1
|
Choi H, Thacker EL, Liu M, Strobino K, Misiewicz S, Rundek T, Elkind MSV, Gutierrez JD. Racial/ethnic differences in the association of incident stroke with late onset epilepsy: The Northern Manhattan Study. Epilepsia 2024; 65:3561-3570. [PMID: 39404362 DOI: 10.1111/epi.18156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVE Little is known about the incidence of late onset epilepsy (LOE) across different racial/ethnic groups in the USA, particularly in the Hispanic population. Stroke, a strong predictor of LOE, is more common in non-Hispanic Blacks (NHBs) and Hispanics than in non-Hispanic Whites (NHWs). We assessed the incidence of LOE across racial/ethnic groups and examined whether the associations of stroke with LOE risk differ by race/ethnicity. METHODS The Northern Manhattan Study is a population-based longitudinal study of older adults enrolled between 1993 and 2001. Participants free of history of stroke or epilepsy at baseline (n = 3419) were followed prospectively for incidence of LOE. We estimated LOE incidence per 1000 person-years in each racial/ethnic group. We used Cox proportional hazards regression to assess the association of race/ethnicity with LOE and multiplicative interactions of race/ethnicity with incident stroke in relation to LOE, adjusting for demographics and comorbid diagnoses. RESULTS During 51 176 person-years of follow-up, 183 individuals developed LOE. Incidence of LOE was significantly higher in NHBs (6.2 per 1000 person-years) than in NHWs (3.3 per 1000 person-years, p = .004). There was no significant difference in LOE incidence between NHWs (3.3 per 1000 person-years) and Hispanics (2.6 per 1000 person-years, p = .875). However, following incident stroke, the risk of LOE differed across racial/ethnic groups. Incident stroke was associated with 2.55 times the risk of LOE among NHWs (95% confidence interval [CI] = .88-7.35), 8.53 times the risk of LOE among Hispanics (95% CI = 5.36-13.57, p = .04 for stronger association than that in NHWs), and 6.46 times the risk of LOE among NHBs (95% CI = 3.79-11.01, p = .12 for stronger association than that in NHWs). SIGNIFICANCE We found a stronger association of incident stroke with LOE risk in Hispanics and NHBs than in NHWs, offering some insight into the racial/ethnic disparities of LOE incidence.
Collapse
Affiliation(s)
- Hyunmi Choi
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Evan L Thacker
- Department of Public Health, Brigham Young University, Provo, Utah, USA
| | - Minghua Liu
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Kevin Strobino
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Sylwia Misiewicz
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Tatjana Rundek
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mitchell S V Elkind
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Jose D Gutierrez
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
2
|
Andrew PM, MacMahon JA, Bernardino PN, Tsai YH, Hobson BA, Porter VA, Huddleston SL, Luo AS, Bruun DA, Saito NH, Harvey DJ, Brooks-Kayal A, Chaudhari AJ, Lein PJ. Shifts in the spatiotemporal profile of inflammatory phenotypes of innate immune cells in the rat brain following acute intoxication with the organophosphate diisopropylfluorophosphate. J Neuroinflammation 2024; 21:285. [PMID: 39497181 PMCID: PMC11533402 DOI: 10.1186/s12974-024-03272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Acute intoxication with cholinesterase inhibiting organophosphates (OP) can produce life-threatening cholinergic crisis and status epilepticus (SE). Survivors often develop long-term neurological consequences, including spontaneous recurrent seizures (SRS) and impaired cognition. Numerous studies implicate OP-induced neuroinflammation as a pathogenic mechanism contributing to these chronic sequelae; however, little is known about the inflammatory phenotype of innate immune cells in the brain following acute OP intoxication. Thus, the aim of this study was to characterize the natural history of microglial and astrocytic inflammatory phenotypes following acute intoxication with the OP, diisopropylfluorophosphate (DFP). Adult male and female Sprague-Dawley rats were administered a single dose of DFP (4 mg/kg, sc) followed by standard medical countermeasures. Within minutes, animals developed benzodiazepine-resistant SE as determined by monitoring seizures using a modified Racine scale. At 1, 3, 7, 14, and 28 d post-exposure (DPE), neuroinflammation was assessed using translocator protein (TSPO) positron emission tomography (PET) and magnetic resonance imaging (MRI). In both sexes, we observed consistently elevated radiotracer uptake across all examined brain regions and time points. A separate group of animals was euthanized at these same time points to collect tissues for immunohistochemical analyses. Colocalization of IBA-1, a marker for microglia, with iNOS or Arg1 was used to identify pro- and anti-inflammatory microglia, respectively; colocalization of GFAP, a marker for astrocytes, with C3 or S100A10, pro- and anti-inflammatory astrocytes, respectively. We observed shifts in the inflammatory profiles of microglia and astrocyte populations during the first month post-intoxication, largely in hyperintense inflammatory lesions in the piriform cortex and amygdala regions. In these areas, iNOS+ proinflammatory microglial cell density peaked at 3 and 7 DPE, while anti-inflammatory Arg1+ microglia cell density peaked at 14 DPE. Pro- and anti-inflammatory astrocytes emerged within 7 DPE, and roughly equal ratios of C3+ pro-inflammatory and S100A10+ anti-inflammatory astrocytes persisted at 28 DPE. In summary, microglia and astrocytes adopted mixed inflammatory phenotypes post-OP intoxication, which evolved over one month post exposure. These activated cell populations were most prominent in the piriform and amygdala areas and were more abundant in males compared to females. The temporal relationship between microglial and astrocytic responses suggests that initial microglial activity may influence delayed, persistent astrocytic responses. Further, our findings identify putative windows for inhibition of OP-induced neuroinflammatory responses in both sexes to evaluate the therapeutic benefit of anti-inflammation in this context.
Collapse
Affiliation(s)
- Peter M Andrew
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Jeremy A MacMahon
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Pedro N Bernardino
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Yi-Hua Tsai
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Brad A Hobson
- Center for Molecular and Genomic Imaging, College of Engineering, University of California, DavisDavis, CA, 95616, USA
| | - Valerie A Porter
- Department of Biomedical Engineering, College of Engineering, University of California, DavisDavis, CA, 95616, USA
| | - Sydney L Huddleston
- Center for Molecular and Genomic Imaging, College of Engineering, University of California, DavisDavis, CA, 95616, USA
| | - Audrey S Luo
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Donald A Bruun
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Naomi H Saito
- Department of Public Health Sciences, Davis, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Danielle J Harvey
- Department of Public Health Sciences, Davis, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Amy Brooks-Kayal
- Department of Neurology, Davis, School of Medicine, University of California, Sacramento, CA, 95817, USA
| | - Abhijit J Chaudhari
- Center for Molecular and Genomic Imaging, College of Engineering, University of California, DavisDavis, CA, 95616, USA
- Department of Radiology, Davis, School of Medicine, University of California, Sacramento, CA, 95817, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
3
|
Yu X, Yang H, Lv H, Lu H, Zhao H, Xu Z. Age-Dependent Phenomena of 6-Hz Corneal Kindling Model in Mice. Mol Neurobiol 2024; 61:5601-5613. [PMID: 38214837 DOI: 10.1007/s12035-024-03934-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Although numerous studies have acknowledged disparities in epilepsy-related disease processes between young and aged animals, little is known about how epilepsy changes from young adulthood to middle age. This study investigates the impact of aging on 6-Hz corneal kindling in young-adult mice and middle-aged mice. We found that the kindling acquisition of the 6-Hz corneal kindling model was delayed in middle-aged mice when compared to young-adult mice. While the seizure stage and incidence of generalized seizures (GS) were similar between the two age groups, the duration of GS in the kindled middle-aged mice was shorter than that in the kindled young-adult mice. Besides, all kindled mice, regardless of age, were resistant to phenytoin sodium (PHT), valproate sodium (VPA), and lamotrigine (LGT), whereas middle-aged mice exhibited higher levetiracetam (LEV) resistance compared to young-adult mice. Both age groups of kindled mice displayed hyperactivity and impaired memory, which are common behavioral characteristics associated with epilepsy. Furthermore, middle-aged mice displayed more pronounced astrogliosis in the hippocampus. Additionally, the expression of Brain-Derived Neurotrophic Factor (BDNF) was lower in middle-aged mice than in young-adult mice prior to kindling. These data demonstrate that both the acquisition and expression of 6-Hz corneal kindling are attenuated in middle-aged mice, while hippocampal astrogliosis and pharmacological resistance are more pronounced in this age group. These results underscore the importance of considering age-related factors when utilizing the 6-Hz corneal kindling model in mice of varying age groups.
Collapse
Affiliation(s)
- Xiu Yu
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, No.548 Binwen Road, Hangzhou, Zhejiang, 310053, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Han Yang
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, No.548 Binwen Road, Hangzhou, Zhejiang, 310053, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - HongJie Lv
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, No.548 Binwen Road, Hangzhou, Zhejiang, 310053, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Haimei Lu
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, No.548 Binwen Road, Hangzhou, Zhejiang, 310053, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huawei Zhao
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Zhenghao Xu
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, No.548 Binwen Road, Hangzhou, Zhejiang, 310053, China.
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Zhang N, Lin R, Xu H, Jing X, Zhou H, Wen X, Xie Q. Identification of Curcumin Targets in the Brain of Epileptic Mice Using DARTS. ACS OMEGA 2024; 9:22754-22763. [PMID: 38826549 PMCID: PMC11137688 DOI: 10.1021/acsomega.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024]
Abstract
Curcumin, a compound derived from turmeric, is traditionally utilized in East Asian medicine for treating various health conditions, including epilepsy. Despite its involvement in numerous cellular signaling pathways, the specific mechanisms and targets of curcumin in epilepsy treatment have remained unclear. Our study focused on identifying the primary targets and functional pathways of curcumin in the brains of epileptic mice. Using drug affinity responsive target stabilization (DARTS) and affinity chromatography, we identified key targets in the mouse brain, revealing 232 and 70 potential curcumin targets, respectively. Bioinformatics analysis revealed a strong association of these proteins with focal adhesions and cytoskeletal components. Further experiments using DARTS, along with immunofluorescence staining and cell migration assays, confirmed curcumin's ability to regulate the dynamics of focal adhesions and influence cell migration. This study not only advances our understanding of curcumin's role in epilepsy treatment but also serves as a model for identifying therapeutic targets in neurological disorders.
Collapse
Affiliation(s)
- Ninan Zhang
- Institute
of Acupuncture and Moxibustion, China Academy
of Chinese Medical Sciences, Beijing 100700, China
- Institute
of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- State
Key Laboratory of Molecular Developmental Biology, Institute of Genetics
and Developmental Biology, Chinese Academy
of Sciences, Beijing 10019, China
| | - Ruifan Lin
- Institute
of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- State
Key Laboratory of Molecular Developmental Biology, Institute of Genetics
and Developmental Biology, Chinese Academy
of Sciences, Beijing 10019, China
| | - Honglin Xu
- State
Key Laboratory of Molecular Developmental Biology, Institute of Genetics
and Developmental Biology, Chinese Academy
of Sciences, Beijing 10019, China
| | - Xianghong Jing
- Institute
of Acupuncture and Moxibustion, China Academy
of Chinese Medical Sciences, Beijing 100700, China
| | - Hongwei Zhou
- National
Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoxiao Wen
- National
Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qi Xie
- Wangjing
Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China
| |
Collapse
|
5
|
Okeke C, Zhang J, Bashford T, Seah M. Perioperative management of adults with traumatic brain injury. J Perioper Pract 2024; 34:122-128. [PMID: 37650502 PMCID: PMC10996293 DOI: 10.1177/17504589231187798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Despite advances in management strategy, traumatic brain injury remains strongly associated with neurological impairment and mortality. Management of traumatic brain injury requires careful and targeted management of the physiological consequences which extend beyond the scope of the primary impact to the cranium. Here, we present a review of the principles of its acute management in adults. We outline the procedure which patients are assessed and the critical physiological variables which must be monitored to prevent further neurological damage. We describe current interventional strategies from the context of the underlying physiological mechanisms and recent clinical data and identify persisting challenges in traumatic brain injury management and potential avenues of future progress.
