1
|
Wu MW, Kourdougli N, Portera-Cailliau C. Network state transitions during cortical development. Nat Rev Neurosci 2024; 25:535-552. [PMID: 38783147 DOI: 10.1038/s41583-024-00824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Mammalian cortical networks are active before synaptogenesis begins in earnest, before neuronal migration is complete, and well before an animal opens its eyes and begins to actively explore its surroundings. This early activity undergoes several transformations during development. The most important of these is a transition from episodic synchronous network events, which are necessary for patterning the neocortex into functionally related modules, to desynchronized activity that is computationally more powerful and efficient. Network desynchronization is perhaps the most dramatic and abrupt developmental event in an otherwise slow and gradual process of brain maturation. In this Review, we summarize what is known about the phenomenology of developmental synchronous activity in the rodent neocortex and speculate on the mechanisms that drive its eventual desynchronization. We argue that desynchronization of network activity is a fundamental step through which the cortex transitions from passive, bottom-up detection of sensory stimuli to active sensory processing with top-down modulation.
Collapse
Affiliation(s)
- Michelle W Wu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nazim Kourdougli
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Pradeepan KS, McCready FP, Wei W, Khaki M, Zhang W, Salter MW, Ellis J, Martinez-Trujillo J. Calcium-Dependent Hyperexcitability in Human Stem Cell-Derived Rett Syndrome Neuronal Networks. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100290. [PMID: 38420187 PMCID: PMC10899066 DOI: 10.1016/j.bpsgos.2024.100290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 01/14/2024] [Indexed: 03/02/2024] Open
Abstract
Background Mutations in MECP2 predominantly cause Rett syndrome and can be modeled in vitro using human stem cell-derived neurons. Patients with Rett syndrome have signs of cortical hyperexcitability, such as seizures. Human stem cell-derived MECP2 null excitatory neurons have smaller soma size and reduced synaptic connectivity but are also hyperexcitable due to higher input resistance. Paradoxically, networks of MECP2 null neurons show a decrease in the frequency of network bursts consistent with a hypoconnectivity phenotype. Here, we examine this issue. Methods We reanalyzed multielectrode array data from 3 isogenic MECP2 cell line pairs recorded over 6 weeks (n = 144). We used a custom burst detection algorithm to analyze network events and isolated a phenomenon that we termed reverberating super bursts (RSBs). To probe potential mechanisms of RSBs, we conducted pharmacological manipulations using bicuculline, EGTA-AM, and DMSO on 1 cell line (n = 34). Results RSBs, often misidentified as single long-duration bursts, consisted of a large-amplitude initial burst followed by several high-frequency, low-amplitude minibursts. Our analysis revealed that MECP2 null networks exhibited increased frequency of RSBs, which produced increased bursts compared with isogenic controls. Bicuculline or DMSO treatment did not affect RSBs. EGTA-AM selectively eliminated RSBs and rescued network burst dynamics. Conclusions During early development, MECP2 null neurons are hyperexcitable and produce hyperexcitable networks. This may predispose them to the emergence of hypersynchronic states that potentially translate into seizures. Network hyperexcitability depends on asynchronous neurotransmitter release that is likely driven by presynaptic Ca2+ and can be rescued by EGTA-AM to restore typical network dynamics.
Collapse
Affiliation(s)
- Kartik S. Pradeepan
- Graduate Program in Neuroscience, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Fraser P. McCready
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wei Wei
- Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Milad Khaki
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Wenbo Zhang
- Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael W. Salter
- Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - James Ellis
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julio Martinez-Trujillo
- Graduate Program in Neuroscience, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, and Psychiatry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Psychiatry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
3
|
Shin HI, Park MW, Lee WH. Spontaneous movements as prognostic tool of neurodevelopmental outcomes in preterm infants: a narrative review. Clin Exp Pediatr 2023; 66:458-464. [PMID: 37202346 PMCID: PMC10626027 DOI: 10.3345/cep.2022.01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023] Open
Abstract
An estimated 15 million infants are born prematurely each year. Although the survival rate of preterm infants has increased with advances in perinatal and neonatal care, many still experience various complications. Since improving the neurodevelopmental outcomes of preterm births is a crucial topic, accurate evaluations should be performed to detect infants at high risk of cerebral palsy. General movements are spontaneous movements involving the whole body as the expression of neural activity and can be an excellent biomarker of neural dysfunction caused by brain impairment in preterm infants. The predictive value of general movements with respect to cerebral palsy increases with continuous observation. Automated approaches to examining general movements based on machine learning can help overcome the limited utilization of assessment tools owing to their qualitative or semiquantitative nature and high dependence on assessor skills and experience. This review covers each of these topics by summarizing normal and abnormal general movements as well as recent advances in automatic approaches based on infantile spontaneous movements.
Collapse
Affiliation(s)
- Hyun Iee Shin
- Department of Rehabilitation Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Myung Woo Park
- Department of Rehabilitation Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Woo Hyung Lee
- Department of Rehabilitation Medicine, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Nagappan-Chettiar S, Burbridge TJ, Umemori H. Activity-Dependent Synapse Refinement: From Mechanisms to Molecules. Neuroscientist 2023:10738584231170167. [PMID: 37140155 DOI: 10.1177/10738584231170167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The refinement of immature neuronal networks into efficient mature ones is critical to nervous system development and function. This process of synapse refinement is driven by the neuronal activity-dependent competition of converging synaptic inputs, resulting in the elimination of weak inputs and the stabilization of strong ones. Neuronal activity, whether in the form of spontaneous activity or experience-evoked activity, is known to drive synapse refinement in numerous brain regions. More recent studies are now revealing the manner and mechanisms by which neuronal activity is detected and converted into molecular signals that appropriately regulate the elimination of weaker synapses and stabilization of stronger ones. Here, we highlight how spontaneous activity and evoked activity instruct neuronal activity-dependent competition during synapse refinement. We then focus on how neuronal activity is transformed into the molecular cues that determine and execute synapse refinement. A comprehensive understanding of the mechanisms underlying synapse refinement can lead to novel therapeutic strategies in neuropsychiatric diseases characterized by aberrant synaptic function.
Collapse
Affiliation(s)
- Sivapratha Nagappan-Chettiar
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy J Burbridge
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Fitzpatrick MJ, Kerschensteiner D. Homeostatic plasticity in the retina. Prog Retin Eye Res 2022; 94:101131. [PMID: 36244950 DOI: 10.1016/j.preteyeres.2022.101131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
Vision begins in the retina, whose intricate neural circuits extract salient features of the environment from the light entering our eyes. Neurodegenerative diseases of the retina (e.g., inherited retinal degenerations, age-related macular degeneration, and glaucoma) impair vision and cause blindness in a growing number of people worldwide. Increasing evidence indicates that homeostatic plasticity (i.e., the drive of a neural system to stabilize its function) can, in principle, preserve retinal function in the face of major perturbations, including neurodegeneration. Here, we review the circumstances and events that trigger homeostatic plasticity in the retina during development, sensory experience, and disease. We discuss the diverse mechanisms that cooperate to compensate and the set points and outcomes that homeostatic retinal plasticity stabilizes. Finally, we summarize the opportunities and challenges for unlocking the therapeutic potential of homeostatic plasticity. Homeostatic plasticity is fundamental to understanding retinal development and function and could be an important tool in the fight to preserve and restore vision.
Collapse
|
6
|
Kleschevnikov AM. Enhanced GIRK2 channel signaling in Down syndrome: A feasible role in the development of abnormal nascent neural circuits. Front Genet 2022; 13:1006068. [PMID: 36171878 PMCID: PMC9510977 DOI: 10.3389/fgene.2022.1006068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
The most distinctive feature of Down syndrome (DS) is moderate to severe cognitive impairment. Genetic, molecular, and neuronal mechanisms of this complex DS phenotype are currently under intensive investigation. It is becoming increasingly clear that the abnormalities arise from a combination of initial changes caused by triplication of genes on human chromosome 21 (HSA21) and later compensatory adaptations affecting multiple brain systems. Consequently, relatively mild initial cognitive deficits become pronounced with age. This pattern of changes suggests that one approach to improving cognitive function in DS is to target the earliest critical changes, the prevention of which can change the ‘trajectory’ of the brain development and reduce the destructive effects of the secondary alterations. Here, we review the experimental data on the role of KCNJ6 in DS-specific brain abnormalities, focusing on a putative role of this gene in the development of abnormal neural circuits in the hippocampus of genetic mouse models of DS. It is suggested that the prevention of these early abnormalities with pharmacological or genetic means can ameliorate cognitive impairment in DS.
