1
|
Sánchez-Serna G, Badia-Ramentol J, Bujosa P, Ferrández-Roldán A, Torres-Águila NP, Fabregà-Torrus M, Wibisana JN, Mansfield MJ, Plessy C, Luscombe NM, Albalat R, Cañestro C. Less, but More: New Insights From Appendicularians on Chordate Fgf Evolution and the Divergence of Tunicate Lifestyles. Mol Biol Evol 2025; 42:msae260. [PMID: 39686543 PMCID: PMC11733497 DOI: 10.1093/molbev/msae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/17/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The impact of gene loss on the diversification of taxa and the emergence of evolutionary innovations remains poorly understood. Here, our investigation on the evolution of the Fibroblast Growth Factors (FGFs) in appendicularian tunicates as a case study reveals a scenario of "less, but more" characterized by massive losses of all Fgf gene subfamilies, except for the Fgf9/16/20 and Fgf11/12/13/14, which in turn underwent two bursts of duplications. Through phylogenetic analysis, synteny conservation, and gene and protein structure, we reconstruct the history of appendicularian Fgf genes, highlighting their paracrine and intracellular functions. An exhaustive analysis of developmental Fgf expression in Oikopleura dioica allows us to identify four associated evolutionary patterns characterizing the "less, but more" conceptual framework: conservation of ancestral functions; function shuffling between paralogs linked to gene losses; innovation of new functions after the duplication bursts; and function extinctions linked to gene losses. Our findings allow us to formulate novel hypotheses about the impact of Fgf losses and duplications on the transition from an ancestral ascidian-like biphasic lifestyle to the fully free-living appendicularians. These hypotheses include massive co-options of Fgfs for the development of the oikoblast and the tail fin; recruitment of Fgf11/12/13/14s into the evolution of a new mouth, and their role modulating neuronal excitability; the evolutionary innovation of an anterior tail FGF signaling source upon the loss of retinoic acid signaling; and the potential link between the loss of Fgf7/10/22 and Fgf8/17/18 and the loss of drastic metamorphosis and tail absorption in appendicularians, in contrast to ascidians.
Collapse
Affiliation(s)
- Gaspar Sánchez-Serna
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Jordi Badia-Ramentol
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Paula Bujosa
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Alfonso Ferrández-Roldán
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Nuria P Torres-Águila
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marc Fabregà-Torrus
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Johannes N Wibisana
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Nicholas M Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
2
|
Ransdell JL, Brown SP, Xiao M, Ornitz DM, Nerbonne JM. In Vivo Expression of an SCA27A-linked FGF14 Mutation Results in Haploinsufficiency and Impaired Firing of Cerebellar Purkinje Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620253. [PMID: 39484407 PMCID: PMC11527103 DOI: 10.1101/2024.10.25.620253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Autosomal dominant mutations in FGF14 , which encodes intracellular fibroblast growth factor 14 (iFGF14), underlie spinocerebellar ataxia type 27A (SCA27A), a devastating multisystem disorder resulting in progressive deficits in motor coordination and cognitive function. Mice lacking iFGF14 ( Fgf14 -/- ) exhibit similar phenotypes, which have been linked to iFGF14-mediated modulation of the voltage-gated sodium (Nav) channels that control the high frequency repetitive firing of Purkinje neurons, the main output neurons of the cerebellar cortex. To investigate the pathophysiological mechanisms underlying SCA27A, we developed a targeted knock-in strategy to introduce the first point mutation identified in FGF14 into the mouse Fgf14 locus ( Fgf14 F145S ), we determined the impact of in vivo expression of the mutant Fgf14 F145S allele on the motor performance of adult animals and on the firing properties of mature Purkinje neurons in acute cerebellar slices. Electrophysiological experiments revealed that repetitive firing rates are attenuated in adult Fgf14 F145S/+ cerebellar Purkinje neurons, attributed to a hyperpolarizing shift in the voltage-dependence of steady-state inactivation of Nav channels. More severe effects on firing properties and Nav channel inactivation were observed in homozygous Fgf14 F145S/F145S Purkinje neurons. Interestingly, the electrophysiological phenotypes identified in adult Fgf14 F145S/+ and Fgf14 F145S/F145S cerebellar Purkinje neurons mirror those observed in heterozygous Fgf14 +/- and homozygous Fgf14 -/- Purkinje neurons, respectively, suggesting that the mutation results in the loss of the iFGF14 protein. Western blot analysis of lysates from adult heterozygous Fgf14 F145S/+ and homozygous Fgf14 F145S/F145S animals revealed reduced or undetectable, respectively, iFGF14 expression, supporting the hypothesis that the mutant allele results in loss of the iFGF14 protein and that haploinsufficiency underlies SCA27A neurological phenotypes.
Collapse
|
3
|
Huang J, Sun C, Zhu Q, Wu G, Cao Y, Shi J, He S, Jiang L, Liao J, Li L, Zhong C, Lu Y. Phenotyping of FGF12A V52H mutation in mouse implies a complex FGF12 network. Neurobiol Dis 2024; 200:106637. [PMID: 39142611 DOI: 10.1016/j.nbd.2024.106637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/26/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024] Open
Abstract
Pathogenic missense mutation of the FGF12 gene is responsible for a variable disease phenotypic spectrum. Disease-specific therapies require precise dissection of the relationship between different mutations and phenotypes. The lack of a proper animal model hinders the investigation of related diseases, such as early-onset epileptic encephalopathy. Here, an FGF12AV52H mouse model was generated using CRISPR/Cas9 technology, which altered the A isoform without affecting the B isoform. The FGF12AV52H mice exhibited seizure susceptibility, while no spontaneous seizures were observed. The increased excitability in dorsal hippocampal CA3 neurons was confirmed by patch-clamp recordings. Furthermore, immunostaining showed that the balance of excitatory/inhibitory neurons in the hippocampus of the FGF12AV52H mice was perturbed. The increases in inhibitory SOM+ neurons and excitatory CaMKII+ neurons were heterogeneous. Moreover, the locomotion, anxiety levels, risk assessment behavior, social behavior, and cognition of the FGF12AV52H mice were investigated by elevated plus maze, open field, three-chamber sociability, and novel object tests, respectively. Cognition deficit, impaired risk assessment, and social behavior with normal social indexes were observed, implying complex consequences of V52H FGF12A in mice. Together, these data suggest that the function of FGF12A in neurons can be immediate or long-term and involves modulation of ion channels and the differentiation and maturation of neurons. The FGF12AV52H mouse model increases the understanding of the function of FGF12A, and it is of great importance for revealing the complex network of the FGF12 gene in physiological and pathological processes.
Collapse
Affiliation(s)
- Jianyu Huang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chongyang Sun
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhu
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Ge Wu
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Cao
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiarui Shi
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyu He
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Luyao Jiang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianxiang Liao
- Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Lin Li
- Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China.
| | - Cheng Zhong
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yi Lu
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
4
|
Biadun M, Karelus R, Krowarsch D, Opalinski L, Zakrzewska M. FGF12: biology and function. Differentiation 2024; 139:100740. [PMID: 38042708 DOI: 10.1016/j.diff.2023.100740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
Fibroblast growth factor 12 (FGF12) belongs to the fibroblast growth factor homologous factors (FHF) subfamily, which is also known as the FGF11 subfamily. The human FGF12 gene is located on chromosome 3 and consists of four introns and five coding exons. Their alternative splicing results in two FGF12 isoforms - the shorter 'b' isoform and the longer 'a' isoform. Structurally, the core domain of FGF12, is highly homologous to that of the other FGF proteins, providing the classical tertiary structure of β-trefoil. FGF12 is expressed in various tissues, most abundantly in excitable cells such as neurons and cardiomyocytes. For many years, FGF12 was thought to be exclusively an intracellular protein, but recent studies have shown that it can be secreted despite the absence of a canonical signal for secretion. The best-studied function of FGF12 relates to its interaction with sodium channels. In addition, FGF12 forms complexes with signaling proteins, regulates the cytoskeletal system, binds to the FGF receptors activating signaling cascades to prevent apoptosis and interacts with the ribosome biogenesis complex. Importantly, FGF12 has been linked to nervous system disorders, cancers and cardiac diseases such as epileptic encephalopathy, pulmonary hypertension and cardiac arrhythmias, making it a potential target for gene therapy as well as a therapeutic agent.