Collapse
Affiliation(s)
- Chinazo Okeke
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Jenny Zhang
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Tom Bashford
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Matthew Seah
- Department of Surgery, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Tukacs V, Mittli D, Hunyadi-Gulyás É, Darula Z, Juhász G, Kardos J, Kékesi KA. Comparative analysis of hippocampal extracellular space uncovers widely altered peptidome upon epileptic seizure in urethane-anaesthetized rats. Fluids Barriers CNS 2024; 21:6. [PMID: 38212833 PMCID: PMC10782730 DOI: 10.1186/s12987-024-00508-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/31/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND The brain extracellular fluid (ECF), composed of secreted neurotransmitters, metabolites, peptides, and proteins, may reflect brain processes. Analysis of brain ECF may provide new potential markers for synaptic activity or brain damage and reveal additional information on pathological alterations. Epileptic seizure induction is an acute and harsh intervention in brain functions, and it can activate extra- and intracellular proteases, which implies an altered brain secretome. Thus, we applied a 4-aminopyridine (4-AP) epilepsy model to study the hippocampal ECF peptidome alterations upon treatment in rats. METHODS We performed in vivo microdialysis in the hippocampus for 3-3 h of control and 4-AP treatment phase in parallel with electrophysiology measurement. Then, we analyzed the microdialysate peptidome of control and treated samples from the same subject by liquid chromatography-coupled tandem mass spectrometry. We analyzed electrophysiological and peptidomic alterations upon epileptic seizure induction by two-tailed, paired t-test. RESULTS We detected 2540 peptides in microdialysate samples by mass spectrometry analysis; and 866 peptides-derived from 229 proteins-were found in more than half of the samples. In addition, the abundance of 322 peptides significantly altered upon epileptic seizure induction. Several proteins of significantly altered peptides are neuropeptides (Chgb) or have synapse- or brain-related functions such as the regulation of synaptic vesicle cycle (Atp6v1a, Napa), astrocyte morphology (Vim), and glutamate homeostasis (Slc3a2). CONCLUSIONS We have detected several consequences of epileptic seizures at the peptidomic level, as altered peptide abundances of proteins that regulate epilepsy-related cellular processes. Thus, our results indicate that analyzing brain ECF by in vivo microdialysis and omics techniques is useful for monitoring brain processes, and it can be an alternative method in the discovery and analysis of CNS disease markers besides peripheral fluid analysis.
Collapse
Affiliation(s)
- Vanda Tukacs
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Dániel Mittli
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvári Körút 62, Szeged, 6726, Hungary
| | - Zsuzsanna Darula
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvári Körút 62, Szeged, 6726, Hungary
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Temesvári Körút 62, Szeged, 6726, Hungary
| | - Gábor Juhász
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- InnoScience Hungary Ltd., Bátori Út 9, Mátranovák, 3142, Hungary
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Katalin Adrienna Kékesi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
- InnoScience Hungary Ltd., Bátori Út 9, Mátranovák, 3142, Hungary.
- Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
| |
Collapse
|
7
|
Sirko S, Schichor C, Della Vecchia P, Metzger F, Sonsalla G, Simon T, Bürkle M, Kalpazidou S, Ninkovic J, Masserdotti G, Sauniere JF, Iacobelli V, Iacobelli S, Delbridge C, Hauck SM, Tonn JC, Götz M. Injury-specific factors in the cerebrospinal fluid regulate astrocyte plasticity in the human brain. Nat Med 2023; 29:3149-3161. [PMID: 38066208 PMCID: PMC10719094 DOI: 10.1038/s41591-023-02644-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/13/2023] [Indexed: 12/17/2023]
Abstract
The glial environment influences neurological disease progression, yet much of our knowledge still relies on preclinical animal studies, especially regarding astrocyte heterogeneity. In murine models of traumatic brain injury, beneficial functions of proliferating reactive astrocytes on disease outcome have been unraveled, but little is known regarding if and when they are present in human brain pathology. Here we examined a broad spectrum of pathologies with and without intracerebral hemorrhage and found a striking correlation between lesions involving blood-brain barrier rupture and astrocyte proliferation that was further corroborated in an assay probing for neural stem cell potential. Most importantly, proteomic analysis unraveled a crucial signaling pathway regulating this astrocyte plasticity with GALECTIN3 as a novel marker for proliferating astrocytes and the GALECTIN3-binding protein LGALS3BP as a functional hub mediating astrocyte proliferation and neurosphere formation. Taken together, this work identifies a therapeutically relevant astrocyte response and their molecular regulators in different pathologies affecting the human cerebral cortex.
Collapse
Affiliation(s)
- Swetlana Sirko
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany.
| | - Christian Schichor
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Patrizia Della Vecchia
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | | | - Giovanna Sonsalla
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Tatiana Simon
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Martina Bürkle
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Sofia Kalpazidou
- Chair of Cell Biology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Chair of Cell Biology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- SYNERGY Excellence Cluster of Systems Neurology, LMU Munich, Munich, Germany
| | - Giacomo Masserdotti
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | | | | | | | - Claire Delbridge
- Department of Neuropathology, Institute of Pathology, TUM School of Medicine, TU Munich, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Jörg-Christian Tonn
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Magdalena Götz
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany.
- SYNERGY Excellence Cluster of Systems Neurology, LMU Munich, Munich, Germany.
| |
Collapse
|
8
|
Abstract
Astrocyte endfeet enwrap the entire vascular tree within the central nervous system, where they perform important functions in regulating the blood-brain barrier (BBB), cerebral blood flow, nutrient uptake, and waste clearance. Accordingly, astrocyte endfeet contain specialized organelles and proteins, including local protein translation machinery and highly organized scaffold proteins, which anchor channels, transporters, receptors, and enzymes critical for astrocyte-vascular interactions. Many neurological diseases are characterized by the loss of polarization of specific endfoot proteins, vascular dysregulation, BBB disruption, altered waste clearance, or, in extreme cases, loss of endfoot coverage. A role for astrocyte endfeet has been demonstrated or postulated in many of these conditions. This review provides an overview of the development, composition, function, and pathological changes of astrocyte endfeet and highlights the gaps in our knowledge that future research should address.
Collapse
Affiliation(s)
- Blanca Díaz-Castro
- UK Dementia Research Institute and Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK;
| | - Stefanie Robel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA;
| | - Anusha Mishra
- Department of Neurology Jungers Center for Neurosciences Research and Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA;
| |
Collapse
|
9
|
Sanz-García A, Sánchez-Jiménez P, Granero-Cremades I, de Toledo M, Pulido P, Navas M, Frade JM, Pereboom-Maicas MD, Torres-Díaz CV, Ovejero-Benito MC. Neuronal and astrocytic tetraploidy is increased in drug-resistant epilepsy. Neuropathol Appl Neurobiol 2023; 49:e12873. [PMID: 36541120 DOI: 10.1111/nan.12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
AIMS Epilepsy is one of the most prevalent neurological diseases. A third of patients with epilepsy remain drug-resistant. The exact aetiology of drug-resistant epilepsy (DRE) is still unknown. Neuronal tetraploidy has been associated with neuropathology. The aim of this study was to assess the presence of tetraploid neurons and astrocytes in DRE. METHODS For that purpose, cortex, hippocampus and amygdala samples were obtained from patients subjected to surgical resection of the epileptogenic zone. Post-mortem brain tissue of subjects without previous records of neurological, neurodegenerative or psychiatric diseases was used as control. RESULTS The percentage of tetraploid cells was measured by immunostaining of neurons (NeuN) or astrocytes (S100β) followed by flow cytometry analysis. The results were confirmed by image cytometry (ImageStream X Amnis System Cytometer) and with an alternative astrocyte biomarker (NDRG2). Statistical comparison was performed using univariate tests. A total of 22 patients and 10 controls were included. Tetraploid neurons and astrocytes were found both in healthy individuals and DRE patients in the three brain areas analysed: cortex, hippocampus and amygdala. DRE patients presented a higher number of tetraploid neurons (p = 0.020) and astrocytes (p = 0.002) in the hippocampus than controls. These results were validated by image cytometry. CONCLUSIONS We demonstrated the presence of both tetraploid neurons and astrocytes in healthy subjects as well as increased levels of both cell populations in DRE patients. Herein, we describe for the first time the presence of tetraploid astrocytes in healthy subjects. Furthermore, these results provide new insights into epilepsy, opening new avenues for future treatment.
Collapse
Affiliation(s)
- Ancor Sanz-García
- Data Analysis Unit, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
| | - Patricia Sánchez-Jiménez
- Department of Clinical Pharmacology, Hospital Universitario de La Princesa, Instituto de Investigaciones Sanitarias La Princesa (IIS-IP), Madrid, Spain.,NIMGenetics Genómica y Medicina S.L., Madrid, Spain
| | | | - María de Toledo
- Department of Neurology, Hospital Universitario de La Princesa, Madrid, Spain
| | - Paloma Pulido
- Department of Neurosurgery, Hospital Universitario de La Princesa, Madrid, Spain
| | - Marta Navas
- Department of Neurosurgery, Hospital Universitario de La Princesa, Madrid, Spain
| | - José María Frade
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, CSIC, Madrid, Spain
| | | | | | - María C Ovejero-Benito
- Department of Clinical Pharmacology, Hospital Universitario de La Princesa, Instituto de Investigaciones Sanitarias La Princesa (IIS-IP), Madrid, Spain.,Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
10
|
Neri S, Gasparini S, Pascarella A, Santangelo D, Cianci V, Mammì A, Lo Giudice M, Ferlazzo E, Aguglia U. Epilepsy in Cerebrovascular Diseases: A Narrative Review. Curr Neuropharmacol 2023; 21:1634-1645. [PMID: 35794769 PMCID: PMC10514540 DOI: 10.2174/1570159x20666220706113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Epilepsy is a common comorbidity of cerebrovascular disease and an increasing socioeconomic burden. OBJECTIVE We aimed to provide an updated comprehensive review on the state of the art about seizures and epilepsy in stroke, cerebral haemorrhage, and leukoaraiosis. METHODS We selected English-written articles on epilepsy, stroke, and small vessel disease up until December 2021. We reported the most recent data about epidemiology, pathophysiology, prognosis, and management for each disease. RESULTS The main predictors for both ES and PSE are the severity and extent of stroke, the presence of cortical involvement and hemorrhagic transformation, while PSE is also predicted by younger age at stroke onset. Few data exist on physiopathology and seizure semiology, and no randomized controlled trial has been performed to standardize the therapeutic approach to post-stroke epilepsy. CONCLUSION Some aspects of ES and PSE have been well explored, particularly epidemiology and risk factors. On the contrary, few data exist on physiopathology, and existing evidence is mainly based on studies on animal models. Little is also known about seizure semiology, which may also be difficult to interpret by non-epileptologists. Moreover, the therapeutic approach needs standardization as regards indications and the choice of specific ASMs. Future research may help to better elucidate these aspects.