Collapse
|
7
|
Schröter M, Wang C, Terrigno M, Hornauer P, Huang Z, Jagasia R, Hierlemann A. Functional imaging of brain organoids using high-density microelectrode arrays. MRS BULLETIN 2022; 47:530-544. [PMID: 36120104 PMCID: PMC9474390 DOI: 10.1557/s43577-022-00282-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 05/31/2023]
Abstract
ABSTRACT Studies have provided evidence that human cerebral organoids (hCOs) recapitulate fundamental milestones of early brain development, but many important questions regarding their functionality and electrophysiological properties persist. High-density microelectrode arrays (HD-MEAs) represent an attractive analysis platform to perform functional studies of neuronal networks at the cellular and network scale. Here, we use HD-MEAs to derive large-scale electrophysiological recordings from sliced hCOs. We record the activity of hCO slices over several weeks and probe observed neuronal dynamics pharmacologically. Moreover, we present results on how the obtained recordings can be spike-sorted and subsequently studied across scales. For example, we show how to track single neurons across several days on the HD-MEA and how to infer axonal action potential velocities. We also infer putative functional connectivity from hCO recordings. The introduced methodology will contribute to a better understanding of developing neuronal networks in brain organoids and provide new means for their functional characterization. IMPACT STATEMENT Human cerebral organoids (hCOs) represent an attractive in vitro model system to study key physiological mechanisms underlying early neuronal network formation in tissue with healthy or disease-related genetic backgrounds. Despite remarkable advances in the generation of brain organoids, knowledge on the functionality of their neuronal circuits is still scarce. Here, we used complementary metal-oxide-semiconductor (CMOS)-based high-density microelectrode arrays (HD-MEAs) to perform large-scale recordings from sliced hCOs over several weeks and quantified their activity across scales. Using single-cell and network metrics, we were able to probe aspects of hCO neurophysiology that are more difficult to obtain with other techniques, such as patch clamping (lower yield) and calcium imaging (lower temporal resolution). These metrics included, for example, extracellular action potential (AP) waveform features and axonal AP velocity at the cellular level, as well as functional connectivity at the network level. Analysis was enabled by the large sensing area and the high spatiotemporal resolution provided by HD-MEAs, which allowed recordings from hundreds of neurons and spike sorting of their activity. Our results demonstrate that HD-MEAs provide a multi-purpose platform for the functional characterization of hCOs, which will be key in improving our understanding of this model system and assessing its relevance for translational research. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1557/s43577-022-00282-w.
Collapse
Affiliation(s)
- Manuel Schröter
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Congwei Wang
- NRD, F. Hoffmann-La Roche Ltd., Roche Innovation Center Basel, Basel, Switzerland
| | - Marco Terrigno
- NRD, F. Hoffmann-La Roche Ltd., Roche Innovation Center Basel, Basel, Switzerland
| | - Philipp Hornauer
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Ziqiang Huang
- EMBL Imaging Centre, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Ravi Jagasia
- NRD, F. Hoffmann-La Roche Ltd., Roche Innovation Center Basel, Basel, Switzerland
| | - Andreas Hierlemann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
8
|
Righes Marafiga J, Vendramin Pasquetti M, Calcagnotto ME. In vitro Oscillation Patterns Throughout the Hippocampal Formation in a Rodent Model of Epilepsy. Neuroscience 2021; 479:1-21. [PMID: 34710537 DOI: 10.1016/j.neuroscience.2021.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Specific oscillatory patterns are considered biomarkers of pathological neuronal network in brain diseases, such as epilepsy. However, the dynamics of underlying oscillations during the epileptogenesis throughout the hippocampal formation in the temporal lobe epilepsy is not clear. Here, we characterized in vitro oscillatory patterns within the hippocampal formation of epileptic rats, under 4-aminopyridine (4-AP)-induced hyperexcitability and during the spontaneous network activity, at two periods of epileptogenesis. First, at the beginning of epileptic chronic phase, 30 days post-pilocarpine-induced Status Epilepticus (SE). Second, at the established epilepsy, 60 days post-SE. The 4-AP-bathed slices from epileptic rats had increased susceptibility to ictogenesis in CA1 at 30 days post-SE, and in entorhinal cortex and dentate gyrus at 60 days post-SE. Higher power and phase coherence were detected mainly for gamma and/or high frequency oscillations (HFOs), in a region- and stage-specific manner. Interestingly, under spontaneous network activity, even without 4-AP-induced hyperexcitability, slices from epileptic animals already exhibited higher power of gamma and HFOs in different areas of hippocampal formation at both periods of epileptogenesis, and higher phase coherence in fast ripples at 60 days post-SE. These findings reinforce the critical role of gamma and HFOs in each one of the hippocampal formation areas during ongoing neuropathological processes, tuning the neuronal network to epilepsy.
Collapse
Affiliation(s)
- Joseane Righes Marafiga
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Mayara Vendramin Pasquetti
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil.
| |
Collapse
|
9
|
Martini FJ, Guillamón-Vivancos T, Moreno-Juan V, Valdeolmillos M, López-Bendito G. Spontaneous activity in developing thalamic and cortical sensory networks. Neuron 2021; 109:2519-2534. [PMID: 34293296 DOI: 10.1016/j.neuron.2021.06.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/05/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022]
Abstract
Developing sensory circuits exhibit different patterns of spontaneous activity, patterns that are related to the construction and refinement of functional networks. During the development of different sensory modalities, spontaneous activity originates in the immature peripheral sensory structures and in the higher-order central structures, such as the thalamus and cortex. Certainly, the perinatal thalamus exhibits spontaneous calcium waves, a pattern of activity that is fundamental for the formation of sensory maps and for circuit plasticity. Here, we review our current understanding of the maturation of early (including embryonic) patterns of spontaneous activity and their influence on the assembly of thalamic and cortical sensory networks. Overall, the data currently available suggest similarities between the developmental trajectory of brain activity in experimental models and humans, which in the future may help to improve the early diagnosis of developmental disorders.
Collapse
Affiliation(s)
- Francisco J Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| | - Teresa Guillamón-Vivancos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Verónica Moreno-Juan
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Miguel Valdeolmillos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| |
Collapse
|
10
|
Leighton AH, Cheyne JE, Houwen GJ, Maldonado PP, De Winter F, Levelt CN, Lohmann C. Somatostatin interneurons restrict cell recruitment to retinally driven spontaneous activity in the developing cortex. Cell Rep 2021; 36:109316. [PMID: 34233176 DOI: 10.1016/j.celrep.2021.109316] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/11/2021] [Accepted: 06/06/2021] [Indexed: 12/16/2022] Open
Abstract
During early development, before the eyes open, synaptic refinement of sensory networks depends on activity generated by developing neurons themselves. In the mouse visual system, retinal cells spontaneously depolarize and recruit downstream neurons to bursts of activity, where the number of recruited cells determines the resolution of synaptic retinotopic refinement. Here we show that during the second post-natal week in mouse visual cortex, somatostatin (SST)-expressing interneurons control the recruitment of cells to retinally driven spontaneous activity. Suppressing SST interneurons increases cell participation and allows events to spread farther along the cortex. During the same developmental period, a second type of high-participation, retina-independent event occurs. During these events, cells receive such large excitatory charge that inhibition is overwhelmed and large parts of the cortex participate in each burst. These results reveal a role of SST interneurons in restricting retinally driven activity in the visual cortex, which may contribute to the refinement of retinotopy.
Collapse
Affiliation(s)
- Alexandra H Leighton
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Juliette E Cheyne
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Gerrit J Houwen
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Paloma P Maldonado
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Fred De Winter
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Christiaan N Levelt
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, the Netherlands
| | - Christian Lohmann
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Choi BJ, Chen YCD, Desplan C. Building a circuit through correlated spontaneous neuronal activity in the developing vertebrate and invertebrate visual systems. Genes Dev 2021; 35:677-691. [PMID: 33888564 PMCID: PMC8091978 DOI: 10.1101/gad.348241.121] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During the development of the vertebrate nervous systems, genetic programs assemble an immature circuit that is subsequently refined by neuronal activity evoked by external stimuli. However, prior to sensory experience, the intrinsic property of the developing nervous system also triggers correlated network-level neuronal activity, with retinal waves in the developing vertebrate retina being the best documented example. Spontaneous activity has also been found in the visual system of Drosophila Here, we compare the spontaneous activity of the developing visual system between mammalian and Drosophila and suggest that Drosophila is an emerging model for mechanistic and functional studies of correlated spontaneous activity.
Collapse
Affiliation(s)
- Ben Jiwon Choi
- Department of Biology, New York University, New York, New York 10003, USA
| | | | - Claude Desplan
- Department of Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
12
|
Iannone AF, De Marco García NV. The Emergence of Network Activity Patterns in the Somatosensory Cortex - An Early Window to Autism Spectrum Disorders. Neuroscience 2021; 466:298-309. [PMID: 33887384 DOI: 10.1016/j.neuroscience.2021.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022]
Abstract
Across mammalian species, patterned activity in neural populations is a prominent feature of developing sensory cortices. Numerous studies have long appreciated the diversity of these patterns, characterizing their differences in spatial and temporal dynamics. In the murine somatosensory cortex, neuronal co-activation is thought to guide the formation of sensory maps and prepare the cortex for sensory processing after birth. While pioneering studies deftly utilized slice electrophysiology and unit recordings to characterize correlated activity, a detailed understanding of the underlying circuits remains poorly understood. More recently, advances in in vivo calcium imaging in awake mouse pups and increasing genetic tractability of neuronal types have allowed unprecedented manipulation of circuit components at select developmental timepoints. These novel approaches have proven fundamental in uncovering the identity of neurons engaged in correlated activity during development. In particular, recent studies have highlighted interneurons as key in refining the spatial extent and temporal progression of patterned activity. Here, we discuss how emergent synchronous activity across the first postnatal weeks is shaped by underlying gamma aminobutyric acid (GABA)ergic contributors in the somatosensory cortex. Further, the importance of participation in specific activity patterns per se for neuronal maturation and perdurance will be of particular highlight in this survey of recent literature. Finally, we underscore how aberrant neuronal synchrony and disrupted inhibitory interneuron activity underlie sensory perturbations in neurodevelopmental disorders, particularly Autism Spectrum Disorders (ASDs), emphasizing the importance of future investigative approaches that incorporate the spatiotemporal features of patterned activity alongside the cellular components to probe disordered circuit assembly.
