1
|
El-Saadony MT, Yang T, Saad AM, Alkafaas SS, Elkafas SS, Eldeeb GS, Mohammed DM, Salem HM, Korma SA, Loutfy SA, Alshahran MY, Ahmed AE, Mosa WFA, Abd El-Mageed TA, Ahmed AF, Fahmy MA, El-Tarabily MK, Mahmoud RM, AbuQamar SF, El-Tarabily KA, Lorenzo JM. Polyphenols: Chemistry, bioavailability, bioactivity, nutritional aspects and human health benefits: A review. Int J Biol Macromol 2024; 277:134223. [PMID: 39084416 DOI: 10.1016/j.ijbiomac.2024.134223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 06/17/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Polyphenols, including phenolics, alkaloids, and terpenes, are secondary metabolites that are commonly found in fruits, vegetables, and beverages, such as tea, coffee, wine, chocolate, and beer. These compounds have gained considerable attention and market demand because of their potential health benefits. However, their application is limited due to their low absorption rates and reduced tissue distribution efficiency. Engineering polyphenol-protein complexes or conjugates can enhance the antioxidant properties, bioavailability, and stability of polyphenols and improve digestive enzyme hydrolysis, target-specific delivery, and overall biological functions. Complex polyphenols, such as melanin, tannins, and ellagitannins, can promote gut microbiota balance, bolster antioxidant defense, and improve overall human health. Despite these benefits, the safety of polyphenol complexes must be thoroughly evaluated before their use as functional food additives or supplements. This review provides a detailed overview of the types of macromolecular polyphenols, their chemical composition, and their role in food enrichment. The mechanisms by which complex polyphenols act as antioxidative, anti-inflammatory, and anticancer agents have also been discussed.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Shebin El Kom, 32511, Egypt; Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg, Russia
| | - Gehad S Eldeeb
- Department of Food Technology, Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 12211, Egypt
| | - Mohammad Y Alshahran
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 9088, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Taia A Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Atef F Ahmed
- Department of Biology, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Reda M Mahmoud
- Dr Nutrition Pharmaceuticals (DNP), Dubai, 48685, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, W.A., Australia
| | - José M Lorenzo
- Centro Tecnologico´ de La Carne de Galicia, Rúa Galicia No. 4, Parque Tecnologico de Galicia, San Cibrao das Vinas, Ourense, 32900, Spain; Universidad de Vigo, Area´ de Tecnología de Los Alimentos, Facultad de Ciencias de Ourense, Ourense, 32004, Spain
| |
Collapse
|
2
|
Alshaalan RA, Charalambides MN, Edwards CH, Ellis PR, Alrabeah SH, Frost GS. Impact of chickpea hummus on postprandial blood glucose, insulin and gut hormones in healthy humans combined with mechanistic studies of food structure, rheology and digestion kinetics. Food Res Int 2024; 188:114517. [PMID: 38823849 DOI: 10.1016/j.foodres.2024.114517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Slowing the rate of carbohydrate digestion leads to low postprandial glucose and insulin responses, which are associated with reduced risk of type 2 diabetes. There is increasing evidence that food structure plays a crucial role in influencing the bioaccessibility and digestion kinetics of macronutrients. The aims of this study were to compare the effects of two hummus meals, with different degrees of cell wall integrity, on postprandial metabolic responses in relation to the microstructural and rheological characteristics of the meals. A randomised crossover trial in 15 healthy participants was designed to compare the acute effect of 27 g of starch, provided as hummus made from either intact chickpea cells (ICC) or ruptured chickpea cells (RCC), on postprandial metabolic responses. In vitro starch digestibility, microstructural and rheological experiments were also conducted to evaluate differences between the two chickpea hummus meals. Blood insulin and GIP concentrations were significantly lower (P < 0.02, P < 0.03) after the consumption of the ICC meal than the meal containing RCC. In vitro starch digestion for 90 min was slower in ICC than in RCC. Microscopic examination of hummus samples digested in vitro for 90 min revealed more intact chickpea cells in ICC compared to the RCC sample. Rheological experiments showed that fracture for ICC hummus samples occurred at smaller strains compared to RCC samples. However, the storage modulus for ICC was higher than RCC, which may be explained by the presence of intact cells in ICC. Food structure can affect the rate and extent of starch bioaccessibility and digestion and may explain the difference in the time course of metabolic responses between meals. The rheological properties were measured on the two types of meals before ingestion, showing significant differences that may point to different breakdown mechanisms during subsequent digestion. This trial was registered at clinicaltrial.gov as NCT03424187.
Collapse
Affiliation(s)
- Rasha A Alshaalan
- Nutrition and Dietetic Research Group, Faculty of Medicine, Imperial College London, London, UK; Department Health Sciences, Clinical Nutrition Program, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
| | | | | | - Peter R Ellis
- Biopolymers Group, Departments of Biochemistry and Nutrition, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Shatha H Alrabeah
- Nutrition and Dietetic Research Group, Faculty of Medicine, Imperial College London, London, UK
| | - Gary S Frost
- Nutrition and Dietetic Research Group, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
3
|
Miehle E, Eisner P, Bader-Mittermaier S. Effects of food processing on in vitro glucose release of high methylester pectin-enriched doughs. Food Chem 2024; 442:138331. [PMID: 38271902 DOI: 10.1016/j.foodchem.2023.138331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024]
Abstract
The incidence of type 2 diabetes is linked to consuming processed, high-glycemic foods low in dietary fiber. Soluble dietary fibers are known to improve blood glucose tolerance. This study examined the impact of processing on the in vitro glucose release of fiber-rich, high-glycemic foods. The impact of composition and microstructure on in vitro glucose release and starch digestibility was evaluated in doughs - untreated, baked at 180 °C, and extruded at 150 °C and 180 °C - with partial enrichment of high-methylester pectin. Pectin enrichment decreased starch digestibility, altered the food matrix, and doubled in vitro chyme-viscosity resulting in reduced glucose release in baked (180 °C), and extruded (150 °C) products. Baking or extrusion cooking increased starch digestibility - converting slowly into rapidly available starch and free glucose. Additionally, resistant starch levels were enhanced by up to fivefold. The variations in glucose release originated from a complex interplay between starch digestibility, viscosity, and the food matrix.
Collapse
Affiliation(s)
- Elisabeth Miehle
- TUM School of Life Sciences, Technical University of Munich (TUM), D-85354 Freising, Germany; Fraunhofer Institute for Process Engineering and Packaging (IVV), D-85354 Freising, Germany.
| | - Peter Eisner
- Fraunhofer Institute for Process Engineering and Packaging (IVV), D-85354 Freising, Germany; ZIEL Institute for Food & Health, Core Facility Human Studies, Technical University of Munich, D-85354 Freising, Germany.
| | | |
Collapse
|
4
|
Stefoska-Needham A. Sorghum and health: An overview of potential protective health effects. J Food Sci 2024. [PMID: 38407549 DOI: 10.1111/1750-3841.16978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Whole-grain sorghum foods may elicit health-promoting effects when consumed regularly in the diet. This review discusses key functional sorghum grain constituents, including dietary fiber, slowly digestible and resistant starches, lipids, and phytochemicals and their effects on metabolic processes that are associated with the development of chronic diseases, such as heart disease and diabetes. Currently, the range of sorghum food products available to consumers is limited globally, hindering the potential consumer benefits. A collaborative effort to innovate new product developments is therefore needed, with a focus on processing methods that help to retain the grain's favorable nutritive, health-enhancing, and sensory attributes. Evidence for sorghum's purported health effects, together with evidence of impacts of processing on different sorghum foods, are presented in this review to fully elucidate the potential of sorghum grain to confer health benefits to humans.
Collapse
Affiliation(s)
- Anita Stefoska-Needham
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Australia
| |
Collapse
|
5
|
Pacheco LV, Parada J, Pérez-Correa JR, Mariotti-Celis MS, Simirgiotis M. Cochayuyo ( Durvillaea incurvata) Extracts: Their Impact on Starch Breakdown and Antioxidant Activity in Pasta during In Vitro Digestion. Foods 2023; 12:3326. [PMID: 37761035 PMCID: PMC10529413 DOI: 10.3390/foods12183326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Seaweeds, notably cochayuyo (Durvillaea incurvata), are recognized for their rich macro- and micronutrient content, along with their inhibitory effects on the α-glucosidase enzyme. The present study aims to evaluate the effectiveness of this inhibition in actual starchy food products under in vitro gastrointestinal conditions. This study utilized freeze-dried cochayuyo, extracted using hot pressurized liquid extraction with 50% ethanol at 120 °C and 1500 psi. The inhibition mechanism of α-glucosidase was determined, and the polyphenol composition of the extract was analyzed using Ultra-High-Performance Liquid Chromatography. This study further evaluated the extract's impact on starch digestibility, total phenolic content, and antioxidant capacity in pasta (noodles) as representative starchy food under gastrointestinal conditions. The results indicate that the α-glucosidase inhibition mechanism is of mixed type. Phenolic compounds, primarily tetraphloroethol, could contribute to this anti-enzymatic activity. The extract was observed to decrease starch digestibility, indicated by a lower rate constant (0.0158 vs. 0.0261 min-1) and digested starch at an infinite time (77.4 vs. 80.5 g/100 g). A significant increase (~1200 vs. ~390 µmol TROLOX/100 g) in antioxidant activity was also noted during digestion when the extract was used. Thus, this study suggests that the cochayuyo extract can reduce starch digestion and enhance antioxidant capacity under gastrointestinal conditions.