Collapse
Affiliation(s)
- Sabrina Neri
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
- Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Sara Gasparini
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
- Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Angelo Pascarella
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
- Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Domenico Santangelo
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
- Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Vittoria Cianci
- Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Anna Mammì
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Michele Lo Giudice
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
- Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Umberto Aguglia
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
- Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| |
Collapse
|
11
|
Gadot R, Khan AB, Patel R, Goethe E, Shetty A, Hadley CC, V JCB, Harmanci AS, Klisch TJ, Yoshor D, Sheth SA, Patel AJ. Predictors of postoperative seizure outcome in supratentorial meningioma. J Neurosurg 2022; 137:515-524. [PMID: 35099915 DOI: 10.3171/2021.9.jns211738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/01/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Meningiomas are the most common primary intracranial tumor. Seizures are common sequelae of meningioma development. Meningioma patients with seizures can be effectively treated with resection, with reports of seizure freedom of 60%-90%. Still, many patients manifest persistent epilepsy. Determining factors associated with worsened seizure outcomes remains critical in improving the quality of life for these patients. The authors sought to identify clinical, radiological, and histological factors associated with worse seizure outcomes in patients with supratentorial meningioma and preoperative seizures. METHODS The authors retrospectively reviewed the charts of 384 patients who underwent meningioma resection from 2008 to 2020. The charts of patients with a documented history of preoperative seizures were further reviewed for clinical, radiological, operative, perioperative, histological, and postoperative factors associated with seizures. Engel class at last follow-up was retrospectively assigned by the authors and further grouped into favorable (class I) and worse (class II-IV) outcomes. Factors were subsequently compared by group using comparative statistics. Univariable and multivariable regression models were utilized to identify independent predictors of worse seizure outcome. RESULTS Fifty-nine patients (15.4%) were found to have preoperative seizures, of whom 57 had sufficient postoperative data to determine Engel class outcome. Forty-two patients (74%) had Engel class I outcomes. The median follow-up was 17 months. Distinct margins on preoperative imaging (p = 0.012), Simpson grade I resection (p = 0.004), postresection ischemia (p = 0.019), WHO grade (p = 0.019), and recurrent disease (p = 0.015) were found to be the strongest predictors of Engel class outcome in univariable logistic regression. MIB-1 index (p = 0.001) and residual volume (p = 0.014) at last follow-up were found to be the strongest predictors of Engel class outcome in univariable generalized linear regression. Postresection ischemia (p = 0.012), WHO grade (p = 0.022), recurrent disease (p = 0.038), and MIB-1 index (p = 0.002) were found to be the strongest independent predictors of Engel class outcomes in multivariable analysis. CONCLUSIONS Postresection ischemia, higher WHO grade, elevated MIB-1 index, and disease recurrence independently predict postresection seizure persistence in patients with supratentorial meningioma. Further understanding of the etiology of these markers may aid in elucidation of this complex disease process and guide management to prevent worse outcomes.
Collapse
Affiliation(s)
- Ron Gadot
- 1Department of Neurosurgery, Baylor College of Medicine, Houston
| | - A Basit Khan
- 1Department of Neurosurgery, Baylor College of Medicine, Houston
| | - Rajan Patel
- 1Department of Neurosurgery, Baylor College of Medicine, Houston
| | - Eric Goethe
- 1Department of Neurosurgery, Baylor College of Medicine, Houston
| | - Arya Shetty
- 1Department of Neurosurgery, Baylor College of Medicine, Houston
| | | | - James C Bayley V
- 1Department of Neurosurgery, Baylor College of Medicine, Houston
| | - Akdes S Harmanci
- 1Department of Neurosurgery, Baylor College of Medicine, Houston
| | - Tiemo J Klisch
- 2Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas
| | - Daniel Yoshor
- 3Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Sameer A Sheth
- 1Department of Neurosurgery, Baylor College of Medicine, Houston
| | - Akash J Patel
- 1Department of Neurosurgery, Baylor College of Medicine, Houston
- 2Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas
- 4Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
12
|
Chen Y, Chen J, Chen Y, Li Y. miR-146a/KLF4 axis in epileptic mice: a novel regulator of synaptic plasticity involving STAT3 signaling. Brain Res 2022; 1790:147988. [PMID: 35728661 DOI: 10.1016/j.brainres.2022.147988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/05/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVE This study is aimed to investigate the mechanism of miR-146a/KLF4 axis regarding epilepsy seizure and synaptic plasticity. METHODS Pentylenetetrazol (PTZ)-kindling mouse model of epilepsy was established and evaluated by Racine's scale. PTZ-treated mice were subjected to stereotactic injection of miR-146a antagomir and pre-KLF4 to verify the role of miR-146a and KLF4 in mice. Primary hippocampal neurons from fetal mouse were isolated and identified through immunofluorescence for microtubule-associated protein (MAP)-2. Cellular models of epilepsy were prepared using magnesium-free extracellular fluid and then the neurons were transfected with miR-146a antagomir, miR-146a agomir, miR-146a agomir + pre-KLF4, AG490 (an inhibitor of STAT3 signal pathway) or miR-146a agomir + AG490. The binding site between miR-146a and KLF4 was predicted and identified. The expression levels of miR-146a, KLF4, CREB, Synaptotagmin-11 (SYT11), and STAT3-related proteins were measured in addition to the morphology of neurons and length of neurite. The severity of synaptic plasticity was assessed according to the levels of CREB and SYT11. RESULTS The expression of miR-146a was elevated and KLF4 expression was decreased in epileptic mice. Stereotactic injection of miR-146a antagomir and pre-KLF4 reduced the seizure scores of epileptic mice. Transfection of miR-146a antagomir or pre-KLF4 could attenuate synaptic plasticity in epileptic mice and epileptic cellular models. miR-146a can negatively regulate KLF4 in epileptic cellular models to mediate synaptic plasticity. Epilepsy was attenuated in AG490 and miR-146a agomir + AG490 groups compared with that in Model group. CONCLUSION miR-146a inhibits KLF4 to activate STAT3, thus promoting synaptic plasticity in epileptic mice.
Collapse
Affiliation(s)
- Ying Chen
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, PR China.
| | - Juan Chen
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, PR China
| | - Yu Chen
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, PR China
| | - Yuan Li
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, PR China
| |
Collapse
|
13
|
Thompson JA, Miralles RM, Wengert ER, Wagley PK, Yu W, Wenker IC, Patel MK. Astrocyte reactivity in a mouse model of SCN8A epileptic encephalopathy. Epilepsia Open 2022; 7:280-292. [PMID: 34826216 PMCID: PMC9159254 DOI: 10.1002/epi4.12564] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/15/2021] [Accepted: 11/23/2021] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE SCN8A epileptic encephalopathy is caused predominantly by de novo gain-of-function mutations in the voltage-gated sodium channel Nav 1.6. The disorder is characterized by early onset of seizures and developmental delay. Most patients with SCN8A epileptic encephalopathy are refractory to current anti-seizure medications. Previous studies determining the mechanisms of this disease have focused on neuronal dysfunction as Nav 1.6 is expressed by neurons and plays a critical role in controlling neuronal excitability. However, glial dysfunction has been implicated in epilepsy and alterations in glial physiology could contribute to the pathology of SCN8A encephalopathy. In the current study, we examined alterations in astrocyte and microglia physiology in the development of seizures in a mouse model of SCN8A epileptic encephalopathy. METHODS Using immunohistochemistry, we assessed microglia and astrocyte reactivity before and after the onset of spontaneous seizures. Expression of glutamine synthetase and Nav 1.6, and Kir 4.1 channel currents were assessed in astrocytes in wild-type (WT) mice and mice carrying the N1768D SCN8A mutation (D/+). RESULTS Astrocytes in spontaneously seizing D/+ mice become reactive and increase expression of glial fibrillary acidic protein (GFAP), a marker of astrocyte reactivity. These same astrocytes exhibited reduced barium-sensitive Kir 4.1 currents compared to age-matched WT mice and decreased expression of glutamine synthetase. These alterations were only observed in spontaneously seizing mice and not before the onset of seizures. In contrast, microglial morphology remained unchanged before and after the onset of seizures. SIGNIFICANCE Astrocytes, but not microglia, become reactive only after the onset of spontaneous seizures in a mouse model of SCN8A encephalopathy. Reactive astrocytes have reduced Kir 4.1-mediated currents, which would impair their ability to buffer potassium. Reduced expression of glutamine synthetase would modulate the availability of neurotransmitters to excitatory and inhibitory neurons. These deficits in potassium and glutamate handling by astrocytes could exacerbate seizures in SCN8A epileptic encephalopathy. Targeting astrocytes may provide a new therapeutic approach to seizure suppression.
Collapse
Affiliation(s)
- Jeremy A. Thompson
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Raquel M. Miralles
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Eric R. Wengert
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Pravin K. Wagley
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
| | - Wenxi Yu
- Department of Human GeneticsUniversity of MichiganAnn ArborMIUSA
| | - Ian C. Wenker
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
| | - Manoj K. Patel
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| |
Collapse
|
14
|
Do PT, Chen LY, Chan L, Hu CJ, Chien LN. Risk Factors for Postischemic Stroke Epilepsy in Young Adults: A Nationwide Population-Based Study in Taiwan. Front Neurol 2022; 13:880661. [PMID: 35669871 PMCID: PMC9163822 DOI: 10.3389/fneur.2022.880661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe incidence of ischemic stroke has been increasing in the young population over the past 20 years. Poststroke epilepsy (PSE) is a common complication after stroke. However, few population-based studies with sufficient follow-up have investigated factors associated with PSE, especially factors related to comorbidities and unhealthy lifestyles in the modern young population. Accordingly, this study aimed to determine the long-term incidence and these risk factors for PSE young adults.MethodsThis cohort study was conducted using data from the Taiwan National Health Insurance Research Database (NHIRD) from 2002 to 2018. All patients aged between 19 and 44 years and diagnosed with ischemic stroke from 2002 to 2015 were retrospectively enrolled with a follow-up of at least 3 years. Multivariable Cox regression models were performed to identify predictors of PSE, including patients' demographics, baseline conditions, stroke severity, etiologies, comorbidities, and unhealthy behaviors.ResultsAmong 6,512 ischemic stroke patients, 402 cases (6.2%) developed PSE who were with a mean follow-up period of 8.3 years (SD = 4.3 years). During the overall follow-up, stroke severity and manifestations were associated with PSE, including National Institutes of Health Stroke Scale (NIHSS) score ≥10 (aHR, 1.98; 95% CI, 1.50–2.61), seizure at first stroke admission [adjusted hazard ratio (aHR), 57.39; 95% confidence interval (CI), 43.02–76.55], length of hospital stay ≥14 days (aHR, 1.60; 95% CI, 1.26–2.02), recurrent stroke (aHR, 2.32; 95% CI, 1.85–2.90), aphasia (aHR, 1.77; 95% CI, 1.20–2.60), and malignancy (aHR, 2.05; 95% CI, 1.30–3.24). Furthermore, stroke patients with drug abuse were 2.90 times more likely to develop PSE than those without (aHR, 2.90; 95% CI, 1.53–5.50). By contrast, statin use (aHR, 0.62; 95% CI, 0.48–0.80) was associated with a lower risk of PSE. The risk factors at 1-year and 5-year PSE were similar to that of an overall follow-up.ConclusionsStroke severity, aphasia, malignancy, and drug abuse were associated increased risk of PSE and statin use may protect against PSE in young adults. Reducing the severity of stroke, statin use and controlling unhealthy behaviors might be able to decrease the development of PSE. Since PSE is associated with poor outcomes, early identification or intervention of PSE based on the risk factors might reduce the harmful effects of PSE.
