013; 188:318-23. [PMID: 23816598 DOI: 10.1016/j.resp.2013.06.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 12/22/2022]
Abstract
The parabrachial complex is classically seen as a major neural knot that transmits viscero- and somatosensory information toward the limbic and thalamic forebrain. In the present review we summarize recent findings that imply an emerging role of the parabrachial complex as an integral part of the ascending reticular arousal system, which promotes wakefulness and cortical activation. The ascending parabrachial projections that target wake-promoting hypothalamic areas and the basal forebrain are largely glutamatergic. Such fast synaptic transmission could be even more significant in promoting wakefulness and its characteristic pattern of cortical activation than the cholinergic or mono-aminergic ascending pathways that have been emphasized extensively in the past. A similar role of the parabrachial complex could also apply for its more established function in control of breathing. Here the parabrachial respiratory neurons may modulate and adapt breathing via the control of respiratory phase transition and upper airway patency, particularly during respiratory and non-respiratory behavior associated with wakefulness.
Collapse
Affiliation(s)
- Davide Martelli
- Florey Institute of Neuroscience and Mental Health, Gate 11, Royal Parade, University of Melbourne, Victoria 3052, Australia
| | | | | |
Collapse
|
29
|
Schank JR, Ryabinin AE, Giardino WJ, Ciccocioppo R, Heilig M. Stress-related neuropeptides and addictive behaviors: beyond the usual suspects. Neuron 2012; 76:192-208. [PMID: 23040815 PMCID: PMC3495179 DOI: 10.1016/j.neuron.2012.09.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Addictive disorders are chronic, relapsing conditions that cause extensive disease burden. Genetic factors partly account for susceptibility to addiction, but environmental factors such as stressful experiences and prolonged exposure of the brain to addictive drugs promote its development. Progression to addiction involves neuroadaptations within neurocircuitry that mediates stress responses and is influenced by several peptidergic neuromodulators. While corticotrophin releasing factor is the prototypic member of this class, recent work has identified several additional stress-related neuropeptides that play an important role in regulation of drug intake and relapse, including the urocortins, nociceptin, substance P, and neuropeptide S. Here, we review this emerging literature, discussing to what extent the properties of these neuromodulators are shared or distinct and considering their potential as drug targets.
Collapse
Affiliation(s)
- Jesse R. Schank
- Laboratory of Clinical and Translational Studies, National Inst. on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| | - Andrey E. Ryabinin
- Dept. of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098
| | - William J. Giardino
- Dept. of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098
| | - Roberto Ciccocioppo
- Dept. of Experimental Medicine and Public Health, Camerino University, Italy
| | - Markus Heilig
- Laboratory of Clinical and Translational Studies, National Inst. on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
30
|
The role of the neuropeptide S system in addiction: focus on its interaction with the CRF and hypocretin/orexin neurotransmission. Prog Neurobiol 2012; 100:48-59. [PMID: 23041581 DOI: 10.1016/j.pneurobio.2012.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/19/2012] [Accepted: 09/26/2012] [Indexed: 11/20/2022]
Abstract
Recent behavioral, pharmacological and molecular findings have linked the NPS system to drug dependence. Most of the evidence supports the possibility that increased NPS activity may contribute to shaping vulnerability to addiction, especially relapse. However, data suggesting that the anxiolytic-like properties of NPS may have protective effects on addiction have been also published. In addition, evidence from conditioned place preference experiments, though not unequivocal, suggests that NPS per se is devoid of motivational properties. Intriguingly, several effects of NPS on drugs of abuse appear to be mediated by downstream activation of brain corticotrophin releasing factor (CRF) and hypocretin-1/orexin-A (Hcrt-1/Ox-A) systems. The major objective of the present article is to review the existing work on NPS and addiction. Particular attention is devoted to the interpretation of findings revealing complex neuroanatomical and functional interactions between NPS, CRF, and the Hcrt-1/Ox-A systems. Original data aimed at shedding light on the role of NPS in reward processing are also shown. Finally, existing findings are discussed within the framework of addiction theories, and the potential of the NPS system as a treatment target for addiction is analyzed.
