1
|
Murali S, Aradhyam GK. Divergent roles of DRY and NPxxY motifs in selective activation of downstream signalling by the apelin receptor. Biochem J 2024; 481:1707-1722. [PMID: 39513765 DOI: 10.1042/bcj20240320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/15/2024]
Abstract
G protein-coupled receptors (GPCRs) serve as critical communication hubs, translating a wide range of extracellular signals into intracellular responses that govern numerous physiological processes. In class-A GPCRs, conserved motifs mediate conformational changes of the active states of the receptor, and signal transduction is achieved by selectively binding to Gα proteins and/or adapter protein, arrestin. Apelin receptor (APJR) is a class-A GPCR that regulates a wide range of intracellular signalling cascades in response to apelin and elabela peptide ligands. Understanding how conserved motifs within APJR mediate activation and signal specificity remains unexplored. This study focuses on the functional roles of the DRY and NPxxY motifs within APJR by analyzing their impact on downstream signaling pathways across the receptor's conformational ensembles. Our findings provide compelling evidence that mutations within the conserved DRY and NPxxY motifs of APJR significantly alter its conformational preferences where modification of DRY motif leads to abrogation of G-protein coupling and mutation of NPxxY motif causing abolition of β-arrestin-2 recruitment. These observations shed light on the importance of these motifs in APJR activation and its potential for functional selectivity, highlighting the role of DRY/NPxxY as conformational switches of APJR signalling.
Collapse
Affiliation(s)
- Subhashree Murali
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biological Sciences, Indian Institute of Technology Madras, Chennai, India
| | - Gopala Krishna Aradhyam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biological Sciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
2
|
Vesey DA, Iyer A, Owen E, Kamato D, Johnson DW, Gobe GC, Fairlie DP, Nikolic-Paterson DJ. PAR2 activation on human tubular epithelial cells engages converging signaling pathways to induce an inflammatory and fibrotic milieu. Front Pharmacol 2024; 15:1382094. [PMID: 39005931 PMCID: PMC11239397 DOI: 10.3389/fphar.2024.1382094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024] Open
Abstract
Key features of chronic kidney disease (CKD) include tubulointerstitial inflammation and fibrosis. Protease activated receptor-2 (PAR2), a G-protein coupled receptor (GPCR) expressed by the kidney proximal tubular cells, induces potent proinflammatory responses in these cells. The hypothesis tested here was that PAR2 signalling can contribute to both inflammation and fibrosis in the kidney by transactivating known disease associated pathways. Using a primary cell culture model of human kidney tubular epithelial cells (HTEC), PAR2 activation induced a concentration dependent, PAR2 antagonist sensitive, secretion of TNF, CSF2, MMP-9, PAI-1 and CTGF. Transcription factors activated by the PAR2 agonist 2F, including NFκB, AP1 and Smad2, were critical for production of these cytokines. A TGF-β receptor-1 (TGF-βRI) kinase inhibitor, SB431542, and an EGFR kinase inhibitor, AG1478, ameliorated 2F induced secretion of TNF, CSF2, MMP-9, and PAI-1. Whilst an EGFR blocking antibody, cetuximab, blocked PAR2 induced EGFR and ERK phosphorylation, a TGF-βRII blocking antibody failed to influence PAR2 induced secretion of PAI-1. Notably simultaneous activation of TGF-βRII (TGF-β1) and PAR2 (2F) synergistically enhanced secretion of TNF (2.2-fold), CSF2 (4.4-fold), MMP-9 (15-fold), and PAI-1 (2.5-fold). In summary PAR2 activates critical inflammatory and fibrotic signalling pathways in human kidney tubular epithelial cells. Biased antagonists of PAR2 should be explored as a potential therapy for CKD.
Collapse
Affiliation(s)
- David A Vesey
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Abishek Iyer
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Evan Owen
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Danielle Kamato
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - David W Johnson
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - David P Fairlie
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Health and Monash University Centre for Inflammatory Diseases, Monash Medical Centre, Clayton, VIC, Australia
| |
Collapse
|
3
|
Gusev E, Sarapultsev A. Interplay of G-proteins and Serotonin in the Neuroimmunoinflammatory Model of Chronic Stress and Depression: A Narrative Review. Curr Pharm Des 2024; 30:180-214. [PMID: 38151838 DOI: 10.2174/0113816128285578231218102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION This narrative review addresses the clinical challenges in stress-related disorders such as depression, focusing on the interplay between neuron-specific and pro-inflammatory mechanisms at the cellular, cerebral, and systemic levels. OBJECTIVE We aim to elucidate the molecular mechanisms linking chronic psychological stress with low-grade neuroinflammation in key brain regions, particularly focusing on the roles of G proteins and serotonin (5-HT) receptors. METHODS This comprehensive review of the literature employs systematic, narrative, and scoping review methodologies, combined with systemic approaches to general pathology. It synthesizes current research on shared signaling pathways involved in stress responses and neuroinflammation, including calcium-dependent mechanisms, mitogen-activated protein kinases, and key transcription factors like NF-κB and p53. The review also focuses on the role of G protein-coupled neurotransmitter receptors (GPCRs) in immune and pro-inflammatory responses, with a detailed analysis of how 13 of 14 types of human 5-HT receptors contribute to depression and neuroinflammation. RESULTS The review reveals a complex interaction between neurotransmitter signals and immunoinflammatory responses in stress-related pathologies. It highlights the role of GPCRs and canonical inflammatory mediators in influencing both pathological and physiological processes in nervous tissue. CONCLUSION The proposed Neuroimmunoinflammatory Stress Model (NIIS Model) suggests that proinflammatory signaling pathways, mediated by metabotropic and ionotropic neurotransmitter receptors, are crucial for maintaining neuronal homeostasis. Chronic mental stress can disrupt this balance, leading to increased pro-inflammatory states in the brain and contributing to neuropsychiatric and psychosomatic disorders, including depression. This model integrates traditional theories on depression pathogenesis, offering a comprehensive understanding of the multifaceted nature of the condition.