Collapse
Affiliation(s)
- Martyna Biadun
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland; Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Radoslaw Karelus
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
5
|
Biadun M, Sochacka M, Kalka M, Chorazewska A, Karelus R, Krowarsch D, Opalinski L, Zakrzewska M. Uncovering key steps in FGF12 cellular release reveals a common mechanism for unconventional FGF protein secretion. Cell Mol Life Sci 2024; 81:356. [PMID: 39158730 PMCID: PMC11335280 DOI: 10.1007/s00018-024-05396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
FGF12 belongs to a subfamily of FGF proteins called FGF homologous factors (FHFs), which until recently were thought to be non-signaling intracellular proteins. Our recent studies have shown that although they lack a conventional signal peptide for secretion, they can reach the extracellular space, especially under stress conditions. Here, we unraveled that the long "a" isoform of FGF12 is secreted in a pathway involving the A1 subunit of Na(+)/K(+) ATPase (ATP1A1), Tec kinase and lipids such as phosphatidylinositol and phosphatidylserine. Further, we showed that the short "b" isoform of FGF12, which binds ATP1A1 and phosphatidylserine less efficiently, is not secreted from cells. We also indicated regions in the FGF12a protein sequence that are crucial for its secretion, including N-terminal fragment and specific residues, and proposed that liquid-liquid phase separation may be important in this process. Our results strongly suggest that the mechanism of this process is very similar for all unconventionally secreted FGF proteins.
Collapse
Affiliation(s)
- Martyna Biadun
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Martyna Sochacka
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Marta Kalka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Aleksandra Chorazewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Radoslaw Karelus
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland.
| |
Collapse
|
6
|
Ohori S, Miyauchi A, Osaka H, Lourenco CM, Arakaki N, Sengoku T, Ogata K, Honjo RS, Kim CA, Mitsuhashi S, Frith MC, Seyama R, Tsuchida N, Uchiyama Y, Koshimizu E, Hamanaka K, Misawa K, Miyatake S, Mizuguchi T, Saito K, Fujita A, Matsumoto N. Biallelic structural variations within FGF12 detected by long-read sequencing in epilepsy. Life Sci Alliance 2023; 6:e202302025. [PMID: 37286232 PMCID: PMC10248215 DOI: 10.26508/lsa.202302025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
We discovered biallelic intragenic structural variations (SVs) in FGF12 by applying long-read whole genome sequencing to an exome-negative patient with developmental and epileptic encephalopathy (DEE). We also found another DEE patient carrying a biallelic (homozygous) single-nucleotide variant (SNV) in FGF12 that was detected by exome sequencing. FGF12 heterozygous recurrent missense variants with gain-of-function or heterozygous entire duplication of FGF12 are known causes of epilepsy, but biallelic SNVs/SVs have never been described. FGF12 encodes intracellular proteins interacting with the C-terminal domain of the alpha subunit of voltage-gated sodium channels 1.2, 1.5, and 1.6, promoting excitability by delaying fast inactivation of the channels. To validate the molecular pathomechanisms of these biallelic FGF12 SVs/SNV, highly sensitive gene expression analyses using lymphoblastoid cells from the patient with biallelic SVs, structural considerations, and Drosophila in vivo functional analysis of the SNV were performed, confirming loss-of-function. Our study highlights the importance of small SVs in Mendelian disorders, which may be overlooked by exome sequencing but can be detected efficiently by long-read whole genome sequencing, providing new insights into the pathomechanisms of human diseases.
Collapse
Affiliation(s)
- Sachiko Ohori
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Genetics, Kitasato University Hospital, Sagamihara, Japan
| | - Akihiko Miyauchi
- Department of Pediatrics, Jichi Medical School, Shimotsuke, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical School, Shimotsuke, Japan
| | - Charles Marques Lourenco
- Neurogenetics Department, Faculdade de Medicina de São José do Rio Preto, São Jose do Rio Preto, Brazil
- Personalized Medicine Department, Special Education Sector at DLE/Grupo Pardini, Belo Horizonte, Brazil
| | - Naohiro Arakaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Shizuoka, Japan
| | - Toru Sengoku
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Rachel Sayuri Honjo
- Unidade de Genética Médica do Instituto da Criança, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Chong Ae Kim
- Unidade de Genética Médica do Instituto da Criança, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Satomi Mitsuhashi
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Martin C Frith
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
- Computational Bio Big-Data Open Innovation Laboratory, AIST, Tokyo, Japan
| | - Rie Seyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kuniaki Saito
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Shizuoka, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
7
|
Baumgartner TJ, Haghighijoo Z, Goode NA, Dvorak NM, Arman P, Laezza F. Voltage-Gated Na + Channels in Alzheimer's Disease: Physiological Roles and Therapeutic Potential. Life (Basel) 2023; 13:1655. [PMID: 37629512 PMCID: PMC10455313 DOI: 10.3390/life13081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is classically characterized by two major histopathological abnormalities: extracellular plaques composed of amyloid beta (Aβ) and intracellular hyperphosphorylated tau. Due to the progressive nature of the disease, it is of the utmost importance to develop disease-modifying therapeutics that tackle AD pathology in its early stages. Attenuation of hippocampal hyperactivity, one of the earliest neuronal abnormalities observed in AD brains, has emerged as a promising strategy to ameliorate cognitive deficits and abate the spread of neurotoxic species. This aberrant hyperactivity has been attributed in part to the dysfunction of voltage-gated Na+ (Nav) channels, which are central mediators of neuronal excitability. Therefore, targeting Nav channels is a promising strategy for developing disease-modifying therapeutics that can correct aberrant neuronal phenotypes in early-stage AD. This review will explore the role of Nav channels in neuronal function, their connections to AD pathology, and their potential as therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (T.J.B.); (Z.H.); (N.A.G.); (N.M.D.); (P.A.)
| |
Collapse
|
8
|
Biadun M, Sochacka M, Karelus R, Baran K, Czyrek A, Otlewski J, Krowarsch D, Opalinski L, Zakrzewska M. FGF homologous factors are secreted from cells to induce FGFR-mediated anti-apoptotic response. FASEB J 2023; 37:e23043. [PMID: 37342898 DOI: 10.1096/fj.202300324r] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/10/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
FGF homologous factors (FHFs) are the least described group of fibroblast growth factors (FGFs). The FHF subfamily consists of four proteins: FGF11, FGF12, FGF13, and FGF14. Until recently, FHFs were thought to be intracellular, non-signaling molecules, despite sharing structural and sequence similarities with other members of FGF family that can be secreted and activate cell signaling by interacting with surface receptors. Here, we show that despite lacking a canonical signal peptide for secretion, FHFs are exported to the extracellular space. Furthermore, we propose that their secretion mechanism is similar to the unconventional secretion of FGF2. The secreted FHFs are biologically active and trigger signaling in cells expressing FGF receptors (FGFRs). Using recombinant proteins, we demonstrated their direct binding to FGFR1, resulting in the activation of downstream signaling and the internalization of the FHF-FGFR1 complex. The effect of receptor activation by FHF proteins is an anti-apoptotic response of the cell.