Collapse
|
31
|
The functional coding variant Asn107Ile of the neuropeptide S receptor gene (NPSR1) is associated with schizophrenia and modulates verbal memory and the acoustic startle response. Int J Neuropsychopharmacol 2012; 15:1205-15. [PMID: 22078257 DOI: 10.1017/s1461145711001623] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recently, the neuropeptide S (NPS) neurotransmitter system has been identified as a promising psychopharmacological drug target given that NPS has shown anxiolytic-like and stress-reducing properties and memory-enhancing effects in rodent models. NPS binds to the G-protein-coupled receptor encoded by the neuropeptide S receptor gene (NPSR1). A functional variant within this gene leads to an amino-acid exchange (rs324981, Asn107Ile) resulting in a gain-of-function in the Ile107 variant which was recently associated with panic disorder in two independent studies. A potential psychopharmacological effect of NPS on schizophrenia psychopathology was demonstrated by showing that NPS can block NMDA antagonist-induced deficits in prepulse inhibition. We therefore explored a potential role of the NPSR1 Asn107Ile variation in schizophrenia. A case-control sample of 778 schizophrenia patients and 713 healthy control subjects was successfully genotyped for NPSR1 Asn107Ile. Verbal declarative memory and acoustic startle response were measured in subsamples of the schizophrenia patients. The case-control comparison revealed that the low-functioning NPSR1 Asn107 variant was significantly associated with schizophrenia (OR 1.19, p=0.017). Moreover, specifically decreased verbal memory consolidation was found in homozygous Asn107 carriers while memory acquisition was unaffected by NPSR1 genotype. The schizophrenia patients carrying the Ile107 variant demonstrated significantly reduced startle amplitudes but unaffected prepulse inhibition and habituation. The present study confirms findings from rodent models demonstrating an effect of NPS on memory consolidation and startle response in schizophrenia patients. Based on these findings, we consider NPS as a promising target for antipsychotic drug development.
Collapse
|
32
|
González CR, Martínez de Morentin PB, Martínez-Sánchez N, Gómez-Díaz C, Lage R, Varela L, Diéguez C, Nogueiras R, Castaño JP, López M. Hyperthyroidism differentially regulates neuropeptide S system in the rat brain. Brain Res 2012; 1450:40-8. [PMID: 22425186 DOI: 10.1016/j.brainres.2012.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 01/23/2012] [Accepted: 02/10/2012] [Indexed: 12/14/2022]
Abstract
Thyroid hormones play an important role in the regulation of energy balance, sleep and emotional behaviors. Neuropeptide S (NPS) is a recently discovered neuropeptide, regulating feeding, sleep and anxiety. Here, we examined the effect of hyperthyroidism on the gene and protein expression of neuropeptide S and its receptor (NPS-R) in the hypothalamus, brainstem and amygdala of rats. Our results showed that the expression of NPS and NPS-R was differentially modulated by hyperthyroidism in the rat brain. NPS and NPS-R mRNA and protein levels were decreased in the hypothalamus of hyperthyroid rats. Conversely NPS-R expression was highly increased in the brainstem and NPS and NPS-R expression were unchanged in the amygdala of these rats. These data suggest that changes in anxiety and food intake patterns observed in hyperthyroidism could be associated with changes in the expression of NPS and NPS-R. Thus, the NPS/NPS-R system may be involved in several hyperthyroidism-associated comorbidities.