Collapse
Affiliation(s)
- Andrew F Iannone
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Natalia V De Marco García
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
13
|
Hintze A, Gültas M, Semmelhack EA, Wichmann C. Ultrastructural maturation of the endbulb of Held active zones comparing wild-type and otoferlin-deficient mice. iScience 2021; 24:102282. [PMID: 33851098 PMCID: PMC8022229 DOI: 10.1016/j.isci.2021.102282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/18/2021] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Endbulbs of Held are located in the anteroventral cochlear nucleus and present the first central synapses of the auditory pathway. During development, endbulbs mature functionally to enable rapid and powerful synaptic transmission with high temporal precision. This process is accompanied by morphological changes of endbulb terminals. Loss of the hair cell-specific protein otoferlin (Otof) abolishes neurotransmission in the cochlea and results in the smaller endbulb of Held terminals. Thus, peripheral hearing impairment likely also leads to alterations in the morphological synaptic vesicle (SV) pool size at individual endbulb of Held active zones (AZs). Here, we investigated endbulb AZs in pre-hearing, young, and adult wild-type and Otof−/− mice. During maturation, SV numbers at endbulb AZs increased in wild-type mice but were found to be reduced in Otof−/− mice. The SV population at a distance of 0–15 nm was most strongly affected. Finally, overall SV diameters decreased in Otof−/− animals during maturation. Maturation of wt endbulb of Held active zones leads to more synaptic vesicles At endbulbs of otoferlin knockout mice, synaptic vesicles decline with age Mainly two distinct synaptic vesicle populations are affected Synaptic vesicles sizes are reduced in six-month-old otoferlin knockout animals
Collapse
Affiliation(s)
- Anika Hintze
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.,Collaborative Research Center 1286, University of Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Mehmet Gültas
- Breeding Informatics Group, Department of Animal Sciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Esther A Semmelhack
- Developmental, Neural, and Behavioral Biology MSc/PhD Program, University of Göttingen, Göttingen, Germany
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.,Collaborative Research Center 1286, University of Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Bush KM, Barber KR, Martinez JA, Tang SJ, Wairkar YP. Drosophila model of anti-retroviral therapy induced peripheral neuropathy and nociceptive hypersensitivity. Biol Open 2021; 10:bio.054635. [PMID: 33504470 PMCID: PMC7860131 DOI: 10.1242/bio.054635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The success of antiretroviral therapy (ART) has improved the survival of HIV-infected patients significantly. However, significant numbers of patients on ART whose HIV disease is well controlled show peripheral sensory neuropathy (PSN), suggesting that ART may cause PSN. Although the nucleoside reverse transcriptase inhibitors (NRTIs), one of the vital components of ART, are thought to contribute to PSN, the mechanisms underlying the PSN induced by NRTIs are unclear. In this study, we developed a Drosophila model of NRTI-induced PSN that recapitulates the salient features observed in patients undergoing ART: PSN and nociceptive hypersensitivity. Furthermore, our data demonstrate that pathways known to suppress PSN induced by chemotherapeutic drugs are ineffective in suppressing the PSN or nociception induced by NRTIs. Instead, we found that increased dynamics of a peripheral sensory neuron may possibly underlie NRTI-induced PSN and nociception. Our model provides a solid platform in which to investigate further mechanisms of ART-induced PSN and nociceptive hypersensitivity. This article has an associated First Person interview with the first author of the paper. Summary: Nucleoside reverse transcriptase inhibitors (NRTIs) that are important components of anti-retroviral therapies also cause peripheral sensory neuropathies (PSN). This article investigates ways in which NRTIs may cause PSN and outlines ways to better understand the mechanisms underlying it.
Collapse
Affiliation(s)
- Keegan M Bush
- Neuroscience Graduate Program, University of. Texas Medical Branch, Galveston, TX 77555, USA.,Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kara R Barber
- Neuroscience Graduate Program, University of. Texas Medical Branch, Galveston, TX 77555, USA.,Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jade A Martinez
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shao-Jun Tang
- Neuroscience Graduate Program, University of. Texas Medical Branch, Galveston, TX 77555, USA .,Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yogesh P Wairkar
- Neuroscience Graduate Program, University of. Texas Medical Branch, Galveston, TX 77555, USA .,Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
15
|
Hayashi H, Horinokita I, Yamada Y, Hamada K, Takagi N, Nomizu M. Effects of laminin-111 peptide coatings on rat neural stem/progenitor cell culture. Exp Cell Res 2020; 400:112440. [PMID: 33359470 DOI: 10.1016/j.yexcr.2020.112440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/26/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Neurons require adhesive scaffolds for their growth and differentiation. Laminins are a major cell adhesive component of basement membranes and have various biological activities in the peripheral and central nervous systems. Here, we evaluated the biological activities of 5 peptides derived from laminin-111 as a scaffold for mouse neuroblastoma Neuro2a cells and rat neural stem/progenitor cells (NPCs). The 5 peptides showed Neuro2a cell attachment activity similar to that of poly-d-lysine. However, when NPCs were cultured on the peptides, 2 syndecan-binding peptides, AG73 (RKRLQVQLSIRT, mouse laminin α1 chain 2719-2730) and C16 (KAFDITYVRLKF, laminin γ1 chain 139-150), demonstrated significantly higher cell attachment and neurite extension activities than other peptides including integrin-binding ones. Long-term cell culture experiments showed that both AG73 and C16 supported the growth of neurons and astrocytes that had differentiated from NPCs. Furthermore, C16 markedly promoted the expression of neuronal markers such as synaptosomal-associated protein-25 and syntaxin 1A. These results indicate that AG73 and C16 are useful for NPC cultures and that C16 can be applied to specialized research on synapses in differentiated neurons. These peptides have the potential for use as valuable biomaterials for NPC research.
Collapse
Affiliation(s)
- Hideki Hayashi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Hachioji, 192-0392, Japan.
| | - Ichiro Horinokita
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Hachioji, 192-0392, Japan
| | - Yuji Yamada
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Hachioji, 192-0392, Japan
| | - Keisuke Hamada
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Hachioji, 192-0392, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Hachioji, 192-0392, Japan
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Hachioji, 192-0392, Japan
| |
Collapse
|
16
|
Togashi K, Tsuji M, Takeuchi S, Nakahama R, Koizumi H, Emoto K. Adeno-Associated Virus-Mediated Single-Cell Labeling of Mitral Cells in the Mouse Olfactory Bulb: Insights into the Developmental Dynamics of Dendrite Remodeling. Front Cell Neurosci 2020; 14:572256. [PMID: 33362468 PMCID: PMC7756102 DOI: 10.3389/fncel.2020.572256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/16/2020] [Indexed: 12/28/2022] Open
Abstract
Neurons typically remodel axons/dendrites for functional refinement of neural circuits in the developing brain. Mitral cells in the mammalian olfactory system remodel their dendritic arbors in the perinatal development, but the underlying molecular and cellular mechanisms remain elusive in part due to a lack of convenient methods to label mitral cells with single-cell resolution. Here we report a novel method for single-cell labeling of mouse mitral cells using adeno-associated virus (AAV)-mediated gene delivery. We first demonstrated that AAV injection into the olfactory ventricle of embryonic day 14.5 (E14.5) mice preferentially labels mitral cells in the olfactory bulb (OB). Birthdate labeling indicated that AAV can transduce mitral cells independently of their birthdates. Furthermore, in combination with the Cre-mediated gene expression system, AAV injection allows visualization of mitral cells at single-cell resolution. Using this AAV-mediated single-cell labeling method, we investigated dendrite development of mitral cells and found that ~50% of mitral cells exhibited mature apical dendrites with a single thick and tufted branch before birth, suggesting that a certain population of mitral cells completes dendrite remodeling during embryonic stages. We also found an atypical subtype of mitral cells that have multiple dendritic shafts innervating the same glomeruli. Our data thus demonstrate that the AAV-mediated labeling method that we reported here provides an efficient way to visualize mitral cells with single-cell resolution and could be utilized to study dynamic aspects as well as functions of mitral cells in the olfactory circuits.