Collapse
Affiliation(s)
- Martyna Biadun
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
- Department of Protein Biotechnology, Faculty of Biotchnology, University of Wroclaw, Wroclaw, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Radoslaw Karelus
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Karolina Baran
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Aleksandra Czyrek
- Department of Protein Biotechnology, Faculty of Biotchnology, University of Wroclaw, Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotchnology, University of Wroclaw, Wroclaw, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
9
|
Angsutararux P, Dutta AK, Marras M, Abella C, Mellor RL, Shi J, Nerbonne JM, Silva JR. Differential regulation of cardiac sodium channels by intracellular fibroblast growth factors. J Gen Physiol 2023; 155:e202213300. [PMID: 36944081 PMCID: PMC10038838 DOI: 10.1085/jgp.202213300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 03/23/2023] Open
Abstract
Voltage-gated sodium (NaV) channels are responsible for the initiation and propagation of action potentials. In the heart, the predominant NaV1.5 α subunit is composed of four homologous repeats (I-IV) and forms a macromolecular complex with multiple accessory proteins, including intracellular fibroblast growth factors (iFGF). In spite of high homology, each of the iFGFs, iFGF11-iFGF14, as well as the individual iFGF splice variants, differentially regulates NaV channel gating, and the mechanisms underlying these differential effects remain elusive. Much of the work exploring iFGF regulation of NaV1.5 has been performed in mouse and rat ventricular myocytes in which iFGF13VY is the predominant iFGF expressed, whereas investigation into NaV1.5 regulation by the human heart-dominant iFGF12B is lacking. In this study, we used a mouse model with cardiac-specific Fgf13 deletion to study the consequences of iFGF13VY and iFGF12B expression. We observed distinct effects on the voltage-dependences of activation and inactivation of the sodium currents (INa), as well as on the kinetics of peak INa decay. Results in native myocytes were recapitulated with human NaV1.5 heterologously expressed in Xenopus oocytes, and additional experiments using voltage-clamp fluorometry (VCF) revealed iFGF-specific effects on the activation of the NaV1.5 voltage sensor domain in repeat IV (VSD-IV). iFGF chimeras further unveiled roles for all three iFGF domains (i.e., the N-terminus, core, and C-terminus) on the regulation of VSD-IV, and a slower time domain of inactivation. We present here a novel mechanism of iFGF regulation that is specific to individual iFGF isoforms and that leads to distinct functional effects on NaV channel/current kinetics.
Collapse
Affiliation(s)
- Paweorn Angsutararux
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Amal K. Dutta
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Martina Marras
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Carlota Abella
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Rebecca L. Mellor
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingyi Shi
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeanne M. Nerbonne
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jonathan R. Silva
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
10
|
Sochacka M, Karelus R, Opalinski L, Krowarsch D, Biadun M, Otlewski J, Zakrzewska M. FGF12 is a novel component of the nucleolar NOLC1/TCOF1 ribosome biogenesis complex. Cell Commun Signal 2022; 20:182. [PMID: 36411431 PMCID: PMC9677703 DOI: 10.1186/s12964-022-01000-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
Among the FGF proteins, the least characterized superfamily is the group of fibroblast growth factor homologous factors (FHFs). To date, the main role of FHFs has been primarily seen in the modulation of voltage-gated ion channels, but a full picture of the function of FHFs inside the cell is far from complete. In the present study, we focused on identifying novel FGF12 binding partners to indicate its intracellular functions. Among the identified proteins, a significant number were nuclear proteins, especially RNA-binding proteins involved in translational processes, such as ribosomal processing and modification. We have demonstrated that FGF12 is localized to the nucleolus, where it interacts with NOLC1 and TCOF1, proteins involved in the assembly of functional ribosomes. Interactions with both NOLC1 and TCOF1 are unique to FGF12, as other FHF proteins only bind to TCOF1. The formation of nucleolar FGF12 complexes with NOLC1 and TCOF1 is phosphorylation-dependent and requires the C-terminal region of FGF12. Surprisingly, NOLC1 and TCOF1 are unable to interact with each other in the absence of FGF12. Taken together, our data link FHF proteins to nucleoli for the first time and suggest a novel and unexpected role for FGF12 in ribosome biogenesis. Video Abstract.
Collapse
Affiliation(s)
- Martyna Sochacka
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Radoslaw Karelus
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Lukasz Opalinski
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Daniel Krowarsch
- grid.8505.80000 0001 1010 5103Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Martyna Biadun
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Jacek Otlewski
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Malgorzata Zakrzewska
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
11
|
Effraim PR, Estacion M, Zhao P, Sosniak D, Waxman SG, Dib-Hajj SD. Fibroblast growth factor homologous factor 2 attenuates excitability of DRG neurons. J Neurophysiol 2022; 128:1258-1266. [PMID: 36222860 PMCID: PMC9909838 DOI: 10.1152/jn.00361.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Fibroblast growth factor homologous factors (FHFs) are cytosolic members of the superfamily of the FGF proteins. Four members of this subfamily (FHF1-4) are differentially expressed in multiple tissues in an isoform-dependent manner. Mutations in FHF proteins have been associated with multiple neurological disorders. FHF proteins bind to the COOH terminus of voltage-gated sodium (Nav) channels and regulate current amplitude and gating properties of these channels. FHF2, which is expressed in dorsal root ganglia (DRG) neurons, has two main splicing isoforms: FHF2A and FHF2B, which differ in the length and sequence of their NH2 termini, have been shown to differentially regulate gating properties of Nav1.7, a channel that is a major driver of DRG neuron firing. FHF2 expression levels are downregulated after peripheral nerve axotomy, which suggests that they may regulate neuronal excitability via an action on Nav channels after injury. We have previously shown that knockdown of FHF2 leads to gain-of-function changes in Nav1.7 gating properties: enhanced repriming, increased current density, and hyperpolarized activation. From this we posited that knockdown of FHF2 might also lead to DRG hyperexcitability. Here we show that knockdown of either FHF2A alone or all isoforms of FHF2 results in increased DRG neuron excitability. In addition, we demonstrate that supplementation of FHF2A and FHF2B reduces DRG neuron excitability. Overexpression of FHF2A or FHF2B also reduced excitability of DRG neurons treated with a cocktail of inflammatory mediators, a model of inflammatory pain. Our data suggest that increased neuronal excitability after nerve injury might be triggered, in part, via a loss of FHF2-Nav1.7 interaction.NEW & NOTEWORTHY FHF2 is known to bind to and modulate the function of Nav1.7. FHF2 expression is also reduced after nerve injury. We demonstrate that knockdown of FHF2 expression increases DRG neuronal excitability. More importantly, overexpression of FHF2 reduces DRG excitability in basal conditions and in the presence of inflammatory mediators (a model of inflammatory pain). These results suggest that FHF2 could potentially be used as a tool to reduce DRG neuronal excitability and to treat pain.
Collapse
Affiliation(s)
- Philip R. Effraim
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06510
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Mark Estacion
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Peng Zhao
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Daniel Sosniak
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Sulayman D. Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
12
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
13
|
Bedogni F, Hevner RF. Cell-Type-Specific Gene Expression in Developing Mouse Neocortex: Intermediate Progenitors Implicated in Axon Development. Front Mol Neurosci 2021; 14:686034. [PMID: 34321999 PMCID: PMC8313239 DOI: 10.3389/fnmol.2021.686034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023] Open
Abstract
Cerebral cortex projection neurons (PNs) are generated from intermediate progenitors (IPs), which are in turn derived from radial glial progenitors (RGPs). To investigate developmental processes in IPs, we profiled IP transcriptomes in embryonic mouse neocortex, using transgenic Tbr2-GFP mice, cell sorting, and microarrays. These data were used in combination with in situ hybridization to ascertain gene sets specific for IPs, RGPs, PNs, interneurons, and other neural and non-neural cell types. RGP-selective transcripts (n = 419) included molecules for Notch receptor signaling, proliferation, neural stem cell identity, apical junctions, necroptosis, hippo pathway, and NF-κB pathway. RGPs also expressed specific genes for critical interactions with meningeal and vascular cells. In contrast, IP-selective genes (n = 136) encoded molecules for activated Delta ligand presentation, epithelial-mesenchymal transition, core planar cell polarity (PCP), axon genesis, and intrinsic excitability. Interestingly, IPs expressed several “dependence receptors” (Unc5d, Dcc, Ntrk3, and Epha4) that induce apoptosis in the absence of ligand, suggesting a competitive mechanism for IPs and new PNs to detect key environmental cues or die. Overall, our results imply a novel role for IPs in the patterning of neuronal polarization, axon differentiation, and intrinsic excitability prior to mitosis. Significantly, IPs highly express Wnt-PCP, netrin, and semaphorin pathway molecules known to regulate axon polarization in other systems. In sum, IPs not only amplify neurogenesis quantitatively, but also molecularly “prime” new PNs for axogenesis, guidance, and excitability.
