1
|
Bachari A, Nassar N, Schanknecht E, Telukutla S, Piva TJ, Mantri N. Rationalizing a prospective coupling effect of cannabinoids with the current pharmacotherapy for melanoma treatment. WIREs Mech Dis 2024; 16:e1633. [PMID: 37920964 DOI: 10.1002/wsbm.1633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Melanoma is one of the leading fatal forms of cancer, yet from a treatment perspective, we have minimal control over its reoccurrence and resistance to current pharmacotherapies. The endocannabinoid system (ECS) has recently been accepted as a multifaceted homeostatic regulator, influencing various physiological processes across different biological compartments, including the skin. This review presents an overview of the pathophysiology of melanoma, current pharmacotherapy used for treatment, and the challenges associated with the different pharmacological approaches. Furthermore, it highlights the utility of cannabinoids as an additive remedy for melanoma by restoring the balance between downregulated immunomodulatory pathways and elevated inflammatory cytokines during chronic skin conditions as one of the suggested critical approaches in treating this immunogenic tumor. This article is categorized under: Cancer > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ellen Schanknecht
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
| | | | - Terrence Jerald Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Intranuovo F, Brunetti L, DelRe P, Mangiatordi GF, Stefanachi A, Laghezza A, Niso M, Leonetti F, Loiodice F, Ligresti A, Kostrzewa M, Brea J, Loza MI, Sotelo E, Saviano M, Colabufo NA, Riganti C, Abate C, Contino M. Development of N-(1-Adamantyl)benzamides as Novel Anti-Inflammatory Multitarget Agents Acting as Dual Modulators of the Cannabinoid CB2 Receptor and Fatty Acid Amide Hydrolase. J Med Chem 2023; 66:235-250. [PMID: 36542836 DOI: 10.1021/acs.jmedchem.2c01084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cannabinoid type 2 receptor (CB2R), belonging to the endocannabinoid system, is overexpressed in pathologies characterized by inflammation, and its activation counteracts inflammatory states. Fatty acid amide hydrolase (FAAH) is an enzyme responsible for the degradation of the main endocannabinoid anandamide; thus, the simultaneous CB2R activation and FAAH inhibition may be a synergistic anti-inflammatory strategy. Encouraged by principal component analysis (PCA) data identifying a wide chemical space shared by CB2R and FAAH ligands, we designed a small library of adamantyl-benzamides, as potential dual agents, CB2R agonists, and FAAH inhibitors. The new compounds were tested for their CB2R affinity/selectivity and CB2R and FAAH activity. Derivatives 13, 26, and 27, displaying the best pharmacodynamic profile as CB2R full agonists and FAAH inhibitors, decreased pro-inflammatory and increased anti-inflammatory cytokines production. Molecular docking simulations complemented the experimental findings by providing a molecular rationale behind the observed activities. These multitarget ligands constitute promising anti-inflammatory agents.
Collapse
Affiliation(s)
- Francesca Intranuovo
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Leonardo Brunetti
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Pietro DelRe
- Institute of Crystallography, National Research Council of Italy, Via Amendola, 122/o, Bari 70126, Italy
| | | | - Angela Stefanachi
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Antonio Laghezza
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Francesco Leonetti
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Fulvio Loiodice
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, Pozzuoli 80078, Italy
| | - Magdalena Kostrzewa
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, Pozzuoli 80078, Italy
| | - Jose Brea
- Innopharma Screening Platform, BioFarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela 15782, Spain.,Department of Pharmacology, Pharmacy and Pharmaceutical Technology. School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Maria Isabel Loza
- Innopharma Screening Platform, BioFarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela 15782, Spain.,Department of Pharmacology, Pharmacy and Pharmaceutical Technology. School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Eddy Sotelo
- ComBioMed Research Group, Centro de Química Biológica y Materiales Moleculares (CIQUS), University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Michele Saviano
- Institute of Crystallography, National Research Council of Italy, Via Vivaldi, 43, Caserta 81100, Italy
| | - Nicola Antonio Colabufo
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Chiara Riganti
- Dipartimento di Oncologia, Università Degli Studi di Torino, Torino 10126, Italy
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy.,Institute of Crystallography, National Research Council of Italy, Via Amendola, 122/o, Bari 70126, Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| |
Collapse
|
3
|
Marini P, Cascio MG, Pertwee RG. Cyclic AMP Assay Using Human Cannabinoid CB 2 Receptor-Transfected Cells. Methods Mol Biol 2023; 2576:171-179. [PMID: 36152185 DOI: 10.1007/978-1-0716-2728-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The cyclic AMP assay is a functional assay that is commonly used to determine the pharmacological behavior (agonists, antagonists, and inverse agonists) of G-protein coupled receptor ligands. Here, we describe the cyclic AMP assay that is carried out with commercially available nonradioligand ready-to-use kits and CHO (Chinese Hamster Ovarian) cells stably transfected with the human cannabinoid CB2 receptor.
Collapse
Affiliation(s)
- Pietro Marini
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Maria Grazia Cascio
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Roger G Pertwee
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
| |
Collapse
|
4
|
Hashiesh HM, Jha NK, Sharma C, Gupta PK, Jha SK, Patil CR, Goyal SN, Ojha SK. Pharmacological potential of JWH133, a cannabinoid type 2 receptor agonist in neurodegenerative, neurodevelopmental and neuropsychiatric diseases. Eur J Pharmacol 2021; 909:174398. [PMID: 34332924 DOI: 10.1016/j.ejphar.2021.174398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 12/09/2022]
Abstract
The pharmacological activation of cannabinoid type 2 receptors (CB2R) gained attention due to its ability to mitigate neuroinflammatory events without eliciting psychotropic actions, a limiting factor for the drugs targeting cannabinoid type 1 receptors (CB1R). Therefore, ligands activating CB2R are receiving enormous importance for therapeutic targeting in numerous neurological diseases including neurodegenerative, neuropsychiatric and neurodevelopmental disorders as well as traumatic injuries and neuropathic pain where neuroinflammation is a common accompaniment. Since the characterization of CB2R, many CB2R selective synthetic ligands have been developed with high selectivity and functional activity. Among numerous ligands, JWH133 has been found one of the compounds with high selectivity for CB2R. JWH133 has been reported to exhibit numerous pharmacological activities including antioxidant, anti-inflammatory, anticancer, cardioprotective, hepatoprotective, gastroprotective, nephroprotective, and immunomodulatory. Recent studies have shown that JWH133 possesses potent neuroprotective properties in several neurological disorders, including neuropathic pain, anxiety, epilepsy, depression, alcoholism, psychosis, stroke, and neurodegeneration. Additionally, JWH133 showed to protect neurons from oxidative damage and inflammation, promote neuronal survival and neurogenesis, and serve as an immunomodulatory agent. The present review comprehensively examined neuropharmacological activities of JWH133 in neurological disorders including neurodegenerative, neurodevelopmental and neuropsychiatric using synoptic tables and elucidated pharmacological mechanisms based on reported observations. Considering the cumulative data, JWH133 appears to be a promising CB2R agonist molecule for further evaluation and it can be a prototype agent in drug discovery and development for a unique class of agents in neurotherapeutics. Further, regulatory toxicology and pharmacokinetic studies are required to determine safety and proceed for clinical evaluation.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Piyush Kumar Gupta
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Chandragouda R Patil
- Department of Pharmacology, Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, New Delhi, 110017, India
| | - Sameer N Goyal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Shreesh K Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
5
|
Abstract
The four vertebrate arrestins play a key role in the desensitization and internalization of G protein-coupled receptors (GPCRs) and also mediate receptor-dependent signaling. Recent work has shown that bias for arrestin vs G protein signaling could offer certain therapeutic advantages (or disadvantages) in different systems, making assays that measure arrestin binding to receptors important for drug discovery efforts. Herein, we briefly review several commonly used techniques for measuring arrestin binding to receptors, as well as provide an in-depth and methodologically focused review of two methods that do not require receptor modification. The first approach measures direct binding between purified arrestin and rhodopsin, and the second measures the recruitment of arrestin to receptors in living cells.
Collapse
|
6
|
Morris G, Walder K, Kloiber S, Amminger P, Berk M, Bortolasci CC, Maes M, Puri BK, Carvalho AF. The endocannabinoidome in neuropsychiatry: Opportunities and potential risks. Pharmacol Res 2021; 170:105729. [PMID: 34119623 DOI: 10.1016/j.phrs.2021.105729] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system (ECS) comprises two cognate endocannabinoid receptors referred to as CB1R and CB2R. ECS dysregulation is apparent in neurodegenerative/neuro-psychiatric disorders including but not limited to schizophrenia, major depressive disorder and potentially bipolar disorder. The aim of this paper is to review mechanisms whereby both receptors may interact with neuro-immune and neuro-oxidative pathways, which play a pathophysiological role in these disorders. CB1R is located in the presynaptic terminals of GABAergic, glutamatergic, cholinergic, noradrenergic and serotonergic neurons where it regulates the retrograde suppression of neurotransmission. CB1R plays a key role in long-term depression, and, to a lesser extent, long-term potentiation, thereby modulating synaptic transmission and mediating learning and memory. Optimal CB1R activity plays an essential neuroprotective role by providing a defense against the development of glutamate-mediated excitotoxicity, which is achieved, at least in part, by impeding AMPA-mediated increase in intracellular calcium overload and oxidative stress. Moreover, CB1R activity enables optimal neuron-glial communication and the function of the neurovascular unit. CB2R receptors are detected in peripheral immune cells and also in central nervous system regions including the striatum, basal ganglia, frontal cortex, hippocampus, amygdala as well as the ventral tegmental area. CB2R upregulation inhibits the presynaptic release of glutamate in several brain regions. CB2R activation also decreases neuroinflammation partly by mediating the transition from a predominantly neurotoxic "M1" microglial phenotype to a more neuroprotective "M2" phenotype. CB1R and CB2R are thus novel drug targets for the treatment of neuro-immune and neuro-oxidative disorders including schizophrenia and affective disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Stefan Kloiber
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Ursula Franklin Street, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Amminger
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
7
|
Kasatkina LA, Rittchen S, Sturm EM. Neuroprotective and Immunomodulatory Action of the Endocannabinoid System under Neuroinflammation. Int J Mol Sci 2021; 22:ijms22115431. [PMID: 34063947 PMCID: PMC8196612 DOI: 10.3390/ijms22115431] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
Endocannabinoids (eCBs) are lipid-based retrograde messengers with a relatively short half-life that are produced endogenously and, upon binding to the primary cannabinoid receptors CB1/2, mediate multiple mechanisms of intercellular communication within the body. Endocannabinoid signaling is implicated in brain development, memory formation, learning, mood, anxiety, depression, feeding behavior, analgesia, and drug addiction. It is now recognized that the endocannabinoid system mediates not only neuronal communications but also governs the crosstalk between neurons, glia, and immune cells, and thus represents an important player within the neuroimmune interface. Generation of primary endocannabinoids is accompanied by the production of their congeners, the N-acylethanolamines (NAEs), which together with N-acylneurotransmitters, lipoamino acids and primary fatty acid amides comprise expanded endocannabinoid/endovanilloid signaling systems. Most of these compounds do not bind CB1/2, but signal via several other pathways involving the transient receptor potential cation channel subfamily V member 1 (TRPV1), peroxisome proliferator-activated receptor (PPAR)-α and non-cannabinoid G-protein coupled receptors (GPRs) to mediate anti-inflammatory, immunomodulatory and neuroprotective activities. In vivo generation of the cannabinoid compounds is triggered by physiological and pathological stimuli and, specifically in the brain, mediates fine regulation of synaptic strength, neuroprotection, and resolution of neuroinflammation. Here, we review the role of the endocannabinoid system in intrinsic neuroprotective mechanisms and its therapeutic potential for the treatment of neuroinflammation and associated synaptopathy.