Collapse
Affiliation(s)
- Kazuya Togashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masato Tsuji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shunsuke Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ryota Nakahama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Koizumi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Wu D, Jin Y, Shapiro TM, Hinduja A, Baas PW, Tom VJ. Chronic neuronal activation increases dynamic microtubules to enhance functional axon regeneration after dorsal root crush injury. Nat Commun 2020; 11:6131. [PMID: 33257677 PMCID: PMC7705672 DOI: 10.1038/s41467-020-19914-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022] Open
Abstract
After a dorsal root crush injury, centrally-projecting sensory axons fail to regenerate across the dorsal root entry zone (DREZ) to extend into the spinal cord. We find that chemogenetic activation of adult dorsal root ganglion (DRG) neurons improves axon growth on an in vitro model of the inhibitory environment after injury. Moreover, repeated bouts of daily chemogenetic activation of adult DRG neurons for 12 weeks post-crush in vivo enhances axon regeneration across a chondroitinase-digested DREZ into spinal gray matter, where the regenerating axons form functional synapses and mediate behavioral recovery in a sensorimotor task. Neuronal activation-mediated axon extension is dependent upon changes in the status of tubulin post-translational modifications indicative of highly dynamic microtubules (as opposed to stable microtubules) within the distal axon, illuminating a novel mechanism underlying stimulation-mediated axon growth. We have identified an effective combinatory strategy to promote functionally-relevant axon regeneration of adult neurons into the CNS after injury.
Collapse
Affiliation(s)
- Di Wu
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Ying Jin
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Tatiana M Shapiro
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Abhishek Hinduja
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Veronica J Tom
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Familiarity Detection and Memory Consolidation in Cortical Assemblies. eNeuro 2020; 7:ENEURO.0006-19.2020. [PMID: 32122957 PMCID: PMC7215585 DOI: 10.1523/eneuro.0006-19.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/30/2020] [Accepted: 02/20/2020] [Indexed: 01/12/2023] Open
Abstract
Humans have a large capacity of recognition memory (Dudai, 1997), a fundamental property of higher-order brain functions such as abstraction and generalization (Vogt and Magnussen, 2007). Familiarity is the first step towards recognition memory. We have previously demonstrated using unsupervised neural network simulations that familiarity detection of complex patterns emerges in generic cortical microcircuits with bidirectional synaptic plasticity. It is therefore meaningful to conduct similar experiments on biological neuronal networks to validate these results. Studies of learning and memory in dissociated rodent neuronal cultures remain inconclusive to date. Synchronized network bursts (SNBs) that occur spontaneously and periodically have been speculated to be an intervening factor. By optogenetically stimulating cultured cortical networks with random dot movies (RDMs), we were able to reduce the occurrence of SNBs, after which an ability for familiarity detection emerged: previously seen patterns elicited higher firing rates than novel ones. Differences in firing rate were distributed over the entire network, suggesting that familiarity detection is a system level property. We also studied the change in SNB patterns following familiarity encoding. Support vector machine (SVM) classification results indicate that SNBs may be facilitating memory consolidation of the learned pattern. In addition, using a novel network connectivity probing method, we were able to trace the change in synaptic efficacy induced by familiarity encoding, providing insights on the long-term impact of having SNBs in the cultures.
Collapse
|
19
|
Gamlin CR, Zhang C, Dyer MA, Wong ROL. Distinct Developmental Mechanisms Act Independently to Shape Biased Synaptic Divergence from an Inhibitory Neuron. Curr Biol 2020; 30:1258-1268.e2. [PMID: 32109390 DOI: 10.1016/j.cub.2020.01.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/19/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
Abstract
Neurons often contact more than one postsynaptic partner type and display stereotypic patterns of synaptic divergence. Such synaptic patterns usually involve some partners receiving more synapses than others. The developmental strategies generating "biased" synaptic distributions remain largely unknown. To gain insight, we took advantage of a compact circuit in the vertebrate retina, whereby the AII amacrine cell (AII AC) provides inhibition onto cone bipolar cell (BC) axons and retinal ganglion cell (RGC) dendrites, but makes the majority of its synapses with the BCs. Using light and electron microscopy, we reconstructed the morphology and connectivity of mouse retinal AII ACs across postnatal development. We found that AII ACs do not elaborate their presynaptic structures, the lobular appendages, until BCs differentiate about a week after RGCs are present. Lobular appendages are present in mutant mice lacking BCs, implying that although synchronized with BC axonal differentiation, presynaptic differentiation of the AII ACs is not dependent on cues from BCs. With maturation, AII ACs maintain a constant number of synapses with RGCs, preferentially increase synaptogenesis with BCs, and eliminate synapses with wide-field amacrine cells. Thus, AII ACs undergo partner type-specific changes in connectivity to attain their mature pattern of synaptic divergence. Moreover, AII ACs contact non-BCs to the same extent in bipolarless retinas, indicating that AII ACs establish partner-type-specific connectivity using diverse mechanisms that operate in parallel but independently.
Collapse
Affiliation(s)
- Clare R Gamlin
- Department of Biological Structure, University of Washington, NE Pacific Street, Seattle, WA 98195, USA
| | - Chi Zhang
- Department of Biological Structure, University of Washington, NE Pacific Street, Seattle, WA 98195, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude's Children Research Hospital, Danny Thomas Place, Memphis, TN 38105, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
20
|
Soto F, Tien NW, Goel A, Zhao L, Ruzycki PA, Kerschensteiner D. AMIGO2 Scales Dendrite Arbors in the Retina. Cell Rep 2019; 29:1568-1578.e4. [PMID: 31693896 PMCID: PMC6871773 DOI: 10.1016/j.celrep.2019.09.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/21/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022] Open
Abstract
The size of dendrite arbors shapes their function and differs vastly between neuron types. The signals that control dendritic arbor size remain obscure. Here, we find that in the retina, starburst amacrine cells (SACs) and rod bipolar cells (RBCs) express the homophilic cell-surface protein AMIGO2. In Amigo2 knockout (KO) mice, SAC and RBC dendrites expand while arbors of other retinal neurons remain stable. SAC dendrites are divided into a central input region and a peripheral output region that provides asymmetric inhibition to direction-selective ganglion cells (DSGCs). Input and output compartments scale precisely with increased arbor size in Amigo2 KO mice, and SAC dendrites maintain asymmetric connectivity with DSGCs. Increased coverage of SAC dendrites is accompanied by increased direction selectivity of DSGCs without changes to other ganglion cells. Our results identify AMIGO2 as a cell-type-specific dendritic scaling factor and link dendrite size and coverage to visual feature detection.
Collapse
Affiliation(s)
- Florentina Soto
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Nai-Wen Tien
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Anurag Goel
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Lei Zhao
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Philip A Ruzycki
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
21
|
Kähne M, Rüdiger S, Kihara AH, Lindner B. Gap junctions set the speed and nucleation rate of stage I retinal waves. PLoS Comput Biol 2019; 15:e1006355. [PMID: 31034472 PMCID: PMC6508742 DOI: 10.1371/journal.pcbi.1006355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 05/09/2019] [Accepted: 11/27/2018] [Indexed: 11/18/2022] Open
Abstract
Spontaneous waves in the developing retina are essential in the formation of the retinotopic mapping in the visual system. From experiments in rabbits, it is known that the earliest type of retinal waves (stage I) is nucleated spontaneously, propagates at a speed of 451±91 μm/sec and relies on gap junction coupling between ganglion cells. Because gap junctions (electrical synapses) have short integration times, it has been argued that they cannot set the low speed of stage I retinal waves. Here, we present a theoretical study of a two-dimensional neural network of the ganglion cell layer with gap junction coupling and intrinsic noise. We demonstrate that this model can explain observed nucleation rates as well as the comparatively slow propagation speed of the waves. From the interaction between two coupled neurons, we estimate the wave speed in the model network. Furthermore, using simulations of small networks of neurons (N≤260), we estimate the nucleation rate in the form of an Arrhenius escape rate. These results allow for informed simulations of a realistically sized network, yielding values of the gap junction coupling and the intrinsic noise level that are in a physiologically plausible range.
Collapse
Affiliation(s)
- Malte Kähne
- Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany
- * E-mail:
| | - Sten Rüdiger
- Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Benjamin Lindner
- Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
22
|
Serati M, Delvecchio G, Orsenigo G, Mandolini GM, Lazzaretti M, Scola E, Triulzi F, Brambilla P. The Role of the Subplate in Schizophrenia and Autism: A Systematic Review. Neuroscience 2019; 408:58-67. [PMID: 30930130 DOI: 10.1016/j.neuroscience.2019.03.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 02/07/2023]
Abstract
The subplate (SP) represents a transitory cytoarchitectural fetal compartment containing most subcortical and cortico-cortical afferents, and has a fundamental role in the structural development of the healthy adult brain. There is evidence that schizophrenia and autism may be determined by developmental defects in the cortex or cortical circuitry during the earliest stages of pregnancy. This article provides an overview on fetal SP development, considering its role in schizophrenia and autism, as supported by a systematic review of the main databases. The SP has been described as a cortical amplifier with a role in the coordination of cortical activity, and sensitive growth and migration windows have crucial consequences with respect to cognitive functioning. Although there are not enough studies to draw final conclusions, improved knowledge of the SP's role in schizophrenia and autism spectrum disorders may help to elucidate and possibly prevent the onset of these two severe disorders.
Collapse
Affiliation(s)
- Marta Serati
- Department of Mental Health, ASST Rhodense, Rho, Milan, Italy.