Collapse
Affiliation(s)
- Carmen R González
- Department of Physiology, School of Medicine-CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela (A Coruña), Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Petrella C, Agostini S, Guerrini R, Calò G, Giaquinto A, De Nuccio C, Improta G, Broccardo M. Neuropeptide S inhibits stress-stimulated faecal output in the rat. Pharmacol Res 2011; 64:471-7. [DOI: 10.1016/j.phrs.2011.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/03/2011] [Accepted: 06/10/2011] [Indexed: 01/16/2023]
|
34
|
Clark SD, Duangdao DM, Schulz S, Zhang L, Liu X, Xu YL, Reinscheid RK. Anatomical characterization of the neuropeptide S system in the mouse brain by in situ hybridization and immunohistochemistry. J Comp Neurol 2011; 519:1867-93. [PMID: 21452235 DOI: 10.1002/cne.22606] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuropeptide S (NPS) is the endogenous ligand for GPR154, now referred to as neuropeptide S receptor (NPSR). Physiologically, NPS has been characterized as a modulator of arousal and has been shown to produce anxiolytic-like effects in rodents. Neuroanatomical analysis in the rat revealed that the NPS precursor mRNA is strongly expressed in the brainstem in only three distinct regions: the locus coeruleus area, the principal sensory trigeminal nucleus, and the lateral parabrachial nucleus. NPSR mRNA expression in the rat is widely distributed, with the strongest expression in the olfactory nuclei, amygdala, subiculum, and some cortical structures, as well as various thalamic and hypothalamic regions. Here we report a comprehensive map of NPS precursor and receptor mRNA expression in the mouse brain. NPS precursor mRNA is only expressed in two regions in the mouse brainstem: the Kölliker-Fuse nucleus and the pericoerulear area. Strong NPSR mRNA expression was found in the dorsal endopiriform nucleus, the intra-midline thalamic and hypothalamic regions, the basolateral amgydala, the subiculum, and various cortical regions. In order to elucidate projections from NPS-producing nuclei in the brainstem to NPSR-expressing structures throughout the brain, we performed immunohistochemical analysis in the mouse brain by using two polyclonal anti-NPS antisera. The distribution of NPS-immunopositive fibers overlaps well with NPSR mRNA expression in thalamic and hypothalamic regions. Mismatches between NPSR expression and NPS-immunoreactive fiber staining were observed in hippocampal, olfactory, and cortical regions. These data demonstrate that the distribution pattern of the central NPS system is only partially conserved between mice and rats.
Collapse
Affiliation(s)
- Stewart D Clark
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, Califonria 92697, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Dal Ben D, Antonini I, Buccioni M, Lambertucci C, Marucci G, Thomas A, Volpini R, Cristalli G. Neuropeptide S receptor: recent updates on nonpeptide antagonist discovery. ChemMedChem 2011; 6:1163-71. [PMID: 21452188 DOI: 10.1002/cmdc.201100038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 02/24/2011] [Indexed: 11/09/2022]
Abstract
Neuropeptide S (NPS) is a 20-amino acid peptide of great interest due to its possible involvement in several biological processes, including food intake, locomotion, wakefulness, arousal, and anxiety. Structure-activity relationship studies of NPS have identified key points for structural modifications with the goal of modulating NPS receptor (NPSR) agonist activity or achieving antagonism at the same receptor. Only limited information is available for nonpeptide NPSR antagonists. In the last year, several studies have been reported in literature which present various series of small molecules as antagonists of this receptor. The results allow a comparison of the structures and activities of these molecules, leading to the design of new ligands with increased potency and improved pharmacological and pharmacokinetic profiles. This work presents a brief overview of the available information regarding structural features and pharmacological characterization of published nonpeptide NPSR antagonists.