Collapse
Affiliation(s)
- Phuong Thao Do
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, Hanoi Medical University, Hanoi, Vietnam
| | - Li-Ying Chen
- Health Data Analytics and Statistics Center, Office of Data Science, Taipei Medical University, Taipei, Taiwan
| | - Lung Chan
- Department of Neurology and Stroke Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- PhD Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology and Stroke Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- PhD Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Chaur-Jong Hu
| | - Li-Nien Chien
- Health Data Analytics and Statistics Center, Office of Data Science, Taipei Medical University, Taipei, Taiwan
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei, Taiwan
- Li-Nien Chien
| |
Collapse
|
15
|
Gage M, Gard M, Thippeswamy T. Characterization of Cortical Glial Scars in the Diisopropylfluorophosphate (DFP) Rat Model of Epilepsy. Front Cell Dev Biol 2022; 10:867949. [PMID: 35372361 PMCID: PMC8966428 DOI: 10.3389/fcell.2022.867949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
Glial scars have been observed following stab lesions in the spinal cord and brain but not observed and characterized in chemoconvulsant-induced epilepsy models. Epilepsy is a disorder characterized by spontaneous recurrent seizures and can be modeled in rodents. Diisopropylfluorophosphate (DFP) exposure, like other real-world organophosphate nerve agents (OPNAs) used in chemical warfare scenarios, can lead to the development of status epilepticus (SE). We have previously demonstrated that DFP-induced SE promotes epileptogenesis which is characterized by the development of spontaneous recurrent seizures (SRS), gliosis, and neurodegeneration. In this study, we report classical glial scars developed in the piriform cortex, but not in the hippocampus, by 8 days post-exposure. We challenged both male and female rats with 4–5 mg/kg DFP (s.c.) followed immediately by 2 mg/kg atropine sulfate (i.m.) and 25 mg/kg pralidoxime (i.m.) and one hour later by midazolam (i.m). Glial scars were present in the piriform cortex/amygdala region in 73% of the DFP treated animals. No scars were found in controls. Scars were characterized by a massive clustering of reactive microglia surrounded by hypertrophic reactive astrocytes. The core of the scars was filled with a significant increase of IBA1 and CD68 positive cells and a significant reduction in NeuN positive cells compared to the periphery of the scars. There was a significantly higher density of reactive GFAP, complement 3 (C3), and inducible nitric oxide synthase (iNOS) positive cells at the periphery of the scar compared to similar areas in controls. We found a significant increase in chondroitin sulfate proteoglycans (CS-56) in the periphery of the scars compared to a similar region in control brains. However, there was no change in TGF-β1 or TGF-β2 positive cells in or around the scars in DFP-exposed animals compared to controls. In contrast to stab-induced scars, we did not find fibroblasts (Thy1.1) in the scar core or periphery. There were sex differences with respect to the density of iNOS, CD68, NeuN, GFAP, C3 and CS-56 positive cells. This is the first report of cortical glial scars in rodents with systemic chemoconvulsant-induced SE. Further investigation could help to elucidate the mechanisms of scar development and mitigation strategies.
Collapse
Affiliation(s)
- Meghan Gage
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
- Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
| | - Megan Gard
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
- Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
- *Correspondence: Thimmasettappa Thippeswamy,
| |
Collapse
|
16
|
Chen J, Ye H, Zhang J, Li A, Ni Y. Pathogenesis of seizures and epilepsy after stroke. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-021-00068-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AbstractStroke is the most frequent cause of secondary epilepsy in the elderly. The incidence of cerebral stroke is increasing with the extension of life expectancy, and the prevalence of post-stroke epilepsy (PSE) is rising. There are various seizure types after stroke, and the occurrence of epilepsy is closely related to the type and location of stroke. Moreover, the clinical treatment of post-stroke epilepsy is difficult, which increases the risk of disability and death, and affects the prognosis and quality of life of patients. Now seizure and epilepsy after stroke is more and more get the attention of the medical profession, has been more and more researchers have devoted to seizures after stroke and PSE clinical and basic research, and hope to get a scientific and unified guideline, to give timely and effective treatment, but the exact pathophysiologic mechanism has not yet formed a unified conclusion. It has been found that ion channels, neurotransmitters, proliferation of glial cells, genetics and other factors are involved in the occurrence and development of PSE. In this review, we discuss the pathogenesis of early-onset epileptic seizures and late-onset epilepsy after stroke, in order to provide a basis for clinicians to understand the disease, and expect to provide ideas for future exploration.
Collapse
|
17
|
Frazzini V, Cousyn L, Navarro V. Semiology, EEG, and neuroimaging findings in temporal lobe epilepsies. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:489-518. [PMID: 35964989 DOI: 10.1016/b978-0-12-823493-8.00021-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy. First descriptions of TLE date back in time and detailed portraits of epileptic seizures of temporal origin can be found in early medical reports as well as in the works of various artists and dramatists. Depending on the seizure onset zone, several subtypes of TLE have been identified, each one associated with peculiar ictal semiology. TLE can result from multiple etiological causes, ranging from genetic to lesional ones. While the diagnosis of TLE relies on detailed analysis of clinical as well as electroencephalographic (EEG) features, the lesions responsible for seizure generation can be highlighted by multiple brain imaging modalities or, in selected cases, by genetic investigations. TLE is the most common cause of refractory epilepsy and despite the great advances in diagnostic tools, no lesion is found in around one-third of patients. Surgical treatment is a safe and effective option, requiring presurgical investigations to accurately identify the seizure onset zone (SOZ). In selected cases, presurgical investigations need intracerebral investigations (such as stereoelectroencephalography) or dedicated metabolic imaging techniques (interictal PET and ictal SPECT) to correctly identify the brain structures to be removed.
Collapse
Affiliation(s)
- Valerio Frazzini
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France
| | - Louis Cousyn
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France
| | - Vincent Navarro
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France.
| |
Collapse
|
18
|
Neudecker V, Perez-Zoghbi JF, Martin LD, Dissen GA, Grafe MR, Brambrink AM. Astrogliosis in juvenile non-human primates 2 years after infant anaesthesia exposure. Br J Anaesth 2021; 127:447-457. [PMID: 34266661 DOI: 10.1016/j.bja.2021.04.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Infant anaesthesia causes acute brain cell apoptosis, and later in life cognitive deficits and behavioural alterations, in non-human primates (NHPs). Various brain injuries and neurodegenerative conditions are characterised by chronic astrocyte activation (astrogliosis). Glial fibrillary acidic protein (GFAP), an astrocyte-specific protein, increases during astrogliosis and remains elevated after an injury. Whether infant anaesthesia is associated with a sustained increase in GFAP is unknown. We hypothesised that GFAP is increased in specific brain areas of NHPs 2 yr after infant anaesthesia, consistent with prior injury. METHODS Eight 6-day-old NHPs per group were exposed to 5 h isoflurane once (1×) or three times (3×), or to room air as a control (Ctr). Two years after exposure, their brains were assessed for GFAP density changes in the primary visual cortex (V1), perirhinal cortex (PRC), hippocampal subiculum, amygdala, and orbitofrontal cortex (OFC). We also assessed concomitant microglia activation and hippocampal neurogenesis. RESULTS Compared with controls, GFAP densities in V1 were increased in exposed groups (Ctr: 0.208 [0.085-0.427], 1×: 0.313 [0.108-0.533], 3×: 0.389 [0.262-0.652]), whereas the density of activated microglia was unchanged. In addition, GFAP densities were increased in the 3× group in the PRC and the subiculum, and in both exposure groups in the amygdala, but there was no increase in the OFC. There were no differences in hippocampal neurogenesis among groups. CONCLUSIONS Two years after infant anaesthesia, NHPs show increased GFAP without concomitant microglia activation in specific brain areas. These long-lasting structural changes in the brain caused by infant anaesthesia exposure may be associated with functional alterations at this age.
Collapse
Affiliation(s)
- Viola Neudecker
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Jose F Perez-Zoghbi
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Lauren D Martin
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Gregory A Dissen
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Marjorie R Grafe
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Ansgar M Brambrink
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
19
|
Gobbo D, Scheller A, Kirchhoff F. From Physiology to Pathology of Cortico-Thalamo-Cortical Oscillations: Astroglia as a Target for Further Research. Front Neurol 2021; 12:661408. [PMID: 34177766 PMCID: PMC8219957 DOI: 10.3389/fneur.2021.661408] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
The electrographic hallmark of childhood absence epilepsy (CAE) and other idiopathic forms of epilepsy are 2.5-4 Hz spike and wave discharges (SWDs) originating from abnormal electrical oscillations of the cortico-thalamo-cortical network. SWDs are generally associated with sudden and brief non-convulsive epileptic events mostly generating impairment of consciousness and correlating with attention and learning as well as cognitive deficits. To date, SWDs are known to arise from locally restricted imbalances of excitation and inhibition in the deep layers of the primary somatosensory cortex. SWDs propagate to the mostly GABAergic nucleus reticularis thalami (NRT) and the somatosensory thalamic nuclei that project back to the cortex, leading to the typical generalized spike and wave oscillations. Given their shared anatomical basis, SWDs have been originally considered the pathological transition of 11-16 Hz bursts of neural oscillatory activity (the so-called sleep spindles) occurring during Non-Rapid Eye Movement (NREM) sleep, but more recent research revealed fundamental functional differences between sleep spindles and SWDs, suggesting the latter could be more closely related to the slow (<1 Hz) oscillations alternating active (Up) and silent (Down) cortical activity and concomitantly occurring during NREM. Indeed, several lines of evidence support the fact that SWDs impair sleep architecture as well as sleep/wake cycles and sleep pressure, which, in turn, affect seizure circadian frequency and distribution. Given the accumulating evidence on the role of astroglia in the field of epilepsy in the modulation of excitation and inhibition in the brain as well as on the development of aberrant synchronous network activity, we aim at pointing at putative contributions of astrocytes to the physiology of slow-wave sleep and to the pathology of SWDs. Particularly, we will address the astroglial functions known to be involved in the control of network excitability and synchronicity and so far mainly addressed in the context of convulsive seizures, namely (i) interstitial fluid homeostasis, (ii) K+ clearance and neurotransmitter uptake from the extracellular space and the synaptic cleft, (iii) gap junction mechanical and functional coupling as well as hemichannel function, (iv) gliotransmission, (v) astroglial Ca2+ signaling and downstream effectors, (vi) reactive astrogliosis and cytokine release.