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giulia Orsenigo
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - Gian Mario Mandolini
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - Matteo Lazzaretti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - Elisa Scola
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Triulzi
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Psychiatry and Behavioural Neurosciences, University of Texas at Houston, TX, USA
| |
Collapse
|
23
|
Kostović I, Sedmak G, Judaš M. Neural histology and neurogenesis of the human fetal and infant brain. Neuroimage 2018; 188:743-773. [PMID: 30594683 DOI: 10.1016/j.neuroimage.2018.12.043] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/11/2023] Open
Abstract
The human brain develops slowly and over a long period of time which lasts for almost three decades. This enables good spatio-temporal resolution of histogenetic and neurogenetic events as well as an appropriate and clinically relevant timing of these events. In order to successfully apply in vivo neuroimaging data, in analyzing both the normal brain development and the neurodevelopmental origin of major neurological and mental disorders, it is important to correlate these neuroimaging data with the existing data on morphogenetic, histogenetic and neurogenetic events. Furthermore, when performing such correlation, the genetic, genomic, and molecular biology data on phenotypic specification of developing brain regions, areas and neurons should also be included. In this review, we focus on early developmental periods (form 8 postconceptional weeks to the second postnatal year) and describe the microstructural organization and neural circuitry elements of the fetal and early postnatal human cerebrum.
Collapse
Affiliation(s)
- I Kostović
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia.
| | - G Sedmak
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia.
| | - M Judaš
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia.
| |
Collapse
|
24
|
Comhair J, Devoght J, Morelli G, Harvey RJ, Briz V, Borrie SC, Bagni C, Rigo JM, Schiffmann SN, Gall D, Brône B, Molchanova SM. Alpha2-Containing Glycine Receptors Promote Neonatal Spontaneous Activity of Striatal Medium Spiny Neurons and Support Maturation of Glutamatergic Inputs. Front Mol Neurosci 2018; 11:380. [PMID: 30374290 PMCID: PMC6196267 DOI: 10.3389/fnmol.2018.00380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022] Open
Abstract
Glycine receptors (GlyRs) containing the α2 subunit are highly expressed in the developing brain, where they regulate neuronal migration and maturation, promote spontaneous network activity and subsequent development of synaptic connections. Mutations in GLRA2 are associated with autism spectrum disorder, but the underlying pathophysiology is not described yet. Here, using Glra2-knockout mice, we found a GlyR-dependent effect on neonatal spontaneous activity of dorsal striatum medium spiny neurons (MSNs) and maturation of the incoming glutamatergic innervation. Our data demonstrate that functional GlyRs are highly expressed in MSNs of one-week-old mice, but they do not generate endogenous chloride-mediated tonic or phasic current. Despite of that, knocking out the Glra2 severely affects the shape of action potentials and impairs spontaneous activity and the frequency of miniature AMPA receptor-mediated currents in MSNs. This reduction in spontaneous activity and glutamatergic signaling can attribute to the observed changes in neonatal behavioral phenotypes as seen in ultrasonic vocalizations and righting reflex. In adult Glra2-knockout animals, the glutamatergic synapses in MSNs remain functionally underdeveloped. The number of glutamatergic synapses and release probability at presynaptic site remain unaffected, but the amount of postsynaptic AMPA receptors is decreased. This deficit is a consequence of impaired development of the neuronal circuitry since acute inhibition of GlyRs by strychnine in adult MSNs does not affect the properties of glutamatergic synapses. Altogether, these results demonstrate that GlyR-mediated signaling supports neonatal spontaneous MSN activity and, in consequence, promotes the functional maturation of glutamatergic synapses on MSNs. The described mechanism might shed light on the pathophysiological mechanisms in GLRA2-linked autism spectrum disorder cases.
Collapse
Affiliation(s)
- Joris Comhair
- Laboratory of Neurophysiology, ULB-Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,BIOMED Research Institute, University of Hasselt, Hasselt, Belgium
| | - Jens Devoght
- BIOMED Research Institute, University of Hasselt, Hasselt, Belgium
| | - Giovanni Morelli
- BIOMED Research Institute, University of Hasselt, Hasselt, Belgium
| | - Robert J Harvey
- School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Victor Briz
- Center for Human Genetics and Leuven Research Institute for Neuroscience and Disease, KU Leuven, Leuven, Belgium.,VIB Center for the Biology of Disease, Leuven, Belgium
| | - Sarah C Borrie
- Center for Human Genetics and Leuven Research Institute for Neuroscience and Disease, KU Leuven, Leuven, Belgium.,VIB Center for the Biology of Disease, Leuven, Belgium
| | - Claudia Bagni
- Center for Human Genetics and Leuven Research Institute for Neuroscience and Disease, KU Leuven, Leuven, Belgium.,VIB Center for the Biology of Disease, Leuven, Belgium
| | - Jean-Michel Rigo
- BIOMED Research Institute, University of Hasselt, Hasselt, Belgium
| | - Serge N Schiffmann
- Laboratory of Neurophysiology, ULB-Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - David Gall
- Laboratory of Neurophysiology, ULB-Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Bert Brône
- BIOMED Research Institute, University of Hasselt, Hasselt, Belgium
| | - Svetlana M Molchanova
- Laboratory of Neurophysiology, ULB-Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
25
|
Frank CL, Brown JP, Wallace K, Wambaugh JF, Shah I, Shafer TJ. Defining toxicological tipping points in neuronal network development. Toxicol Appl Pharmacol 2018; 354:81-93. [DOI: 10.1016/j.taap.2018.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022]
|
26
|
Hadders-Algra M. Early human brain development: Starring the subplate. Neurosci Biobehav Rev 2018; 92:276-290. [PMID: 29935204 DOI: 10.1016/j.neubiorev.2018.06.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
This review summarizes early human brain development on the basis of neuroanatomical data and functional connectomics. It indicates that the most significant changes in the brain occur during the second half of gestation and the first three months post-term, in particular in the cortical subplate and cerebellum. As the transient subplate pairs a high rate of intricate developmental changes and interactions with clear functional activity, two phases of development are distinguished: a) the transient cortical subplate phase, ending at 3 months post-term when the permanent circuitries in the primary motor, somatosensory and visual cortices have replaced the subplate; and subsequently, b) the phase in which the permanent circuitries dominate. In the association areas the subplate dissolves in the remainder of the first postnatal year. During both phases developmental changes are paralleled by continuous reconfigurations in network activity. The reviewed literature also suggests that disruption of subplate development may play a pivotal role in developmental disorders, such as cerebral palsy, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia.
Collapse
Affiliation(s)
- Mijna Hadders-Algra
- University of Groningen, University Medical Center Groningen, Dept. Pediatrics - Section Developmental Neurology, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
27
|
Tien NW, Kerschensteiner D. Homeostatic plasticity in neural development. Neural Dev 2018; 13:9. [PMID: 29855353 PMCID: PMC5984303 DOI: 10.1186/s13064-018-0105-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023] Open
Abstract
Throughout life, neural circuits change their connectivity, especially during development, when neurons frequently extend and retract dendrites and axons, and form and eliminate synapses. In spite of their changing connectivity, neural circuits maintain relatively constant activity levels. Neural circuits achieve functional stability by homeostatic plasticity, which equipoises intrinsic excitability and synaptic strength, balances network excitation and inhibition, and coordinates changes in circuit connectivity. Here, we review how diverse mechanisms of homeostatic plasticity stabilize activity in developing neural circuits.
Collapse
Affiliation(s)
- Nai-Wen Tien
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, USA. .,Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, USA.
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, USA. .,Department of Neuroscience, Washington University School of Medicine, Saint Louis, USA. .,Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
28
|
Yin XL, Jie HQ, Liang M, Gong LN, Liu HW, Pan HL, Xing YZ, Shi HB, Li CY, Wang LY, Yin SK. Accelerated Development of the First-Order Central Auditory Neurons With Spontaneous Activity. Front Mol Neurosci 2018; 11:183. [PMID: 29904342 PMCID: PMC5990604 DOI: 10.3389/fnmol.2018.00183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/11/2018] [Indexed: 11/24/2022] Open
Abstract
In developing sensory systems, elaborate morphological connectivity between peripheral cells and first-order central neurons emerges via genetic programming before the onset of sensory activities. However, how the first-order central neurons acquire the capacity to interface with peripheral cells remains elusive. By making patch-clamp recordings from mouse brainstem slices, we found that a subset of neurons in the cochlear nuclei, the first central station to receive peripheral acoustic impulses, exhibits spontaneous firings (SFs) as early as at birth, and the fraction of such neurons increases during the prehearing period. SFs are reduced but not eliminated by a cocktail of blockers for excitatory and inhibitory synaptic inputs, implicating the involvement of intrinsic pacemaker channels. Furthermore, we demonstrate that these intrinsic firings (IFs) are largely driven by hyperpolarization- and cyclic nucleotide-gated channel (HCN) mediated currents (Ih), as evidenced by their attenuation in the presence of HCN blockers or in neurons from HCN1 knockout mice. Interestingly, genetic deletion of HCN1 cannot be fully compensated by other pacemaker conductances and precludes age-dependent up regulation in the fraction of spontaneous active neurons and their firing rate. Surprisingly, neurons with SFs show accelerated development in excitability, spike waveform and firing pattern as well as synaptic pruning towards mature phenotypes compared to those without SFs. Our results imply that SFs of the first-order central neurons may reciprocally promote their wiring and firing with peripheral inputs, potentially enabling the correlated activity and crosstalk between the developing brain and external environment.