Collapse
Affiliation(s)
- Luz Verónica Pacheco
- Graduate School, Faculty of Agricultural and Food Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Javier Parada
- Institute of Food Science and Technology, Faculty of Agricultural and Food Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - José R. Pérez-Correa
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile;
| | | | - Mario Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile;
| |
Collapse
|
6
|
Bajka BH, Pinto AM, Perez-Moral N, Saha S, Ryden P, Ahn-Jarvis J, van der Schoot A, Bland C, Berry SE, Ellis PR, Edwards CH. Enhanced secretion of satiety-promoting gut hormones in healthy humans after consumption of white bread enriched with cellular chickpea flour: A randomized crossover study. Am J Clin Nutr 2023; 117:477-489. [PMID: 36811474 PMCID: PMC10131617 DOI: 10.1016/j.ajcnut.2022.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Dietary intake of pulses is associated with beneficial effects on body weight management and cardiometabolic health, but some of these effects are now known to depend on integrity of plant cells, which are usually disrupted by flour milling. Novel cellular flours preserve the intrinsic dietary fiber structure of whole pulses and provide a way to enrich preprocessed foods with encapsulated macronutrients. OBJECTIVES This study aimed to determine the effects of replacing wheat flour with cellular chickpea flour on postprandial gut hormones, glucose, insulin, and satiety responses to white bread. METHODS We conducted a double-blind randomized crossover study in which postprandial blood samples and scores were collected from healthy human participants (n = 20) after they consumed bread enriched with 0%, 30%, or 60% (wt/wt) cellular chickpea powder (CCP, 50 g total starch per serving). RESULTS Bread type significantly affected postprandial glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) responses (time × treatment, P = 0.001 for both). The 60% CCP breads elicited significantly elevated and sustained release of these anorexigenic hormones [between 0% and 60% CPP-GLP-1: mean difference incremental area under the curve (iAUC), 3101 pM/min; 95% CI: 1891, 4310; P-adjusted < 0.001; PYY: mean difference iAUC, 3576 pM/min; 95% CI: 1024, 6128; P-adjusted = 0.006] and tended to increase fullness (time × treatment, P = 0.053). Moreover, bread type significantly influenced glycemia and insulinemia (time × treatment, P < 0.001, P = 0.006, and P = 0.001 for glucose, insulin, and C-peptide, respectively), with 30% CCP breads eliciting a >40% lower glucose iAUC (P-adjusted < 0.001) than the 0% CCP bread. Our in vitro studies revealed slow digestion of intact chickpea cells and provide a mechanistic explanation for the physiologic effects. CONCLUSIONS The novel use of intact chickpea cells to replace refined flours in a white bread stimulates an anorexigenic gut hormone response and has potential to improve dietary strategies for prevention and treatment of cardiometabolic diseases. This study was registered at clinicaltrials.gov as NCT03994276.
Collapse
Affiliation(s)
- Balazs H Bajka
- Biopolymers Group, Departments of Biochemistry and Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.
| | - Ana M Pinto
- Biopolymers Group, Departments of Biochemistry and Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Natalia Perez-Moral
- Food Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Shikha Saha
- Food Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Peter Ryden
- Food Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Jennifer Ahn-Jarvis
- Food Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Alice van der Schoot
- Biopolymers Group, Departments of Biochemistry and Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Catherine Bland
- Biopolymers Group, Departments of Biochemistry and Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Sarah E Berry
- Diet and Cardiometabolic Group, Department of Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Peter R Ellis
- Biopolymers Group, Departments of Biochemistry and Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Cathrina H Edwards
- Food Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom.
| |
Collapse
|
7
|
Kadyan S, Park G, Singh P, Arjmandi B, Nagpal R. Prebiotic mechanisms of resistant starches from dietary beans and pulses on gut microbiome and metabolic health in a humanized murine model of aging. Front Nutr 2023; 10:1106463. [PMID: 36824174 PMCID: PMC9941547 DOI: 10.3389/fnut.2023.1106463] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
Dietary pulses, being a rich source of fiber and proteins, offer an ideal and inexpensive food choice for older adults to promote gut and metabolic health. However, the prebiotic effects of dietary pulses-derived resistant starches (RS), compared to RS from cereals and tubers, remain relatively underexplored, particularly in context to their gut modulatory potential in old age. We herein investigate the prebiotic effects of pulses-derived RS on the gut microbiome and intestinal health in aged (60-week old) mice colonized with human microbiota. C57B6/J mice were fed for 20 weeks with either a western-style high-fat diet (control; CTL) or CTL diet supplemented (5% w/w) with RS from pinto beans (PTB), black-eyed-peas (BEP), lentils (LEN), chickpeas (CKP), or inulin (INU; reference control). We find that the RS supplementation modulates gut microbiome in a sex-dependent manner. For instance, CKP enriched α-diversity only in females, while β-diversity deviated for both sexes. Further, different RS groups exhibited distinct microbiome differences at bacterial phyla and genera levels. Notably, LEN fostered Firmicutes and depleted Proteobacteria abundance, whereas Bacteroidota was promoted by CKP and INU. Genus Dubosiella increased dominantly in males for all groups except PTB, whilst Faecalibaculum decreased in females by CKP and INU groups. Linear discriminant analysis effect size (LEfSe) and correlational analyzes reveal RS-mediated upregulation of key bacterial genera associated with short-chain fatty acids (butyrate) production and suppression of specific pathobionts. Subsequent machine-learning analysis validate decreased abundance of notorious genera, namely, Enterococcus, Odoribacter, Desulfovibrio, Alistipes and Erysipelatoclostridium among RS groups. CKP and LEN groups partly protected males against post-prandial glycemia. Importantly, RS ameliorated high-fat diet-induced gut hyperpermeability and enhanced expression of tight-junction proteins (claudin-1 and claudin-4), which were more pronounced for LEN. In addition, IL10 upregulation was more prominent for LEN, while TNF-α was downregulated by LEN, CKP, and INU. Together, these findings demonstrate that RS supplementation beneficially modulates the gut microbiome with a reduction in gut leakiness and inflammation, indicating their prebiotic potential for functional food and nutritional applications.