Collapse
Affiliation(s)
| | - Robert F Hevner
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
14
|
Zybura A, Hudmon A, Cummins TR. Distinctive Properties and Powerful Neuromodulation of Na v1.6 Sodium Channels Regulates Neuronal Excitability. Cells 2021; 10:1595. [PMID: 34202119 PMCID: PMC8307729 DOI: 10.3390/cells10071595] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Navs) are critical determinants of cellular excitability. These ion channels exist as large heteromultimeric structures and their activity is tightly controlled. In neurons, the isoform Nav1.6 is highly enriched at the axon initial segment and nodes, making it critical for the initiation and propagation of neuronal impulses. Changes in Nav1.6 expression and function profoundly impact the input-output properties of neurons in normal and pathological conditions. While mutations in Nav1.6 may cause channel dysfunction, aberrant changes may also be the result of complex modes of regulation, including various protein-protein interactions and post-translational modifications, which can alter membrane excitability and neuronal firing properties. Despite decades of research, the complexities of Nav1.6 modulation in health and disease are still being determined. While some modulatory mechanisms have similar effects on other Nav isoforms, others are isoform-specific. Additionally, considerable progress has been made toward understanding how individual protein interactions and/or modifications affect Nav1.6 function. However, there is still more to be learned about how these different modes of modulation interact. Here, we examine the role of Nav1.6 in neuronal function and provide a thorough review of this channel's complex regulatory mechanisms and how they may contribute to neuromodulation.
Collapse
Affiliation(s)
- Agnes Zybura
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
| | - Theodore R. Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
15
|
Martinez-Espinosa PL, Yang C, Xia XM, Lingle CJ. Nav1.3 and FGF14 are primary determinants of the TTX-sensitive sodium current in mouse adrenal chromaffin cells. J Gen Physiol 2021; 153:211839. [PMID: 33651884 PMCID: PMC8020717 DOI: 10.1085/jgp.202012785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/29/2022] Open
Abstract
Adrenal chromaffin cells (CCs) in rodents express rapidly inactivating, tetrodotoxin (TTX)-sensitive sodium channels. The resulting current has generally been attributed to Nav1.7, although a possible role for Nav1.3 has also been suggested. Nav channels in rat CCs rapidly inactivate via two independent pathways which differ in their time course of recovery. One subpopulation recovers with time constants similar to traditional fast inactivation and the other ∼10-fold slower, but both pathways can act within a single homogenous population of channels. Here, we use Nav1.3 KO mice to probe the properties and molecular components of Nav current in CCs. We find that the absence of Nav1.3 abolishes all Nav current in about half of CCs examined, while a small, fast inactivating Nav current is still observed in the rest. To probe possible molecular components underlying slow recovery from inactivation, we used mice null for fibroblast growth factor homology factor 14 (FGF14). In these cells, the slow component of recovery from fast inactivation is completely absent in most CCs, with no change in the time constant of fast recovery. The use dependence of Nav current reduction during trains of stimuli in WT cells is completely abolished in FGF14 KO mice, directly demonstrating a role for slow recovery from inactivation in determining Nav current availability. Our results indicate that FGF14-mediated inactivation is the major determinant defining use-dependent changes in Nav availability in CCs. These results establish that Nav1.3, like other Nav isoforms, can also partner with FGF subunits, strongly regulating Nav channel function.
Collapse
Affiliation(s)
| | - Chengtao Yang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Xiao-Ming Xia
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
16
|
Joglekar A, Prjibelski A, Mahfouz A, Collier P, Lin S, Schlusche AK, Marrocco J, Williams SR, Haase B, Hayes A, Chew JG, Weisenfeld NI, Wong MY, Stein AN, Hardwick SA, Hunt T, Wang Q, Dieterich C, Bent Z, Fedrigo O, Sloan SA, Risso D, Jarvis ED, Flicek P, Luo W, Pitt GS, Frankish A, Smit AB, Ross ME, Tilgner HU. A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain. Nat Commun 2021; 12:463. [PMID: 33469025 PMCID: PMC7815907 DOI: 10.1038/s41467-020-20343-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/27/2020] [Indexed: 01/19/2023] Open
Abstract
Splicing varies across brain regions, but the single-cell resolution of regional variation is unclear. We present a single-cell investigation of differential isoform expression (DIE) between brain regions using single-cell long-read sequencing in mouse hippocampus and prefrontal cortex in 45 cell types at postnatal day 7 ( www.isoformAtlas.com ). Isoform tests for DIE show better performance than exon tests. We detect hundreds of DIE events traceable to cell types, often corresponding to functionally distinct protein isoforms. Mostly, one cell type is responsible for brain-region specific DIE. However, for fewer genes, multiple cell types influence DIE. Thus, regional identity can, although rarely, override cell-type specificity. Cell types indigenous to one anatomic structure display distinctive DIE, e.g. the choroid plexus epithelium manifests distinct transcription-start-site usage. Spatial transcriptomics and long-read sequencing yield a spatially resolved splicing map. Our methods quantify isoform expression with cell-type and spatial resolution and it contributes to further our understanding of how the brain integrates molecular and cellular complexity.
Collapse
Affiliation(s)
- Anoushka Joglekar
- Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Andrey Prjibelski
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St Petersburg, Russia
| | - Ahmed Mahfouz
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, 2628 XE, The Netherlands
| | - Paul Collier
- Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Susan Lin
- Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Anna Katharina Schlusche
- Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Jordan Marrocco
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | | | - Bettina Haase
- The Vertebrate Genomes Lab, The Rockefeller University, New York, NY, USA
| | | | | | | | - Man Ying Wong
- Brain and Mind Research Institute and Appel Alzheimer's Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Simon A Hardwick
- Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Toby Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Qi Wang
- Section of Bioinformatics and Systems Cardiology, University Hospital, 96120, Heidelberg, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, University Hospital, 96120, Heidelberg, Germany
| | | | - Olivier Fedrigo
- The Vertebrate Genomes Lab, The Rockefeller University, New York, NY, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Davide Risso
- Department of Statistical Sciences, University of Padova, Padova, Italy
| | - Erich D Jarvis
- The Vertebrate Genomes Lab, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Wenjie Luo
- Brain and Mind Research Institute and Appel Alzheimer's Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Geoffrey S Pitt
- Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - M Elizabeth Ross
- Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Hagen U Tilgner
- Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Wang XW, Fang W, Li YJ, Long X, Cai HX. Synovial fluid levels of VEGF and FGF-2 before and after intra-articular injection of hyaluronic acid in patients with temporomandibular disorders: a short-term study. Br J Oral Maxillofac Surg 2020; 59:64-69. [PMID: 32727671 DOI: 10.1016/j.bjoms.2020.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/10/2020] [Indexed: 12/25/2022]
Abstract
Our purpose was to measure the temporomandibular joint (TMJ) synovial fluid (SF) levels of vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) before and after intra-articular injection of hyaluronic acid (HA) and to investigate the possible mechanism involved in the therapeutic value of HA. We analysed the synovial fluid of 30 patients with unilateral internal derangement (ID) or osteoarthritis (OA) of the TMJ (confirmed by magnetic resonance imaging and cone-beam computed tomography) and recorded clinical signs and symptoms including maximal mouth opening, subjective joint pain, and joint noise at the patient's each visit. All clinical signs significantly improved after injection of HA, and there was no significant difference between ID and OA groups. In synovial fluid parameters, the concentration of VEGF was significantly higher before treatment with HA than after treatment, but there was no significant difference in the concentration of FGF-2 between before and after treatment. The study findings suggest intra-articular injection of HA may reduce the synovitis and improve the internal state of the TMJ in a short period.