Collapse
Affiliation(s)
- Ludmila A. Kasatkina
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (L.A.K.); (S.R.)
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sonja Rittchen
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (L.A.K.); (S.R.)
| | - Eva M. Sturm
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (L.A.K.); (S.R.)
- Correspondence:
| |
Collapse
|
8
|
Lee JH, Shon SY, Jeon W, Hong SJ, Ban J, Lee DS. Discovery of μ,δ-Opioid Receptor Dual-Biased Agonists That Overcome the Limitation of Prior Biased Agonists. ACS Pharmacol Transl Sci 2021; 4:1149-1160. [PMID: 34151205 DOI: 10.1021/acsptsci.1c00044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 11/28/2022]
Abstract
Morphine is widely used in pain management although the risk of side effects is significant. The use of biased agonists to the G protein of μ-opioid receptors has been suggested as a potential solution, although oliceridine and PZM21 have previously failed to demonstrate benefits in clinical studies. An amplification-induced confusion in the process of comparing G protein and beta-arrestin pathways may account for previously biased agonist misidentification. Here, we have devised a strategy to discover biased agonists with intrinsic efficacy. We computationally simulated 430 000 molecular dockings to the μ-opioid receptor to construct a compound library. Hits were then verified experimentally. Using the verified compounds, we performed simulations to build a second library with a common scaffold and selected compounds that showed a bias to μ- and δ-opioid receptors in a cell-based assay. Three compounds (ID110460001, ID110460002, and ID110460003) with a dual-biased agonistic effect for μ- and δ-opioid receptors were identified. These candidates are full agonists for the μ-opioid receptor and show specific binding modes. On the basis of our findings, we expect our novel compounds to act as more biased agonists compared to existing drugs, including oliceridine.
Collapse
Affiliation(s)
- Jin Hee Lee
- Research Laboratory, Ildong Pharmaceutical Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong 18449, Korea
| | - Suh-Youn Shon
- Research Laboratory, Ildong Pharmaceutical Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong 18449, Korea
| | - Woojin Jeon
- Research Laboratory, Ildong Pharmaceutical Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong 18449, Korea
| | - Sung-Jun Hong
- Research Laboratory, Ildong Pharmaceutical Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong 18449, Korea
| | - Junsu Ban
- Research Laboratory, Ildong Pharmaceutical Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong 18449, Korea
| | - Do Sup Lee
- Research Laboratory, Ildong Pharmaceutical Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong 18449, Korea
| |
Collapse
|
9
|
Lago-Fernandez A, Zarzo-Arias S, Jagerovic N, Morales P. Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System. Int J Mol Sci 2021; 22:1001. [PMID: 33498245 PMCID: PMC7863932 DOI: 10.3390/ijms22031001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cannabinoids have shown to exert their therapeutic actions through a variety of targets. These include not only the canonical cannabinoid receptors CB1R and CB2R but also related orphan G protein-coupled receptors (GPCRs), ligand-gated ion channels, transient receptor potential (TRP) channels, metabolic enzymes, and nuclear receptors. In this review, we aim to summarize reported compounds exhibiting their therapeutic effects upon the modulation of CB1R and/or CB2R and the nuclear peroxisome proliferator-activated receptors (PPARs). Concomitant actions at CBRs and PPARα or PPARγ subtypes have shown to mediate antiobesity, analgesic, antitumoral, or neuroprotective properties of a variety of phytogenic, endogenous, and synthetic cannabinoids. The relevance of this multitargeting mechanism of action has been analyzed in the context of diverse pathologies. Synergistic effects triggered by combinatorial treatment with ligands that modulate the aforementioned targets have also been considered. This literature overview provides structural and pharmacological insights for the further development of dual cannabinoids for specific disorders.
Collapse
Affiliation(s)
| | | | - Nadine Jagerovic
- Medicinal Chemistry Institute, Spanish Research Council, Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.-F.); (S.Z.-A.)
| | - Paula Morales
- Medicinal Chemistry Institute, Spanish Research Council, Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.-F.); (S.Z.-A.)
| |
Collapse
|
10
|
Shu M, Yan H, Xu C, Wu Y, Chi Z, Nian W, He Z, Xiao J, Wei H, Zhou Q, Zhou JX. A novel anti-HER2 antibody GB235 reverses Trastuzumab resistance in HER2-expressing tumor cells in vitro and in vivo. Sci Rep 2020; 10:2986. [PMID: 32076029 PMCID: PMC7031383 DOI: 10.1038/s41598-020-59818-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 02/04/2020] [Indexed: 01/04/2023] Open
Abstract
HER2 overexpression is frequently associated with tumor metastasis and poor prognosis of breast cancer. More evidence indicates that HER3 is involved in HER2-resistant therapies. Combination treatments with two or more different monoclonal antibodies are a promising strategy to overcome resistance to HER2 therapies. We presented a novel fully human HER2-targeted monoclonal antibody, GB235, screened from a phage-display library against the HER2 antigen. GB235 in combination with Trastuzumab overcomes resistance in HER2-positive tumors and results in more sustained inhibition of tumor growth over time. The competition binding assay showed that the epitopes of GB235 do not overlap with those of Pertuzumab and Trastuzumab on HER2. Further HER2 mutagenesis results revealed that the binding epitopes of GB235 were located in the domain III of HER2. The mechanism of action of GB235 in blocking HER2-driven tumors is different from the mechanisms of Trastuzumab or Pertuzumab. GB235 does not affect the heterodimerization of HER2 and HER3, whereas the GB235 combined treatment with Trastuzumab significantly inhibited heregulin-induced HER3 phosphorylation and downstream signaling. Moreover, GB235 in combination with Trastuzumab reversed the resistance to heregulin-induced proliferation in HER2-overexpressing cancer cell lines. GB235 combined with Trastuzumab treatment in xenograft models resulted in improved antitumor activity. Complete tumor suppression was observed in the HER2-positive NCI-N87 xenograft model treated with the combination treatment with GB235 and Trastuzumab. In a Trastuzumab-resistant patient-derived tumor xenograft model GA0060, GB235 plus Trastuzumab reversed the resistance to Trastuzumab monotherapy. Because GB235 showed a different working mechanism with Pertuzumab and Trastuzumab, these agents can be considered complementary therapy against HER2 overexpression tumors.
Collapse
Affiliation(s)
- Mengjun Shu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.,Genor Biopharma Co., Ltd. Building 3, 1690 Zhangheng Rd., Shanghai, 201203, People's Republic of China
| | - Hongbin Yan
- Genor Biopharma Co., Ltd. Building 3, 1690 Zhangheng Rd., Shanghai, 201203, People's Republic of China
| | - Chuanying Xu
- Shanghai Escugen Biotechnology Co., Ltd. 800 Na Xian Rd., Suite 517, Pudong District, Shanghai, 201210, People's Republic of China
| | - Yan Wu
- Genor Biopharma Co., Ltd. Building 3, 1690 Zhangheng Rd., Shanghai, 201203, People's Republic of China
| | - Zhaohua Chi
- Genor Biopharma Co., Ltd. Building 3, 1690 Zhangheng Rd., Shanghai, 201203, People's Republic of China
| | - Weihong Nian
- Shanghai Escugen Biotechnology Co., Ltd. 800 Na Xian Rd., Suite 517, Pudong District, Shanghai, 201210, People's Republic of China
| | - Zhuzi He
- Genor Biopharma Co., Ltd. Building 3, 1690 Zhangheng Rd., Shanghai, 201203, People's Republic of China
| | - Jing Xiao
- Shanghai Escugen Biotechnology Co., Ltd. 800 Na Xian Rd., Suite 517, Pudong District, Shanghai, 201210, People's Republic of China
| | - Hongli Wei
- Genor Biopharma Co., Ltd. Building 3, 1690 Zhangheng Rd., Shanghai, 201203, People's Republic of China
| | - Qing Zhou
- Shanghai Escugen Biotechnology Co., Ltd. 800 Na Xian Rd., Suite 517, Pudong District, Shanghai, 201210, People's Republic of China.
| | - Joe X Zhou
- Genor Biopharma Co., Ltd. Building 3, 1690 Zhangheng Rd., Shanghai, 201203, People's Republic of China.
| |
Collapse
|
11
|
A Bayesian machine learning approach for drug target identification using diverse data types. Nat Commun 2019; 10:5221. [PMID: 31745082 PMCID: PMC6863850 DOI: 10.1038/s41467-019-12928-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/10/2019] [Indexed: 11/18/2022] Open
Abstract
Drug target identification is a crucial step in development, yet is also among the most complex. To address this, we develop BANDIT, a Bayesian machine-learning approach that integrates multiple data types to predict drug binding targets. Integrating public data, BANDIT benchmarked a ~90% accuracy on 2000+ small molecules. Applied to 14,000+ compounds without known targets, BANDIT generated ~4,000 previously unknown molecule-target predictions. From this set we validate 14 novel microtubule inhibitors, including 3 with activity on resistant cancer cells. We applied BANDIT to ONC201—an anti-cancer compound in clinical development whose target had remained elusive. We identified and validated DRD2 as ONC201’s target, and this information is now being used for precise clinical trial design. Finally, BANDIT identifies connections between different drug classes, elucidating previously unexplained clinical observations and suggesting new drug repositioning opportunities. Overall, BANDIT represents an efficient and accurate platform to accelerate drug discovery and direct clinical application. Drug target identification is a crucial step in drug development. Here, the authors introduce a Bayesian machine learning framework that integrates multiple data types to predict the targets of small molecules, enabling identification of a new set of microtubule inhibitors and the target of the anti-cancer molecule ONC201.