Collapse
Affiliation(s)
- Saurabh Kadyan
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Gwoncheol Park
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Prashant Singh
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Bahram Arjmandi
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | | |
Collapse
|
8
|
Kong H, Yu L, Li C, Ban X, Gu Z, Liu L, Li Z. Perspectives on evaluating health effects of starch: Beyond postprandial glycemic response. Carbohydr Polym 2022; 292:119621. [DOI: 10.1016/j.carbpol.2022.119621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 11/02/2022]
|
9
|
Zhu W, Oteiza PI. Proanthocyanidins at the gastrointestinal tract: mechanisms involved in their capacity to mitigate obesity-associated metabolic disorders. Crit Rev Food Sci Nutr 2022; 64:220-240. [PMID: 35943169 DOI: 10.1080/10408398.2022.2105802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The prevalence of overweight and obesity is continually increasing worldwide. Obesity is a major public health concern given the multiple associated comorbidities. Finding dietary approaches to prevent/mitigate these conditions is of critical relevance. Proanthocyanidins (PACs), oligomers or polymers of flavan-3-ols that are extensively distributed in nature, represent a major part of total dietary polyphenols. Although current evidence supports the capacity of PACs to mitigate obesity-associated comorbidities, the underlying mechanisms remain speculative due to the complexity of PACs' structure. Given their limited bioavailability, the major site of the biological actions of intact PACs is the gastrointestinal (GI) tract. This review discusses the actions of PACs at the GI tract which could underlie their anti-obesity effects. These mechanisms include: i) inhibition of digestive enzymes at the GI lumen, including pancreatic lipase, α-amylase, α-glucosidase; ii) modification of gut microbiota composition; iii) modulation of inflammation- and oxidative stress-triggered signaling pathways, e.g. NF-κB and MAPKs; iv) protection of the GI barrier integrity. Further understanding of the mechanisms and biological activities of PACs at the GI tract can contribute to develop nutritional and pharmacological strategies oriented to mitigate the serious comorbidities of obesity.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Nutrition, University of California, Davis, California, USA
- Department of Environmental Toxicology, University of California, Davis, California, USA
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, California, USA
- Department of Environmental Toxicology, University of California, Davis, California, USA
| |
Collapse
|
10
|
Papakonstantinou E, Xaidara M, Siopi V, Giannoglou M, Katsaros G, Theodorou G, Maratou E, Poulia KA, Dimitriadis GD, Skandamis PN. Effects of Spaghetti Differing in Soluble Fiber and Protein Content on Glycemic Responses in Humans: A Randomized Clinical Trial in Healthy Subjects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053001. [PMID: 35270698 PMCID: PMC8909947 DOI: 10.3390/ijerph19053001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023]
Abstract
This randomized, single blind, cross-over study investigated the glycemic responses to three spaghetti No 7 types differing in dietary protein and soluble fiber content. Fourteen clinically and metabolically healthy, fasting individuals (25 ± 1 years; ten women; BMI 23 ± 1 kg/m2) received isoglucidic test meals (50 g available carbohydrate) and 50 g glucose reference, in random order. GI was calculated using the FAO/WHO method. Capillary blood glucose and salivary insulin samples were collected at 0, 15, 30, 45, 60, and 120 min. Subjective appetite ratings (hunger, fullness, and desire to eat) were assessed by visual analogue scales (VAS, 100 mm) at baseline and 120 min. All three spaghetti types (regular, whole wheat, and high soluble fiber–low carbohydrates) provided low GI values (33, 38, and 41, respectively, on glucose scale) and lower peak glucose values compared to glucose or white bread. No differences were observed between spaghetti No 7 types for fasting glucose, fasting and post-test-meal insulin concentrations, blood pressure (systolic and diastolic), and subjective appetite. Conclusions: all spaghetti No 7 types, regardless of soluble fiber and/or protein content, attenuated postprandial glycemic response, which may offer advantages to glycemic control.
Collapse
Affiliation(s)
- Emilia Papakonstantinou
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (M.X.); (V.S.); (K.-A.P.)
- Correspondence: ; Tel.: +30-2105294967
| | - Marina Xaidara
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (M.X.); (V.S.); (K.-A.P.)
| | - Vassiliki Siopi
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (M.X.); (V.S.); (K.-A.P.)
| | - Marianna Giannoglou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DEMETER”, 14123 Athens, Greece; (M.G.); (G.K.)
| | - George Katsaros
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DEMETER”, 14123 Athens, Greece; (M.G.); (G.K.)
| | - Georgios Theodorou
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, 11855 Athens, Greece;
| | - Eirini Maratou
- Department of Clinical Biochemistry, “Attikon” University General Hospital, National and Kapodistrian University of Athens, Haidari, 12462 Athens, Greece;
| | - Kalliopi-Anna Poulia
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (M.X.); (V.S.); (K.-A.P.)
| | - George D. Dimitriadis
- Sector of Medicine, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Panagiotis N. Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece;
| |
Collapse
|
11
|
Skalickova S, Ridoskova A, Slama P, Skladanka J, Skarpa P, Smykalova I, Horacek J, Dostalova R, Horky P. Effect of Lactic Fermentation and Cooking on Nutrient and Mineral Digestibility of Peas. Front Nutr 2022; 9:838963. [PMID: 35284457 PMCID: PMC8908447 DOI: 10.3389/fnut.2022.838963] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
Peas are prospectively beneficial legumes in the human diet, and especially in a vegan and vegetarian diet, due to their high content of proteins and starch. Their frequent lack of appeal in human nutrition can be caused by their bloating effect and the content of some antinutritional compounds inhibiting the absorption of important nutrients. This study brings a comprehensive comparison of the nutrient content of pea flour after cooking and lactic fermentation before and after digestion in vitro. As a control sample, raw pea flour was used (sample 1). Raw pea flour was cooked for 10 min (sample 2) and 120 min (sample 3) at 100°C or it was fermented by Lactobacillus plantarum (sample 4) and cooked for 10 min at 100°C (sample 5). The samples were analyzed for protein and amino acids content, maltose, glucose, raffinose, total polyphenols, phytic acid, phytase, and mineral composition (P, Mg, Mn, Fe, Cu, Zn) before and after in vitro digestion. The results showed a significant (p < 0.05) increase in the protein digestibility of samples 3, 4 and 5. In the fermented samples were observed a higher concentration of Cys, Met, and Gln when compared to non-fermented samples. The fermentation of pea flour resulted in a significant (p < 0.05) decrease in glucose, maltose, and raffinose content. Cooking of pea flour for 10 and 120 min, but not fermenting, significantly (p < 0.05) decreased the polyphenols content. Cooking and fermentation together did not affect phytic acid concentration and phytase activity. Mg, Mn, Fe, Cu and, Zn concentration in pea flour was significantly (p < 0.05) decreased by cooking. On the other hand, fermentation significantly (p<0.05) improved the bioaccessibility of Mn and Fe. These findings suggest that lactic fermentation of pea flour is a promising culinary preparation that can improve the digestibility of peas.
Collapse
Affiliation(s)
- Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jiri Skladanka
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Petr Skarpa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | | | | | | | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- *Correspondence: Pavel Horky
| |
Collapse
|
12
|
Shobana S, Gopinath V, Kavitha V, Kalpana N, Vijayalakshmi P, Gayathri R, Ramya Bai R M, Ganeshjeevan R, Malleshi N, Unnikrishnan R, Anjana R, Henry C, Krishnaswamy K, Sudha V, Mohan V. Nutritional and glycemic properties of brown and white rice flakes “upma”. JOURNAL OF DIABETOLOGY 2022. [DOI: 10.4103/jod.jod_91_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Ou SJL, Yu J, Zhou W, Liu MH. Effects of anthocyanins on bread microstructure, and their combined impact on starch digestibility. Food Chem 2021; 374:131744. [PMID: 34915378 DOI: 10.1016/j.foodchem.2021.131744] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 11/04/2022]
Abstract
Several studies have confirmed the reduction of starch digestibility with anthocyanins in food systems via mechanisms of enzyme inhibition. However, starch-polyphenol interactions may also contribute to this reduction, by modifying food microstructures and physicochemical properties of starch. The interactions among anthocyanins, starch digestibility, and food microstructures are significant to clarify the digestion processes of fortified food systems, but its interrelationship lacks clarity. Hence, we aim to evaluate the effects of black rice anthocyanin extract (BRAE) incorporation on the microstructural changes of wheat bread, in relation to overall digestibility. Overall, BRAE incorporation demonstrated a dose-dependent reduction in starch digestibility. Physicochemical analyses reflected that BRAE incorporation decreased starch gelatinisation and increased crystallinity. Microscopic imaging revealed differentiating microstructural characteristics of starch and gluten with BRAE incorporation, supporting the reduction in digestibility. Our results conclusively demonstrate that BRAE incorporation in bread suppresses starch digestibility not only through enzyme inhibition, but also food microstructural modifications.
Collapse
Affiliation(s)
- Sean Jun Leong Ou
- Department of Food Science and Technology, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Jingying Yu
- Department of Food Science and Technology, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Mei Hui Liu
- Department of Food Science and Technology, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| |
Collapse
|
14
|
Aguiar LM, Cazarin CBB. In vitro and in vivo methods to predict carbohydrate bioaccessibility. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Insights into the latest advances in low glycemic foods, their mechanism of action and health benefits. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01179-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Cai M, Dou B, Pugh JE, Lett AM, Frost GS. The impact of starchy food structure on postprandial glycemic response and appetite: a systematic review with meta-analysis of randomized crossover trials. Am J Clin Nutr 2021; 114:472-487. [PMID: 34049391 PMCID: PMC8326057 DOI: 10.1093/ajcn/nqab098] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/05/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Starchy foods can have a profound effect on metabolism. The structural properties of starchy foods can affect their digestibility and postprandial metabolic responses, which in the long term may be associated with the risk of type 2 diabetes and obesity. OBJECTIVES This systematic review sought to evaluate the clinical evidence regarding the impact of the microstructures within starchy foods on postprandial glucose and insulin responses alongside appetite regulation. METHODS A systematic search was performed in the PUBMED, Ovid Medicine, EMBASE, and Google Scholar databases for data published up to 18 January 2021. Data were extracted by 3 independent reviewers from randomized crossover trials (RCTs) that investigated the effect of microstructural factors on postprandial glucose, insulin, appetite-regulating hormone responses, and subjective satiety scores in healthy participants. RESULTS We identified 745 potential articles, and 25 RCTs (n = 369 participants) met our inclusion criteria: 6 evaluated the amylose-to-amylopectin ratio, 6 evaluated the degree of starch gelatinization, 2 evaluated the degree of starch retrogradation, 1 studied starch-protein interactions, and 12 investigated cell and tissue structures. Meta-analyses showed that significant reductions in postprandial glucose and insulin levels was caused by starch with a high amylose content [standardized mean difference (SMD) = -0.64 mmol/L*min (95% CI: -0.83 to -0.46) and SMD = -0.81 pmol/L*min (95% CI: -1.07 to -0.55), respectively], less-gelatinized starch [SMD = -0.54 mmol/L*min (95% CI: -0.75 to -0.34) and SMD = -0.48 pmol/L*min (95% CI: -0.75 to -0.21), respectively], retrograded starch (for glucose incremental AUC; SMD = -0.46 pmol/L*min; 95% CI: -0.80 to -0.12), and intact and large particles [SMD = -0.43 mmol/L*min (95% CI: -0.58 to -0.28) and SMD = -0.63 pmol/L*min (95% CI: -0.86 to -0.40), respectively]. All analyses showed minor or moderate heterogeneity (I2 < 50%). Sufficient evidence was not found to suggest how these structural factors influence appetite. CONCLUSIONS The manipulation of microstructures in starchy food may be an effective way to improve postprandial glycemia and insulinemia in the healthy population. The protocol for this systematic review and meta-analysis was registered in the international prospective register of systematic reviews (PROSPERO) as CRD42020190873.