Collapse
Affiliation(s)
- X W Wang
- Department of Oral and Maxillofacial Surgery, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, #237 Luo Yu Road, Wuhan, Hubei, PR China
| | - W Fang
- Department of Oral and Maxillofacial Surgery, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, #237 Luo Yu Road, Wuhan, Hubei, PR China
| | - Y J Li
- Department of Oral and Maxillofacial Surgery, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, #237 Luo Yu Road, Wuhan, Hubei, PR China
| | - X Long
- Department of Oral and Maxillofacial Surgery, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, #237 Luo Yu Road, Wuhan, Hubei, PR China
| | - H X Cai
- Department of Oral and Maxillofacial Surgery, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, #237 Luo Yu Road, Wuhan, Hubei, PR China.
| |
Collapse
|
18
|
Sochacka M, Opalinski L, Szymczyk J, Zimoch MB, Czyrek A, Krowarsch D, Otlewski J, Zakrzewska M. FHF1 is a bona fide fibroblast growth factor that activates cellular signaling in FGFR-dependent manner. Cell Commun Signal 2020; 18:69. [PMID: 32357892 PMCID: PMC7193404 DOI: 10.1186/s12964-020-00573-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/01/2020] [Indexed: 12/22/2022] Open
Abstract
Abstract Fibroblast growth factors (FGFs) via their receptors (FGFRs) transduce signals from the extracellular space to the cell interior, modulating pivotal cellular processes such as cell proliferation, motility, metabolism and death. FGF superfamily includes a group of fibroblast growth factor homologous factors (FHFs), proteins whose function is still largely unknown. Since FHFs lack the signal sequence for secretion and are unable to induce FGFR-dependent cell proliferation, these proteins were considered as intracellular proteins that are not involved in signal transduction via FGFRs. Here we demonstrate for the first time that FHF1 directly interacts with all four major FGFRs. FHF1 binding causes efficient FGFR activation and initiation of receptor-dependent signaling cascades. However, the biological effect of FHF1 differs from the one elicited by canonical FGFs, as extracellular FHF1 protects cells from apoptosis, but is unable to stimulate cell division. Our data define FHF1 as a FGFR ligand, emphasizing much greater similarity between FHFs and canonical FGFs than previously indicated. Video Abstract. (MP4 38460 kb)
Graphical abstract ![]()
Collapse
Affiliation(s)
- Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jakub Szymczyk
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Marta B Zimoch
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Aleksandra Czyrek
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
19
|
Johnstone CN, Pattison AD, Harrison PF, Powell DR, Lock P, Ernst M, Anderson RL, Beilharz TH. FGF13 promotes metastasis of triple-negative breast cancer. Int J Cancer 2020; 147:230-243. [PMID: 31957002 DOI: 10.1002/ijc.32874] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 12/01/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC) represents 10-20% of all human ductal adenocarcinomas and has a poor prognosis relative to other subtypes, due to the high propensity to develop distant metastases. Hence, new molecular targets for therapeutic intervention are needed for TNBC. We recently conducted a rigorous phenotypic and genomic characterization of four isogenic populations of MDA-MB-231 human triple-negative breast cancer cells that possess a range of intrinsic spontaneous metastatic capacities in vivo, ranging from nonmetastatic (MDA-MB-231_ATCC) to highly metastatic to lung, liver, spleen and spine (MDA-MB-231_HM). Gene expression profiling of primary tumours by RNA-Seq identified the fibroblast growth factor homologous factor, FGF13, as highly upregulated in aggressively metastatic MDA-MB-231_HM tumours. Clinically, higher FGF13 mRNA expression was associated with significantly worse relapse free survival in both luminal A and basal-like human breast cancers but was not associated with other clinical variables and was not upregulated in primary tumours relative to normal mammary gland. Stable FGF13 depletion restricted in vitro colony forming ability in MDA-MB-231_HM TNBC cells but not in oestrogen receptor (ER)-positive MCF-7 or MDA-MB-361 cells. However, despite augmenting MDA-MB-231_HM cell migration and invasion in vitro, FGF13 suppression almost completely blocked the spontaneous metastasis of MDA-MB-231_HM orthotopic xenografts to both lung and liver while having negligible impact on primary tumour growth. Together, these data indicate that FGF13 may represent a therapeutic target for blocking metastatic outgrowth of certain TNBCs. Further evaluation of the roles of individual FGF13 protein isoforms in progression of the different subtypes of breast cancer is warranted.
Collapse
Affiliation(s)
- Cameron N Johnstone
- Cancer Research Division, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Andrew D Pattison
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.,Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Paul F Harrison
- Monash Bioinformatics Platform, Monash University, Clayton, VIC, Australia
| | - David R Powell
- Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Monash Bioinformatics Platform, Monash University, Clayton, VIC, Australia
| | - Peter Lock
- LIMS Bioimaging Facility, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Robin L Anderson
- Cancer Research Division, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Traude H Beilharz
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.,Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Monash Bioinformatics Platform, Monash University, Clayton, VIC, Australia
| |
Collapse
|
20
|
Li Q, Zhai Z, Li J. Fibroblast growth factor homologous factors are potential ion channel modifiers associated with cardiac arrhythmias. Eur J Pharmacol 2020; 871:172920. [PMID: 31935396 DOI: 10.1016/j.ejphar.2020.172920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/10/2019] [Accepted: 01/10/2020] [Indexed: 12/27/2022]
Abstract
Stable electrical activity in cardiac myocytes is the basis of maintaining normal myocardial systolic and diastolic function. Cardiac ionic currents and their associated regulatory proteins are crucial to myocyte excitability and heart function. Fibroblast growth factor homologous factors (FHFs) are intracellular noncanonical fibroblast growth factors (FGFs) that are incapable of activating FGF receptors. The main functions of FHFs are to regulate ion channels and influence excitability, which are processes involved in sustaining normal cardiac function. In addition to their regulatory effect on ion channels, FHFs can be regulators of cardiac hypertrophic signaling and alter signaling pathways, including the protein kinase, NF<kappa>B, and p53 pathways, which are related to the pathological processes of heart diseases. This review emphasizes FHF-mediated regulation of cardiac excitability and the association of FHFs with cardiac arrhythmias and explores the idea that abnormal FHFs may be an unrecognized cause of cardiac disorders.
Collapse
Affiliation(s)
- Qing Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhenyu Zhai
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Juxiang Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
21
|
Kolli V, Paul S, Guttula PK, Sarkar N. Elucidating the Role of Val-Asn 95 and Arg-Gly 52 Mutations on Structure and Stability of Fibroblast Growth Factor Homologous Factor 2. Protein Pept Lett 2019; 26:848-859. [PMID: 37020363 DOI: 10.2174/0929866526666190503092718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/11/2019] [Accepted: 04/19/2019] [Indexed: 11/22/2022]
Abstract
Background:
Fibroblast growth Factor Homologous Factors (FHFs) belong to a subclass
of Fibroblast Growth Factor (FGF) family owing to their high sequence and structural similarities
with FGFs. However, despite these similarities, there are properties which set them apart from
FGFs. FHFs lack the secretion signal sequence unlike other FGF members, except FGF1 and 2.
Unlike FGFs, FHFs are not able to bind to FGF Receptors (FGFRs) and instead have been
implicated in binding to Voltage-Gated Sodium Channels (VGSCs), neuronal MAP kinase scaffold
protein and islet-brain-2 (IB2). The two amino acids Arg-52 and Val95 are conserved in all FHFs
and mutation of these residues lead to its inability to bind with VGSC/IB2. However, it is not clear
whether the loss of binding is due to destabilization of the protein on mutation or due to
involvement of Arg52 and Val95 in conferring functionality to FHFs.
Objective:
In the present study, we have mutated these two conserved residues of FHF2 with its
corresponding FGF counterpart amino acids and studied the effects of the mutations on the
structure and stability of the protein.