Collapse
Affiliation(s)
- Xin-Lu Yin
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Qun Jie
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Min Liang
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Na Gong
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Han-Wei Liu
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Lai Pan
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Zhi Xing
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Bo Shi
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Chun-Yan Li
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Lu-Yang Wang
- Programs in Neurosciences & Mental Health, Department of Physiology, Sick Kids Research Institute, Toronto, ON, Canada
| | - Shan-Kai Yin
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Gao L, Han J, Bai J, Dong J, Zhang S, Zhang M, Zheng J. Nicotinic Acetylcholine Receptors are Associated with Ketamine-induced Neuronal Apoptosis in the Developing Rat Retina. Neuroscience 2018; 376:1-12. [DOI: 10.1016/j.neuroscience.2018.01.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/30/2017] [Accepted: 01/29/2018] [Indexed: 12/17/2022]
|
30
|
Mäkinen MEL, Ylä-Outinen L, Narkilahti S. GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks. Front Cell Neurosci 2018; 12:56. [PMID: 29559893 PMCID: PMC5845705 DOI: 10.3389/fncel.2018.00056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/16/2018] [Indexed: 01/03/2023] Open
Abstract
The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging) and temporal resolution microelectrode array (MEA). We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABAA mediated signaling.
Collapse
Affiliation(s)
- Meeri Eeva-Liisa Mäkinen
- NeuroGroup Laboratory, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Laura Ylä-Outinen
- NeuroGroup Laboratory, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Susanna Narkilahti
- NeuroGroup Laboratory, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| |
Collapse
|
31
|
Hadders-Algra M. Neural substrate and clinical significance of general movements: an update. Dev Med Child Neurol 2018; 60:39-46. [PMID: 28832987 DOI: 10.1111/dmcn.13540] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2017] [Indexed: 12/20/2022]
Abstract
UNLABELLED General movements are present from early fetal life to 3 to 5 months corrected age. Atypical general movements, especially in the last, so-called fidgety general movement phase, are predictive of cerebral palsy (CP). This review updates knowledge on the neural substrate and clinical significance of typical and atypical general movements. Typical general movements are primarily characterized by complexity and variation. Presumably these core characteristics are initially induced by modulating activity of the cortical subplate. When the subplate gradually dissolves between 3 months before term and 3 months corrected age the cortical plate takes over. This coincides with the fidgety general movement phase. Conceivably, fidgety activity reflects 'sparsification', i.e. fragmentation of cortical network activity. The quintessential feature of atypical general movements is reduced complexity and variation. This is attributed to impaired integrity of extensive cortical-subcortical networks, in which the subplate and periventricular white matter play a prominent role. The most serious forms of network impairment are associated with absent fidgety movements. WHAT THIS PAPER ADDS The emergence of fidgety movements reflects a developmental transition from widespread to fragmented cortical network activity. Atypical general movements characterized by reduced complexity and variation are attributed to impaired integrity of extensive cortical-subcortical networks.
Collapse
Affiliation(s)
- Mijna Hadders-Algra
- University of Groningen, University Medical Center Groningen, Department of Paediatrics - Developmental Neurology, Groningen, the Netherlands
| |
Collapse
|
32
|
Tien NW, Soto F, Kerschensteiner D. Homeostatic Plasticity Shapes Cell-Type-Specific Wiring in the Retina. Neuron 2017; 94:656-665.e4. [PMID: 28457596 DOI: 10.1016/j.neuron.2017.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/17/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
Convergent input from different presynaptic partners shapes the responses of postsynaptic neurons. Whether developing postsynaptic neurons establish connections with each presynaptic partner independently or balance inputs to attain specific responses is unclear. Retinal ganglion cells (RGCs) receive convergent input from bipolar cell types with different contrast responses and temporal tuning. Here, using optogenetic activation and pharmacogenetic silencing, we found that type 6 bipolar (B6) cells dominate excitatory input to ONα-RGCs. We generated mice in which B6 cells were selectively removed from developing circuits (B6-DTA). In B6-DTA mice, ONα-RGCs adjusted connectivity with other bipolar cells in a cell-type-specific manner. They recruited new partners, increased synapses with some existing partners, and maintained constant input from others. Patch-clamp recordings revealed that anatomical rewiring precisely preserved contrast and temporal frequency response functions of ONα-RGCs, indicating that homeostatic plasticity shapes cell-type-specific wiring in the developing retina to stabilize visual information sent to the brain.
Collapse
Affiliation(s)
- Nai-Wen Tien
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Florentina Soto
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
33
|
Huang CH, Huang YT, Chen CC, Chan CK. Propagation and synchronization of reverberatory bursts in developing cultured networks. J Comput Neurosci 2016; 42:177-185. [PMID: 27942935 DOI: 10.1007/s10827-016-0634-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 11/30/2022]
Abstract
Developing networks of neural systems can exhibit spontaneous, synchronous activities called neural bursts, which can be important in the organization of functional neural circuits. Before the network matures, the activity level of a burst can reverberate in repeated rise-and-falls in periods of hundreds of milliseconds following an initial wave-like propagation of spiking activity, while the burst itself lasts for seconds. To investigate the spatiotemporal structure of the reverberatory bursts, we culture dissociated, rat cortical neurons on a high-density multi-electrode array to record the dynamics of neural activity over the growth and maturation of the network. We find the synchrony of the spiking significantly reduced following the initial wave and the activities become broadly distributed spatially. The synchrony recovers as the system reverberates until the end of the burst. Using a propagation model we infer the spreading speed of the spiking activity, which increases as the culture ages. We perform computer simulations of the system using a physiological model of spiking networks in two spatial dimensions and find the parameters that reproduce the observed resynchronization of spiking in the bursts. An analysis of the simulated dynamics suggests that the depletion of synaptic resources causes the resynchronization. The spatial propagation dynamics of the simulations match well with observations over the course of a burst and point to an interplay of the synaptic efficacy and the noisy neural self-activation in producing the morphology of the bursts.
Collapse
Affiliation(s)
- Chih-Hsu Huang
- Institute of Physics, Academia Sinica, Nangang, Taipei, Taiwan, 115, Republic of China
| | - Yu-Ting Huang
- Institute of Physics, Academia Sinica, Nangang, Taipei, Taiwan, 115, Republic of China.,Department of Physics and Center for Complex Systems, National Central University, Chungli, Taiwan, 320, Republic of China
| | - Chun-Chung Chen
- Institute of Physics, Academia Sinica, Nangang, Taipei, Taiwan, 115, Republic of China.
| | - C K Chan
- Institute of Physics, Academia Sinica, Nangang, Taipei, Taiwan, 115, Republic of China.,Department of Physics and Center for Complex Systems, National Central University, Chungli, Taiwan, 320, Republic of China
| |
Collapse
|
34
|
Power JD, Schlaggar BL. Neural plasticity across the lifespan. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 6. [PMID: 27911497 DOI: 10.1002/wdev.216] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 11/06/2022]
Abstract
An essential feature of the brain is its capacity to change. Neuroscientists use the term 'plasticity' to describe the malleability of neuronal connectivity and circuitry. How does plasticity work? A review of current data suggests that plasticity encompasses many distinct phenomena, some of which operate across most or all of the lifespan, and others that operate exclusively in early development. This essay surveys some of the key concepts related to neural plasticity, beginning with how current patterns of neural activity (e.g., as you read this essay) come to impact future patterns of activity (e.g., your memory of this essay), and then extending this framework backward into more development-specific mechanisms of plasticity. WIREs Dev Biol 2017, 6:e216. doi: 10.1002/wdev.216 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
| | - Bradley L Schlaggar
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
35
|
Leighton AH, Lohmann C. The Wiring of Developing Sensory Circuits-From Patterned Spontaneous Activity to Synaptic Plasticity Mechanisms. Front Neural Circuits 2016; 10:71. [PMID: 27656131 PMCID: PMC5011135 DOI: 10.3389/fncir.2016.00071] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/18/2016] [Indexed: 12/18/2022] Open
Abstract
In order to accurately process incoming sensory stimuli, neurons must be organized into functional networks, with both genetic and environmental factors influencing the precise arrangement of connections between cells. Teasing apart the relative contributions of molecular guidance cues, spontaneous activity and visual experience during this maturation is on-going. During development of the sensory system, the first, rough organization of connections is created by molecular factors. These connections are then modulated by the intrinsically generated activity of neurons, even before the senses have become operational. Spontaneous waves of depolarizations sweep across the nervous system, placing them in a prime position to strengthen correct connections and weaken others, shaping synapses into a useful network. A large body of work now support the idea that, rather than being a mere side-effect of the system, spontaneous activity actually contains information which readies the nervous system so that, as soon as the senses become active, sensory information can be utilized by the animal. An example is the neonatal mouse. As soon as the eyelids first open, neurons in the cortex respond to visual information without the animal having previously encountered structured sensory input (Cang et al., 2005b; Rochefort et al., 2011; Zhang et al., 2012; Ko et al., 2013). In vivo imaging techniques have advanced considerably, allowing observation of the natural activity in the brain of living animals down to the level of the individual synapse. New (opto)genetic methods make it possible to subtly modulate the spatio-temporal properties of activity, aiding our understanding of how these characteristics relate to the function of spontaneous activity. Such experiments have had a huge impact on our knowledge by permitting direct testing of ideas about the plasticity mechanisms at play in the intact system, opening up a provocative range of fresh questions. Here, we intend to outline the most recent descriptions of spontaneous activity patterns in rodent developing sensory areas, as well as the inferences we can make about the information content of those activity patterns and ideas about the plasticity rules that allow this activity to shape the young brain.