Collapse
Affiliation(s)
- Mingzhu Cai
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Bowen Dou
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Jennifer E Pugh
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Aaron M Lett
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Gary S Frost
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
| |
Collapse
|
17
|
Raheem D, Carrascosa C, Ramos F, Saraiva A, Raposo A. Texture-Modified Food for Dysphagic Patients: A Comprehensive Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5125. [PMID: 34066024 PMCID: PMC8150365 DOI: 10.3390/ijerph18105125] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 12/16/2022]
Abstract
Food texture is a major food quality parameter. The physicochemical properties of food changes when processed in households or industries, resulting in modified textures. A better understanding of these properties is important for the sensory and textural characteristics of foods that target consumers of all ages, from children to the elderly, especially when food product development is considered for dysphagia. Texture modifications in foods suitable for dysphagic patients will grow as the numbers of elderly citizens increase. Dysphagia management should ensure that texture-modified (TM) food is nutritious and easy to swallow. This review addresses how texture and rheology can be assessed in the food industry by placing particular emphasis on dysphagia. It also discusses how the structure of TM food depends not only on food ingredients, such as hydrocolloids, emulsifiers, and thickening and gelling agents, but also on the applied processing methods, including microencapsulation, microgels as delivery systems, and 3D printing. In addition, we address how to modify texture for individuals with dysphagia in all age groups, and highlight different strategies to develop appropriate food products for dysphagic patients.
Collapse
Affiliation(s)
- Dele Raheem
- Northern Institute for Environmental and Minority Law (NIEM), Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland;
| | - Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain;
| | - Fernando Ramos
- Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, R. D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| |
Collapse
|
18
|
Nadia J, Olenskyj AG, Stroebinger N, Hodgkinson SM, Estevez TG, Subramanian P, Singh H, Singh RP, Bornhorst GM. Tracking physical breakdown of rice- and wheat-based foods with varying structures during gastric digestion and its influence on gastric emptying in a growing pig model. Food Funct 2021; 12:4349-4372. [PMID: 33884384 DOI: 10.1039/d0fo02917c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is currently a limited understanding of the effect of food structure on physical breakdown and gastric emptying of solid starch-based foods during gastric digestion. Moisture uptake, pH, particle size, rheological, and textural properties of six solid starch-based diets from different sources (Durum wheat and high amylose white rice) and of different macrostructures (porridge, native grain, agglomerate/couscous, and noodle) were monitored during 240 min of gastric digestion in a growing pig model. Changes in the physical properties of the gastric digesta were attributed to the influence of gastric secretions and gastric emptying, which were both dependent on the buffering capacity and initial macrostructure of the diets. Differences between the proximal and distal stomach regions were found in the intragastric pH and texture of the gastric digesta. For example, rice couscous, which had the smallest particle size and highest buffering capacity among the rice-based diets, had the shortest gastric emptying half-time and no significant differences between proximal and distal stomach digesta physical properties. Additionally, a relationship between gastric breakdown rate, expressed as gastric softening half-time from texture analysis, and gastric emptying half-time of dry matter was also observed. These findings provide new insights into the breakdown processes of starch-based solid foods in the stomach, which can be beneficial for the development of food structures with controlled rates of breakdown and gastric emptying during digestion.
Collapse
Affiliation(s)
- Joanna Nadia
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nadia J, Bronlund J, Singh RP, Singh H, Bornhorst GM. Structural breakdown of starch-based foods during gastric digestion and its link to glycemic response: In vivo and in vitro considerations. Compr Rev Food Sci Food Saf 2021; 20:2660-2698. [PMID: 33884751 DOI: 10.1111/1541-4337.12749] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 01/10/2023]
Abstract
The digestion of starch-based foods in the small intestine as well as factors affecting their digestibility have been previously investigated and reviewed in detail. Starch digestibility has been studied both in vivo and in vitro, with increasing interest in the use of in vitro models. Although previous in vivo studies have indicated the effect of mastication and gastric digestion on the digestibility of solid starch-based foods, the physical breakdown of starch-based foods prior to small intestinal digestion is often less considered. Moreover, gastric digestion has received little attention in the attempt to understand the digestion of solid starch-based foods in the digestive tract. In this review, the physical breakdown of starch-based foods in the mouth and stomach, the quantification of these breakdown processes, and their links to physiological outcomes, such as gastric emptying and glycemic response, are discussed. In addition, the physical breakdown aspects related to gastric digestion that need to be considered when developing in vitro-in vivo correlation in starch digestion studies are discussed. The discussion demonstrates that physical breakdown prior to small intestinal digestion, especially during gastric digestion, should not be neglected in understanding the digestion of solid starch-based foods.
Collapse
Affiliation(s)
- Joanna Nadia
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - John Bronlund
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Rajinder Paul Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Gail M Bornhorst
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA
| |
Collapse
|
20
|
Blanquet-Diot S, François O, Denis S, Hennequin M, Peyron M. Importance of oral phase in in vitro starch digestibility related to wholegrain versus refined pastas and mastication impairment. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106277] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Rovalino-Córdova AM, Aguirre Montesdeoca V, Capuano E. A mechanistic model to study the effect of the cell wall on starch digestion in intact cotyledon cells. Carbohydr Polym 2021; 253:117351. [DOI: 10.1016/j.carbpol.2020.117351] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022]
|
22
|
Sun C, Fang Y. Replacement of Fat or Starch. Food Hydrocoll 2021. [DOI: 10.1007/978-981-16-0320-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Fardet A, Rock E. Exclusive reductionism, chronic diseases and nutritional confusion: the degree of processing as a lever for improving public health. Crit Rev Food Sci Nutr 2020; 62:2784-2799. [DOI: 10.1080/10408398.2020.1858751] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anthony Fardet
- INRAE, Université Clermont Auvergne, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Edmond Rock
- INRAE, Université Clermont Auvergne, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| |
Collapse
|
24
|
Adeleye OO, Awodiran ST, Ajayi AO, Ogunmoyela TF. Influence of extrusion cooking on physicochemical properties and starch digestion kinetics of Sphenostylis stenocarpa, Cajanus cajan, and Vigna subterranean grains. PLoS One 2020; 15:e0242697. [PMID: 33259524 PMCID: PMC7707511 DOI: 10.1371/journal.pone.0242697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/08/2020] [Indexed: 11/18/2022] Open
Abstract
Thermal degradation of sugars and amino acids, and depolymerization of macromolecules such as starch, proteins and fibre occasioned by high-temperature short-time extrusion cooking modify the physicochemical and functional properties of raw materials. High-temperature short-time extrusion cooking holds promise for the expanded use of non-conventional ingredients as food/feed due to its practicality, increased productivity and efficiency, and ability to retain thermally degradable nutrients during cooking. However, little is known about the effect of the high-temperature short-time extrusion cooking process on the physicochemical properties and starch digestibility of lesser-known grain legumes such as African yam beans (Sphenostylis stenocarpa), Pigeon pea (Cajanus cajan), and Bambara peanut (Vigna subterranean). In this study, we investigate the effect of high-temperature short-time extrusion cooking and extrusion cooking temperature; low (100°C) vs high (140°C) temperatures in a single screw extruder, on hydration characteristics, viscoamylolytic properties, in vitro starch digestibility and digestion kinetics of these grain legumes. We show that water holding capacity and swelling power increased (p < 0.05) with increasing extrusion temperature for Sphenostylis stenocarpa and Vigna subterranean but not Cajanus cajan extrudates. Significant effects of extrusion cooking (i.e unextruded vs 100°C and unextruded vs 140°C) and extrusion temperatures (i.e. 100°C vs 140°C) were observed in peak, trough, final and setback viscosities of all extrudates. Starch digestibility and digestion characteristics were modified with increase in extrusion temperature, however, no effect of extrusion temperatures (i.e. 100°C vs 140°C) on starch digestion kinetics was observed for Sphenostylis stenocarpa and Vigna subterranean except for hydrolysis index (34.77 vs 40.77%). Nutritional and physiological implications of extruded grain legumes in monogastric animal feeding were also highlighted. The Information presented herein will influence expanded use of extruded grain legumes as feed ingredients for intensive monogastric animal feeding.