Collapse
|
12
|
Wouters E, Walraed J, Banister SD, Stove CP. Insights into biased signaling at cannabinoid receptors: synthetic cannabinoid receptor agonists. Biochem Pharmacol 2019; 169:113623. [DOI: 10.1016/j.bcp.2019.08.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/26/2019] [Indexed: 01/09/2023]
|
13
|
Ibsen MS, Finlay DB, Patel M, Javitch JA, Glass M, Grimsey NL. Cannabinoid CB1 and CB2 Receptor-Mediated Arrestin Translocation: Species, Subtype, and Agonist-Dependence. Front Pharmacol 2019; 10:350. [PMID: 31024316 PMCID: PMC6468047 DOI: 10.3389/fphar.2019.00350] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/21/2019] [Indexed: 01/01/2023] Open
Abstract
Arrestin translocation and signaling have come to the fore of the G protein-coupled receptor molecular pharmacology field. Some receptor–arrestin interactions are relatively well understood and considered responsible for specific therapeutic or adverse outcomes. Coupling of arrestins with cannabinoid receptors 1 (CB1) and 2 (CB2) has been reported, though the majority of studies have not systematically characterized the differential ligand dependence of this activity. In addition, many prior studies have utilized bovine (rather than human) arrestins, and the most widely applied assays require reporter-tagged receptors, which prevent meaningful comparison between receptor types. We have employed a bioluminescence resonance energy transfer (BRET) method that does not require the use of tagged receptors and thereby allows comparisons of arrestin translocation between receptor types, as well as with cells lacking the receptor of interest – an important control. The ability of a selection of CB1 and CB2 agonists to stimulate cell surface translocation of human and bovine β-arrestin-1 and -2 was assessed. We find that some CB1 ligands induce moderate β-arrestin-2 translocation in comparison with vasopressin V2 receptor (a robust arrestin recruiter); however, CB1 coupling with β-arrestin-1 and CB2 with either arrestin elicited low relative efficacies. A range of efficacies between ligands was evident for both receptors and arrestins. Endocannabinoid 2-arachidonoylglycerol stood out as a high efficacy ligand for translocation of β-arrestin-2 via CB1. Δ9-tetrahydrocannabinol was generally unable to elicit translocation of either arrestin subtype via CB1 or CB2; however, control experiments revealed translocation in cells not expressing CB1/CB2, which may assist in explaining some discrepancy with the literature. Overexpression of GRK2 had modest influence on CB1/CB2-induced arrestin translocation. Results with bovine and human arrestins were largely analogous, but a few instances of inconsistent rank order potencies/efficacies between bovine and human arrestins raise the possibility that subtle differences in receptor conformation stabilized by these ligands manifest in disparate affinities for the two arrestin species, with important potential consequences for interpretation in ligand bias studies. As well as contributing important information regarding CB1/CB2 ligand-dependent arrestin coupling, our study raises a number of points for consideration in the design and interpretation of arrestin recruitment assays.
Collapse
Affiliation(s)
- Mikkel Søes Ibsen
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - David B Finlay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Monica Patel
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jonathan A Javitch
- Department of Psychiatry and Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Natasha Lillia Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Cannaert A, Vandeputte M, Wille SMR, Stove CP. Activity-based reporter assays for the screening of abused substances in biological matrices. Crit Rev Toxicol 2019; 49:95-109. [DOI: 10.1080/10408444.2019.1576588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Department of Toxicology, National Institute of Criminalistics and Criminology, Federal Public Service Justice, Brussels, Belgium
| | - Marthe Vandeputte
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sarah M. R. Wille
- Department of Toxicology, National Institute of Criminalistics and Criminology, Federal Public Service Justice, Brussels, Belgium
| | - Christophe P. Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Szabady RL, Louissaint C, Lubben A, Xie B, Reeksting S, Tuohy C, Demma Z, Foley SE, Faherty CS, Llanos-Chea A, Olive AJ, Mrsny RJ, McCormick BA. Intestinal P-glycoprotein exports endocannabinoids to prevent inflammation and maintain homeostasis. J Clin Invest 2018; 128:4044-4056. [PMID: 30102254 DOI: 10.1172/jci96817] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 06/19/2018] [Indexed: 01/09/2023] Open
Abstract
Neutrophil influx into the intestinal lumen is a critical response to infectious agents, but is also associated with severe intestinal damage observed in idiopathic inflammatory bowel disease. The chemoattractant hepoxilin A3, an eicosanoid secreted from intestinal epithelial cells by the apically restricted efflux pump multidrug resistance protein 2 (MRP2), mediates this neutrophil influx. Information about a possible counterbalance pathway that could signal the lack of or resolution of an apical inflammatory signal, however, has yet to be described. We now report a system with such hallmarks. Specifically, we identify endocannabinoids as the first known endogenous substrates of the apically restricted multidrug resistance transporter P-glycoprotein (P-gp) and reveal a mechanism, which we believe is novel, for endocannabinoid secretion into the intestinal lumen. Knockdown or inhibition of P-gp reduced luminal secretion levels of N-acyl ethanolamine-type endocannabinoids, which correlated with increased neutrophil transmigration in vitro and in vivo. Additionally, loss of CB2, the peripheral cannabinoid receptor, led to increased pathology and neutrophil influx in models of acute intestinal inflammation. These results define a key role for epithelial cells in balancing the constitutive secretion of antiinflammatory lipids with the stimulated secretion of proinflammatory lipids via surface efflux pumps in order to control neutrophil infiltration into the intestinal lumen and maintain homeostasis in the healthy intestine.
Collapse
Affiliation(s)
- Rose L Szabady
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christopher Louissaint
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anneke Lubben
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Bailu Xie
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Shaun Reeksting
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Christine Tuohy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Zachary Demma
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Sage E Foley
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christina S Faherty
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alejandro Llanos-Chea
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew J Olive
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Randall J Mrsny
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Beth A McCormick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
16
|
Morales P, Goya P, Jagerovic N. Emerging strategies targeting CB 2 cannabinoid receptor: Biased agonism and allosterism. Biochem Pharmacol 2018; 157:8-17. [PMID: 30055149 DOI: 10.1016/j.bcp.2018.07.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/23/2018] [Indexed: 01/24/2023]
Abstract
During these last years, the CB2 cannabinoid receptor has emerged as a potential anti-inflammatory target in diseases such as multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, ischemic stroke, autoimmune diseases, osteoporosis, and cancer. However, the development of clinically useful CB2 agonists reveals to be very challenging. Allosterism and biased-signaling mechanisms at CB2 receptor may offer new avenues for the development of improved CB2 receptor-targeted therapies. Although there has been some exploration of CB1 receptor activation by new CB1 allosteric or biased-signaling ligands, the CB2 receptor is still at initial stages in this domain. In an effort to understand the molecular basis behind these pharmacological approaches, we have analyzed and summarized the structural data reported so far at CB2 receptor.
Collapse
Affiliation(s)
- Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Unidad Asociada I+D+i IQM/Universidad Rey Juan Carlos (URJC), Calle Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - Pilar Goya
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Unidad Asociada I+D+i IQM/Universidad Rey Juan Carlos (URJC), Calle Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Unidad Asociada I+D+i IQM/Universidad Rey Juan Carlos (URJC), Calle Juan de la Cierva, 3, E-28006 Madrid, Spain.
| |
Collapse
|
17
|
Navarro G, Varani K, Reyes-Resina I, Sánchez de Medina V, Rivas-Santisteban R, Sánchez-Carnerero Callado C, Vincenzi F, Casano S, Ferreiro-Vera C, Canela EI, Borea PA, Nadal X, Franco R. Cannabigerol Action at Cannabinoid CB 1 and CB 2 Receptors and at CB 1-CB 2 Heteroreceptor Complexes. Front Pharmacol 2018; 9:632. [PMID: 29977202 PMCID: PMC6021502 DOI: 10.3389/fphar.2018.00632] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/25/2018] [Indexed: 12/21/2022] Open
Abstract
Cannabigerol (CBG) is one of the major phytocannabinoids present in Cannabis sativa L. that is attracting pharmacological interest because it is non-psychotropic and is abundant in some industrial hemp varieties. The aim of this work was to investigate in parallel the binding properties of CBG to cannabinoid CB1 (CB1R) and CB2 (CB2R) receptors and the effects of the compound on agonist activation of those receptors and of CB1–CB2 heteroreceptor complexes. Using [3H]-CP-55940, CBG competed with low micromolar Ki values the binding to CB1R and CB2R. Homogeneous binding in living cells, which is only technically possible for the CB2R, provided a 152 nM Ki value. Also interesting, CBG competed the binding of [3H]-WIN-55,212-2 to CB2R but not to CB1R (Ki: 2.7 versus >30 μM). The phytocannabinoid modulated signaling mediated by receptors and receptor heteromers even at low concentrations of 0.1–1 μM. cAMP, pERK, β-arrestin recruitment and label-free assays in HEK-293T cells expressing the receptors and treated with endocannabinoids or selective agonists proved that CBG is a partial agonist of CB2R. The action on cells expressing heteromers was similar to that obtained in cells expressing the CB2R. The effect of CBG on CB1R was measurable but the underlying molecular mechanisms remain uncertain. The results indicate that CBG is indeed effective as regulator of endocannabinoid signaling.
Collapse
Affiliation(s)
- Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Katia Varani
- Department of Medical Sciences, Institute of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Irene Reyes-Resina
- Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| | | | - Rafael Rivas-Santisteban
- Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| | | | - Fabrizio Vincenzi
- Department of Medical Sciences, Institute of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Salvatore Casano
- Department of Breeding and Cultivation, Phytoplant Research S.L., Córdoba, Spain
| | | | - Enric I Canela
- Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| | - Pier Andrea Borea
- Department of Medical Sciences, Institute of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Xavier Nadal
- Department of R&D - Extraction, Phytoplant Research S.L., Córdoba, Spain
| | - Rafael Franco
- Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Han S, Thoresen L, Jung JK, Zhu X, Thatte J, Solomon M, Gaidarov I, Unett DJ, Yoon WH, Barden J, Sadeque A, Usmani A, Chen C, Semple G, Grottick AJ, Al-Shamma H, Christopher R, Jones RM. Discovery of APD371: Identification of a Highly Potent and Selective CB 2 Agonist for the Treatment of Chronic Pain. ACS Med Chem Lett 2017; 8:1309-1313. [PMID: 29259753 DOI: 10.1021/acsmedchemlett.7b00396] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/30/2017] [Indexed: 11/30/2022] Open
Abstract
The discovery of a novel, selective and fully efficacious CB2 agonist with satisfactory pharmacokinetic and pharmaceutical properties is described. Compound 6 was efficacious in a rat model of osteoarthritis pain following oral administration and, in contrast to morphine, maintained its analgesic effect throughout a 5-day subchronic treatment paradigm. These data were consistent with our hypothesis that full agonist efficacy is required for efficient internalization and recycling of the CB2 receptor to avoid tachyphylaxis. Based on its overall favorable preclinical profile, 6 (APD371) was selected for further development for the treatment of pain.