Collapse
Affiliation(s)
- Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino via S. Agostino 1, 62032 Camerino, MC, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Guerrini R, Salvadori S, Rizzi A, Regoli D, Calo' G. Neurobiology, pharmacology, and medicinal chemistry of neuropeptide S and its receptor. Med Res Rev 2011; 30:751-77. [PMID: 19824051 DOI: 10.1002/med.20180] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neuropeptide S (NPS) is the last neuropeptide identified via reverse pharmacology techniques. NPS selectively binds and activates a previous orphan GPCR, now named NPSR, producing intracellular calcium mobilization and increases in cAMP levels. Biological functions modulated by the NPS/NPSR system include anxiety, arousal, locomotion, food intake, memory, and drug addiction. The primary sequence of NPS (in humans SFRNGVGTGMKKTSFQRAKS) is highly conserved among vertebrates especially at the N-terminus. Ala- and D-scan studies demonstrated that this part of the molecule is crucial for biological activity. Focused structure-activity studies performed on Phe(2), Arg(3), and Asn(4) confirmed this indication and revealed the chemical requirements of these positions for NPSR binding and activation. The sequence Gly(5)-Val(6)-Gly(7) seems to be important for shaping the bioactive conformation of the peptide. Structure-activity studies on Gly(5) enabled identification of the first generation of peptidergic NPSR pure antagonists including [D-Cys(tBu)(5)]NPS and [D-Val(5)]NPS whose antagonist properties were confirmed in vivo. Finally, the pharmacological features of substituted bicyclic piperazine molecules (e.g. SHA 68 (3-oxo-1,1-diphenyl-tetrahydro-oxazolo[3,4-a]pyrazine-7-carboxylic acid 4-fluoro-benzylamide) were recently published making available the first generation of nonpeptide NPSR antagonists. The use in future studies of NPSR antagonists will be of paramount importance for understanding which biological functions are controlled by the NPS/NPSR system and for defining the therapeutic potential of selective NPSR ligands.
Collapse
Affiliation(s)
- Remo Guerrini
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara, Ferrara, Italy.
| | | | | | | | | |
Collapse
|
37
|
Zhang Y, Wang Z, Parks GS, Civelli O. Novel neuropeptides as ligands of orphan G protein-coupled receptors. Curr Pharm Des 2011; 17:2626-31. [PMID: 21728976 PMCID: PMC5828022 DOI: 10.2174/138161211797416110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 12/13/2010] [Indexed: 12/18/2022]
Abstract
Neuropeptides control a wide spectrum of physiological functions. They are central to our understanding of brain functions. They exert their actions by interacting with specific G protein-coupled receptors. We however have not found all the neuropeptides that exist in organisms. The search for novel neuropeptides is thus of great interest as it will lead to a better understanding of brain function and disorders. In this review, we will discuss the historical as well as the current approaches to neuropeptide discovery, with a particular emphasis on the orphan GPCR-based strategies. We will also discuss two novel peptides, neuropeptide S and neuromedin S, as examples of the impact of neuropeptide discovery on our understanding of brain functions. Finally, the challenges facing neuropeptide discovery will be discussed.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pharmacology, University of California Irvine, Irvine, CA 92697, United States
| | - Zhiwei Wang
- Department of Pharmacology, University of California Irvine, Irvine, CA 92697, United States
| | - Gregory Scott Parks
- Department of Pharmacology, University of California Irvine, Irvine, CA 92697, United States
| | - Olivier Civelli
- Department of Pharmacology, University of California Irvine, Irvine, CA 92697, United States
| |
Collapse
|
38
|
Dal Ben D, Antonini I, Buccioni M, Lambertucci C, Marucci G, Vittori S, Volpini R, Cristalli G. Molecular modeling studies on the human neuropeptide S receptor and its antagonists. ChemMedChem 2010; 5:371-83. [PMID: 20087922 DOI: 10.1002/cmdc.200900467] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuropeptide S (NPS) is a 20-residue peptide of great interest due to its potential involvement in several biological processes such as arousal, anxiety, and food intake. The NPS receptor belongs to the rhodopsin-like G-protein-coupled receptor superfamily, and several polymorphisms and isoforms of this receptor are associated with asthma, allergies, and bronchial hyper-responsiveness, in particular the Asn 107 Ile mutation. Limited structural information is available for this peptide-receptor system, particularly regarding the NPS receptor structure, its nonpeptide ligands, and the molecular aspects of agonist and antagonist binding processes. In this work, rhodopsin-based homology models of the NPS receptor and its Asn 107 Ile variant were built and refined in a membrane bilayer model, and binding modes for nonpeptide antagonists were simulated. This study provides the first structural study of the human NPS receptor, and the results provide a starting point for further characterization of the binding modes of its antagonists, and for the rational design of new NPS receptor ligands.