Collapse
Affiliation(s)
- Oluwafunmilayo O. Adeleye
- Agricultural Biochemistry and Nutrition Laboratory, Department of Animal Science, University of Ibadan, Ibadan, Nigeria
| | - Seun T. Awodiran
- Agricultural Biochemistry and Nutrition Laboratory, Department of Animal Science, University of Ibadan, Ibadan, Nigeria
| | - Atinuke O. Ajayi
- Agricultural Biochemistry and Nutrition Laboratory, Department of Animal Science, University of Ibadan, Ibadan, Nigeria
| | - Toluwalope F. Ogunmoyela
- Agricultural Biochemistry and Nutrition Laboratory, Department of Animal Science, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
25
|
Microstructure of Whole Wheat versus White Flour and Wheat-Chickpea Flour Blends and Dough: Impact on the Glycemic Response of Pan Bread. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:8834960. [PMID: 33083447 PMCID: PMC7557900 DOI: 10.1155/2020/8834960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 01/14/2023]
Abstract
Whole foods are generally considered healthier choices compared to processed foods. For nutritional consideration, whole wheat bread is recommended over the white bread. However, it has a similarly high effect on glycemic response (GR) as the white bread. This study is aimed at assessing the microstructure of whole wheat flour (WWF), white flour (WF), chickpea flour (BF), their blends, and dough and the GR of the bread made thereof. Scanning electron microscope analysis showed clear distinctions in the microstructure of the three flours. WWF particle size distribution had the widest spread with a polydispersity index (PDI) of 1.0 (±0.0) and wider average diameter, with z value of 1679.5 (±156.3) compared with the particle size of 658.9 (±160.4) and PDI of 0.740 (±0.04) for WF followed by BF with the particle size of 394.1 (±54.9) and PDI of 0.388 (±0.07) (p < 0.05). The falling number was significantly (p < 0.05) lower for WWF compared to WF or BF, indicating higher alpha-amylase activity. Thus, bread made from WWF without BF substitution exhibited a higher glycemic response similar to the bread made from WF. When partly replaced with BF, the GR of the bread made with WWF or WF reduced significantly (p < 0.05) in healthy individuals.
Collapse
|
26
|
Onipe OO, Beswa D, Jideani AIO. In Vitro Starch Digestibility and Glycaemic Index of Fried Dough and Batter Enriched with Wheat and Oat Bran. Foods 2020; 9:E1374. [PMID: 32992517 PMCID: PMC7600321 DOI: 10.3390/foods9101374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022] Open
Abstract
A deep-fried dough/batter food (magwinya) consumed across different age groups and social strata in South Africa was investigated in this study for digestibility and estimated glycaemic index (eGI). In this research, we investigated the influence of bran type-wheat bran (WB) and oat bran (OB), and concentration (0-20% w/w) on the starch digestibility and eGI of magwinya. Rapidly available glucose (RAG) of control fried dough (60.31 g/100 g) was 33% less than fried batter (90.07 g/100 g). There was a significant reduction in RAG and an increase in slowly available (SAG) and unavailable glucose (UG) content of the fried products with OB and WB addition. The highest SAG content was observed in WB fried dough. Control fried batter had the highest eGI value (80.02) and control fried dough had medium eGI value (58.11). WB fried dough, fried batter, and OB fried dough were categorised as medium GI foods at eGI range of 56.46-58.39, 65.93-68.84 and 56.34-57.27, respectively. The eGI values of OB fried batter ranged from 73.57 to 80.03 and were thus classified as high GI foods. UG showed significant correlation with eGI (r = -0.892, -0.973, p < 0.01) and fat content (r = -0.590, -0.661, p < 0.01) for WB and OB fried products. These results reveal that ingredient modification through bran enrichment is effective for the regulation of starch digestion and reduction of eGI of deep-fried dough/batter foods.
Collapse
Affiliation(s)
- Oluwatoyin O. Onipe
- Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou 0950, South Africa;
| | - Daniso Beswa
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein 2028, South Africa;
| | - Afam I. O. Jideani
- Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou 0950, South Africa;
| |
Collapse
|
27
|
Fradinho P, Soares R, Niccolai A, Sousa I, Raymundo A. Psyllium husk gel to reinforce structure of gluten-free pasta? Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109787] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
González C, González D, Zúñiga RN, Estay H, Troncoso E. Simulation of Human Small Intestinal Digestion of Starch Using an In Vitro System Based on a Dialysis Membrane Process. Foods 2020; 9:foods9070913. [PMID: 32664457 PMCID: PMC7405000 DOI: 10.3390/foods9070913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022] Open
Abstract
This work deepens our understanding of starch digestion and the consequent absorption of hydrolytic products generated in the human small intestine. Gelatinized starch dispersions were digested with α-amylase in an in vitro intestinal digestion system (i-IDS) based on a dialysis membrane process. This study innovates with respect to the existing literature, because it considers the impact of simultaneous digestion and absorption processes occurring during the intestinal digestion of starchy foods and adopts phenomenological models that deal in a more realistic manner with the behavior found in the small intestine. Operating the i-IDS at different flow/dialysate flow ratios resulted in distinct generation and transfer curves of reducing sugars mass. This indicates that the operating conditions affected the mass transfer by diffusion and convection. However, the transfer process was also affected by membrane fouling, a dynamic phenomenon that occurred in the i-IDS. The experimental results were extrapolated to the human small intestine, where the times reached to transfer the hydrolytic products ranged between 30 and 64 min, according to the flow ratio used. We consider that the i-IDS is a versatile system that can be used for assessing and/or comparing digestion and absorption behaviors of different starch-based food matrices as found in the human small intestine, but the formation and interpretation of membrane fouling requires further studies for a better understanding at physiological level. In addition, further studies with the i-IDS are required if food matrices based on fat, proteins or more complex carbohydrates are of interest for testing. Moreover, a next improvement step of the i-IDS must include the simulation of some physiological events (e.g., electrolytes addition, enzyme activities, bile, dilution and pH) occurring in the human small intestine, in order to improve the comparison with in vivo data.
Collapse
Affiliation(s)
- Carol González
- Department of Chemistry, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile
| | - Daniela González
- Department of Chemistry, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile
| | - Rommy N Zúñiga
- Department of Biotechnology, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
| | - Humberto Estay
- Advanced Mining Technology Center (AMTC), University of Chile, Av. Tupper 2007, AMTC Building, Santiago 8370451, Chile
| | - Elizabeth Troncoso
- Department of Chemistry, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
| |
Collapse
|
29
|
Ahn-Jarvis J, Lombardo E, Cruz-Monserrate Z, Badi N, Crowe O, Kaul S, Komar H, Krishna SG, Lesinski GB, Mace TA, Ramsey ML, Roberts K, Stinehart K, Traczek M, Conwell DL, Vodovotz Y, Hart PA. Reduction of inflammation in chronic pancreatitis using a soy bread intervention: A feasibility study. Pancreatology 2020; 20:852-859. [PMID: 32595109 PMCID: PMC7780088 DOI: 10.1016/j.pan.2020.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Chronic pancreatitis is a chronic inflammatory disease, which progresses to fibrosis. Currently there are no interventions to delay or stop the progression to irreversible organ damage. In this study, we assessed the tolerability and feasibility of administering soy bread to reduce circulating inflammatory mediators. METHODS Subjects with chronic pancreatitis diagnosed using the American Pancreatic Association diagnostic guidelines were enrolled. During the dose escalation (DE) phase, subjects received one week of soy bread based using a 3 + 3 dose-escalation design, which was then followed by a maximally tolerated dose (MTD) phase with four weeks of intervention. Dose-limiting toxicities (DLTs) were monitored. Plasma cytokine levels were measured using a Meso Scale Discovery multiplex assay kit. Isoflavonoid excretion in 24-h urine collection was used to measure soy bread compliance. RESULTS Nine subjects completed the DE phase, and one subject completed the MTD phase without any DLTs at a maximum dosage of three slices (99 mg of isoflavones) per day. Reported compliance to soy bread intervention was 98%, and this was confirmed with urinary isoflavones and their metabolites detected in all subjects. There was a significant decline in the TNF-α level during the DE phase (2.667 vs 2.382 pg/mL, p = 0.039); other levels were similar. CONCLUSIONS In this feasibility study, there was excellent compliance with a short-term intervention using soy bread in chronic pancreatitis. Reduction was seen in at least one pro-inflammatory cytokine with short-term intervention. Larger cohorts and longer interventions with soy are warranted to assess the efficacy of reducing pro-inflammatory mediators of disease.