Collapse
Affiliation(s)
- Sangdon Han
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Lars Thoresen
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Jae-Kyu Jung
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Xiuwen Zhu
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Jayant Thatte
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Michelle Solomon
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Ibragim Gaidarov
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - David J. Unett
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Woo Hyun Yoon
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Jeremy Barden
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Abu Sadeque
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Amin Usmani
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Chuan Chen
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Graeme Semple
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Andrew J. Grottick
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Hussein Al-Shamma
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Ronald Christopher
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Robert M. Jones
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| |
Collapse
|
19
|
Marini P, Cascio MG, Pertwee RG. The Cyclic AMP Assay Using Human Cannabinoid CB2 Receptor-Transfected Cells. Methods Mol Biol 2017; 1412:85-93. [PMID: 27245894 DOI: 10.1007/978-1-4939-3539-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cyclic AMP assay is a functional assay that is commonly used to determine the pharmacological behavior (agonists, antagonists, inverse agonists) of G-protein-coupled receptor (GPCR) ligands. Here, we describe the cyclic AMP assay that is carried out with commercially available non-radioligand ready-to-use kits and Chinese hamster ovarian (CHO) cells stably transfected with the human cannabinoid CB2 receptor.
Collapse
Affiliation(s)
- Pietro Marini
- School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, AB252ZD, Foresterhill, Scotland, UK
| | - Maria Grazia Cascio
- School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, AB252ZD, Foresterhill, Scotland, UK.
| | - Roger G Pertwee
- School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, AB252ZD, Foresterhill, Scotland, UK
| |
Collapse
|
20
|
Dupré C, Bruno O, Bonnaud A, Giganti A, Nosjean O, Legros C, Boutin JA. Assessments of cellular melatonin receptor signaling pathways: β-arrestin recruitment, receptor internalization, and impedance variations. Eur J Pharmacol 2017; 818:534-544. [PMID: 29154938 DOI: 10.1016/j.ejphar.2017.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/03/2017] [Accepted: 11/13/2017] [Indexed: 12/30/2022]
Abstract
Melatonin receptors belong to the family of G-protein coupled receptors. Agonist-induced receptor activation is terminated with the recruitment of β-arrestin, which leads to receptor internalization. Furthermore, agonist binding induces a shift in cellular shape that translates into a change in the electric impedance of the cell. In the present study, we employed engineered cells to study these internalization-related processes in the context of the two melatonin receptors, MT1 and MT2. To assess these three receptor internalization-related functions and validate the results, we employed four classical ligands of melatonin receptors: the natural agonist melatonin; the super-agonist 2-iodo-melatonin and the two antagonists luzindole and 4-phenyl-2-propionamidotetralin. The assessments confirmed the nature of the agonistic ligands but showed that 4-phenyl-2-propionamidotetralin, a described antagonist, is a biased partial agonist at MT2 with poorer affinity for MT1. The methods are now available to be applied to any receptor system for which multiple signaling pathways must be evaluated for new molecules.
Collapse
Affiliation(s)
- Clémence Dupré
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 125, Chemin De Ronde, 78290 Croissy-sur-Seine, France
| | - Olivier Bruno
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 125, Chemin De Ronde, 78290 Croissy-sur-Seine, France
| | - Anne Bonnaud
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 125, Chemin De Ronde, 78290 Croissy-sur-Seine, France
| | - Adeline Giganti
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 125, Chemin De Ronde, 78290 Croissy-sur-Seine, France
| | - Olivier Nosjean
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 125, Chemin De Ronde, 78290 Croissy-sur-Seine, France
| | - Céline Legros
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 125, Chemin De Ronde, 78290 Croissy-sur-Seine, France
| | - Jean A Boutin
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 125, Chemin De Ronde, 78290 Croissy-sur-Seine, France.
| |
Collapse
|
21
|
Xia L, de Vries H, Yang X, Lenselink EB, Kyrizaki A, Barth F, Louvel J, Dreyer MK, van der Es D, IJzerman AP, Heitman LH. Kinetics of human cannabinoid 1 (CB1) receptor antagonists: Structure-kinetics relationships (SKR) and implications for insurmountable antagonism. Biochem Pharmacol 2017; 151:166-179. [PMID: 29102677 DOI: 10.1016/j.bcp.2017.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
Abstract
While equilibrium binding affinities and in vitro functional antagonism of CB1 receptor antagonists have been studied in detail, little is known on the kinetics of their receptor interaction. In this study, we therefore conducted kinetic assays for nine 1-(4,5-diarylthiophene-2-carbonyl)-4-phenylpiperidine-4-carboxamide derivatives and included the CB1 antagonist rimonabant as a comparison. For this we newly developed a dual-point competition association assay with [3H]CP55940 as the radioligand. This assay yielded Kinetic Rate Index (KRI) values from which structure-kinetics relationships (SKR) of hCB1 receptor antagonists could be established. The fast dissociating antagonist 6 had a similar receptor residence time (RT) as rimonabant, i.e. 19 and 14 min, respectively, while the slowest dissociating antagonist (9) had a very long RT of 2222 min, i.e. pseudo-irreversible dissociation kinetics. In functional assays, 9 displayed insurmountable antagonism, while the effects of the shortest RT antagonist 6 and rimonabant were surmountable. Taken together, this study shows that hCB1 receptor antagonists can have very divergent RTs, which are not correlated to their equilibrium affinities. Furthermore, their RTs appear to define their mode of functional antagonism, i.e. surmountable vs. insurmountable. Finally, based on the recently resolved hCB1 receptor crystal structure, we propose that the differences in RT can be explained by a different binding mode of antagonist 9 from short RT antagonists that is able to displace unfavorable water molecules. Taken together, these findings are of importance for future design and evaluation of potent and safe hCB1 receptor antagonists.
Collapse
Affiliation(s)
- Lizi Xia
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | - Henk de Vries
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | - Xue Yang
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | - Eelke B Lenselink
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | - Athina Kyrizaki
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | - Francis Barth
- Sanofi-Aventis Research and Development, 371, Rue du Professeur Blayac, 34184 Montpellier Cedex 04, France
| | - Julien Louvel
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | - Matthias K Dreyer
- Sanofi-Aventis Deutschland GmbH R&D, Integrated Drug Discovery, Industriepark Hoechst, 65926 Frankfurt, Germany
| | - Daan van der Es
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | - Laura H Heitman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands.
| |
Collapse
|
22
|
Nguyen T, Li JX, Thomas BF, Wiley JL, Kenakin TP, Zhang Y. Allosteric Modulation: An Alternate Approach Targeting the Cannabinoid CB1 Receptor. Med Res Rev 2017; 37:441-474. [PMID: 27879006 PMCID: PMC5397374 DOI: 10.1002/med.21418] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 12/21/2022]
Abstract
The cannabinoid CB1 receptor is a G protein coupled receptor and plays an important role in many biological processes and physiological functions. A variety of CB1 receptor agonists and antagonists, including endocannabinoids, phytocannabinoids, and synthetic cannabinoids, have been discovered or developed over the past 20 years. In 2005, it was discovered that the CB1 receptor contains allosteric site(s) that can be recognized by small molecules or allosteric modulators. A number of CB1 receptor allosteric modulators, both positive and negative, have since been reported and importantly, they display pharmacological characteristics that are distinct from those of orthosteric agonists and antagonists. Given the psychoactive effects commonly associated with CB1 receptor agonists and antagonists/inverse agonists, allosteric modulation may offer an alternate approach to attain potential therapeutic benefits while avoiding inherent side effects of orthosteric ligands. This review details the complex pharmacological profiles of these allosteric modulators, their structure-activity relationships, and efforts in elucidating binding modes and mechanisms of actions of reported CB1 allosteric modulators. The ultimate development of CB1 receptor allosteric ligands could potentially lead to improved therapies for CB1-mediated neurological disorders.
Collapse
Affiliation(s)
- Thuy Nguyen
- Research Triangle Institute, Research Triangle Park, North Carolina, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Brian F. Thomas
- Research Triangle Institute, Research Triangle Park, North Carolina, USA
| | - Jenny L. Wiley
- Research Triangle Institute, Research Triangle Park, North Carolina, USA
| | - Terry P. Kenakin
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, North Carolina, USA
| |
Collapse
|
23
|
Porter-Stransky KA, Weinshenker D. Arresting the Development of Addiction: The Role of β-Arrestin 2 in Drug Abuse. J Pharmacol Exp Ther 2017; 361:341-348. [PMID: 28302862 DOI: 10.1124/jpet.117.240622] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/15/2017] [Indexed: 01/01/2023] Open
Abstract
The protein β-arrestin (βarr) 2 directly interacts with receptors and signaling pathways that mediate the behavioral effects of drugs of abuse, making it a prime candidate for therapeutic interventions. βarr2 drives desensitization and internalization of G protein-coupled receptors, including dopamine, opioid, and cannabinoid receptors, and it can also trigger G protein-independent intracellular signaling. βarr2 mediates several drug-induced behaviors, but the relationship is complex and dependent on the type of behavior (e.g., psychomotor versus reward), the class of drug (e.g., psychostimulant versus opioid), and the circuit being interrogated (e.g., brain region, cell type, and specific receptor ligand). Here we discuss the current state of research concerning the contribution of βarr2 to the psychomotor and rewarding effects of addictive drugs. Next we identify key knowledge gaps and suggest new tools and approaches needed to further elucidate the neuroanatomical substrates and neurobiological mechanisms to explain how βarr2 modulates behavioral responses to drugs of abuse, as well as its potential as a therapeutic target.
Collapse
Affiliation(s)
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
24
|
Abstract
An agonist that acts through a single receptor can activate numerous signaling pathways. Recent studies have suggested that different ligands can differentially activate these pathways by stabilizing a limited range of receptor conformations, which in turn preferentially drive different downstream signaling cascades. This concept, termed "biased signaling" represents an exciting therapeutic opportunity to target specific pathways that elicit only desired effects, while avoiding undesired effects mediated by different signaling cascades. The cannabinoid receptors CB1 and CB2 each activate multiple pathways, and evidence is emerging for bias within these pathways. This review will summarize the current evidence for biased signaling through cannabinoid receptor subtypes CB1 and CB2.