Collapse
Affiliation(s)
- Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| |
Collapse
|
20
|
Leitner DF, Mills JD, Pires G, Faustin A, Drummond E, Kanshin E, Nayak S, Askenazi M, Verducci C, Chen BJ, Janitz M, Anink JJ, Baayen JC, Idema S, van Vliet EA, Devore S, Friedman D, Diehl B, Scott C, Thijs R, Wisniewski T, Ueberheide B, Thom M, Aronica E, Devinsky O. Proteomics and Transcriptomics of the Hippocampus and Cortex in SUDEP and High-Risk SUDEP Patients. Neurology 2021; 96:e2639-e2652. [PMID: 33910938 PMCID: PMC8205452 DOI: 10.1212/wnl.0000000000011999] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To identify the molecular signaling pathways underlying sudden unexpected death in epilepsy (SUDEP) and high-risk SUDEP compared to control patients with epilepsy. METHODS For proteomics analyses, we evaluated the hippocampus and frontal cortex from microdissected postmortem brain tissue of 12 patients with SUDEP and 14 with non-SUDEP epilepsy. For transcriptomics analyses, we evaluated hippocampus and temporal cortex surgical brain tissue from patients with mesial temporal lobe epilepsy: 6 low-risk and 8 high-risk SUDEP as determined by a short (<50 seconds) or prolonged (≥50 seconds) postictal generalized EEG suppression (PGES) that may indicate severely depressed brain activity impairing respiration, arousal, and protective reflexes. RESULTS In autopsy hippocampus and cortex, we observed no proteomic differences between patients with SUDEP and those with non-SUDEP epilepsy, contrasting with our previously reported robust differences between epilepsy and controls without epilepsy. Transcriptomics in hippocampus and cortex from patients with surgical epilepsy segregated by PGES identified 55 differentially expressed genes (37 protein-coding, 15 long noncoding RNAs, 3 pending) in hippocampus. CONCLUSION The SUDEP proteome and high-risk SUDEP transcriptome were similar to those in other patients with epilepsy in hippocampus and cortex, consistent with diverse epilepsy syndromes and comorbid conditions associated with SUDEP. Studies with larger cohorts and different epilepsy syndromes, as well as additional anatomic regions, may identify molecular mechanisms of SUDEP.
Collapse
Affiliation(s)
- Dominique F Leitner
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - James D Mills
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Geoffrey Pires
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Arline Faustin
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Eleanor Drummond
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Evgeny Kanshin
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Shruti Nayak
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Manor Askenazi
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Chloe Verducci
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Bei Jun Chen
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Michael Janitz
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Jasper J Anink
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Johannes C Baayen
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Sander Idema
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Erwin A van Vliet
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Sasha Devore
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Daniel Friedman
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Beate Diehl
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Catherine Scott
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Roland Thijs
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Thomas Wisniewski
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Beatrix Ueberheide
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Maria Thom
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Eleonora Aronica
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Orrin Devinsky
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| |
Collapse
|
21
|
Wei Y, Chen T, Bosco DB, Xie M, Zheng J, Dheer A, Ying Y, Wu Q, Lennon VA, Wu LJ. The complement C3-C3aR pathway mediates microglia-astrocyte interaction following status epilepticus. Glia 2021; 69:1155-1169. [PMID: 33314324 PMCID: PMC7936954 DOI: 10.1002/glia.23955] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022]
Abstract
Gliosis is a histopathological characteristic of epilepsy that comprises activated microglia and astrocytes. It is unclear whether or how crosstalk occurs between microglia and astrocytes in the evolution of epilepsy. Here, we report in a mouse model of status epilepticus, induced by intracerebroventricular injection of kainic acid (KA), sequential activation of microglia and astrocytes and their close spatial interaction in the hippocampal CA3 region. Microglial ablation reduced astrocyte activation and their upregulation of complement C3. When compared to wild-type mice, both C3-/- and C3aR-/- mice had significantly less microglia-astrocyte interaction in response to KA-induced status epilepticus. Additionally, KA-injected C3-/- mice had significantly less histochemical evidence of neurodegeneration. The results suggest that the C3-C3aR pathway contributes to KA-induced neurodegeneration by mediating microglia-astrocyte communication. The C3-C3aR pathway may prove to be a potential therapeutic target for epilepsy treatment.
Collapse
Affiliation(s)
- Yujia Wei
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neurosurgery, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Tingjun Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Dale B. Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Aastha Dheer
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yanlu Ying
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qian Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Vanda A. Lennon
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| |
Collapse
|
22
|
Dong C, Wen S, Zhao S, Sun S, Zhao S, Dong W, Han P, Chen Q, Gong T, Chen W, Liu W, Liu X. Salidroside Inhibits Reactive Astrogliosis and Glial Scar Formation in Late Cerebral Ischemia via the Akt/GSK-3β Pathway. Neurochem Res 2021; 46:755-769. [PMID: 33389472 DOI: 10.1007/s11064-020-03207-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia leads to reactive astrogliosis and glial scar formation. Glial scarring can impede functional restoration during the recovery phase of stroke. Salidroside has been shown to have neuroprotective effects after ischemic stroke, but its impact on long-term neurological recovery, especially whether it regulates reactive astrogliosis and glial scar formation, is unclear. In this study, male adult C57/BL6 mice were subjected to transient cerebral ischemia injury followed by intravenous salidroside treatment. Primary astrocytes were treated with lipopolysaccharide (LPS) or conditioned medium from cultured primary neurons subjected to oxygen-glucose deprivation (CM-OGD). Salidroside significantly improved long-term functional outcomes following ischemic stroke in the rotarod and corner tests. It also reduced brain glial scar volume and decreased expression of the glial scar marker, glial fibrillary acidic protein (GFAP) and inhibited astrocyte proliferation. In primary astrocyte cultures, salidroside protected astrocytes from CM-OGD injury-induced reactive astroglial proliferation, increasing the percentage of cells in G0/G1 phase and reducing the S populations. The inhibitory effect of salidroside on the cell cycle was related to downregulation of cyclin D1 and cyclin-dependent kinase 4 (CDK4) mRNA expression and increased p27Kip1 mRNA expression. Similar results were found in the LPS-stimulated injury model in astroglial cultures. Western blot analysis demonstrated that salidroside attenuated the CM-OGD-induced upregulation of phosphorylated Akt and glycogen synthase kinase 3β (GSK-3β). Taken together, these results suggested that salidroside can inhibit reactive astrocyte proliferation, ameliorate glial scar formation and improve long-term recovery, probably through its effects on the Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Chengya Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Shaohong Wen
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Shunying Zhao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Si Sun
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100176, People's Republic of China
| | - Shangfeng Zhao
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100176, People's Republic of China
| | - Wen Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Pingxin Han
- Department of Biomedicine, Beijing City University, Beijing, 100094, People's Republic of China
| | - Qingfang Chen
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Ting Gong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
- Department of Biomedicine, Beijing City University, Beijing, 100094, People's Republic of China
| | - Wentao Chen
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Wenqian Liu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Xiangrong Liu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China.
| |
Collapse
|
23
|
Budaszewski Pinto C, de Sá Couto-Pereira N, Kawa Odorcyk F, Cagliari Zenki K, Dalmaz C, Losch de Oliveira D, Calcagnotto ME. Effects of acute seizures on cell proliferation, synaptic plasticity and long-term behavior in adult zebrafish. Brain Res 2021; 1756:147334. [PMID: 33539794 DOI: 10.1016/j.brainres.2021.147334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/18/2023]
Abstract
Acute seizures may cause permanent brain damage depending on the severity. The pilocarpine animal model has been broadly used to study the acute effects of seizures on neurogenesis and plasticity processes and the resulting epileptogenesis. Likewise, zebrafish is a good model to study neurogenesis and plasticity processes even in adulthood. Thus, the aim of this study is to evaluate the effects of pilocarpine-induced acute seizures-like behavior on neuroplasticity and long-term behavior in adult zebrafish. To address this issue, adult zebrafish were injected with Pilocarpine (350 mg/Kg, i.p; PILO group) or Saline (control group). Experiments were performed at 1, 2, 3, 10 or 30 days after injection. We evaluated behavior using the Light/Dark preference, Open Tank and aggressiveness tests. Flow cytometry and BrdU were carried out to detect changes in cell death and proliferation, while Western blotting was used to verify different proliferative, synaptic and neural markers in the adult zebrafish telencephalon. We identified an increased aggressive behavior and increase in cell death in the PILO group, with increased levels of cleaved caspase 3 and PARP1 1 day after seizure-like behavior induction. In addition, there were decreased levels of PSD95 and SNAP25 and increased BrdU positive cells 3 days after seizure-like behavior induction. Although most synaptic and cell death markers levels seemed normal by 30 days after seizures-like behavior, persistent aggressive and anxiolytic-like behaviors were still detected as long-term effects. These findings might indicate that acute severe seizures induce short-term biochemical alterations that ultimately reflects in a long-term altered phenotype.
Collapse
Affiliation(s)
- Charles Budaszewski Pinto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natividade de Sá Couto-Pereira
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe Kawa Odorcyk
- Graduate Program in Biological Sciences: Physiology, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kamila Cagliari Zenki
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Dalmaz
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diogo Losch de Oliveira
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Cellular Neurochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
24
|
Tesfaye BA, Hailu HG, Zewdie KA, Ayza MA, Berhe DF. Montelukast: The New Therapeutic Option for the Treatment of Epilepsy. J Exp Pharmacol 2021; 13:23-31. [PMID: 33505173 PMCID: PMC7829127 DOI: 10.2147/jep.s277720] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no definitive cure for epilepsy. The available medications relieve symptoms and reduce seizure attacks. The major challenge with the available antiepileptic medication is safety and affordability. The repurposing of montelukast for epilepsy can be an alternative medication with a better safety profile. Montelukast is a leukotriene receptor antagonist that binds to the cysteinyl leukotrienes (CysLT) receptors used in the treatment of bronchial asthma and seasonal allergies. Emerging evidence suggests that montelukast's anti-inflammatory effect can help to maintain BBB integrity. The drug has also neuroprotective and anti-oxidative activities to reduce seizure incidence and epilepsy. The present review summarizes the neuropharmacological actions of montelukast in epilepsy with an emphasis on the recent findings associated with CysLT and cell-specific effects.
Collapse
Affiliation(s)
- Bekalu Amare Tesfaye
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Haftom Gebregergs Hailu
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Kaleab Alemayehu Zewdie
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Muluken Altaye Ayza
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Derbew Fikadu Berhe
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
25
|
Yaksi E, Jamali A, Diaz Verdugo C, Jurisch-Yaksi N. Past, present and future of zebrafish in epilepsy research. FEBS J 2021; 288:7243-7255. [PMID: 33394550 DOI: 10.1111/febs.15694] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/17/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022]
Abstract
Animal models contribute greatly to our understanding of brain development and function as well as its dysfunction in neurological diseases. Epilepsy research is a very good example of how animal models can provide us with a mechanistic understanding of the genes, molecules, and pathophysiological processes involved in disease. Over the course of the last two decades, zebrafish came in as a new player in epilepsy research, with an expanding number of laboratories using this animal to understand epilepsy and to discover new strategies for preventing seizures. Yet, zebrafish as a model offers a lot more for epilepsy research. In this viewpoint, we aim to highlight some key contributions of zebrafish to epilepsy research, and we want to emphasize the great untapped potential of this animal model for expanding these contributions. We hope that our suggestions will trigger further discussions between clinicians and researchers with a common goal to understand and cure epilepsy.
Collapse
Affiliation(s)
- Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ahmed Jamali
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St Olav University Hospital, Trondheim, Norway
| | - Carmen Diaz Verdugo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St Olav University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
26
|
Dynamic Transitions in Neuronal Network Firing Sustained by Abnormal Astrocyte Feedback. Neural Plast 2020; 2020:8864246. [PMID: 33299401 PMCID: PMC7704208 DOI: 10.1155/2020/8864246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 11/21/2022] Open
Abstract
Astrocytes play a crucial role in neuronal firing activity. Their abnormal state may lead to the pathological transition of neuronal firing patterns and even induce seizures. However, there is still little evidence explaining how the astrocyte network modulates seizures caused by structural abnormalities, such as gliosis. To explore the role of gliosis of the astrocyte network in epileptic seizures, we first established a direct astrocyte feedback neuronal network model on the basis of the hippocampal CA3 neuron-astrocyte model to simulate the condition of gliosis when astrocyte processes swell and the feedback to neurons increases in an abnormal state. We analyzed the firing pattern transitions of the neuronal network when astrocyte feedback starts to change via increases in both astrocyte feedback intensity and the connection probability of astrocytes to neurons in the network. The results show that as the connection probability and astrocyte feedback intensity increase, neuronal firing transforms from a nonepileptic synchronous firing state to an asynchronous firing state, and when astrocyte feedback starts to become abnormal, seizure-like firing becomes more severe and synchronized; meanwhile, the synchronization area continues to expand and eventually transforms into long-term seizure-like synchronous firing. Therefore, our results prove that astrocyte feedback can regulate the firing of the neuronal network, and when the astrocyte network develops gliosis, there will be an increase in the induction rate of epileptic seizures.