Collapse
Affiliation(s)
- Jennifer Ahn-Jarvis
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Erin Lombardo
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Niharika Badi
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Olivia Crowe
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sabrina Kaul
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hannah Komar
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Hematology and Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Somashekar G Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Gregory B Lesinski
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Hematology and Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Thomas A Mace
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mitchell L Ramsey
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kristen Roberts
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Medical Dietetics, The Ohio State University, Columbus, OH, USA
| | - Kyle Stinehart
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Madelyn Traczek
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Darwin L Conwell
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yael Vodovotz
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
30
|
Herwig E, Schwean-Lardner K, Van Kessel A, Savary RK, Classen HL. Assessing the effect of starch digestion characteristics on ileal brake activation in broiler chickens. PLoS One 2020; 15:e0228647. [PMID: 32032378 PMCID: PMC7006927 DOI: 10.1371/journal.pone.0228647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/20/2020] [Indexed: 01/10/2023] Open
Abstract
The objective of this research was to evaluate activation of the ileal brake in broiler chickens using diets containing semi-purified wheat (WS; rapidly and highly digested) and pea (PS; slowly and poorly digested) starch. Diets were formulated to contain six WS:PS ratios (100:0, 80:20, 60:40, 40:60, 20:80, 0:100) and each starch ratio was fed to 236 Ross 308 male broilers housed in 4 litter floor pens. At 28 d of age, the effect of PS concentration was assessed on starch digestion, digestive tract morphology, and digesta pH and short-chain fatty acid (SCFA) concentration. Glucagon-like peptide-1 (GLP-1) and peptide tyrosine-tyrosine (PYY) status were assessed in serum (ELISA) and via gene expression in jejunal and ileal tissue (proglucagon for GLP-1). Data were analyzed using regression analyses, and significance was accepted at P ≤ 0.05. Increasing dietary PS resulted in reduced starch digestibility in the small intestine, but had no effect in the colon. Crop content pH responded quadratically to PS level with an estimated minimum at 55% PS. Total SCFA increased linearly in the crop with PS level, but changed in a quadratic fashion in the ileum (estimated maximum at 62% PS). Ceacal SCFA concentrations were highest for the 80 and 100% PS levels. The relative empty weight (crop, small intestine, colon), length (small intestine) and content (crop jejunum, Ileum) of digestive tract sections increased linearly with increasing PS concentration. Dietary treatment did not affect serum GLP-1 or PYY or small intestine transcript abundance. In conclusion, feeding PS increased the presence of L-cell activators (starch, SCFA) and increased trophic development and content of the digestive tract, suggestive of L-cell activation. However, no direct evidence of ileal brake activation was found by measuring venous blood levels of GLP-1 or PYY or corresponding gene expression in small intestine tissue.
Collapse
Affiliation(s)
- Eugenia Herwig
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Karen Schwean-Lardner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Andrew Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rachel K. Savary
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Henry L. Classen
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
31
|
Herwig E, Abbott D, Schwean-Lardner KV, Classen HL. Effect of rate and extent of starch digestion on broiler chicken performance. Poult Sci 2019; 98:3676-3684. [PMID: 30624714 DOI: 10.3382/ps/pey580] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/12/2018] [Indexed: 01/10/2023] Open
Abstract
Dietary starch with lower rate and extent of digestion improves broiler feed efficiency, but previous results might have been confounded by non-starch components of the grains. Therefore, the objective of this research was to study the effects of starch digestion on broilers using semi-purified starch. Semi-purified wheat (WS, rapidly digested) and pea (PS, slowly digested) starch were combined to create 6 WS:PS ratios (100:0, 80:20, 60:40, 40:60, 20:80, and 0:100) in starter, grower and finisher diets. Each treatment was fed to Ross 308 male (2,124) and female (2,376) broilers housed in 72 L floor pens from 0 to 31 d of age to measure performance and meat yield relative to live weight. On day 33, the effects of diet on 8 h feed withdrawal was assessed in 20 males per treatment. Data were analyzed with ANOVA and linear and quadratic regression analyses using SAS 9.4. Significance was accepted at P ≤ 0.050. Body weight gain declined linearly with increasing PS. Male feed intake decreased with increasing PS, but PS did not affect female feed intake. Mortality corrected gain:feed ratio was quadratically influenced by diet (estimated maximum at 25% PS). Breast meat increased linearly with PS, while fat pad and breast and thigh skin decreased linearly. Quadratic responses were found for thigh meat and whole drum (estimated maximum values at 56 and 54% PS, respectively). Males grew faster, ate more, and had higher mortality than females. They also had heavier pectoralis major, thigh bone, and whole drum, while females had heavier pectoralis minor and more breast and thigh skin. After feed withdrawal, digesta content decreased linearly with time in all sections, except for the crop and duodenum, which declined quadratically. Ileal digesta pH increased linearly with time, while crop and caecal pH decreased for 2 h before steadily increasing. Diet did not affect digestive tract emptying or digesta pH. In conclusion, dietary PS maximized feed efficiency at 25% PS and linearly improved breast meat yield, but did not affect digesta clearance after feed withdrawal.
Collapse
Affiliation(s)
- Eugenia Herwig
- Department of Animal and Poultry Science, University of Saskatchewan, SK S7N5A8, Canada
| | - Dawn Abbott
- Department of Animal and Poultry Science, University of Saskatchewan, SK S7N5A8, Canada
| | | | - Henry L Classen
- Department of Animal and Poultry Science, University of Saskatchewan, SK S7N5A8, Canada
| |
Collapse
|
32
|
RamyaBai M, Wedick NM, Shanmugam S, Arumugam K, Nagarajan L, Vasudevan K, Gunasekaran G, Rajagopal G, Spiegelman D, Malik V, Anjana RM, Hu FB, Unnikrishnan R, Willett W, Malleshi N, Njelekela MA, Gimbi D, Krishnaswamy K, Henry C, Mohan V, Sudha V. Glycemic Index and Microstructure Evaluation of Four Cereal Grain Foods. J Food Sci 2019; 84:3373-3382. [PMID: 31762024 DOI: 10.1111/1750-3841.14945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 01/21/2023]
Abstract
To determine the glycemic index (GI) of selected cereals and association with their microstructure. The GI of whole grain pilaf (WGP), instant brown rice (IBR), whole maize ugali (MWU), and refined maize ugali (RMU) was assessed in a randomized trial. Fourteen healthy participants with mean age of 25 years were administered 50 g portions of available carbohydrates from glucose and various test foods after an overnight fast on separate occasions. Capillary blood samples of participants were used to measure blood glucose over 2 hr. The GI was calculated as per standard protocol. The microstructure of test foods, determined by scanning electron microscopy was evaluated to understand the measured GI values. The GI (mean ± standard error) of IBR was the highest (87.8 ± 6.8) followed by RMU (74.7 ± 6.5) and WMU (71.4 ± 5.1). WGP had medium GI (58.9 ± 5.1; P < 0.01 vs. IBR). Microstructure examination of IBR revealed disruption of bran layer and presence of fissures indicating loss of intactness of bran. Stereozoom images for WGP revealed intact bran and germ. For RMU and WMU, the grain was milled leading to loss of integrity. IBR, RMU, and WMU have high GI values, which is likely due to disruption of bran layer, endosperm modification (IBR), and loss of grain matrix (WMU, RMU). WGP has medium GI probably due to fairly intact bran and germ. PRACTICAL APPLICATION: Wholegrain or whole meal flour may not necessarily be low in glycemic index (GI; low GI < 55; medium 55 to 69 and high GI ≥70). "Ugali" a commonly consumed cereal staple food in Tanzania made from either refined or whole meal maize flour was found to be a high GI food. Intact whole grain foods, such as whole grain pilaf (mixed intact whole grains) is a healthier alternative to milled whole grains such as whole meal maize flour. Instant quick cooking brown rice exhibited a high GI, due to the processing method, suggesting that regular brown rice may be a healthier option.