Collapse
Affiliation(s)
- Mikkel Søes Ibsen
- Department of Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Mark Connor
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 2 Technology Place, Macquarie University, New South Wales, Australia
| | - Michelle Glass
- Department of Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
25
|
Cannaert A, Storme J, Franz F, Auwärter V, Stove CP. Detection and Activity Profiling of Synthetic Cannabinoids and Their Metabolites with a Newly Developed Bioassay. Anal Chem 2016; 88:11476-11485. [DOI: 10.1021/acs.analchem.6b02600] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Annelies Cannaert
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Jolien Storme
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Florian Franz
- Institute
of Forensic Medicine, Forensic Toxicology, Medical Center −
University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstr. 9, 79104 Freiburg, Germany
| | - Volker Auwärter
- Institute
of Forensic Medicine, Forensic Toxicology, Medical Center −
University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstr. 9, 79104 Freiburg, Germany
| | - Christophe P. Stove
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
26
|
Dhopeshwarkar A, Mackie K. Functional Selectivity of CB2 Cannabinoid Receptor Ligands at a Canonical and Noncanonical Pathway. J Pharmacol Exp Ther 2016; 358:342-51. [PMID: 27194477 PMCID: PMC4959096 DOI: 10.1124/jpet.116.232561] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/17/2016] [Indexed: 01/14/2023] Open
Abstract
The CB2 cannabinoid receptor (CB2) remains a tantalizing, but unrealized therapeutic target. CB2 receptor ligands belong to varied structural classes and display extreme functional selectivity. Here, we have screened diverse CB2 receptor ligands at canonical (inhibition of adenylyl cyclase) and noncanonical (arrestin recruitment) pathways. The nonclassic cannabinoid (-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP55940) was the most potent agonist for both pathways, while the classic cannabinoid ligand (6aR,10aR)-3-(1,1-Dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran JWH133) was the most efficacious agonist among all the ligands profiled in cyclase assays. In the cyclase assay, other classic cannabinoids showed little [(-)-trans-Δ(9)-tetrahydrocannabinol and (-)-(6aR,7,10,10aR)-tetrahydro-6,6,9-trimethyl-3-(1-methyl-1-phenylethyl)-6H-dibenzo[b,d]pyran-1-ol] (KM233) to no efficacy [(6aR,10aR)-1-methoxy-6,6,9-trimethyl-3-(2-methyloctan-2-yl)-6a,7,10,10a-tetrahydrobenzo[c]chromene(L759633) and (6aR,10aR)-3-(1,1-dimethylheptyl)-6a,7,8,9,10,10a-hexahydro-1-methoxy-6,6-dimethyl-9-methylene-6H-dibenzo[b,d]pyran]L759656. Most aminoalkylindoles, including [(3R)-2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone, monomethanesulfonate (WIN55212-2), were moderate efficacy agonists. The cannabilactone 3-(1,1-dimethyl-heptyl)-1-hydroxy-9-methoxy-benzo(c)chromen-6-one (AM1710) was equiefficacious to CP55940 to inhibit adenylyl cyclase, albeit with lower potency. In the arrestin recruitment assays, all classic cannabinoid ligands failed to recruit arrestins, indicating a bias toward G-protein coupling for this class of compound. All aminoalkylindoles tested, except for WIN55212-2 and (1-pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)-methanone (UR144), failed to recruit arrestin. WIN55212-2 was a low efficacy agonist for arrestin recruitment, while UR144 was arrestin biased with no significant inhibition of cyclase. Endocannabinoids were G-protein biased with no arrestin recruitment. The diarylpyrazole antagonist 5-(4-chloro-3-methylphenyl)-1-[(4-methylphenyl)methyl]-N-[(1S,2S,4R)-1,3,3-trimethylbicyclo[2.2.1]hept-2-yl]-1H-pyrazole-3-carboxamide (SR144258) was an inverse agonist in cyclase and arrestin recruitment assays while the aminoalkylindole 6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone (AM630) and carboxamide N-(1,3-benzodioxol-5-ylmethyl)-1,2-dihydro-7-methoxy-2-oxo-8-(pentyloxy)-3-quinolinecarboxamide (JTE907) were inverse agonists in cyclase but low efficacy agonists in arrestin recruitment assays. Thus, CB2 receptor ligands display strong and varied functional selectivity at both pathways. Therefore, extreme care must be exercised when using these compounds to infer the role of CB2 receptors in vivo.
Collapse
Affiliation(s)
- Amey Dhopeshwarkar
- The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Ken Mackie
- The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| |
Collapse
|
27
|
Valero TR, Sturchler E, Jafferjee M, Rengo G, Magafa V, Cordopatis P, McDonald P, Koch WJ, Lymperopoulos A. Structure-activity relationship study of angiotensin II analogs in terms of β-arrestin-dependent signaling to aldosterone production. Pharmacol Res Perspect 2016; 4:e00226. [PMID: 27069636 PMCID: PMC4804318 DOI: 10.1002/prp2.226] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 12/11/2022] Open
Abstract
The known angiotensin II (AngII) physiological effect of aldosterone synthesis and secretion induction, a steroid hormone that contributes to the pathology of postmyocardial infarction (MI) heart failure (HF), is mediated by both Gq/11 proteins and β-arrestins, both of which couple to the AngII type 1 receptors (AT1Rs) of adrenocortical zona glomerulosa (AZG) cells. Over the past several years, AngII analogs with increased selectivity ("bias") toward β-arrestin-dependent signaling at the AT1R have been designed and described, starting with SII, the gold-standard β-arrestin-"biased" AngII analog. In this study, we examined the relative potencies of an extensive series of AngII peptide analogs at relative activation of G proteins versus β-arrestins by the AT1R. The major structural difference of these peptides from SII was their varied substitutions at position 5, rather than position 4 of native AngII. Three of them were found biased for β-arrestin activation and extremely potent at stimulating aldosterone secretion in AZG cells in vitro, much more potent than SII in that regard. Finally, the most potent of these three ([Sar(1), Cys(Et)(5), Leu(8)]-AngII, CORET) was further examined in post-MI rats progressing to HF and overexpressing adrenal β-arrestin1 in vivo. Consistent with the in vitro studies, CORET was found to exacerbate the post-MI hyperaldosteronism, and, consequently, cardiac function of the post-MI animals in vivo. Finally, our data suggest that increasing the size of position 5 of the AngII peptide sequence results in directly proportional increases in AT1R-dependent β-arrestin activation. These findings provide important insights for AT1R pharmacology and future AngII-targeted drug development.
Collapse
Affiliation(s)
- Thairy Reyes Valero
- Department of Pharmaceutical Sciences Laboratory for the Study of Neurohormonal Control of the Circulation Nova Southeastern University College of Pharmacy Fort Lauderdale Florida 33328
| | | | - Malika Jafferjee
- Department of Pharmaceutical Sciences Laboratory for the Study of Neurohormonal Control of the Circulation Nova Southeastern University College of Pharmacy Fort Lauderdale Florida 33328
| | - Giuseppe Rengo
- Salvatore Maugeri Foundation-Scientific Institute of Telese Terme Telese Terme Italy
| | - Vassiliki Magafa
- Department of Pharmacy Laboratory of Pharmacognosy & Chemistry of Natural Products University of Patras Patras Greece
| | - Paul Cordopatis
- Department of Pharmacy Laboratory of Pharmacognosy & Chemistry of Natural Products University of Patras Patras Greece
| | - Patricia McDonald
- Translational Research Institute Scripps Florida Jupiter Florida 33458
| | - Walter J Koch
- Center for Translational Medicine Temple University Philadelphia Pennsylvania 19140
| | - Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences Laboratory for the Study of Neurohormonal Control of the Circulation Nova Southeastern University College of Pharmacy Fort Lauderdale Florida 33328
| |
Collapse
|
28
|
Dabul S, Bathgate-Siryk A, Valero TR, Jafferjee M, Sturchler E, McDonald P, Koch WJ, Lymperopoulos A. Suppression of adrenal βarrestin1-dependent aldosterone production by ARBs: head-to-head comparison. Sci Rep 2015; 5:8116. [PMID: 25631300 PMCID: PMC4309955 DOI: 10.1038/srep08116] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/26/2014] [Indexed: 12/22/2022] Open
Abstract
The known angiotensin II (AngII) physiological effect of aldosterone synthesis and secretion is mediated by either Gq/11 proteins or βarrestin1 (βarr1), both of which can couple to its type 1 receptors (AT₁Rs), present in adrenocortical zona glomerulosa (AZG) cell membranes. In the present study, we examined the relative potencies of all the currently used in the clinic AT₁R antagonist drugs (angiotensin receptor blockers, ARBs, or sartans) at preventing activation of these two signaling mediators (G proteins and βarrs) at the AngII-bound AT1R and, consequently, at suppression of aldosterone in vitro. All ARBs were found to be potent inhibitors of G protein activation at the AT₁R. However, candesartan and valsartan were the most potent at blocking AngII-induced βarr activation at this receptor, among the tetrazolo-biphenyl-methyl derivatives, translating into excellent efficacies at aldosterone suppression in H295R cells. Conversely, irbesartan and losartan were largely G protein-selective inhibitors at the AT₁R, with very low potency towards βarr inhibition. As a result, they were very weak suppressors of βarr1-dependent aldosterone production in H295R cells. These findings provide important pharmacological insights into the drug class of ARBs and medicinal chemistry insights for future drug development in the field of AngII antagonism.
Collapse
Affiliation(s)
- Samalia Dabul
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA
| | - Ashley Bathgate-Siryk
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA
| | - Thairy Reyes Valero
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA
| | - Malika Jafferjee
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA
| | - Emmanuel Sturchler
- Translational Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Patricia McDonald
- Translational Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Walter J Koch
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
29
|
Priestley RS, Nickolls SA, Alexander SPH, Kendall DA. A potential role for cannabinoid receptors in the therapeutic action of fenofibrate. FASEB J 2014; 29:1446-55. [PMID: 25550466 DOI: 10.1096/fj.14-263053] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/01/2014] [Indexed: 01/26/2023]
Abstract
Cannabinoids are reported to have actions through peroxisome proliferator-activated receptors (PPARs), which led us to investigate PPAR agonists for activity at the cannabinoid receptors. Radio-ligand binding and functional assays were conducted using human recombinant cannabinoid type 1 (CB1) or cannabinoid type 2 (CB2) receptors, as well as the guinea pig isolated ileum, using the full agonist CP55940 as a positive control. The PPAR-α agonist fenofibrate exhibited submicromolar affinity for both receptors (pKi CB1, 6.3 ± 0.1; CB2, 7.7 ± 0.1). Functionally, fenofibrate acted as an agonist at the CB2 receptor (pEC50, 7.7 ± 0.1) and a partial agonist at the CB1 receptor, although with a decrease in functional response at higher concentrations, producing bell-shaped concentration-response curves. High concentrations of fenofibrate were able to increase the dissociation rate constant for [(3)H]-CP55940 at the CB1 receptor, (kfast without: 1.2 ± 0.2/min; with: 3.8 ± 0.1 × 10(-2)/min) and decrease the maximal response to CP55940 (Rmax, 86 ± 2%), which is consistent with a negative allosteric modulator. Fenofibrate also reduced electrically induced contractions in isolated guinea pig ileum via CB1 receptors (pEC50, 6.0 ± 0.4). Fenofibrate is thus identified as an example of a new class of cannabinoid receptor ligand and allosteric modulator, with the potential to interact therapeutically with cannabinoid receptors in addition to its primary PPAR target.