Collapse
|
27
|
Verhoog QP, Holtman L, Aronica E, van Vliet EA. Astrocytes as Guardians of Neuronal Excitability: Mechanisms Underlying Epileptogenesis. Front Neurol 2020; 11:591690. [PMID: 33324329 PMCID: PMC7726323 DOI: 10.3389/fneur.2020.591690] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are key homeostatic regulators in the central nervous system and play important roles in physiology. After brain damage caused by e.g., status epilepticus, traumatic brain injury, or stroke, astrocytes may adopt a reactive phenotype. This process of reactive astrogliosis is important to restore brain homeostasis. However, persistent reactive astrogliosis can be detrimental for the brain and contributes to the development of epilepsy. In this review, we will focus on physiological functions of astrocytes in the normal brain as well as pathophysiological functions in the epileptogenic brain, with a focus on acquired epilepsy. We will discuss the role of astrocyte-related processes in epileptogenesis, including reactive astrogliosis, disturbances in energy supply and metabolism, gliotransmission, and extracellular ion concentrations, as well as blood-brain barrier dysfunction and dysregulation of blood flow. Since dysfunction of astrocytes can contribute to epilepsy, we will also discuss their role as potential targets for new therapeutic strategies.
Collapse
Affiliation(s)
- Quirijn P. Verhoog
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Linda Holtman
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Erwin A. van Vliet
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
28
|
Eastman CL, D'Ambrosio R, Ganesh T. Modulating neuroinflammation and oxidative stress to prevent epilepsy and improve outcomes after traumatic brain injury. Neuropharmacology 2020; 172:107907. [PMID: 31837825 PMCID: PMC7274911 DOI: 10.1016/j.neuropharm.2019.107907] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in young adults worldwide. TBI survival is associated with persistent neuropsychiatric and neurological impairments, including posttraumatic epilepsy (PTE). To date, no pharmaceutical treatment has been found to prevent PTE or ameliorate neurological/neuropsychiatric deficits after TBI. Brain trauma results in immediate mechanical damage to brain cells and blood vessels that may never be fully restored given the limited regenerative capacity of brain tissue. This primary insult unleashes cascades of events, prominently including neuroinflammation and massive oxidative stress that evolve over time, expanding the brain injury, but also clearing cellular debris and establishing homeostasis in the region of damage. Accumulating evidence suggests that oxidative stress and neuroinflammatory sequelae of TBI contribute to posttraumatic epileptogenesis. This review will focus on possible roles of reactive oxygen species (ROS), their interactions with neuroinflammation in posttraumatic epileptogenesis, and emerging therapeutic strategies after TBI. We propose that inhibitors of the professional ROS-generating enzymes, the NADPH oxygenases and myeloperoxidase alone, or combined with selective inhibition of cyclooxygenase mediated signaling may have promise for the treatment or prevention of PTE and other sequelae of TBI. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Clifford L Eastman
- Department of Neurological Surgery, 325 Ninth Ave., Seattle, WA, 98104, USA.
| | - Raimondo D'Ambrosio
- Department of Neurological Surgery, 325 Ninth Ave., Seattle, WA, 98104, USA; Regional Epilepsy Center, University of Washington, 325 Ninth Ave., Seattle, WA, 98104, USA
| | - Thota Ganesh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA, 30322, Georgia.
| |
Collapse
|
29
|
Zuo D, Wang F, Rong W, Wen Y, Sun K, Zhao X, Ren X, He Z, Ding N, Ma L, Xu F. The novel estrogen receptor GPER1 decreases epilepsy severity and susceptivity in the hippocampus after status epilepticus. Neurosci Lett 2020; 728:134978. [PMID: 32302699 DOI: 10.1016/j.neulet.2020.134978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022]
Abstract
The steroid hormone 17β-estradiol (estrogen) exerts neuroprotective effects in several types of neurological disorders including epilepsy. The novel G protein-coupled estrogen receptor 1 (GPER1), also called GPR30, mediates the non-genomic effects of 17β-estradiol. However, the specific role of GPER1 in status epilepticus (SE) remains unclear. In this report, we evaluated the effects of GPER1 on the hippocampus during SE and the underlying mechanism was studied. Our results revealed that pilocarpine-induced GPER1-KD epileptic rats exhibited a shorter latency to generalized convulsions and strikingly elevated seizure severity. Additionally, the electroencephalographic seizure activity also corresponded to these results. Fast-Fourier analysis indicated an enhancement of power in the theta and alpha bands during SE in GPER1-KD rats. In addition, epilepsy-induced pathological changes were dramatically exacerbated in GPER1-KD rats, including neuron damage and neuroinflammation in hippocampus. GPER1 might be associated with the susceptibility to and severity of epileptic seizures. In summary, our results suggested that GPER1 plays a neuroprotective role in SE, and might be a candidate target for epilepsy therapy.
Collapse
Affiliation(s)
- Di Zuo
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750001, China; School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750001, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750001, China; Department of Neurosurgery, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia 750001, China
| | - Weifang Rong
- School of Basic Medical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yujun Wen
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750001, China
| | - Kuisheng Sun
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750001, China; Department of Neurosurgery, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia 750001, China
| | - Xiaopeng Zhao
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750001, China
| | - Xiaofan Ren
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750001, China
| | - Zhenquan He
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750001, China
| | - Na Ding
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750001, China
| | - Lin Ma
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750001, China
| | - Fang Xu
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750001, China.
| |
Collapse
|
30
|
Potassium and glutamate transport is impaired in scar-forming tumor-associated astrocytes. Neurochem Int 2019; 133:104628. [PMID: 31825815 PMCID: PMC6957761 DOI: 10.1016/j.neuint.2019.104628] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 01/09/2023]
Abstract
Unprovoked recurrent seizures are a serious comorbidity affecting most patients who suffer from glioma, a primary brain tumor composed of malignant glial cells. Cellular mechanisms contributing to the development of recurrent spontaneous seizures include the release of the excitatory neurotransmitter glutamate from glioma into extracellular space. Under physiological conditions, astrocytes express two high affinity glutamate transporters, Glt-1 and Glast, which are responsible for the removal of excess extracellular glutamate. In the context of neurological disease or brain injury, astrocytes become reactive which can negatively affect neuronal function, causing hyperexcitability and/or death. Using electrophysiology, immunohistochemistry, fluorescent in situ hybridization, and Western blot analysis in different orthotopic xenograft and allograft models of human and mouse gliomas, we find that peritumoral astrocytes exhibit astrocyte scar formation characterized by proliferation, cellular hypertrophy, process elongation, and increased GFAP and pSTAT3. Overall, peritumoral reactive astrocytes show a significant reduction in glutamate and potassium uptake, as well as decreased glutamine synthetase activity. A subset of peritumoral astrocytes displayed a depolarized resting membrane potential, further contributing to reduced potassium and glutamate homeostasis. These changes may contribute to the propagation of peritumoral neuronal hyperexcitability and excitotoxic death.
Collapse
|
31
|
Larkin C, O'Brien D, Maheshwari D. Anaesthesia for epilepsy surgery. BJA Educ 2019; 19:383-389. [PMID: 33456862 PMCID: PMC7807957 DOI: 10.1016/j.bjae.2019.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2019] [Indexed: 11/28/2022] Open
|
32
|
Xu S, Sun Q, Fan J, Jiang Y, Yang W, Cui Y, Yu Z, Jiang H, Li B. Role of Astrocytes in Post-traumatic Epilepsy. Front Neurol 2019; 10:1149. [PMID: 31798512 PMCID: PMC6863807 DOI: 10.3389/fneur.2019.01149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022] Open
Abstract
Traumatic brain injury, a common cause of acquired epilepsy, is typical to find necrotic cell death within the injury core. The dynamic changes in astrocytes surrounding the injury core contribute to epileptic seizures associated with intense neuronal firing. However, little is known about the molecular mechanisms that activate astrocytes during traumatic brain injury or the effect of functional changes of astrocytes on seizures. In this comprehensive review, we present our cumulated understanding of the complex neurological affection in astrocytes after traumatic brain injury. We approached the problem through describing the changes of cell morphology, neurotransmitters, biochemistry, and cytokines in astrocytes during post-traumatic epilepsy. In addition, we also discussed the relationship between dynamic changes in astrocytes and seizures and the current pharmacologic agents used for treatment. Hopefully, this review will provide a more detailed knowledge from which better therapeutic strategies can be developed to treat post-traumatic epilepsy.
Collapse
Affiliation(s)
- Songbai Xu
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Qihan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yuanyuan Jiang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yifeng Cui
- Department of Pediatrics, Yanbian Maternal and Child Health Hospital, Yanji, China
| | - Zhenxiang Yu
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Huiyi Jiang
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Neuroinflammation in Post-Traumatic Epilepsy: Pathophysiology and Tractable Therapeutic Targets. Brain Sci 2019; 9:brainsci9110318. [PMID: 31717556 PMCID: PMC6895909 DOI: 10.3390/brainsci9110318] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a common chronic consequence of traumatic brain injury (TBI), contributing to increased morbidity and mortality for survivors. As post-traumatic epilepsy (PTE) is drug-resistant in at least one-third of patients, there is a clear need for novel therapeutic strategies to prevent epilepsy from developing after TBI, or to mitigate its severity. It has long been recognized that seizure activity is associated with a local immune response, characterized by the activation of microglia and astrocytes and the release of a plethora of pro-inflammatory cytokines and chemokines. More recently, increasing evidence also supports a causal role for neuroinflammation in seizure induction and propagation, acting both directly and indirectly on neurons to promote regional hyperexcitability. In this narrative review, we focus on key aspects of the neuroinflammatory response that have been implicated in epilepsy, with a particular focus on PTE. The contributions of glial cells, blood-derived leukocytes, and the blood–brain barrier will be explored, as well as pro- and anti-inflammatory mediators. While the neuroinflammatory response to TBI appears to be largely pro-epileptogenic, further research is needed to clearly demonstrate causal relationships. This research has the potential to unveil new drug targets for PTE, and identify immune-based biomarkers for improved epilepsy prediction.