Methods:
Several biophysical methods like isothermal equilibrium denaturation study, ANS
fluorescence, intrinsic fluorescence, acrylamide quenching, circular dichroism studies as well as
using computational approaches were employed.
Results:
The single mutations were found to affect the overall stability, conformation and
functionality of the protein.
Conclusion:
Thus, the studies throw light on the role of specific amino acids in deciding the
stability, structure and functionality of proteins and will be useful for development of
therapeutically engineered proteins.
Collapse
Affiliation(s)
- Vidyalatha Kolli
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Subhankar Paul
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Praveen Kumar Guttula
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| |
Collapse
|
22
|
White HV, Brown ST, Bozza TC, Raman IM. Effects of FGF14 and Na Vβ4 deletion on transient and resurgent Na current in cerebellar Purkinje neurons. J Gen Physiol 2019; 151:1300-1318. [PMID: 31558566 PMCID: PMC6829560 DOI: 10.1085/jgp.201912390] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/03/2019] [Indexed: 11/20/2022] Open
Abstract
Voltage-gated Na channels of Purkinje cells are specialized to maintain high availability during high-frequency repetitive firing. They enter fast-inactivated states relatively slowly and undergo a voltage-dependent open-channel block by an intracellular protein (or proteins) that prevents stable fast inactivation and generates resurgent Na current. These properties depend on the pore-forming α subunits, as well as modulatory subunits within the Na channel complex. The identity of the factors responsible for open-channel block remains a question. Here we investigate the effects of genetic mutation of two Na channel auxiliary subunits highly expressed in Purkinje cells, NaVβ4 and FGF14, on modulating Na channel blocked as well as inactivated states. We find that although both NaVβ4 and the FGF14 splice variant FGF14-1a contain sequences that can generate resurgent-like currents when applied to Na channels in peptide form, deletion of either protein, or both proteins simultaneously, does not eliminate resurgent current in acutely dissociated Purkinje cell bodies. Loss of FGF14 expression does, however, reduce resurgent current amplitude and leads to an acceleration and stabilization of inactivation that is not reversed by application of the site-3 toxin, anemone toxin II (ATX). Tetrodotoxin (TTX) sensitivity is higher for resurgent than transient components of Na current, and loss of FGF14 preferentially affects a highly TTX-sensitive subset of Purkinje α subunits. The data suggest that NaV1.6 channels, which are known to generate the majority of Purkinje cell resurgent current, bind TTX with high affinity and are modulated by FGF14 to facilitate open-channel block.
Collapse
Affiliation(s)
- Hayley V White
- Department of Neurobiology, Northwestern University, Evanston, IL.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL
| | - Spencer T Brown
- Department of Neurobiology, Northwestern University, Evanston, IL.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL
| | - Thomas C Bozza
- Department of Neurobiology, Northwestern University, Evanston, IL.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL
| | - Indira M Raman
- Department of Neurobiology, Northwestern University, Evanston, IL .,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL
| |
Collapse
|
23
|
Mo J, Chen X, Ni C, Wu K, Li X, Zhu Q, Ma L, Chen Y, Zhang S, Wang Y, Lian Q, Ge RS. Fibroblast growth factor homologous factor 1 stimulates Leydig cell regeneration from stem cells in male rats. J Cell Mol Med 2019; 23:5618-5631. [PMID: 31222931 PMCID: PMC6653537 DOI: 10.1111/jcmm.14461] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 01/05/2023] Open
Abstract
Fibroblast growth factor homologous factor 1 (FHF1) is an intracellular protein that does not bind to cell surface fibroblast growth factor receptor. Here, we report that FHF1 is abundantly present in Leydig cells with up‐regulation during its development. Adult male Sprague Dawley rats were intraperitoneally injected with 75 mg/kg ethane dimethane sulphonate (EDS) to ablate Leydig cells to initiate their regeneration. Then, rats daily received intratesticular injection of FHF1 (0, 10 and 100 ng/testis) from post‐EDS day 14 for 14 days. FHF1 increased serum testosterone levels without affecting the levels of luteinizing hormone and follicle‐stimulating hormone. FHF1 increased the cell number staining with HSD11B1, a biomarker for Leydig cells at the advanced stage, without affecting the cell number staining with CYP11A1, a biomarker for all Leydig cells. FHF1 did not affect PCNA‐labelling index in Leydig cells. FHF1 increased Leydig cell mRNA (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Insl3, Nr5a1 and Hsd11b1) and their protein levels in vivo. FHF1 increased preadipocyte biomarker Dlk1 mRNA level and decreased fully differentiated adipocyte biomarker (Fabp4 and Lpl) mRNA and their protein levels. In conclusion, FHF1 promotes Leydig cell regeneration from stem cells while inhibiting the differentiation of preadipocyte/stem cells into adipocytes in EDS‐treated testis.
Collapse
Affiliation(s)
- Jiaying Mo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiuxiu Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Keyang Wu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Leika Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Song Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
24
|
Sex-Specific Proteomic Changes Induced by Genetic Deletion of Fibroblast Growth Factor 14 (FGF14), a Regulator of Neuronal Ion Channels. Proteomes 2019; 7:proteomes7010005. [PMID: 30678040 PMCID: PMC6473632 DOI: 10.3390/proteomes7010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor 14 (FGF14) is a member of the intracellular FGFs, which is a group of proteins involved in neuronal ion channel regulation and synaptic transmission. We previously demonstrated that male Fgf14−/− mice recapitulate the salient endophenotypes of synaptic dysfunction and behaviors that are associated with schizophrenia (SZ). As the underlying etiology of SZ and its sex-specific onset remain elusive, the Fgf14−/− model may provide a valuable tool to interrogate pathways related to disease mechanisms. Here, we performed label-free quantitative proteomics to identify enriched pathways in both male and female hippocampi from Fgf14+/+ and Fgf14−/− mice. We discovered that all of the differentially expressed proteins measured in Fgf14−/− animals, relative to their same-sex wildtype counterparts, are associated with SZ based on genome-wide association data. In addition, measured changes in the proteome were predominantly sex-specific, with the male Fgf14−/− mice distinctly enriched for pathways associated with neuropsychiatric disorders. In the male Fgf14−/− mouse, we found molecular characteristics that, in part, may explain a previously described neurotransmission and behavioral phenotype. This includes decreased levels of ALDH1A1 and protein kinase A (PRKAR2B). ALDH1A1 has been shown to mediate an alternative pathway for gamma-aminobutyric acid (GABA) synthesis, while PRKAR2B is essential for dopamine 2 receptor signaling, which is the basis of current antipsychotics. Collectively, our results provide new insights in the role of FGF14 and support the use of the Fgf14−/− mouse as a useful preclinical model of SZ for generating hypotheses on disease mechanisms, sex-specific manifestation, and therapy.
Collapse
|
25
|
Alpizar SA, Baker AL, Gulledge AT, Hoppa MB. Loss of Neurofascin-186 Disrupts Alignment of AnkyrinG Relative to Its Binding Partners in the Axon Initial Segment. Front Cell Neurosci 2019; 13:1. [PMID: 30723396 PMCID: PMC6349729 DOI: 10.3389/fncel.2019.00001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/07/2019] [Indexed: 12/14/2022] Open
Abstract
The axon initial segment (AIS) is a specialized region within the proximal portion of the axon that initiates action potentials thanks in large part to an enrichment of sodium channels. The scaffolding protein ankyrinG (AnkG) is essential for the recruitment of sodium channels as well as several other intracellular and extracellular proteins to the AIS. In the present study, we explore the role of the cell adhesion molecule (CAM) neurofascin-186 (NF-186) in arranging the individual molecular components of the AIS in cultured rat hippocampal neurons. Using a CRISPR depletion strategy to ablate NF expression, we found that the loss of NF selectively perturbed AnkG accumulation and its relative proximal distribution within the AIS. We found that the overexpression of sodium channels could restore AnkG accumulation, but not its altered distribution within the AIS without NF present. We go on to show that although the loss of NF altered AnkG distribution, sodium channel function within the AIS remained normal. Taken together, these results demonstrate that the regulation of AnkG and sodium channel accumulation within the AIS can occur independently of one another, potentially mediated by other binding partners such as NF.