Collapse
Affiliation(s)
- Richard S Priestley
- *School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom; and Neusentis-Pfizer Limited, Great Abington, Cambridge, United Kingdom
| | - Sarah A Nickolls
- *School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom; and Neusentis-Pfizer Limited, Great Abington, Cambridge, United Kingdom
| | - Stephen P H Alexander
- *School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom; and Neusentis-Pfizer Limited, Great Abington, Cambridge, United Kingdom
| | - David A Kendall
- *School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom; and Neusentis-Pfizer Limited, Great Abington, Cambridge, United Kingdom
| |
Collapse
|
30
|
Dhopeshwarkar A, Mackie K. CB2 Cannabinoid receptors as a therapeutic target-what does the future hold? Mol Pharmacol 2014; 86:430-7. [PMID: 25106425 DOI: 10.1124/mol.114.094649] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The past decades have seen an exponential rise in our understanding of the endocannabinoid system, comprising CB1 and CB2 cannabinoid receptors, endogenous cannabinoids (endocannabinoids), and the enzymes that synthesize and degrade endocannabinoids. The primary focus of this review is the CB2 receptor. CB2 receptors have been the subject of considerable attention, primarily due to their promising therapeutic potential for treating various pathologies while avoiding the adverse psychotropic effects that can accompany CB1 receptor-based therapies. With the appreciation that CB2-selective ligands show marked functional selectivity, there is a renewed opportunity to explore this promising area of research from both a mechanistic as well as a therapeutic perspective. In this review, we summarize our present knowledge of CB2 receptor signaling, localization, and regulation. We discuss the availability of genetic tools (and their limitations) to study CB2 receptors and also provide an update on preclinical data on CB2 agonists in pain models. Finally, we suggest possible reasons for the failure of CB2 ligands in clinical pain trials and offer possible ways to move the field forward in a way that can help reconcile the inconsistencies between preclinical and clinical data.
Collapse
Affiliation(s)
- Amey Dhopeshwarkar
- Department of Psychological and Brain Sciences and Gill Center, Indiana University, Bloomington, Indiana
| | - Ken Mackie
- Department of Psychological and Brain Sciences and Gill Center, Indiana University, Bloomington, Indiana
| |
Collapse
|
31
|
Cannabinoid 2 receptor- and beta Arrestin 2-dependent upregulation of serotonin 2A receptors. Eur Neuropsychopharmacol 2013; 23:760-7. [PMID: 22841827 PMCID: PMC3532960 DOI: 10.1016/j.euroneuro.2012.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/23/2012] [Accepted: 06/26/2012] [Indexed: 01/21/2023]
Abstract
Recent evidence suggests that cannabinoid receptor agonists may regulate serotonin 2A (5-HT(2A)) receptor neurotransmission in the brain, although no molecular mechanism has been identified. Here, we present experimental evidence that sustained treatment with a non-selective cannabinoid agonist (CP55,940) or selective CB2 receptor agonists (JWH133 or GP1a) upregulate 5-HT(2A) receptors in a neuronal cell line. Furthermore, this cannabinoid receptor agonist-induced upregulation of 5-HT(2A) receptors was prevented in cells stably transfected with either CB2 or β-Arrestin 2 shRNA lentiviral particles. Additionally, inhibition of clathrin-mediated endocytosis also prevented the cannabinoid receptor-induced upregulation of 5-HT(2A) receptors. Our results indicate that cannabinoid agonists might upregulate 5-HT(2A) receptors by a mechanism that requires CB2 receptors and β-Arrestin 2 in cells that express both CB2 and 5-HT(2A) receptors. 5-HT(2A) receptors have been associated with several physiological functions and neuropsychiatric disorders such as stress response, anxiety and depression, and schizophrenia. Therefore, these results might provide a molecular mechanism by which activation of cannabinoid receptors might be relevant to some cognitive and mood disorders in humans.
Collapse
|
32
|
Cupp ME, Nayak SK, Adem AS, Thomsen WJ. Parathyroid hormone (PTH) and PTH-related peptide domains contributing to activation of different PTH receptor-mediated signaling pathways. J Pharmacol Exp Ther 2013; 345:404-18. [PMID: 23516330 DOI: 10.1124/jpet.112.199752] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Parathyroid hormone (PTH) and parathyroid hormone-related peptide (PTHrP), acting through the osteoblast PTH1 receptor (PTH1R), play important roles in bone remodeling. Intermittent administration of PTH(1-34) (teriparatide) leads to bone formation, whereas continuous administration paradoxically leads to bone resorption. Activation of PTH1R promotes regulation of multiple signaling pathways, including G(s)/cAMP/protein kinase A, G(q)/calcium/protein kinase C, β-arrestin recruitment, and extracellular signal-related kinase (ERK)1/2 phosphorylation, as well as receptor internalization, but their role in promoting anabolic and catabolic actions of PTH(1-34) are unclear. In the present investigation, a collection of PTH(1-34) and PTHrP(1-34) peptide analogs were evaluated in orthogonal human PTH1R (hPTH1R) functional assays capturing G(s)- and G(q)-signaling, β-arrestin recruitment, ERK1/2 phosphorylation, and receptor internalization to further define the patterns of PTH1R signaling that they stimulate and further establish peptide domains contributing to agonist activity. Results indicate that both N- and C-terminal domains of PTH and PTHrP are critical for activation of signaling pathways. However, modifications of both regions lead to more substantial decreases in agonist potency and efficacy to stimulate G(q)-signaling, β-arrestin recruitment, ERK1/2 phosphorylation, and receptor internalization than to stimulate G(s)-signaling. The substantial contribution of the peptide C-terminal domain in activation of hPTH1R signaling suggests a role in positioning of the peptide N-terminal region into the receptor J-domain. Several PTH and PTHrP peptides evaluated in this study promote different patterns of biased agonist signaling and may serve as useful tools to further elucidate therapeutically relevant PTH1R signaling in osteoblasts. With a better understanding of therapeutically relevant signaling, novel biased peptides with desired signaling could be designed for safer and more effective treatment of osteoporosis.
Collapse
Affiliation(s)
- Meghan E Cupp
- Center for Cancer and Metabolic Diseases, SRI International, 140 Research Drive, Harrisonburg, VA 22802, USA
| | | | | | | |
Collapse
|
33
|
Dossou KSS, Devkota KP, Kavanagh PV, Beutler JA, Egan JM, Moaddel R. Development and preliminary validation of a plate-based CB1/CB2 receptor functional assay. Anal Biochem 2013; 437:138-43. [PMID: 23481912 DOI: 10.1016/j.ab.2013.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/23/2013] [Accepted: 02/27/2013] [Indexed: 11/19/2022]
Abstract
Cannabinoid (CB) receptors are being targeted therapeutically for the treatment of anxiety, obesity, movement disorders, glaucoma, and pain. More recently, cannabinoid agonists have displayed antiproliferative activity against breast cancer and prostate cancer in animal models. To study cannabinoid receptor ligands, we have developed a novel plate-based assay that measures internalization of CB1/CB2 receptors by determining the change in the intracellular levels of the radiolabeled agonists: [(3)H]Win55-212-2 for CB1 and [(3)H]CP55-940 for CB2. The developed plate-based assay was validated by determining IC50 values for known antagonists: AM251, AM281, AM630, and AM6545. The data obtained were consistent with previously reported values, thereby confirming that the assay can be used to determine the functional binding activities (IC50) of antagonists for the CB1 and CB2 receptors. In addition, we demonstrated that the plate-based assay may be used for screening against complex matrices. Specifically, we demonstrated that the plate-based assay was able to identify which extracts of several species of the genus Zanthoxylum had activity at the CB1/CB2 receptors.
Collapse
Affiliation(s)
- K S S Dossou
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
34
|
Larco DO, Cho-Clark M, Mani SK, Wu TJ. The metabolite GnRH-(1-5) inhibits the migration of immortalized GnRH neurons. Endocrinology 2013; 154:783-95. [PMID: 23321696 DOI: 10.1210/en.2012-1746] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The decapeptide GnRH is an important regulator of reproductive behavior and function. In the extracellular matrix, GnRH is metabolized by the endopeptidase EC3.4.24.15 (EP24.15) to generate the pentapeptide GnRH-(1-5). In addition to its expression in the adult hypothalamus, EP24.15 is expressed along the migratory path of GnRH-expressing neurons during development. Although we have previously demonstrated a role for EP24.15 in the generation of the biologically active pentapeptide GnRH-(1-5) in regulating GnRH expression and mediating sexual behavior during adulthood in rodents, the modulatory role of GnRH-(1-5) in the migration of GnRH neurons during development remains unknown. To address this information gap, we examined the effect of GnRH-(1-5) on the cellular migration of a premigratory GnRH-secreting neuronal cell line, the GN11 cell, using a wound-healing assay. Dose- and time-response studies demonstrated that GnRH-(1-5) significantly delayed wound closure. We then sought to identify the mechanism by which GnRH-(1-5) inhibits migration. Because the cognate GnRH receptor is a G protein-coupled receptor, we examined whether GnRH-(1-5) regulates migration by also activating a G protein-coupled receptor. Using a high-throughput β-arrestin recruitment assay, we identified an orphan G protein-coupled receptor (GPR173) that was specifically activated by GnRH-(1-5). Interestingly, small interfering RNA to GPR173 reversed the GnRH-(1-5)-mediated inhibition on migration of GN11 neurons. Furthermore, we also demonstrate that the GnRH-(1-5)-activated GPR173-dependent signal transduction pathway involves the activation of the signal transducer and activator of transcription 3 in GnRH migration. These findings indicate a potential regulatory role for GnRH-(1-5) in GnRH neuronal migration during development.