Collapse
Affiliation(s)
- Alexandra H Leighton
- Synapse and Network Development, Netherlands Institute for Neuroscience Amsterdam, Netherlands
| | - Christian Lohmann
- Synapse and Network Development, Netherlands Institute for Neuroscience Amsterdam, Netherlands
| |
Collapse
|
36
|
Molchanova SM, Huupponen J, Lauri SE, Taira T. Gap junctions between CA3 pyramidal cells contribute to network synchronization in neonatal hippocampus. Neuropharmacology 2016; 107:9-17. [DOI: 10.1016/j.neuropharm.2016.02.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/28/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
|
37
|
Arroyo DA, Feller MB. Spatiotemporal Features of Retinal Waves Instruct the Wiring of the Visual Circuitry. Front Neural Circuits 2016; 10:54. [PMID: 27507937 PMCID: PMC4960261 DOI: 10.3389/fncir.2016.00054] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/12/2016] [Indexed: 11/13/2022] Open
Abstract
Coordinated spontaneous activity is present in different sensory systems during early stages of development. This activity is thought to play a critical role in the development of sensory representations before the maturation of sensory experience. In the visual system, the mechanisms by which spatiotemporal properties of retinal spontaneous activity, called retinal waves, drive developmental events has been well studied. Recent advancements in pharmacological, genetic, and optogenetic manipulations have provided further understanding of the contribution of specific spatiotemporal properties of retinal waves to eye-specific segregation and retinotopic refinement of retinofugal projections. Here we review some of the recent progress in understanding the role of retinal waves in the early stages of visual system development, prior to the maturation of vision.
Collapse
Affiliation(s)
- David A Arroyo
- Department of Molecular and Cell Biology, University of California Berkeley Berkeley, CA, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeley, CA, USA; Helen Wills Neuroscience Institute, University of California BerkeleyBerkeley, CA, USA
| |
Collapse
|
38
|
Arroyo DA, Kirkby LA, Feller MB. Retinal Waves Modulate an Intraretinal Circuit of Intrinsically Photosensitive Retinal Ganglion Cells. J Neurosci 2016; 36:6892-905. [PMID: 27358448 PMCID: PMC4926237 DOI: 10.1523/jneurosci.0572-16.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Before the maturation of rod and cone photoreceptors, the developing retina relies on light detection by intrinsically photosensitive retinal ganglion cells (ipRGCs) to drive early light-dependent behaviors. ipRGCs are output neurons of the retina; however, they also form functional microcircuits within the retina itself. Whether ipRGC microcircuits exist during development and whether they influence early light detection remain unknown. Here, we investigate the neural circuit that underlies the ipRGC-driven light response in developing mice. We use a combination of calcium imaging, tracer coupling, and electrophysiology experiments to show that ipRGCs form extensive gap junction networks that strongly contribute to the overall light response of the developing retina. Interestingly, we found that gap junction coupling was modulated by spontaneous retinal waves, such that acute blockade of waves dramatically increased the extent of coupling and hence increased the number of light-responsive neurons. Moreover, using an optical sensor, we found that this wave-dependent modulation of coupling is driven by dopamine that is phasically released by retinal waves. Our results demonstrate that ipRGCs form gap junction microcircuits during development that are modulated by retinal waves; these circuits determine the extent of the light response and thus potentially impact the processing of early visual information and light-dependent developmental functions. SIGNIFICANCE STATEMENT Light-dependent functions in early development are mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs). Here we show that ipRGCs form an extensive gap junction network with other retinal neurons, including other ipRGCs, which shapes the retina's overall light response. Blocking cholinergic retinal waves, which are the primary source of neural activity before maturation of photoreceptors, increased the extent of ipRGC gap junction networks, thus increasing the number of light-responsive cells. We determined that this modulation of ipRGC gap junction networks occurs via dopamine released by waves. These results demonstrate that retinal waves mediate dopaminergic modulation of gap junction networks to regulate pre-vision light responses.
Collapse
Affiliation(s)
| | | | - Marla B Feller
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California 94720-3200
| |
Collapse
|
39
|
Abstract
Spontaneous activity patterns propagate through many parts of the developing nervous system and shape the wiring of emerging circuits. Prior to vision, waves of activity originating in the retina propagate through the lateral geniculate nucleus (LGN) of the thalamus to primary visual cortex (V1). Retinal waves have been shown to instruct the wiring of ganglion cell axons in LGN and of thalamocortical axons in V1 via correlation-based plasticity rules. Across species, retinal waves mature in three stereotypic stages (I-III), in which distinct circuit mechanisms give rise to unique activity patterns that serve specific functions in visual system refinement. Here, I review insights into the patterns, mechanisms, and functions of stage III retinal waves, which rely on glutamatergic signaling. As glutamatergic waves spread across the retina, neighboring ganglion cells with opposite light responses (ON vs. OFF) are activated sequentially. Recent studies identified lateral excitatory networks in the inner retina that generate and propagate glutamatergic waves, and vertical inhibitory networks that desynchronize the activity of ON and OFF cells in the wavefront. Stage III wave activity patterns may help segregate axons of ON and OFF ganglion cells in the LGN, and could contribute to the emergence of orientation selectivity in V1.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Departments of Ophthalmology and Visual Sciences, Neuroscience, and Biomedical Engineering, Hope Center for Neurological Diseases, Washington University School of Medicine Saint Louis, MO, USA
| |
Collapse
|
40
|
Faits MC, Zhang C, Soto F, Kerschensteiner D. Dendritic mitochondria reach stable positions during circuit development. eLife 2016; 5:e11583. [PMID: 26742087 PMCID: PMC4749546 DOI: 10.7554/elife.11583] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/30/2015] [Indexed: 01/07/2023] Open
Abstract
Mitochondria move throughout neuronal dendrites and localize to sites of energy demand. The prevailing view of dendritic mitochondria as highly motile organelles whose distribution is continually adjusted by neuronal activity via Ca(2+)-dependent arrests is based on observations in cultured neurons exposed to artificial stimuli. Here, we analyze the movements of mitochondria in ganglion cell dendrites in the intact retina. We find that whereas during development 30% of mitochondria are motile at any time, as dendrites mature, mitochondria all but stop moving and localize stably to synapses and branch points. Neither spontaneous nor sensory-evoked activity and Ca(2+) transients alter motility of dendritic mitochondria; and pathological hyperactivity in a mouse model of retinal degeneration elevates rather than reduces motility. Thus, our findings indicate that dendritic mitochondria reach stable positions during a critical developmental period of high motility, and challenge current views about the role of activity in regulating mitochondrial transport in dendrites.
Collapse
Affiliation(s)
- Michelle C Faits
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, United States.,Graduate Program in Developmental, Regenerative and Stem Cell Biology, Washington University School of Medicine, St. Louis, United States
| | - Chunmeng Zhang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, United States
| | - Florentina Soto
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, United States
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, United States.,Department of Neuroscience, Washington University School of Medicine, Saint Louis, United States.,Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, United States.,Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, United States
| |
Collapse
|
41
|
Kerschensteiner D. Superior Colliculus Does Play Dice. Neuron 2015; 87:1121-1123. [PMID: 26402595 DOI: 10.1016/j.neuron.2015.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Random is not a word often used in describing nervous system organization and its development. Yet, in this issue of Neuron, Owens et al. (2015) identify stochastic interactions of molecular and activity-dependent forces that can produce heterogeneous retinocollicular maps.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
42
|
Soto F, Kerschensteiner D. Synaptic remodeling of neuronal circuits in early retinal degeneration. Front Cell Neurosci 2015; 9:395. [PMID: 26500497 PMCID: PMC4595653 DOI: 10.3389/fncel.2015.00395] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/22/2015] [Indexed: 11/27/2022] Open
Abstract
Photoreceptor degenerations are a major cause of blindness and among the most common forms of neurodegeneration in humans. Studies of mouse models revealed that synaptic dysfunction often precedes photoreceptor degeneration, and that abnormal synaptic input from photoreceptors to bipolar cells causes circuits in the inner retina to become hyperactive. Here, we provide a brief overview of frequently used mouse models of photoreceptor degenerations. We then discuss insights into circuit remodeling triggered by early synaptic dysfunction in the outer and hyperactivity in the inner retina. We discuss these insights in the context of other experimental manipulations of synaptic function and activity. Knowledge of the plasticity and early remodeling of retinal circuits will be critical for the design of successful vision rescue strategies.