Collapse
Affiliation(s)
- Diego Dal Ben
- Dipartimento di Scienze Chimiche, Università di Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Tu Z, Volk M, Shah K, Clerkin K, Liang JF. Constructing bioactive peptides with pH-dependent activities. Peptides 2009; 30:1523-8. [PMID: 19464332 PMCID: PMC2735074 DOI: 10.1016/j.peptides.2009.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 05/06/2009] [Accepted: 05/11/2009] [Indexed: 10/20/2022]
Abstract
Many bioactive peptides are featured by their arginine and lysine rich contents. In this study, lysine and arginine residues in lytic peptides were selectively replaced by histidines. Although resulting histidine-containing lytic peptides had decreased activity, they did show pH-dependent cytotoxicity. The activity of the constructed histidine-containing lytic peptides increased 2-8 times as the solution pH changed from 7.4 to 5.5. More importantly, these histidine-containing peptides maintain the same cell killing mechanism as their parent peptides by causing cell lysis. Both the activity and pH-sensitivity of histidine-containing peptides are tunable by adjusting histidine substitution numbers and positions. This study has presented a general strategy to create bioactive peptides with desired pH-sensitivity to meet the needs of various applications such as cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | - Jun F. Liang
- Corresponding Author Dr. Jun F. Liang, Department of Chemistry, Chemical Biology, and Biomedical Engineering Stevens Institute of Technology Hoboken, NJ 07030 USA Tel.: 201-216-5640; Fax: 201-216-8240 Email.:
| |
Collapse
|
40
|
Revel FG, Gottowik J, Gatti S, Wettstein JG, Moreau JL. Rodent models of insomnia: A review of experimental procedures that induce sleep disturbances. Neurosci Biobehav Rev 2009; 33:874-99. [DOI: 10.1016/j.neubiorev.2009.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 03/04/2009] [Accepted: 03/04/2009] [Indexed: 12/21/2022]
|
41
|
Neuropeptide S reinstates cocaine-seeking behavior and increases locomotor activity through corticotropin-releasing factor receptor 1 in mice. J Neurosci 2009; 29:4155-61. [PMID: 19339610 DOI: 10.1523/jneurosci.5256-08.2009] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuropeptide S (NPS) is a recently discovered neuropeptide that increases arousal and wakefulness while decreasing anxiety-like behavior. Here, we used a self-administration paradigm to demonstrate that intracerebroventricular infusion of NPS reinstates extinguished cocaine-seeking behavior in a dose-dependent manner in mice. The highest dose of NPS (0.45 nM) increased active lever pressing in the absence of cocaine to levels that were equivalent to those observed during self-administration. In addition, we examined the role of the corticotropin-releasing factor receptor 1 (CRF(1)) in this behavior as well as locomotor stimulation and anxiolysis. CRF(1) knock-out mice did not respond to either the locomotor stimulant or cocaine reinstatement effects of NPS, but still responded to its anxiolytic effect. The CRF(1) antagonist antalarmin also blocked the increase in active lever responding in the reinstatement model and the locomotor activating properties of NPS without affecting its anxiolytic actions. Our results suggest that NPS receptors may be an important target for drug abuse research and treatment and that CRF(1) mediates the cocaine-seeking and locomotor stimulant effects of NPS, but not its effects on anxiety-like behavior.