Collapse
Affiliation(s)
- Scott A Alpizar
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | - Arielle L Baker
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States
| | - Allan T Gulledge
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States
| | - Michael B Hoppa
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
26
|
Niu J, Dick IE, Yang W, Bamgboye MA, Yue DT, Tomaselli G, Inoue T, Ben-Johny M. Allosteric regulators selectively prevent Ca 2+-feedback of Ca V and Na V channels. eLife 2018; 7:35222. [PMID: 30198845 PMCID: PMC6156082 DOI: 10.7554/elife.35222] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 09/09/2018] [Indexed: 12/31/2022] Open
Abstract
Calmodulin (CaM) serves as a pervasive regulatory subunit of CaV1, CaV2, and NaV1 channels, exploiting a functionally conserved carboxy-tail element to afford dynamic Ca2+-feedback of cellular excitability in neurons and cardiomyocytes. Yet this modularity counters functional adaptability, as global changes in ambient CaM indiscriminately alter its targets. Here, we demonstrate that two structurally unrelated proteins, SH3 and cysteine-rich domain (stac) and fibroblast growth factor homologous factors (fhf) selectively diminish Ca2+/CaM-regulation of CaV1 and NaV1 families, respectively. The two proteins operate on allosteric sites within upstream portions of respective channel carboxy-tails, distinct from the CaM-binding interface. Generalizing this mechanism, insertion of a short RxxK binding motif into CaV1.3 carboxy-tail confers synthetic switching of CaM regulation by Mona SH3 domain. Overall, our findings identify a general class of auxiliary proteins that modify Ca2+/CaM signaling to individual targets allowing spatial and temporal orchestration of feedback, and outline strategies for engineering Ca2+/CaM signaling to individual targets.
Collapse
Affiliation(s)
- Jacqueline Niu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
| | - Ivy E Dick
- Department of Physiology, University of Maryland, Baltimore, United States
| | - Wanjun Yang
- Department of Cardiology, Johns Hopkins University, Baltimore, United States
| | | | - David T Yue
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
| | - Gordon Tomaselli
- Department of Cardiology, Johns Hopkins University, Baltimore, United States
| | - Takanari Inoue
- Department of Cell Biology, Johns Hopkins University, Baltimore, United States.,Center for Cell Dynamics, Institute for Basic Biomedical Sciences, Johns Hopkins University, Baltimore, United States
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, United States
| |
Collapse
|
27
|
Li Q, Zhao Y, Wu G, Chen S, Zhou Y, Li S, Zhou M, Fan Q, Pu J, Hong K, Cheng X, Kenneth Wang Q, Tu X. De Novo FGF12 (Fibroblast Growth Factor 12) Functional Variation Is Potentially Associated With Idiopathic Ventricular Tachycardia. J Am Heart Assoc 2017; 6:JAHA.117.006130. [PMID: 28775062 PMCID: PMC5586455 DOI: 10.1161/jaha.117.006130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Idiopathic ventricular tachycardia (VT) is a type of cardiac arrhythmia occurring in structurally normal hearts. The heritability of idiopathic VT remains to be clarified, and numerous genetic factors responsible for development of idiopathic VT are as yet unclear. Variations in FGF12 (fibroblast growth factor 12), which is expressed in the human ventricle and modulates the cardiac Na+ channel NaV1.5, may play an important role in the genetic pathogenesis of VT. Methods and Results We tested the hypothesis that genetic variations in FGF12 are associated with VT in 2 independent Chinese cohorts and resequenced all the exons and exon–intron boundaries and the 5′ and 3′ untranslated regions of FGF12 in 320 unrelated participants with idiopathic VT. For population‐based case–control association studies, we chose 3 single‐nucleotide polymorphisms—rs1460922, rs4687326, and rs2686464—which included all the exons of FGF12. The results showed that the single‐nucleotide polymorphism rs1460922 in FGF12 was significantly associated with VT after adjusting for covariates of sex and age in 2 independent Chinese populations: adjusted P=0.015 (odds ratio: 1.54 [95% CI, 1.09–2.19]) in the discovery sample, adjusted P=0.018 (odds ratio: 1.64 [95% CI, 1.09–2.48]) in the replication sample, and adjusted P=2.52E‐04 (odds ratio: 1.59 [95% CI, 1.24–2.03]) in the combined sample. After resequencing all amino acid coding regions and untranslated regions of FGF12, 5 rare variations were identified. The result of western blotting revealed that a de novo functional variation, p.P211Q (1.84% of 163 patients with right ventricular outflow tract VT), could downregulate FGF12 expression significantly. Conclusions In this study, we observed that rs1460922 of FGF12 was significantly associated with VT and identified that a de novo variation of FGF12 may be an important genetic risk factor for the pathogenesis of VT.
Collapse
Affiliation(s)
- Qianqian Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Ministry of Education and Ministry of Health, Wuhan, China
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shanshan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingchao Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Mengchen Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Fan
- The Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jielin Pu
- State Key Laboratory of Cardiovascular Disease, Physiology and Pathophysiology Laboratory, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University and Jiangxi Key Laboratory of Molecular Medicine, Jiangxi, China
| | - Xiang Cheng
- The Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Qing Kenneth Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China .,Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Pablo JL, Pitt GS. Divide, multitask, and conquer: Coordination in channel regulation. Channels (Austin) 2017; 11:268-270. [PMID: 28282251 DOI: 10.1080/19336950.2017.1292814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Juan Lorenzo Pablo
- a Department of Cardiology, Howard Hughes Medical Institute , Boston Children's Hospital , Boston , MA , USA.,b Department of Neurobiology , Harvard Medical School , Boston , MA , USA
| | - Geoffrey S Pitt
- c Cardiovascular Research Institute , Weill Cornell Medicine , New York , NY , USA
| |
Collapse
|
29
|
Barbosa C, Xiao Y, Johnson AJ, Xie W, Strong JA, Zhang JM, Cummins TR. FHF2 isoforms differentially regulate Nav1.6-mediated resurgent sodium currents in dorsal root ganglion neurons. Pflugers Arch 2016; 469:195-212. [PMID: 27999940 DOI: 10.1007/s00424-016-1911-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/19/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022]
Abstract
Nav1.6 and Nav1.6-mediated resurgent currents have been implicated in several pain pathologies. However, our knowledge of how fast resurgent currents are modulated in neurons is limited. Our study explored the potential regulation of Nav1.6-mediated resurgent currents by isoforms of fibroblast growth factor homologous factor 2 (FHF2) in an effort to address the gap in our knowledge. FHF2 isoforms colocalize with Nav1.6 in peripheral sensory neurons. Cell line studies suggest that these proteins differentially regulate inactivation. In particular, FHF2A mediates long-term inactivation, a mechanism proposed to compete with the open-channel blocker mechanism that mediates resurgent currents. On the other hand, FHF2B lacks the ability to mediate long-term inactivation and may delay inactivation favoring open-channel block. Based on these observations, we hypothesized that FHF2A limits resurgent currents, whereas FHF2B enhances resurgent currents. Overall, our results suggest that FHF2A negatively regulates fast resurgent current by enhancing long-term inactivation and delaying recovery. In contrast, FHF2B positively regulated resurgent current and did not alter long-term inactivation. Chimeric constructs of FHF2A and Navβ4 (likely the endogenous open channel blocker in sensory neurons) exhibited differential effects on resurgent currents, suggesting that specific regions within FHF2A and Navβ4 have important regulatory functions. Our data also indicate that FHFAs and FHF2B isoform expression are differentially regulated in a radicular pain model and that associated neuronal hyperexcitability is substantially attenuated by a FHFA peptide. As such, these findings suggest that FHF2A and FHF2B regulate resurgent current in sensory neurons and may contribute to hyperexcitability associated with some pain pathologies.