Collapse
|
34
|
Zhang Y, Zhang M, Zhu W, Pan X, Wang Q, Gao X, Wang C, Zhang X, Liu Y, Li S, Sun H. Role of Elevated Thrombospondin-1 in Kainic Acid-Induced Status Epilepticus. Neurosci Bull 2019; 36:263-276. [PMID: 31664678 DOI: 10.1007/s12264-019-00437-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/22/2019] [Indexed: 11/29/2022] Open
Abstract
Previous studies have suggested that thrombospondin-1 (TSP-1) regulates the transforming growth factor beta 1 (TGF-β1)/phosphorylated Smad2/3 (pSmad2/3) pathway. Moreover, TSP-1 is closely associated with epilepsy. However, the role of the TSP-1-regulated TGF-β1/pSmad2/3 pathway in seizures remains unclear. In this study, changes in this pathway were assessed following kainic acid (KA)-induced status epilepticus (SE) in rats. The results showed that increases in the TSP-1/TGF-β1/pSmad2/3 levels spatially and temporally matched the increases in glial fibrillary acidic protein (GFAP)/chondroitin sulfate (CS56) levels following KA administration. Inhibition of TSP-1 expression by small interfering RNA or inhibition of TGF-β1 activation with a Leu-Ser-Lys-Leu peptide significantly reduced the severity of KA-induced acute seizures. These anti-seizure effects were accompanied by decreased GFAP/CS56 expression and Smad2/3 phosphorylation. Moreover, inhibiting Smad2/3 phosphorylation with ponatinib or SIS3 also significantly reduced seizure severity, alongside reducing GFAP/CS56 immunoreactivity. These results suggest that the TSP-1-regulated TGF-β1/pSmad2/3 pathway plays a key role in KA-induced SE and astrogliosis, and that inhibiting this pathway may be a potential anti-seizure strategy.
Collapse
Affiliation(s)
- Yurong Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wei Zhu
- Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Xiaohong Pan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xue Gao
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Chaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiuli Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yuxia Liu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Shucui Li
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
35
|
Antill-O'Brien N, Bourke J, O'Connell CD. Layer-By-Layer: The Case for 3D Bioprinting Neurons to Create Patient-Specific Epilepsy Models. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3218. [PMID: 31581436 PMCID: PMC6804258 DOI: 10.3390/ma12193218] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
The ability to create three-dimensional (3D) models of brain tissue from patient-derived cells, would open new possibilities in studying the neuropathology of disorders such as epilepsy and schizophrenia. While organoid culture has provided impressive examples of patient-specific models, the generation of organised 3D structures remains a challenge. 3D bioprinting is a rapidly developing technology where living cells, encapsulated in suitable bioink matrices, are printed to form 3D structures. 3D bioprinting may provide the capability to organise neuronal populations in 3D, through layer-by-layer deposition, and thereby recapitulate the complexity of neural tissue. However, printing neuron cells raises particular challenges since the biomaterial environment must be of appropriate softness to allow for the neurite extension, properties which are anathema to building self-supporting 3D structures. Here, we review the topic of 3D bioprinting of neurons, including critical discussions of hardware and bio-ink formulation requirements.
Collapse
Affiliation(s)
- Natasha Antill-O'Brien
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.
| | - Justin Bourke
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
- Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, VIC 3065, Australia.
| | - Cathal D O'Connell
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| |
Collapse
|
36
|
Effect of Ibuprofen on Autophagy of Astrocytes During Pentylenetetrazol-Induced Epilepsy and its Significance: An Experimental Study. Neurochem Res 2019; 44:2566-2576. [PMID: 31535354 DOI: 10.1007/s11064-019-02875-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/17/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022]
Abstract
Epilepsy is a chronic neurological disease. Astrogliosis is an important pathological change in epileptic lesions. Studies have reported that ibuprofen can affect autophagy and/or inhibit cell proliferation in many diseases. This study investigated the effect and significance of ibuprofen on autophagy of astrocytes during pentylenetetrazol (PTZ) induced epilepsy. 60 male Sprague-Dawley (SD) rats were randomly divided into five groups: control group (received normal saline), PTZ group, 3-methyladenine (3-MA) + PTZ group, ibuprofen + PTZ group and 3-MA + ibuprofen + PTZ group. Dose of each agent was 35 mg/kg (PTZ), 10 mg/kg (3-MA) and 30 mg/kg (ibuprofen) and all drugs were administered intraperitoneally 15 times on alternate days (29 days). Human astrocytes were cultured in vitro. Behavioral performance (i.e., latency, grade and duration of seizures) and EEG of rats were observed and recorded. Proliferation of astrocytes was detected by CCK-8 method. Immunofluorescence and Western blot test were used to detect the expression of LC3 and GFAP. Mean number, grade and duration of seizures were markedly reduced in ibuprofen + PTZ group and 3-MA + ibuprofen + PTZ group (P < 0.05). Similarly, peak of EEG waves were markedly reduced in ibuprofen + PTZ group and 3-MA + ibuprofen + PTZ group (P < 0.05). Compared to the control group, the level of LC3 in ibuprofen group was significantly increased in vitro (P < 0.05). While, levels of LC3 were significantly higher and that of GFAP were significantly lower in ibuprofen + PTZ group (P < 0.05) compared to PTZ group in vivo. Ibuprofen reduces the proliferation of astrocytes by increasing autophagy, thus affecting the development of epilepsy. Therefore, ibuprofen may be used as an adjuvant to improve efficacy of treatment in epilepsy.
Collapse
|
37
|
Fernandes MJS, Carletti CO, Sierra de Araújo LF, Santos RC, Reis J. Respiratory gases, air pollution and epilepsy. Rev Neurol (Paris) 2019; 175:604-613. [PMID: 31519304 DOI: 10.1016/j.neurol.2019.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/29/2022]
Abstract
A growing number of studies have shown that exposure to air pollutants such as particulate matter and gases can cause cardiovascular, neurodegenerative and psychiatric diseases. The severity of the changes depends on several factors such as exposure time, age and gender. Inflammation has been considered as one of the main factors associated with the generation of these diseases. Here we present some cellular mechanisms activated by air pollution that may represent risk factors for epilepsy and drug resistance associated to epilepsy.
Collapse
Affiliation(s)
- M J S Fernandes
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - C O Carletti
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - L F Sierra de Araújo
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - R C Santos
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J Reis
- Service de Neurologie, Centre Hospitalier Universitaire, Hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg, France
| |
Collapse
|
38
|
Klement W, Blaquiere M, Zub E, deBock F, Boux F, Barbier E, Audinat E, Lerner-Natoli M, Marchi N. A pericyte-glia scarring develops at the leaky capillaries in the hippocampus during seizure activity. Epilepsia 2019; 60:1399-1411. [PMID: 31135065 DOI: 10.1111/epi.16019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Inflammatory cerebrovascular damage occurs in epilepsy. Here, we tested the hypothesis that a pericyte-glia scar forms around the outer wall of hippocampal capillaries in a model of temporal lobe epilepsy associated with hippocampal sclerosis. We studied the participation of stromal cells expressing platelet-derived growth factor receptor beta (PDGFRβ) and extracellular matrix modifications to the perivascular scar during epileptogenesis. METHODS We used NG2DsRed/C57BL6 mice and induced status epilepticus (SE) followed by epileptogenesis and spontaneous recurrent seizures (SRS) by means of unilateral intrahippocampal injection of kainic acid (KA). For pharmacological assessment, we used organotypic hippocampal cultures (OHCs) where ictal electrographic activity was elicited by KA or bicuculline. RESULTS NG2DsRed pericytes, GFAP astroglia, and IBA1 microglia are reactive and converge to form a pericapillary multicellular scar in the CA hippocampal regions during epileptogenesis and at SRS. The capillaries are leaky as indicated by fluorescein entering the parenchyma from the peripheral blood. Concomitantly, PDGFRβ transcript and protein levels were significantly increased. Within the regional scar, a fibrotic-like PDGFRβ mesh developed around the capillaries, peaking at 1 week post-SE and regressing, but not resolving, at SRS. Abnormal distribution or accumulation of extracellular matrix collagens III/IV occurred in the CA regions during seizure progression. PDGFRβ/DAPI cells were in direct contact with or adjacent to the damaged NG2DsRed pericytes at the capillary interface, consistent with the notion of stromal cell reactivity or fibroblast formation. Inducing electrographic activity in OHCs was sufficient to augment PDGFRβ reactivity around the capillaries. The latter effect was pharmacologically mimicked by treating OHCs with the PDGFRβ agonist PDGF-BB and it was diminished by the PDGFRβ inhibitor imatinib. SIGNIFICANCE The reported multicellular activation and scar are traits of perivascular inflammation and hippocampal sclerosis in experimental epilepsy, with an implication for neurovascular dysfunction. Modulation of PDGFRβ could be exploited to target inflammation in this chronic disease setting.
Collapse
Affiliation(s)
- Wendy Klement
- Laboratory of Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Marine Blaquiere
- Laboratory of Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Emma Zub
- Laboratory of Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Frederic deBock
- Laboratory of Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Fabien Boux
- Grenoble Neuroscience Institute, GIN, Inserm U 1216 - Grenoble University, La Tronche, France
| | - Emmanuel Barbier
- Grenoble Neuroscience Institute, GIN, Inserm U 1216 - Grenoble University, La Tronche, France
| | - Etienne Audinat
- Laboratory of Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Mireille Lerner-Natoli
- Laboratory of Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Nicola Marchi
- Laboratory of Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| |
Collapse
|
39
|
Thom M, Boldrini M, Bundock E, Sheppard MN, Devinsky O. Review: The past, present and future challenges in epilepsy-related and sudden deaths and biobanking. Neuropathol Appl Neurobiol 2019; 44:32-55. [PMID: 29178443 PMCID: PMC5820128 DOI: 10.1111/nan.12453] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022]
Abstract
Awareness and research on epilepsy-related deaths (ERD), in particular Sudden Unexpected Death in Epilepsy (SUDEP), have exponentially increased over the last two decades. Most publications have focused on guidelines that inform clinicians dealing with these deaths, educating patients, potential risk factors and mechanisms. There is a relative paucity of information available for pathologists who conduct these autopsies regarding appropriate post mortem practice and investigations. As we move from recognizing SUDEP as the most common form of ERD toward in-depth investigations into its causes and prevention, health professionals involved with these autopsies and post mortem procedure must remain fully informed. Systematizing a more comprehensive and consistent practice of examining these cases will facilitate (i) more precise determination of cause of death, (ii) identification of SUDEP for improved epidemiological surveillance (the first step for an intervention study), and (iii) biobanking and cell-based research. This article reviews how pathologists and healthcare professionals have approached ERD, current practices, logistical problems and areas to improve and harmonize. The main neuropathology, cardiac and genetic findings in SUDEP are outlined, providing a framework for best practices, integration of clinical, pathological and molecular genetic investigations in SUDEP, and ultimately prevention.