Collapse
|
42
|
Li W, Chang M, Peng YL, Gao YH, Zhang JN, Han RW, Wang R. Neuropeptide S produces antinociceptive effects at the supraspinal level in mice. ACTA ACUST UNITED AC 2009; 156:90-5. [PMID: 19345242 DOI: 10.1016/j.regpep.2009.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 03/06/2009] [Accepted: 03/25/2009] [Indexed: 11/25/2022]
Abstract
Neuropeptide S (NPS), a recently identified bioactive peptide through reverse pharmacology approach, was reported to regulate arousal, anxiety, locomotor activity, feeding behaviors and drug reward. NPS receptor (NPSR) mRNA was found in the area related to the descending control system of pain, such as the periaqueductal gray (PAG), raphe nuclei, and lateral parabrachial nucleus (PBN), suggesting a possible role of the NPS-NPSR system in the regulation of pain transmission. In the present study, we evaluated the effects of NPS in pain modulation at the supraspinal level for the first time, using the tail withdrawal test and hot-plate test in mice. NPS (mouse, 0.01-1 nmol) injected intracerebroventricularly (i.c.v.) caused a significant increase of tail withdrawal latency and paw-licking/jumping latency in the tail withdrawal test and the hot-plate test, respectively. Antinociceptive effect elicited by NPS (0.1 nmol, i.c.v.) was not affected by naloxone (i.c.v., 10 nmol co-injection or i.p., 10 mg/kg, 10 min prior to NPS) in both tail withdrawal test and hot-plate test. However, at the doses, naloxone significantly inhibited the antinociceptive effect induced by morphine (i.c.v., 3 nmol). NPS (0.1 nmol, i.c.v.)-induced antinociception was inhibited by co-injection with 10 nmol, but not 3 nmol [D-Cys(tBu)(5)]NPS, a peptidergic antagonist identified more recently, while [D-Cys(tBu)(5)]NPS (3 and 10 nmol) alone induced neither hyperalgesia nor antinociception. These results revealed that NPS could produce antinociception through NPS receptor, but not opioid receptor, and NPS-NPSR system could be a potential target for developing new analgesic drugs.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, State Key Laboratory of Applied Organic Chemistry, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | | | | | | | | | | | | |
Collapse
|
43
|
Li W, Gao YH, Chang M, Peng YL, Yao J, Han RW, Wang R. Neuropeptide S inhibits the acquisition and the expression of conditioned place preference to morphine in mice. Peptides 2009; 30:234-40. [PMID: 18992779 DOI: 10.1016/j.peptides.2008.10.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/26/2008] [Accepted: 10/06/2008] [Indexed: 11/25/2022]
Abstract
Neuropeptide S (NPS), a recently identified bioactive peptide, was reported to regulate arousal, anxiety, motoring and feeding behaviors. NPS precursor and NPS receptor mRNA were found in the amygdala, the ventral tegmental area (VTA) and the substantia nigra, the area thought to modulate rewarding properties of drugs. In the present study, we examined the influence of NPS on the rewarding action of morphine, using the unbiased conditioned place preference (CPP) paradigm. Morphine (1, 3 and 6 nmol, i.c.v.) induced a significant place preference. For testing the effect of NPS on the acquisition of morphine CPP, mice were given the combination of NPS and morphine on the conditioning days, and without drug treatment on the followed test day. To study the effect of NPS on the expression of morphine CPP, mice received the treatment of saline/morphine on the conditioning days, and NPS on the test day, 15 min before the placement in the CPP apparatus. Our results showed that NPS (0.3-10 nmol) alone neither induced place preference nor aversion, however, NPS (1 and 3 nmol) blocked the acquisition of CPP induced by 3 nmol morphine, and acquisition of 6 nmol morphine-induced CPP was also reduced by NPS (6 and 10 nmol). Moreover, the expression of CPP induced by 6 nmol morphine was also inhibited by NPS (0.1, 1 and 10 nmol). These results revealed the involvement of NPS in rewarding activities of morphine, and demonstrated the interaction between NPS system and opioid system for the first time.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Applied Organic Chemistry, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
44
|
Badia-Elder NE, Henderson AN, Bertholomey ML, Dodge NC, Stewart RB. The effects of neuropeptide S on ethanol drinking and other related behaviors in alcohol-preferring and -nonpreferring rats. Alcohol Clin Exp Res 2008; 32:1380-7. [PMID: 18564106 DOI: 10.1111/j.1530-0277.2008.00713.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neuropeptide S (NPS) is a 20-amino-acid peptide, identified in the brain and periphery, that is reported to regulate arousal, anxiety, and feeding behavior. Studies were conducted to determine whether this peptide would alter ethanol intake, sucrose intake, anxiety, and general motor activity in alcohol-preferring (P) and -nonpreferring (NP) rats. METHODS Experiment 1: P and NP rats were given 8 weeks of continuous access to ethanol (15% w/v) and water. All rats were implanted with a cannula aimed at either the left or right lateral ventricle and 1 week later were infused with NPS (0.075, 0.3, 1.2 nmol) or artificial cerebrospinal fluid (aCSF) and tested for ethanol, food, and water intake. Experiment 2: The same doses of NPS were administered to a group of P rats and intake of 2.5% (w/v) sucrose was measured. Experiment 3: Infusions of NPS (1.2 nmol) or aCSF were administered to P rats prior to a 5-minute test on an elevated plus maze. Experiment 4: Ethanol naive P and NP rats were infused with NPS (0.075, 0.15, 0.3, 0.6, and 1.2 nmol) or aCSF prior to a 20-minute test in activity monitors. RESULTS NPS reduced ethanol intake in P, but not in NP rats. It did not influence sucrose solution intake in P rats. However, an increase in food intake was seen in both rat lines following lower doses of the peptide. NPS did neither alter anxiety-like behavior in the elevated plus maze test nor was there an effect on general motor activity; however, there was an increase in the amount of time spent in the center of the activity monitors following infusions of 0.6 nmol of NPS in P, but not in NP rats, indicating anxioltyic actions of the peptide. CONCLUSIONS These data suggest a role for NPS in the modulation of ethanol drinking and possibly anxiety-like behavior in rats selectively bred for high alcohol drinking.