Collapse
Affiliation(s)
- Cindy Barbosa
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yucheng Xiao
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Johnson
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wenrui Xie
- Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA
| | - Judith A Strong
- Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA
| | - Jun-Ming Zhang
- Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA
| | - Theodore R Cummins
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA. .,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
30
|
Affiliation(s)
- Sulayman D Dib-Hajj
- a Center for Neuroscience & Regeneration Research, Yale Medical School and Veterans Affairs Hospital , West Haven , CT , USA
| |
Collapse
|
31
|
Pablo JL, Wang C, Presby MM, Pitt GS. Polarized localization of voltage-gated Na+ channels is regulated by concerted FGF13 and FGF14 action. Proc Natl Acad Sci U S A 2016; 113:E2665-74. [PMID: 27044086 PMCID: PMC4868475 DOI: 10.1073/pnas.1521194113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Clustering of voltage-gated sodium channels (VGSCs) within the neuronal axon initial segment (AIS) is critical for efficient action potential initiation. Although initially inserted into both somatodendritic and axonal membranes, VGSCs are concentrated within the axon through mechanisms that include preferential axonal targeting and selective somatodendritic endocytosis. How the endocytic machinery specifically targets somatic VGSCs is unknown. Here, using knockdown strategies, we show that noncanonical FGF13 binds directly to VGSCs in hippocampal neurons to limit their somatodendritic surface expression, although exerting little effect on VGSCs within the AIS. In contrast, homologous FGF14, which is highly concentrated in the proximal axon, binds directly to VGSCs to promote their axonal localization. Single-point mutations in FGF13 or FGF14 abrogating VGSC interaction in vitro cannot support these specific functions in neurons. Thus, our data show how the concerted actions of FGF13 and FGF14 regulate the polarized localization of VGSCs that supports efficient action potential initiation.
Collapse
Affiliation(s)
- Juan Lorenzo Pablo
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710; Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710
| | - Chaojian Wang
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710; Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Matthew M Presby
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710; Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Geoffrey S Pitt
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710; Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710; Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
32
|
|
33
|
Abriel H, Rougier JS, Jalife J. Ion channel macromolecular complexes in cardiomyocytes: roles in sudden cardiac death. Circ Res 2015; 116:1971-88. [PMID: 26044251 DOI: 10.1161/circresaha.116.305017] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The movement of ions across specific channels embedded on the membrane of individual cardiomyocytes is crucial for the generation and propagation of the cardiac electric impulse. Emerging evidence over the past 20 years strongly suggests that the normal electric function of the heart is the result of dynamic interactions of membrane ion channels working in an orchestrated fashion as part of complex molecular networks. Such networks work together with exquisite temporal precision to generate each action potential and contraction. Macromolecular complexes play crucial roles in transcription, translation, oligomerization, trafficking, membrane retention, glycosylation, post-translational modification, turnover, function, and degradation of all cardiac ion channels known to date. In addition, the accurate timing of each cardiac beat and contraction demands, a comparable precision on the assembly and organizations of sodium, calcium, and potassium channel complexes within specific subcellular microdomains, where physical proximity allows for prompt and efficient interaction. This review article, part of the Compendium on Sudden Cardiac Death, discusses the major issues related to the role of ion channel macromolecular assemblies in normal cardiac electric function and the mechanisms of arrhythmias leading to sudden cardiac death. It provides an idea of how these issues are being addressed in the laboratory and in the clinic, which important questions remain unanswered, and what future research will be needed to improve knowledge and advance therapy.
Collapse
Affiliation(s)
- Hugues Abriel
- From the Department of Clinical Research, University of Bern, Bern, Switzerland (H.A., J.-S.R.); Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor (J.J.); and Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.J.)
| | - Jean-Sébastien Rougier
- From the Department of Clinical Research, University of Bern, Bern, Switzerland (H.A., J.-S.R.); Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor (J.J.); and Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.J.)
| | - José Jalife
- From the Department of Clinical Research, University of Bern, Bern, Switzerland (H.A., J.-S.R.); Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor (J.J.); and Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.J.).
| |
Collapse
|
34
|
Tempia F, Hoxha E, Negro G, Alshammari MA, Alshammari TK, Panova-Elektronova N, Laezza F. Parallel fiber to Purkinje cell synaptic impairment in a mouse model of spinocerebellar ataxia type 27. Front Cell Neurosci 2015; 9:205. [PMID: 26089778 PMCID: PMC4455242 DOI: 10.3389/fncel.2015.00205] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/11/2015] [Indexed: 11/13/2022] Open
Abstract
Genetically inherited mutations in the fibroblast growth factor 14 (FGF14) gene lead to spinocerebellar ataxia type 27 (SCA27), an autosomal dominant disorder characterized by heterogeneous motor and cognitive impairments. Consistently, genetic deletion of Fgf14 in Fgf14 (-/-) mice recapitulates salient features of the SCA27 human disease. In vitro molecular studies in cultured neurons indicate that the FGF14 (F145S) SCA27 allele acts as a dominant negative mutant suppressing the FGF14 wild type function and resulting in inhibition of voltage-gated Na(+) and Ca(2+) channels. To gain insights in the cerebellar deficits in the animal model of the human disease, we applied whole-cell voltage-clamp in the acute cerebellar slice preparation to examine the properties of parallel fibers (PF) to Purkinje neuron synapses in Fgf14 (-/-) mice and wild type littermates. We found that the AMPA receptor-mediated excitatory postsynaptic currents evoked by PF stimulation (PF-EPSCs) were significantly reduced in Fgf14 (-/-) animals, while short-term plasticity, measured as paired-pulse facilitation (PPF), was enhanced. Measuring Sr(2+)-induced release of quanta from stimulated synapses, we found that the size of the PF-EPSCs was unchanged, ruling out a postsynaptic deficit. This phenotype was corroborated by decreased expression of VGLUT1, a specific presynaptic marker at PF-Purkinje neuron synapses. We next examined the mGluR1 receptor-induced response (mGluR1-EPSC) that under normal conditions requires a gradual build-up of glutamate concentration in the synaptic cleft, and found no changes in these responses in Fgf14 (-/-) mice. These results provide evidence of a critical role of FGF14 in maintaining presynaptic function at PF-Purkinje neuron synapses highlighting critical target mechanisms to recapitulate the complexity of the SCA27 disease.
Collapse
Affiliation(s)
- Filippo Tempia
- Department of Pharmacology and Toxicology, University of Texas Medical Branch Galveston, TX, USA ; Department of Neuroscience, University of Torino Torino, Italy ; Neuroscience Institute Cavalieri Ottolenghi Torino, Italy ; National Institute of Neuroscience-Torino Italy
| | - Eriola Hoxha
- Department of Neuroscience, University of Torino Torino, Italy ; Neuroscience Institute Cavalieri Ottolenghi Torino, Italy
| | - Giulia Negro
- Neuroscience Institute Cavalieri Ottolenghi Torino, Italy
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, University of Texas Medical Branch Galveston, TX, USA ; Pharmacology and Toxicology Graduate Program, University of Texas Medical Branch Galveston, Texas, USA ; King Saud University Graduate Studies Abroad Program Riyadh, Saudi Arabia
| | - Tahani K Alshammari
- Department of Pharmacology and Toxicology, University of Texas Medical Branch Galveston, TX, USA ; Pharmacology and Toxicology Graduate Program, University of Texas Medical Branch Galveston, Texas, USA ; King Saud University Graduate Studies Abroad Program Riyadh, Saudi Arabia
| | - Neli Panova-Elektronova
- Department of Pharmacology and Toxicology, University of Texas Medical Branch Galveston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch Galveston, TX, USA ; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch Galveston, TX, USA ; Center for Addiction Research, University of Texas Medical Branch Galveston, TX, USA ; Center for Biomedical Engineering, University of Texas Medical Branch Galveston, TX, USA
| |
Collapse
|