Collapse
Affiliation(s)
- Darwin O Larco
- Program in Molecular and Cellular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
35
|
Schepetkin IA, Kirpotina LN, Khlebnikov AI, Leopoldo M, Lucente E, Lacivita E, De Giorgio P, Quinn MT. 3-(1H-indol-3-yl)-2-[3-(4-nitrophenyl)ureido]propanamide enantiomers with human formyl-peptide receptor agonist activity: molecular modeling of chiral recognition by FPR2. Biochem Pharmacol 2012; 85:404-16. [PMID: 23219934 DOI: 10.1016/j.bcp.2012.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 01/14/2023]
Abstract
N-formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs) that play critical roles in inflammatory reactions, and FPR-specific interactions can possibly be used to facilitate the resolution of pathological inflammatory reactions. Recent studies indicated that FPRs have stereo-selective preference for chiral ligands. Here, we investigated the structure-activity relationship of 24 chiral ureidopropanamides, including previously reported compounds PD168368/PD176252 and their close analogs, and used molecular modeling to define chiral recognition by FPR2. Unlike previously reported 6-methyl-2,4-disubstituted pyridazin-3(2H)-ones, whose R-forms preferentially activated FPR1/FPR2, we found that four S-enantiomers in the seven ureidopropanamide pairs tested preferentially activated intracellular Ca(2+) flux in FPR2-transfected cells, while the R-counterpart was more active in two enantiomer pairs. Thus, active enantiomers of FPR2 agonists can be in either R- or S-configurations, depending on the molecular scaffold and specific substituents at the chiral center. Using molecular modeling approaches, including field point methodology, homology modeling, and docking studies, we propose a model that can explain stereoselective activity of chiral FPR2 agonists. Importantly, our docking studies of FPR2 chiral agonists correlated well with the FPR2 pharmacophore model derived previously. We conclude that the ability of FPR2 to discriminate between the enantiomers is the consequence of the arrangement of the three asymmetric hydrophobic subpockets at the main orthosteric FPR2 binding site with specific orientation of charged regions in the subpockets.
Collapse
Affiliation(s)
- Igor A Schepetkin
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, MT 59717, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
GILBERT EJ, LUNN CA. Recent Advances in Selective CB2 Agonists for the Treatment of Pain. ANTI-INFLAMMATORY DRUG DISCOVERY 2012. [DOI: 10.1039/9781849735346-00391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The cannabinoid CB2 receptor is one of a family of GPCRs that mediate the effects of endocannabinoids. Several agonists of this receptor are currently in clinical trials for the treatment of pain and inflammation, indications that have been validated by pre-clinical studies on agonists and in receptor knockout mice. Key to the clinical advancement of CB2 agonists is achieving selectivity over the related CB1 receptor, whose activation results in undesirable CNS effects, limiting therapeutic utility. A variety of CB2 receptor agonist chemotypes are reviewed including mono-, bi- and tricyclic cores and bi- and triaryl cores. Pharmacology, with a focus on selectivity requirements and a variety of pre-clinical animal models to assess activity and selectivity, is presented.
Collapse
Affiliation(s)
- E. J. GILBERT
- Department of Medicinal Chemistry Merck Research Laboratories 2015 Galloping Hill Road, Kenilworth, NJ, 07033 USA
| | - C. A. LUNN
- Department of In Vitro Pharmacology Merck Research Laboratories 2015 Galloping Hill Road, Kenilworth, NJ, 07033 USA
| |
Collapse
|
37
|
Cilibrizzi A, Schepetkin IA, Bartolucci G, Crocetti L, Dal Piaz V, Giovannoni MP, Graziano A, Kirpotina LN, Quinn MT, Vergelli C. Synthesis, enantioresolution, and activity profile of chiral 6-methyl-2,4-disubstituted pyridazin-3(2H)-ones as potent N-formyl peptide receptor agonists. Bioorg Med Chem 2012; 20:3781-92. [PMID: 22607879 DOI: 10.1016/j.bmc.2012.04.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/18/2012] [Accepted: 04/21/2012] [Indexed: 11/16/2022]
Abstract
A series of chiral pyridazin-3(2H)-ones was synthesized, separated as pure enantiomers, and evaluated for N-formyl peptide receptor (FPR) agonist activity. Characterization of the purified enantiomers using combined chiral HPLC and chiroptical studies (circular dichroism, allowed unambiguous assignment of the absolute configuration for each pair of enantiomers). Evaluation of the ability of racemic mixtures and purified enantiomers to stimulate intracellular Ca(2+) flux in FPR-transfected HL-60 cells and human neutrophils and to induce β-arrestin recruitment in FPR-transfected CHO-K1 cells showed that many enantiomers were potent agonists, inducing responses in the sub-micromolar to nanomolar range. Furthermore, FPRs exhibited enantiomer selectivity, generally preferring the R-(-)-forms over the S-(+)-enantiomers. Finally, we found that elongation of the carbon chain in the chiral center of the active compounds generally increased biological activity. Thus, these studies provide important new information regarding molecular features involved in FPR ligand preference and report the identification of a novel series of FPR agonists.
Collapse
Affiliation(s)
- Agostino Cilibrizzi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino 50019, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hothersall JD, Black J, Caddick S, Vinter JG, Tinker A, Baker JR. The design, synthesis and pharmacological characterization of novel β₂-adrenoceptor antagonists. Br J Pharmacol 2012; 164:317-31. [PMID: 21323900 DOI: 10.1111/j.1476-5381.2011.01269.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Selective and potent antagonists for the β(2) -adrenoceptor are potentially interesting as experimental and clinical tools, and we sought to identify novel ligands with this pharmacology. EXPERIMENTAL APPROACH A range of pharmacological assays was used to assess potency, affinity, selectivity (β(2) -adrenoceptor vs. β(1) -adrenoceptor) and efficacy. KEY RESULTS Ten novel compounds were identified but none had as high affinity as the prototypical β(2) -adrenoceptor blocker ICI-118,551, although one of the novel compounds was more selective for β(2) -adrenoceptors. Most of the ligands were inverse agonists for β(2) -adrenoceptor-cAMP signalling, although one (5217377) was a partial agonist and another a neutral antagonist (7929193). None of the ligands were efficacious with regard to β(2) -adrenoceptor-β-arrestin signalling. The (2S,3S) enantiomers were identified as the most active, although unusually the racemates were the most selective for the β(2) -adrenoceptors. This was taken as evidence for some unusual enantiospecific behaviour. CONCLUSIONS AND IMPLICATIONS In terms of improving on the pharmacology of the ligand ICI-118,551, one of the compounds was more selective (racemic JB-175), while one was a neutral antagonist (7929193), although none had as high an affinity. The results substantiate the notion that β-blockers do more than simply inhibit receptor activation, and differences between the ligands could provide useful tools to investigate receptor biology.
Collapse
|
39
|
Bassoni DL, Raab WJ, Achacoso PL, Loh CY, Wehrman TS. Measurements of β-arrestin recruitment to activated seven transmembrane receptors using enzyme complementation. Methods Mol Biol 2012; 897:181-203. [PMID: 22674166 DOI: 10.1007/978-1-61779-909-9_9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The recruitment of arrestins to activated 7TMRs results in the activation of alternative signaling pathways, quenching of G-protein activation, and coupling to clathrin-mediated endocytosis. The nearly ubiquitous involvement of arrestin in 7TMR signaling has spurred the development of several methods for monitoring this interaction in mammalian cells. Nonetheless, few maintain the reproducibility and precision necessary for drug discovery applications. Enzyme fragment complementation technology (EFC) is an emerging protein-protein interaction technology based on the forced complementation of a split enzyme that has proven to be highly effective in monitoring the formation of GPCR-arrestin complexes. In these systems, the target proteins are fused to two fragments of an enzyme that show little or no spontaneous complementation. Interaction of the two proteins forces the complementation of the enzyme, resulting in an enzymatic measure of the protein interaction. This chapter discusses the utility and methods involved in using the PathHunter β-galactosidase complementation system to monitor arrestin recruitment and the advantages of exploiting this pathway in the characterization of 7TMR function.
Collapse
|
40
|
Discovery of β-arrestin-biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy. Proc Natl Acad Sci U S A 2011; 108:18488-93. [PMID: 22025698 DOI: 10.1073/pnas.1104807108] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Elucidating the key signal transduction pathways essential for both antipsychotic efficacy and side-effect profiles is essential for developing safer and more effective therapies. Recent work has highlighted noncanonical modes of dopamine D(2) receptor (D(2)R) signaling via β-arrestins as being important for the therapeutic actions of both antipsychotic and antimanic agents. We thus sought to create unique D(2)R agonists that display signaling bias via β-arrestin-ergic signaling. Through a robust diversity-oriented modification of the scaffold represented by aripiprazole (1), we discovered UNC9975 (2), UNC0006 (3), and UNC9994 (4) as unprecedented β-arrestin-biased D(2)R ligands. These compounds also represent unprecedented β-arrestin-biased ligands for a G(i)-coupled G protein-coupled receptor (GPCR). Significantly, UNC9975, UNC0006, and UNC9994 are simultaneously antagonists of G(i)-regulated cAMP production and partial agonists for D(2)R/β-arrestin-2 interactions. Importantly, UNC9975 displayed potent antipsychotic-like activity without inducing motoric side effects in inbred C57BL/6 mice in vivo. Genetic deletion of β-arrestin-2 simultaneously attenuated the antipsychotic actions of UNC9975 and transformed it into a typical antipsychotic drug with a high propensity to induce catalepsy. Similarly, the antipsychotic-like activity displayed by UNC9994, an extremely β-arrestin-biased D(2)R agonist, in wild-type mice was completely abolished in β-arrestin-2 knockout mice. Taken together, our results suggest that β-arrestin signaling and recruitment can be simultaneously a significant contributor to antipsychotic efficacy and protective against motoric side effects. These functionally selective, β-arrestin-biased D(2)R ligands represent valuable chemical probes for further investigations of D(2)R signaling in health and disease.
Collapse
|
41
|
Trinquet E, Bouhelal R, Dietz M. Monitoring Gq-coupled receptor response through inositol phosphate quantification with the IP-One assay. Expert Opin Drug Discov 2011; 6:981-94. [DOI: 10.1517/17460441.2011.608658] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Nickolls SA, Waterfield A, Williams RE, Kinloch RA. Understanding the effect of different assay formats on agonist parameters: a study using the µ-opioid receptor. ACTA ACUST UNITED AC 2011; 16:706-16. [PMID: 21550962 DOI: 10.1177/1087057111406548] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The correct interpretation of data is fundamental to the study of G-protein-coupled receptor pharmacology. Often, new assay technologies are assimilated into the drug discovery environment without full consideration of the data generated. In this study, the authors look at µ-opioid receptor agonists in three different assays: (1) [(35)S]GTPγS binding, (2) inhibition of forskolin-stimulated cAMP production, and (3) β-arrestin recruitment. Agonist-concentration effect curves were performed before and after treatment with the irreversible antagonist β-funaltrexamine, and where appropriate, these data were fitted to the operational model of agonism. The Z' value was highest in the β-arrestin assay, followed by the [(35)S]GTPγS and cAMP assays. The cAMP data fitted well to the operational model, as did the [(35)S]GTPγS data, but the [(35)S]GTPγS assay led to an apparent overestimation of K(A) values. However, in the β-arrestin assay, data did not fit the operational model, as treatment with β-funaltrexamine reduced the Emax proportionally to receptor number, with no change in EC(50). In addition, the EC(50) values generated correlated well with affinity values. In conclusion, the β-arrestin recruitment assay does not fit with traditional pharmacological theory but is of great utility as the EC(50) value generated is a good approximation of affinity.