Collapse
Affiliation(s)
- Nancy E Badia-Elder
- Department of Psychology, IUPUI, School of Science, 402 North Blackford St., LD124, Indianapolis, IN 46202, USA.
| | | | | | | | | |
Collapse
|
45
|
Abstract
In asthma, as in many other common multifactorial diseases, the identification of the susceptibility genes has been challenging because consistent results at the genome-wide significance level have been scarce. So far, genome-wide scans have been reported in 17 study populations. By means of genome-wide linkage and hierarchical association analysis, six positional candidate genes (ADAM33, PHF11, DPP10, GPR154, HLA-G, and CYFIP2) for asthma-related traits have been cloned. The interactions of the proteins encoded by these genes and the biological relevance of these signaling pathways in the development of asthma are still poorly understood. Also, the disease mechanisms resulting from the genetic variance in the genes identified remain largely unknown. Although this information is gradually accumulating, we can examine the statistical robustness of each genetic finding in combination with the limited data available on the functional properties of the corresponding proteins to estimate the strengths and weaknesses in the chains of evidence.
Collapse
|
46
|
Reiss D, Wolter-Sutter A, Krezel W, Ouagazzal AM. Effects of social crowding on emotionality and expression of hippocampal nociceptin/orphanin FQ system transcripts in mice. Behav Brain Res 2007; 184:167-73. [PMID: 17697718 DOI: 10.1016/j.bbr.2007.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 06/29/2007] [Accepted: 07/06/2007] [Indexed: 11/19/2022]
Abstract
The novel nociceptin/orphanin FQ (N/OFQ) system was proposed to be an important component of neural circuits involved in stress-coping behaviour and fear. This study investigated whether variations between the mouse strains in vulnerability to social crowding stress might be linked to different regulation of N/OFQ system transcripts in mice. Three weeks old C57BL/6J (B6), BALB/cByJ (CBy) and 129S2/SvPas (129S2) male mice were housed individually or in crowded (7/cage) conditions and then tested as adults in a battery of anxiety tests (open field, elevated plus-maze and acoustic startle reflex tests). Both 129S2 and B6 mice displayed increased signs of anxiety under crowded housing, while CBy mice tended to show the opposite profile. Analysis of gene expression revealed a 10-fold increase of nociceptin precursor and 4-fold increase of the NOP receptor mRNAs contents in the hippocampus of CBy mice kept in crowded conditions compared to those housed individually. In B6 mice, mRNA level of the peptide precursor remained unchanged, while that of the receptor was increased by 2-fold under crowding compared to individual housing. No significant changes were detected in 129S2 mice. These findings show that social housing may be important environmental stress factor in mice depending on the strain. The possible involvement of central nociceptin mechanisms in behavioural resilience to social crowding stress is discussed.
Collapse
Affiliation(s)
- D Reiss
- ICS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | | | | | | |
Collapse
|