Collapse
Affiliation(s)
- M Thom
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - M Boldrini
- Department of Psychiatry, Columbia University Medical Centre, Divisions of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - E Bundock
- Office of the Chief Medical Examiner, Burlington, VT, USA
| | - M N Sheppard
- Department of Pathology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - O Devinsky
- Department of Neurology, NYU Epilepsy Center, New York, NY, USA
| |
Collapse
|
40
|
Repetitive Diffuse Mild Traumatic Brain Injury Causes an Atypical Astrocyte Response and Spontaneous Recurrent Seizures. J Neurosci 2019; 39:1944-1963. [PMID: 30665946 DOI: 10.1523/jneurosci.1067-18.2018] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 11/21/2022] Open
Abstract
Focal traumatic brain injury (TBI) induces astrogliosis, a process essential to protecting uninjured brain areas from secondary damage. However, astrogliosis can cause loss of astrocyte homeostatic functions and possibly contributes to comorbidities such as posttraumatic epilepsy (PTE). Scar-forming astrocytes seal focal injuries off from healthy brain tissue. It is these glial scars that are associated with epilepsy originating in the cerebral cortex and hippocampus. However, the vast majority of human TBIs also present with diffuse brain injury caused by acceleration-deceleration forces leading to tissue shearing. The resulting diffuse tissue damage may be intrinsically different from focal lesions that would trigger glial scar formation. Here, we used mice of both sexes in a model of repetitive mild/concussive closed-head TBI, which only induced diffuse injury, to test the hypothesis that astrocytes respond uniquely to diffuse TBI and that diffuse TBI is sufficient to cause PTE. Astrocytes did not form scars and classic astrogliosis characterized by upregulation of glial fibrillary acidic protein was limited. Surprisingly, an unrelated population of atypical reactive astrocytes was characterized by the lack of glial fibrillary acidic protein expression, rapid and sustained downregulation of homeostatic proteins and impaired astrocyte coupling. After a latency period, a subset of mice developed spontaneous recurrent seizures reminiscent of PTE in human TBI patients. Seizing mice had larger areas of atypical astrocytes compared with nonseizing mice, suggesting that these atypical astrocytes might contribute to epileptogenesis after diffuse TBI.SIGNIFICANCE STATEMENT Traumatic brain injury (TBI) is a leading cause of acquired epilepsies. Reactive astrocytes have long been associated with seizures and epilepsy in patients, particularly after focal/lesional brain injury. However, most TBIs also include nonfocal, diffuse injuries. Here, we showed that repetitive diffuse TBI is sufficient for the development of spontaneous recurrent seizures in a subset of mice. We identified an atypical response of astrocytes induced by diffuse TBI characterized by the rapid loss of homeostatic proteins and lack of astrocyte coupling while reactive astrocyte markers or glial scar formation was absent. Areas with atypical astrocytes were larger in animals that later developed seizures suggesting that this response may be one root cause of epileptogenesis after diffuse TBI.
Collapse
|
41
|
Hoogland G, Hendriksen RGF, Slegers RJ, Hendriks MPH, Schijns OEMG, Aalbers MW, Vles JSH. The expression of the distal dystrophin isoforms Dp140 and Dp71 in the human epileptic hippocampus in relation to cognitive functioning. Hippocampus 2018; 29:102-110. [PMID: 30069964 DOI: 10.1002/hipo.23015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 01/06/2023]
Abstract
Dystrophin is an important protein within the central nervous system. The absence of dystrophin, characterizing Duchenne muscular dystrophy (DMD), is associated with brain related comorbidities such as neurodevelopmental (e.g., cognitive and behavioural) deficits and epilepsy. Especially mutations in the downstream part of the DMD gene affecting the dystrophin isoforms Dp140 and Dp71 are found to be associated with cognitive deficits. However, the function of Dp140 is currently not well understood and its expression pattern has previously been implicated to be developmentally regulated. Therefore, we evaluated Dp140 and Dp71 expression in human hippocampi in relation to cognitive functioning in patients with drug-resistant temporal lobe epilepsy (TLE) and post-mortem controls. Hippocampal samples obtained as part of epilepsy surgery were quantitatively analyzed by Western blot and correlations with neuropsychological test results (i.e., memory and intelligence) were examined. First, we demonstrated that the expression of Dp140 does not appear to differ across different ages throughout adulthood. Second, we identified an inverse correlation between memory loss (i.e., verbal and visual memory), but not intelligence (i.e., neither verbal nor performance), and hippocampal Dp140 expression. Finally, patients with TLE appeared to have similar Dp140 expression levels compared to post-mortem controls without neurological disease. Dp140 may thus have a function in normal cognitive (i.e., episodic memory) processes.
Collapse
Affiliation(s)
- Govert Hoogland
- School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ruben G F Hendriksen
- School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Rutger J Slegers
- School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marc P H Hendriks
- Kempenhaeghe Epilepsy Centre, Heeze, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Olaf E M G Schijns
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marlien W Aalbers
- Department of Neurosurgery, Groningen University Medical Centre, Groningen, The Netherlands
| | - Johan S H Vles
- School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
42
|
Yang X, Geng K, Zhang J, Zhang Y, Shao J, Xia W. Sirt3 Mediates the Inhibitory Effect of Adjudin on Astrocyte Activation and Glial Scar Formation following Ischemic Stroke. Front Pharmacol 2017; 8:943. [PMID: 29311941 PMCID: PMC5744009 DOI: 10.3389/fphar.2017.00943] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022] Open
Abstract
In response to stroke-induced injury, astrocytes can be activated and form a scar. Inflammation is an essential component for glial scar formation. Previous study has shown that adjudin, a potential Sirt3 activator, could attenuate lipopolysaccharide (LPS)- and stroke-induced neuroinflammation. To investigate the potential inhibitory effect and mechanism of adjudin on astrocyte activation, we used a transient middle cerebral artery occlusion (tMCAO) model with or without adjudin treatment in wild type (WT) and Sirt3 knockout (KO) mice and performed a wound healing experiment in vitro. Both our in vivo and in vitro results showed that adjudin reduced astrocyte activation by upregulating Sirt3 expression. In addition, adjudin treatment after stroke promoted functional and neurovascular recovery accompanied with the decreased area of glial scar in WT mice, which was blunted by Sirt3 deficiency. Furthermore, adjudin could increase Foxo3a and inhibit Notch1 signaling pathway via Sirt3. Both the suppression of Foxo3a and overexpression of N1ICD could alleviate the inhibitory effect of adjudin in vitro indicating that Sirt3-Foxo3a and Sirt3-Notch1 signaling pathways were involved in the inhibitory effect of adjudin in wound healing experiment.
Collapse
Affiliation(s)
- Xiao Yang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Keyi Geng
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jinfan Zhang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yanshuang Zhang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaxiang Shao
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weiliang Xia
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
43
|
Liu B, Teschemacher AG, Kasparov S. Astroglia as a cellular target for neuroprotection and treatment of neuro-psychiatric disorders. Glia 2017; 65:1205-1226. [PMID: 28300322 PMCID: PMC5669250 DOI: 10.1002/glia.23136] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 12/12/2022]
Abstract
Astrocytes are key homeostatic cells of the central nervous system. They cooperate with neurons at several levels, including ion and water homeostasis, chemical signal transmission, blood flow regulation, immune and oxidative stress defense, supply of metabolites and neurogenesis. Astroglia is also important for viability and maturation of stem-cell derived neurons. Neurons critically depend on intrinsic protective and supportive properties of astrocytes. Conversely, all forms of pathogenic stimuli which disturb astrocytic functions compromise neuronal functionality and viability. Support of neuroprotective functions of astrocytes is thus an important strategy for enhancing neuronal survival and improving outcomes in disease states. In this review, we first briefly examine how astrocytic dysfunction contributes to major neurological disorders, which are traditionally associated with malfunctioning of processes residing in neurons. Possible molecular entities within astrocytes that could underpin the cause, initiation and/or progression of various disorders are outlined. In the second section, we explore opportunities enhancing neuroprotective function of astroglia. We consider targeting astrocyte-specific molecular pathways which are involved in neuroprotection or could be expected to have a therapeutic value. Examples of those are oxidative stress defense mechanisms, glutamate uptake, purinergic signaling, water and ion homeostasis, connexin gap junctions, neurotrophic factors and the Nrf2-ARE pathway. We propose that enhancing the neuroprotective capacity of astrocytes is a viable strategy for improving brain resilience and developing new therapeutic approaches.
Collapse
Affiliation(s)
- Beihui Liu
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
| | - Anja G. Teschemacher
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
| | - Sergey Kasparov
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
- Institute for Chemistry and BiologyBaltic Federal UniversityKaliningradRussian Federation
| |
Collapse
|
44
|
Yao Y, Yang Y, He X, Wang X. miR-16-1 expression, heat shock protein 70 and inflammatory reactions in astrocytes of mice with epilepsy induced by encephalitis B virus infection. Exp Ther Med 2017; 14:495-498. [PMID: 28672958 PMCID: PMC5488623 DOI: 10.3892/etm.2017.4513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/16/2017] [Indexed: 02/03/2023] Open
Abstract
The upregulation of miR-16-1 expression and heat shock protein 70 (HSP70) and inflammatory reaction mechanism in astrocytes of mice with epilepsy induced by encephalitis B virus infection were studied. Six-to-eight-week-old healthy male C57BL/6 mice received intraperitoneal injection of pilocarpine (320-340 mg/kg, 40 mg/ml) to induce status epilepsy. After 7 days, mice were inoculated with 100 µl Dulbecco's modified Eagle's medium (DMEM) in the neck, including 6.25×23 PFU Japanese encephalitis virus P3 wild strain. The experiment was divided into 4 groups, including, the healthy control group, the epilepsy model group, the model group + negative inoculation group and the virus infection group with 10 mice in each group. The healthy control group received intraperitoneal injection of the same amount of normal saline; the model group + negative inoculation group was injected with the same amount of DMEM without P3. One and three days after infection, 5 mice from each group were sacrificed, hippocampus tissues were obtained and astrocytes were isolated. After purification, glial fibrillary acidic protein was identified by immunohistochemical staining. Infected glial cells were detected by P3 antigen of immunofluorescence staining. RT-PCR method was used to detect the expression of miR-16-1 mRNA in astrocytes. Western blot analysis was used to detect the expression of HSP70. ELISA method was used to detect the levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α and nuclear factor-κB (NF-κB) inflammatory factors in tail vein blood. Level of expression of miR-16-1 mRNA, HSP70 as well as IL-6, TNF-α and NF-κB inflammatory factor levels of virus infected mice of 1 and 3 days were significantly higher (P<0.05) than those of model group and negative inoculation group and lowest in control group. In conclusion, the level of expression of miR-16-1 and HSP70 can be increased by the infection of Japanese encephalitis virus on the astrocytes of mice with epilepsy, to promote the expression of IL-6, TNF-α and NF-κB of inflammatory factors.
Collapse
Affiliation(s)
- Yue Yao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yujia Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xuehua He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xia Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
45
|
Lapato AS, Szu JI, Hasselmann JPC, Khalaj AJ, Binder DK, Tiwari-Woodruff SK. Chronic demyelination-induced seizures. Neuroscience 2017; 346:409-422. [PMID: 28153692 DOI: 10.1016/j.neuroscience.2017.01.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/13/2017] [Accepted: 01/23/2017] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) patients are three to six times more likely to develop epilepsy compared to the rest of the population. Seizures are more common in patients with early onset or progressive forms of the disease and prognosticate rapid progression to disability and death. Gray matter atrophy, hippocampal lesions, interneuron loss, and elevated juxtacortical lesion burden have been identified in MS patients with seizures; however, translational studies aimed at elucidating the pathophysiological processes underlying MS epileptogenesis are limited. Here, we report that cuprizone-mediated chronically demyelinated (9-12weeks) mice exhibit marked changes to dorsal hippocampal electroencephalography (EEG) and evidence of overt seizure activity. Immunohistochemical (IHC) analyses within the hippocampal CA1 region revealed extensive demyelination, loss of parvalbumin (PV+) interneurons, widespread gliosis, and changes in aquaporin-4 (AQP4) expression. Our results suggest that chronically demyelinated mice are a valuable model with which we may begin to understand the mechanisms underlying demyelination-induced seizures.
Collapse
Affiliation(s)
- Andrew S Lapato
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA; Center for Glial-Neuronal Interactions, University of California Riverside, Riverside, CA 92521, USA
| | - Jenny I Szu
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Jonathan P C Hasselmann
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Anna J Khalaj
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA; Center for Glial-Neuronal Interactions, University of California Riverside, Riverside, CA 92521, USA
| | - Seema K Tiwari-Woodruff
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA; Center for Glial-Neuronal Interactions, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|