Collapse
|
43
|
Moaddel R, Rosenberg A, Spelman K, Frazier J, Frazier C, Nocerino S, Brizzi A, Mugnaini C, Wainer IW. Development and characterization of immobilized cannabinoid receptor (CB1/CB2) open tubular column for on-line screening. Anal Biochem 2011; 412:85-91. [PMID: 21215722 PMCID: PMC3053438 DOI: 10.1016/j.ab.2010.12.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 12/20/2010] [Accepted: 12/28/2010] [Indexed: 01/23/2023]
Abstract
Cannabinoid receptors, CB1 and CB2, are therapeutic targets in the treatment of anxiety, obesity, movement disorders, glaucoma, and pain. We have developed an on-line screening method for CB1 and CB2 ligands, where cellular membrane fragments of a chronic myelogenous leukemia cell line, KU-812, were immobilized onto the surface of an open tubular (OT) capillary to create a CB1/CB2-OT column. The binding activities of the immobilized CB1/CB2 receptors were established using frontal affinity chromatographic techniques. This is the first report that confirms the presence of functional CB1 and CB2 receptors on KU-812 cells. The data from this study confirm that the CB1/CB2-OT column can be used to determine the binding affinities (K(i) values) for a single compound and to screen individual compounds or a mixture of multiple compounds. The CB1/CB2-OT column was also used to screen a botanical matrix, Zanthoxylum clava-herculis, where preliminary results suggest the presence of a high-affinity phytocannabinoid.
Collapse
MESH Headings
- Cannabinoids/chemistry
- Cell Line, Tumor
- Chromatography, Affinity/methods
- Humans
- Immobilized Proteins/chemistry
- Plant Roots/chemistry
- Protein Binding
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/chemistry
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/chemistry
- Zanthoxylum/chemistry
Collapse
Affiliation(s)
- R Moaddel
- Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rosethorne EM, Charlton SJ. Agonist-biased signaling at the histamine H4 receptor: JNJ7777120 recruits β-arrestin without activating G proteins. Mol Pharmacol 2010; 79:749-57. [PMID: 21134907 DOI: 10.1124/mol.110.068395] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The G(i/o)-coupled histamine H(4) receptor is highly expressed in hemopoietic cells and is a promising new target for the treatment of chronic inflammatory diseases. 1-[(5-Chloro-1H-indol-2-yl)carbonyl]-4-methyl-piperazine (JNJ7777120) has been described as a selective antagonist at the H(4) receptor and is widely used to characterize the physiological role of the H(4) receptor. We have investigated the pharmacological properties of JNJ7777120 using two distinct downstream signaling measurements, G protein activation and β-arrestin recruitment. The H(4) receptor agonists histamine and clobenpropit, but not JNJ7777120, were able to induce [(35)S]GTPγS binding in membranes prepared from U2OS-H(4) cells. Thioperamide, a dual H(3)/H(4) receptor antagonist, and JNJ7777120 were both able to inhibit the [(35)S]GTPγS binding induced by clobenpropit. Agonists and antagonists specific for other members of the histamine receptor family had no effect in this assay format. Histamine and clobenpropit increased β-arrestin recruitment to the H(4) receptor in a concentration-dependent manner. This β-arrestin recruitment could be inhibited by preincubation with thioperamide. We were surprised to find that preincubation with the H(4)-selective antagonist JNJ7777120 potentiated rather than antagonized the response to a submaximal concentration of clobenpropit. JNJ7777120 treatment alone resulted in an increase in β-arrestin recruitment, which again could be inhibited by preincubation with thioperamide. Schild analysis demonstrated competitive antagonism between thioperamide and both clobenpropit and JNJ7777120. Histamine and clobenpropit had comparable potencies for both [(35)S]GTPγS binding and β-arrestin recruitment, suggesting little difference in the levels of receptor reserve between the two assays. In conclusion, we have demonstrated that JNJ7777120 recruits β-arrestin to the H(4) receptor, independent of G protein activation.
Collapse
|
45
|
Expansion of SAR studies on triaryl bis sulfone cannabinoid CB2 receptor ligands. Bioorg Med Chem Lett 2010; 20:6785-9. [PMID: 20850969 DOI: 10.1016/j.bmcl.2010.08.126] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/23/2010] [Accepted: 08/25/2010] [Indexed: 11/23/2022]
Abstract
We report further expansion of the structure activity relationship (SAR) on the triaryl bis sulfone class of compounds (I), which are potent CB(2) receptor ligands with excellent selectivity over the CB(1) receptor. This study was extended to B ring changes, followed by simultaneous optimization of the A-, B-, and C-rings. Compound 42 has excellent CB(2) potency, selectivity and rat exposure.
Collapse
|
46
|
Sharir H, Abood ME. Pharmacological characterization of GPR55, a putative cannabinoid receptor. Pharmacol Ther 2010; 126:301-13. [PMID: 20298715 DOI: 10.1016/j.pharmthera.2010.02.004] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 01/02/2023]
Abstract
GPR55 has recently attracted much attention as another member of the cannabinoid family, potentially explaining physiological effects that are non-CB1/CB2 mediated. However, the data gathered so far are conflicting with respect to its pharmacology. We review the primary literature to date on GPR55, describing its discovery, structure, pharmacology and potential physiological functions. The CB1 receptor antagonist/inverse agonist AM251 has been shown to be a GPR55 agonist in all reports in which it was evaluated, as has the lysophospholipid, lysophosphatidylinositol (LPI). Whether GPR55 responds to the endocannabinoid ligands anandamide and 2-arachidonylglycerol and the phytocannabinoids, delta-9-tetrahydrocannabidiol and cannabidiol, is cell type and tissue-dependent. GPR55 has been shown to utilize G(q), G(12), or G(13) for signal transduction; RhoA and phospholipase C are activated. Experiments with mice in which GPR55 has been inactivated reveal a role for this receptor in neuropathic and inflammatory pain as well as in bone physiology. Thus delineating the pharmacology of this receptor and the discovery of selective agonists and antagonists merits further study and could lead to new therapeutics.
Collapse
Affiliation(s)
- Haleli Sharir
- Department of Anatomy and Cell Biology and Center for Substance Abuse Research, Temple University, Philadelphia, PA 19140, USA
| | | |
Collapse
|
47
|
Bohn LM, McDonald PH. Seeking Ligand Bias: Assessing GPCR Coupling to Beta-Arrestins for Drug Discovery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2010; 7:e1-e94. [PMID: 21218149 DOI: 10.1016/j.ddtec.2010.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCR) are the major site of action for endogenous hormones and neurotransmitters. Early drug discovery efforts focused on determining whether ligands could engage G protein coupling and subsequently activate or inhibit cognate "second messengers." Gone are those simple days as we now realize that receptors can also couple βarrestins. As we delve into the complexity of ligand-directed signaling and receptosome scaffolds, we are faced with what may seem like endless possibilities triggered by receptor-ligand mediated events.
Collapse
Affiliation(s)
- Laura M Bohn
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, 130 Scripps Way #2A2, Jupiter, FL 33458,
| | | |
Collapse
|
48
|
Compound Collection Enhancement and Paradigms for High-Throughput Screening — an Update. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2010. [DOI: 10.1016/s0065-7743(10)45025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
49
|
Gilbert EJ, Zhou G, Wong MK, Tong L, Shankar BB, Huang C, Kelly J, Lavey BJ, McCombie SW, Chen L, Rizvi R, Dong Y, Shu Y, Kozlowski JA, Shih NY, Hipkin RW, Gonsiorek W, Malikzay A, Lunn CA, Favreau L, Lundell DJ. Non-aromatic A-ring replacement in the triaryl bis-sulfone CB2 receptor inhibitors. Bioorg Med Chem Lett 2010; 20:608-11. [DOI: 10.1016/j.bmcl.2009.11.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/16/2009] [Accepted: 11/17/2009] [Indexed: 11/29/2022]
|
50
|
Kapur A, Zhao P, Sharir H, Bai Y, Caron MG, Barak LS, Abood ME. Atypical responsiveness of the orphan receptor GPR55 to cannabinoid ligands. J Biol Chem 2009; 284:29817-27. [PMID: 19723626 PMCID: PMC2785612 DOI: 10.1074/jbc.m109.050187] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/21/2009] [Indexed: 01/09/2023] Open
Abstract
The cannabinoid receptor 1 (CB(1)) and CB(2) cannabinoid receptors, associated with drugs of abuse, may provide a means to treat pain, mood, and addiction disorders affecting widespread segments of society. Whether the orphan G-protein coupled receptor GPR55 is also a cannabinoid receptor remains unclear as a result of conflicting pharmacological studies. GPR55 has been reported to be activated by exogenous and endogenous cannabinoid compounds but surprisingly also by the endogenous non-cannabinoid mediator lysophosphatidylinositol (LPI). We examined the effects of a representative panel of cannabinoid ligands and LPI on GPR55 using a beta-arrestin-green fluorescent protein biosensor as a direct readout of agonist-mediated receptor activation. Our data demonstrate that AM251 and SR141716A (rimonabant), which are cannabinoid antagonists, and the lipid LPI, which is not a cannabinoid receptor ligand, are GPR55 agonists. They possess comparable efficacy in inducing beta-arrestin trafficking and, moreover, activate the G-protein-dependent signaling of protein kinase CbetaII. Conversely, the potent synthetic cannabinoid agonist CP55,940 acts as a GPR55 antagonist/partial agonist. CP55,940 blocks GPR55 internalization, the formation of beta-arrestin GPR55 complexes, and the phosphorylation of ERK1/2; CP55,940 produces only a slight amount of protein kinase CbetaII membrane recruitment but does not stimulate membrane remodeling like LPI, AM251, or rimonabant. Our studies provide a paradigm for measuring the responsiveness of GPR55 to a variety of ligand scaffolds comprising cannabinoid and novel compounds and suggest that at best GPR55 is an atypical cannabinoid responder. The activation of GPR55 by rimonabant may be responsible for some of the off-target effects that led to its removal as a potential obesity therapy.
Collapse
Affiliation(s)
- Ankur Kapur
- From the Department of Anatomy and Cell Biology and Center for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania 19140 and
| | - Pingwei Zhao
- From the Department of Anatomy and Cell Biology and Center for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania 19140 and
| | - Haleli Sharir
- From the Department of Anatomy and Cell Biology and Center for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania 19140 and
| | - Yushi Bai
- the Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Marc G. Caron
- the Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Larry S. Barak
- the Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Mary E. Abood
- From the Department of Anatomy and Cell Biology and Center for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania 19140 and
| |
Collapse
|