Collapse
Affiliation(s)
- Mookambika RamyaBai
- Madras Diabetes Research Foundation, Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases, Gopalapuram, Chennai, India
| | - Nicole M Wedick
- Dept. of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shobana Shanmugam
- Madras Diabetes Research Foundation, Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases, Gopalapuram, Chennai, India
| | - Kokila Arumugam
- Madras Diabetes Research Foundation, Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases, Gopalapuram, Chennai, India
| | - Lakshmipriya Nagarajan
- Madras Diabetes Research Foundation, Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases, Gopalapuram, Chennai, India
| | - Kavitha Vasudevan
- Madras Diabetes Research Foundation, Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases, Gopalapuram, Chennai, India
| | - Geetha Gunasekaran
- Madras Diabetes Research Foundation, Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases, Gopalapuram, Chennai, India
| | - Gayathri Rajagopal
- Madras Diabetes Research Foundation, Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases, Gopalapuram, Chennai, India
| | - Donna Spiegelman
- Dept. of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Dept. of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vasanti Malik
- Dept. of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ranjit Mohan Anjana
- Madras Diabetes Research Foundation, Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases, Gopalapuram, Chennai, India
| | - Frank B Hu
- Dept. of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Dept. of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ranjit Unnikrishnan
- Madras Diabetes Research Foundation, Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases, Gopalapuram, Chennai, India
| | - Walter Willett
- Dept. of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Dept. of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nagappa Malleshi
- Madras Diabetes Research Foundation, Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases, Gopalapuram, Chennai, India
| | - Marina A Njelekela
- Dept. of Physiology, Muhimbili Univ. of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Dorothy Gimbi
- Dept. of Food Science and Nutrition, Sokoine Univ. of Agriculture, Morogoro, Tanzania
| | - Kamala Krishnaswamy
- Madras Diabetes Research Foundation, Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases, Gopalapuram, Chennai, India
| | - Cjk Henry
- Clinical Nutritional Sciences, Singapore Inst. for Clinical Sciences, Brenner Centre for Molecular Medicine, Medical Drive, Singapore
| | - Viswanathan Mohan
- Madras Diabetes Research Foundation, Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases, Gopalapuram, Chennai, India
| | - Vasudevan Sudha
- Madras Diabetes Research Foundation, Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases, Gopalapuram, Chennai, India
| |
Collapse
|
33
|
Bravo C, Santos JL, Castillo G, Olivares G, Parada J. Microstructure of starch-based meals with either palm or soybean oils alter in vitro starch digestibility with no major effects on glycaemic responses. Int J Food Sci Nutr 2019; 71:604-613. [PMID: 31746260 DOI: 10.1080/09637486.2019.1693521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Glycaemic response (GR) to starch-based meals depends on their food composition and microstructure. We studied the effect of palm and soybean oils on the microstructure of a solid starch-oil-gluten matrix, on the starch gelatinisation and in vitro digestibility. Additionally, a pilot cross-over study was carried out to assess GR after eating gelatinised starch/gluten-based foods with the addition of either palm or soybean oil in 8 young non-diabetic female volunteers (ISRCTN39636850). Both types of foods generated similar starch gelatinisation temperature. Starch/gluten-based food with soybean oil had rougher microstructure compared to food with palm oil, showing a higher initial and lower final in vitro digestion. Administration of starch/gluten-based meals with either palm or soybean oils to volunteers show very similar postprandial glucose or insulin responses. In conclusion, differences in fatty acid composition changes food microstructure and in vitro starch digestibility, with no major effects on glycaemic responses in female volunteers.
Collapse
Affiliation(s)
- Carolina Bravo
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José L Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gabriel Castillo
- Escuela de Ingeniería en Alimentos, Faculty of Agricultural Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Gabriela Olivares
- Escuela de Ingeniería en Alimentos, Faculty of Agricultural Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Javier Parada
- Faculty of Agricultural Sciences, Institute of Food Science and Technology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
34
|
Rostamabadi H, Falsafi SR, Jafari SM. Starch-based nanocarriers as cutting-edge natural cargos for nutraceutical delivery. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.04.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Parada J, Pérez-Correa JR, Pérez-Jiménez J. Design of low glycemic response foods using polyphenols from seaweed. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
36
|
Edwards CH, Cochetel N, Setterfield L, Perez-Moral N, Warren FJ. A single-enzyme system for starch digestibility screening and its relevance to understanding and predicting the glycaemic index of food products. Food Funct 2019; 10:4751-4760. [DOI: 10.1039/c9fo00603f] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Starch digestibility screening of food products provides reasonable insight into their glycaemic index.
Collapse
|
37
|
Tian J, Ogawa Y, Shi J, Chen S, Zhang H, Liu D, Ye X. The microstructure of starchy food modulates its digestibility. Crit Rev Food Sci Nutr 2018; 59:3117-3128. [PMID: 29870271 DOI: 10.1080/10408398.2018.1484341] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Starch is the main carbohydrate in human nutrition and shows a range of desired food properties. It has been demonstrated that fast digestion of starchy food can induce many health issues (e.g., hyperglycaemia, diabetes, etc.); therefore, how to modulate its digestion is an interesting topic. Previous studies have revealed that the microstructure and digestibility of starchy food of different botanical origin or from multiple processes are quite different; modulating starch digestion by retaining or altering its microstructure may be effective. In the present review, the current knowledge of the relationship between microstructural changes to starchy food and its digestibility at molecular, cell and tissue, and food processing levels is summarized. New technologies focused on microstructure studies and ways to manipulate food microstructure to modulate starch digestibility are also reviewed. In particular, some insights focusing on the future study of microstructure and the digestibility of starchy food are also suggested.
Collapse
Affiliation(s)
- Jinhu Tian
- Zhejiang University, Department of Food Science and Nutrition, Hangzhou, China.,Chiba University, Graduate School of Horticulture, 648, Matsudo, Matsudo, Japan
| | - Yukiharu Ogawa
- Chiba University, Graduate School of Horticulture, 648, Matsudo, Matsudo, Japan
| | - John Shi
- Agriculture and Agri-Food Canada, Guelph Food Research Center, Guelph, ON, Canada
| | - Shiguo Chen
- Zhejiang University, Department of Food Science and Nutrition, Hangzhou, China
| | - Huiling Zhang
- Ningxia University, Department of Food Science, Yinchuan, China
| | - Donghong Liu
- Zhejiang University, Department of Food Science and Nutrition, Hangzhou, China
| | - Xingqian Ye
- Zhejiang University, Department of Food Science and Nutrition, Hangzhou, China
| |
Collapse
|
38
|
Iversen KN, Johansson D, Brunius C, Andlid T, Andersson R, Langton M, Landberg R. Appetite and Subsequent Food Intake Were Unaffected by the Amount of Sourdough and Rye in Soft Bread-A Randomized Cross-Over Breakfast Study. Nutrients 2018; 10:nu10111594. [PMID: 30380770 PMCID: PMC6266039 DOI: 10.3390/nu10111594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 01/05/2023] Open
Abstract
Sourdough fermented bread has been suggested to have beneficial health effects, in part mediated by increased satiety in the postprandial phase, but only limited research has been conducted to verify this. The current study aimed to investigate the effect of the amounts of sourdough and rye in soft bread on postprandial appetite. On 6 occasions, 23 healthy volunteers consumed 5 different test breads, with varying amount of rye and sourdough, and a yeast-fermented refined wheat control bread as part of a breakfast meal. The sourdough ranged between 9–51% of dough weight and rye content between 35–48% of flour weight. Appetite was recorded using visual analogue scales from immediately before breakfast and every 30 min the following 4 h. An ad libitum lunch was served 4 h after the breakfast meal, from which voluntary energy intake was measured. While some of the test breads resulted in lower hunger ratings and increased sense of fullness compared to the refined wheat bread, there were no differences between the test breads. The content of rye in the test breads differed within a narrow range, which might explain the lack of a consistent effect of rye on appetite. Microstructural examination of the test breads showed an increased aggregation of proteins in the breads with high content of sourdough, indicating additional changes to the breads, beyond change in pH, which may counteract the potential effect of decreased pH in the bread on appetite. In conclusion, our study does not support an effect of sourdough on appetite and ad libitum food intake.
Collapse
Affiliation(s)
- Kia Nøhr Iversen
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| | - Daniel Johansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden.
| | - Carl Brunius
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| | - Thomas Andlid
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| | - Roger Andersson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden.
| | - Maud Langton
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden.