Collapse
Affiliation(s)
- Florentina Soto
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis St. Louis, MO, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis St. Louis, MO, USA ; Department of Anatomy and Neurobiology, Washington University School of Medicine in St. Louis St. Louis, MO, USA ; Department of Biomedical Engineering, Washington University School of Medicine in St. Louis St. Louis, MO, USA ; Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis St. Louis, MO, USA
| |
Collapse
|
43
|
Hsu WL, Chung HW, Wu CY, Wu HI, Lee YT, Chen EC, Fang W, Chang YC. Glutamate Stimulates Local Protein Synthesis in the Axons of Rat Cortical Neurons by Activating α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors and Metabotropic Glutamate Receptors. J Biol Chem 2015; 290:20748-20760. [PMID: 26134564 DOI: 10.1074/jbc.m115.638023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 12/20/2022] Open
Abstract
Glutamate is the principal excitatory neurotransmitter in the mammalian CNS. By analyzing the metabolic incorporation of azidohomoalanine, a methionine analogue, in newly synthesized proteins, we find that glutamate treatments up-regulate protein translation not only in intact rat cortical neurons in culture but also in the axons emitting from cortical neurons before making synapses with target cells. The process by which glutamate stimulates local translation in axons begins with the binding of glutamate to the ionotropic AMPA receptors and metabotropic glutamate receptor 1 and members of group 2 metabotropic glutamate receptors on the plasma membrane. Subsequently, the activated mammalian target of rapamycin (mTOR) signaling pathway and the rise in Ca(2+), resulting from Ca(2+) influxes through calcium-permeable AMPA receptors, voltage-gated Ca(2+) channels, and transient receptor potential canonical channels, in axons stimulate the local translation machinery. For comparison, the enhancement effects of brain-derived neurotrophic factor (BDNF) on the local protein synthesis in cortical axons were also studied. The results indicate that Ca(2+) influxes via transient receptor potential canonical channels and activated the mTOR pathway in axons also mediate BDNF stimulation to local protein synthesis. However, glutamate- and BDNF-induced enhancements of translation in axons exhibit different kinetics. Moreover, Ca(2+) and mTOR signaling appear to play roles carrying different weights, respectively, in transducing glutamate- and BDNF-induced enhancements of axonal translation. Thus, our results indicate that exposure to transient increases of glutamate and more lasting increases of BDNF would stimulate local protein synthesis in migrating axons en route to their targets in the developing brain.
Collapse
Affiliation(s)
- Wei-Lun Hsu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hui-Wen Chung
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chih-Yueh Wu
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Huei-Ing Wu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yu-Tao Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - En-Chan Chen
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Weilun Fang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yen-Chung Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300, Taiwan; Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 300, Taiwan; Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
44
|
Abstract
In contrast to the prenatal development of the cerebral cortex, when cell production, migration, and layer formation dominate, development after birth involves more subtle processes, such as activity-dependent plasticity that includes refinement of synaptic connectivity by its stabilization and elimination. In the present study, we use RNA-seq with high spatial resolution to examine differential gene expression across layers 2/3, 4, 5, and 6 of the mouse visual cortex before the onset of the critical period of plasticity [postnatal day 5 (P5)], at its peak (P26), and at the mature stage (P180) and compare it with the prefrontal association area. We find that, although genes involved in early developmental events such as cell division, neuronal migration, and axon guidance are still prominent at P5, their expression largely terminates by P26, when synaptic plasticity and associated signaling pathways become enriched. Unexpectedly, the gene expression profile was similar in both areas at this age, suggesting that activity-dependent plasticity between visual and association cortices are subject to the same genetic constraints. Although gene expression changes follow similar paths until P26, we have identified 30 regionally enriched genes that are prominent during the critical period. At P180, we identified several hundred differentially expressed gene isoforms despite subsiding levels of gene expression differences. This result indicates that, once genetic developmental programs cease, the remaining morphogenetic processes may depend on posttranslational events.
Collapse
|
45
|
Eisenman LN, Emnett CM, Mohan J, Zorumski CF, Mennerick S. Quantification of bursting and synchrony in cultured hippocampal neurons. J Neurophysiol 2015; 114:1059-71. [PMID: 26041823 DOI: 10.1152/jn.00079.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/01/2015] [Indexed: 11/22/2022] Open
Abstract
It is widely appreciated that neuronal networks exhibit patterns of bursting and synchrony that are not captured by simple measures such as average spike rate. These patterns can encode information or represent pathological behavior such as seizures. However, methods for quantifying bursting and synchrony are not agreed upon and can be confounded with spike rate measures. Previous validation has largely relied on in silico networks and single experimental conditions. How published measures of bursting and synchrony perform when applied to biological networks of varied average spike rate and subjected to varied experimental challenges is unclear. In multielectrode array recordings of network activity, we found that two mechanistically distinct drugs, cyclothiazide and bicuculline, produced equivalent increases in average spike rate but differed in bursting and synchrony. We applied several measures of bursting to the recordings (2 threshold interval methods and a surprise-based method) and found that a measure based on an average critical interval, adjusted for the array-wide spike rate, performed best in quantifying differential drug effects. To quantify synchrony, we compared a coefficient of variation-based measure, the recently proposed spike time tiling coefficient, the SPIKE-distance measure, and a global synchrony index. The spike time tiling coefficient, the SPIKE-distance measure, and the global synchrony index all captured a difference between drugs with the best performance exhibited by the global synchrony index. In summary, our exploration should aid other investigators by highlighting strengths and limitations of current methods.
Collapse
Affiliation(s)
- Lawrence N Eisenman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Christine M Emnett
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Jayaram Mohan
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
46
|
Abstract
Advances in methodology have led to expanded application of resting-state functional MRI (rs-fMRI) to the study of term and prematurely born infants during the first years of life, providing fresh insight into the earliest forms of functional cerebral development. In this review, we detail our evolving understanding of the use of rs-fMRI for studying neonates. We initially focus on the biological processes of cortical development related to resting-state network development. We then review technical issues principally affecting neonatal investigations, including the effects of subject motion during acquisition and image distortions related to magnetic susceptibility effects. We next summarize the literature in which rs-fMRI is used to study normal brain development during the early postnatal period, the effects of prematurity, and the effects of cerebral injury. Finally, we review potential future directions for the field, such as the use of complementary imaging modalities and advanced analysis techniques.
Collapse
Affiliation(s)
- Christopher D. Smyser
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey J. Neil
- Department of Neurology, Boston Children’s Hospital, Boston, MA,Corresponding author. Jeff Neil, MD, PhD, Neurology, Boston Children's Hospital, 333 Longwood Avenue, LO 450, Boston, MA 02115, phone (617) 355-6388, fax (617) 730-0284,
| |
Collapse
|
47
|
Maggio N, Vlachos A. Synaptic plasticity at the interface of health and disease: New insights on the role of endoplasmic reticulum intracellular calcium stores. Neuroscience 2014; 281:135-46. [PMID: 25264032 DOI: 10.1016/j.neuroscience.2014.09.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
Work from the past 40years has unraveled a wealth of information on the cellular and molecular mechanisms underlying synaptic plasticity and their relevance in physiological brain function. At the same time, it has been recognized that a broad range of neurological diseases may be accompanied by severe alterations in synaptic plasticity, i.e., 'maladaptive synaptic plasticity', which could initiate and sustain the remodeling of neuronal networks under pathological conditions. Nonetheless, our current knowledge on the specific contribution and interaction of distinct forms of synaptic plasticity (including metaplasticity and homeostatic plasticity) in the context of pathological brain states remains limited. This review focuses on recent experimental evidence, which highlights the fundamental role of endoplasmic reticulum-mediated Ca(2+) signals in modulating the duration, direction, extent and type of synaptic plasticity. We discuss the possibility that intracellular Ca(2+) stores may regulate synaptic plasticity and hence behavioral and cognitive functions at the interface between physiology and pathology.
Collapse
Affiliation(s)
- N Maggio
- Talpiot Medical Leadership Program, Department of Neurology, The Chaim Sheba Medical Center, 52621 Tel HaShomer, Israel
| | - A Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, 60590 Frankfurt, Germany.
| |
Collapse
|
48
|
Andreae LC, Burrone J. The role of neuronal activity and transmitter release on synapse formation. Curr Opin Neurobiol 2014; 27:47-52. [PMID: 24632375 PMCID: PMC4127784 DOI: 10.1016/j.conb.2014.02.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/16/2014] [Accepted: 02/06/2014] [Indexed: 01/08/2023]
Abstract
The long history of probing the role of neuronal activity in the development of nervous system circuitry has recently taken an interesting turn. Although undoubtedly activity plays a critical part in the maintenance and refinement of synaptic connections, often via competitive mechanisms, evidence is building that it also drives the process of synapse formation itself. Perhaps predictably, this turns out not to be a uniform process. It seems that different circuits, indeed specific synaptic connections, are differentially sensitive to the effects of activity. We examine possible ways in which neurotransmitter may drive synapse formation, and speculate on how the environment of the developing brain may allow a different spatiotemporal range for neuronal activity to operate in the generation of connectivity.
Collapse
Affiliation(s)
- Laura C Andreae
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, 4th Floor, Guy's Hospital Campus, London SE1 1UL, UK.
| | - Juan Burrone
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, 4th Floor, Guy's Hospital Campus, London SE1 1UL, UK.
| |
Collapse
|