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| |
Collapse
|
39
|
Aguilera JM. The food matrix: implications in processing, nutrition and health. Crit Rev Food Sci Nutr 2018; 59:3612-3629. [DOI: 10.1080/10408398.2018.1502743] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- José Miguel Aguilera
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
40
|
Papakonstantinou E, Chaloulos P, Papalexi A, Mandala I. Effects of bran size and carob seed flour of optimized bread formulas on glycemic responses in humans: A randomized clinical trial. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
41
|
Implications of hydration depletion in the in vitro starch digestibility of white bread crumb and crust. Food Chem 2018; 239:295-303. [DOI: 10.1016/j.foodchem.2017.06.122] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/01/2017] [Accepted: 06/20/2017] [Indexed: 01/11/2023]
|
42
|
Kiwifruit Non-Sugar Components Reduce Glycaemic Response to Co-Ingested Cereal in Humans. Nutrients 2017; 9:nu9111195. [PMID: 29084137 PMCID: PMC5707667 DOI: 10.3390/nu9111195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023] Open
Abstract
Kiwifruit (KF) effects on the human glycaemic response to co-ingested wheat cereal were determined. Participants (n = 20) consumed four meals in random order, all being made to 40 g of the same available carbohydrate, by adding kiwifruit sugars (KF sug; glucose, fructose, sucrose 2:2:1) to meals not containing KF. The meals were flaked wheat biscuit (WB)+KFsug, WB+KF, WB+guar gum+KFsug, WB+guar gum+KF, that was ingested after fasting overnight. Blood glucose was monitored 3 h and hunger measured at 180 min post-meal using a visual analogue scale. KF and guar reduced postprandial blood glucose response amplitude, and prevented subsequent hypoglycaemia that occurred with WB+KFsug. The area between the blood glucose response curve and baseline from 0 to 180 min was not significantly different between meals, 0–120 min areas were significantly reduced by KF and/or guar. Area from 120 to 180 min was positive for KF, guar, and KF+guar, while the area for the WB meal was negative. Hunger at 180 min was significantly reduced by KF and/or guar when compared with WB. We conclude that KF components other than available carbohydrate may improve the glycaemic response profile to co-ingested cereal food.
Collapse
|
43
|
Microstructure and digestibility of potato strips produced by conventional frying and air-frying: An in vitro study. FOOD STRUCTURE 2017. [DOI: 10.1016/j.foostr.2017.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Lovegrove A, Edwards CH, De Noni I, Patel H, El SN, Grassby T, Zielke C, Ulmius M, Nilsson L, Butterworth PJ, Ellis PR, Shewry PR. Role of polysaccharides in food, digestion, and health. Crit Rev Food Sci Nutr 2017; 57:237-253. [PMID: 25921546 PMCID: PMC5152545 DOI: 10.1080/10408398.2014.939263] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 12/19/2022]
Abstract
Polysaccharides derived from plant foods are major components of the human diet, with limited contributions of related components from fungal and algal sources. In particular, starch and other storage carbohydrates are the major sources of energy in all diets, while cell wall polysaccharides are the major components of dietary fiber. We review the role of these components in the human diet, including their structure and distribution, their modification during food processing and effects on functional properties, their behavior in the gastrointestinal tract, and their contribution to healthy diets.
Collapse
Affiliation(s)
- A. Lovegrove
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, United Kingdom
| | - C. H. Edwards
- King's College London, Diabetes and Nutritional Sciences Division, School of Agriculture, Policy and Development, London, United Kingdom
| | - I. De Noni
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - H. Patel
- King's College London, Diabetes and Nutritional Sciences Division, School of Agriculture, Policy and Development, London, United Kingdom
| | - S. N. El
- Food Engineering Department, Nutrition Section, Ege University, Izmir, Turkey
| | - T. Grassby
- King's College London, Diabetes and Nutritional Sciences Division, School of Agriculture, Policy and Development, London, United Kingdom
| | - C. Zielke
- Food Colloids Group, Department of Food Engineering, Technology and Nutrition, Faculty of Engineering LTH, Lund University, Lund, Sweden
| | - M. Ulmius
- Solve Research and Consultancy AB, Lund, Sweden
| | - L. Nilsson
- Food Colloids Group, Department of Food Engineering, Technology and Nutrition, Faculty of Engineering LTH, Lund University, Lund, Sweden
| | - P. J. Butterworth
- King's College London, Diabetes and Nutritional Sciences Division, School of Agriculture, Policy and Development, London, United Kingdom
| | - P. R Ellis
- King's College London, Diabetes and Nutritional Sciences Division, School of Agriculture, Policy and Development, London, United Kingdom
| | - P. R. Shewry
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, United Kingdom
- Department of Agriculture, Reading University, Whiteknights, Reading, Berkshire, United Kingdom
| |
Collapse
|
45
|
Tsatsaragkou K, Kara T, Ritzoulis C, Mandala I, Rosell CM. Improving Carob Flour Performance for Making Gluten-Free Breads by Particle Size Fractionation and Jet Milling. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1863-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Aguilera JM, Park DJ. Texture-modified foods for the elderly: Status, technology and opportunities. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.10.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Adams MS, Adams RB, Wessman CA, Demmig-Adams B. Nutritional Cues Tie Living Organisms to Their Environment and Its Sustainability. Front Nutr 2016; 3:28. [PMID: 27570764 PMCID: PMC4981599 DOI: 10.3389/fnut.2016.00028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022] Open
Abstract
We connect modern, intensive agriculture's role in environmental degradation to its role in producing nutritionally unbalanced foods, and delineate specific approaches to reduce agriculture's environmental impact, while producing healthful foods. We call attention to recently discovered genetic programs used by all living organisms to respond to their environment, and present a model of how these programs change body composition and function (of humans and their crop plants and livestock alike) in response to environmental cues. We propose that production of nutritionally balanced crops and livestock requires careful consideration of how these plants and animals are grown; the composition of plant food is modulated by growing conditions, body composition of livestock reflects their feed; composition and function of human body and brain are strongly affected by how food plants and animals are produced. We selected four nutritional features not only involved in (i) governing human health by modulating these genetic programs, but (ii) also affected by agricultural practices. These nutritional features are fat composition (especially saturated fat and the ratio of polyunsaturated omega-6 oils to omega-3 oils), carbohydrate composition (especially the proportion of carbohydrates with a high glycemic index, such as sugars and quick-burning starches) and the level of antioxidant micronutrients. We not only outline threats to human health presented by the current environment, but also potential gains in quality-of-life in a future environment designed to optimize human wellness using insights into the gene-programing effect of diet- and other lifestyle-related factors. These gains could extend beyond optimal human physical and mental health to gains in workforce productivity. The same changes in agricultural practices required to achieve these gains in human health are also needed to support environmental health and sustainable food production. The resulting vision of optimal human health and environmental health, supported by sustainable practices, is intended as an inspiring image of what sustainability has to offer to individuals and society. Our goal is to provide a transparent overview and illustrations intelligible not only to non-experts in each of the other respective areas involved but also to policy makers and the public.
Collapse
Affiliation(s)
- Melanie S. Adams
- Department of Anthropology, University of Colorado, Boulder, CO, USA
| | - Robert B. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Carol A. Wessman
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, CO, USA
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
48
|
|
49
|
Hardacre AK, Lentle RG, Yap SY, Monro JA. Does viscosity or structure govern the rate at which starch granules are digested? Carbohydr Polym 2016; 136:667-75. [DOI: 10.1016/j.carbpol.2015.08.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
|
50
|
Contardo I, Parada J, Leiva A, Bouchon P. The effect of vacuum frying on starch gelatinization and its in vitro digestibility in starch-gluten matrices. Food Chem 2015; 197:353-8. [PMID: 26616960 DOI: 10.1016/j.foodchem.2015.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/14/2015] [Accepted: 10/07/2015] [Indexed: 11/29/2022]
Abstract
Starch digestibility in a food matrix depends on processing conditions that may affect its physical state and microstructure. Starch gelatinization is one critical change that takes place during frying which could be affected during low-pressure processing. This study assessed the effect of vacuum frying on starch gelatinization and its in vitro digestibility. Laminated dough was made of a reconstituted blend of wheat starch (88% d.b.) and gluten (12% d.b.). Samples were fried under vacuum (6.5 kPa, Twater-boiling-point=38°C) or atmospheric conditions up to bubble-end point, maintaining a thermal driving force of 70°C (Toil-Twater-boiling-point=70°C). Vacuum fried samples showed less starch gelatinization (28%), less rapidly available glucose (27%), and more unavailable glucose (70%) than their atmospheric counterparts (which presented 99% starch gelatinization, 40% rapidly available glucose, and 46% unavailable glucose), and the values were close to those of raw dough. These results show how vacuum processing may be used to control the degree of starch gelatinization and related digestibility.
Collapse
Affiliation(s)
- Ingrid Contardo
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, P.O. Box 306, Santiago 6904411, Chile
| | - Javier Parada
- Institute of Food Science and Technology, Universidad Austral de Chile, P.O. Box 47, Valdivia, Chile
| | - Angel Leiva
- Department of Physical Chemistry, Pontificia Universidad Católica de Chile, P.O. 360, Santiago 6904411, Chile
| | - Pedro Bouchon
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, P.O. Box 306, Santiago 6904411, Chile.
| |
Collapse
|