Collapse
Affiliation(s)
- Evgenii Gusev
- Laboratory of Inflammation Immunology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
| | - Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
- Laboratory of Immunopathophysiology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
| |
Collapse
|
4
|
Semenikhina M, Fedoriuk M, Stefanenko M, Klemens CA, Cherezova A, Marshall B, Hall G, Levchenko V, Solanki A, Lipschutz JH, Ilatovskaya DV, Staruschenko A, Palygin O. β-Arrestin pathway activation by selective ATR1 agonism promotes calcium influx in podocytes, leading to glomerular damage. Clin Sci (Lond) 2023; 137:1789-1804. [PMID: 38051199 PMCID: PMC11194114 DOI: 10.1042/cs20230313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Angiotensin receptor blockers (ARBs) are the first-line treatment for hypertension; they act by inhibiting signaling through the angiotensin 1 receptor (AT1R). Recently, a novel biased AT1R agonist, TRV120027 (TRV), which selectively activates the β-arrestin cascade and blocks the G-protein-coupled receptor pathway has been proposed as a potential blood pressure medication. Here, we explored the effects of TRV and associated β-arrestin signaling in podocytes, essential cells of the kidney filter. We used human podocyte cell lines to determine β-arrestin's involvement in calcium signaling and cytoskeletal reorganization and Dahl SS rats to investigate the chronic effects of TRV administration on glomerular health. Our experiments indicate that the TRV-activated β-arrestin pathway promotes the rapid elevation of intracellular Ca2+ in a dose-dependent manner. Interestingly, the amplitude of β-arrestin-mediated Ca2+ influx was significantly higher than the response to similar Ang II concentrations. Single-channel analyses show rapid activation of transient receptor potential canonical (TRPC) channels following acute TRV application. Furthermore, the pharmacological blockade of TRPC6 significantly attenuated the β-arrestin-mediated Ca2+ influx. Additionally, prolonged activation of the β-arrestin pathway in podocytes resulted in pathological actin cytoskeleton rearrangements, higher apoptotic cell markers, and augmented glomerular damage. TRV-activated β-arrestin signaling in podocytes may promote TRPC6 channel-mediated Ca2+ influx, foot process effacement, and apoptosis, possibly leading to severe defects in glomerular filtration barrier integrity and kidney health. Under these circumstances, the potential therapeutic application of TRV for hypertension treatment requires further investigation to assess the balance of the benefits versus possible deleterious effects and off-target damage.
Collapse
Affiliation(s)
- Marharyta Semenikhina
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Mykhailo Fedoriuk
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Mariia Stefanenko
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Christine A. Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL
| | - Alena Cherezova
- Department of Physiology, Medical College of Georgia, Augusta University, GA
| | - Brendan Marshall
- Department of Physiology, Medical College of Georgia, Augusta University, GA
| | - Gentzon Hall
- Division of Nephrology, Department of Internal Medicine, Duke University School of Medicine, Durham, NC
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
| | - Ashish Solanki
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Joshua H. Lipschutz
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | | | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL
- James A. Haley Veterans’ Hospital, Tampa, FL
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
5
|
Wu Y, Zhang P, Fan H, Zhang C, Yu P, Liang X, Chen Y. GPR35 acts a dual role and therapeutic target in inflammation. Front Immunol 2023; 14:1254446. [PMID: 38035084 PMCID: PMC10687457 DOI: 10.3389/fimmu.2023.1254446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
GPR35 is a G protein-coupled receptor with notable involvement in modulating inflammatory responses. Although the precise role of GPR35 in inflammation is not yet fully understood, studies have suggested that it may have both pro- and anti-inflammatory effects depending on the specific cellular environment. Some studies have shown that GPR35 activation can stimulate the production of pro-inflammatory cytokines and facilitate the movement of immune cells towards inflammatory tissues or infected areas. Conversely, other investigations have suggested that GPR35 may possess anti-inflammatory properties in the gastrointestinal tract, liver and certain other tissues by curbing the generation of inflammatory mediators and endorsing the differentiation of regulatory T cells. The intricate role of GPR35 in inflammation underscores the requirement for more in-depth research to thoroughly comprehend its functional mechanisms and its potential significance as a therapeutic target for inflammatory diseases. The purpose of this review is to concurrently investigate the pro-inflammatory and anti-inflammatory roles of GPR35, thus illuminating both facets of this complex issue.
Collapse
Affiliation(s)
- Yetian Wu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Pei Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Hongjie Fan
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Caiying Zhang
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Pengfei Yu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Xinmiao Liang
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yang Chen
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
6
|
Kim SK, Tran LT, NamKoong C, Choi HJ, Chun HJ, Lee YH, Cheon M, Chung C, Hwang J, Lim HH, Shin DM, Choi YH, Kim KW. Mitochondria-derived peptide SHLP2 regulates energy homeostasis through the activation of hypothalamic neurons. Nat Commun 2023; 14:4321. [PMID: 37468558 PMCID: PMC10356901 DOI: 10.1038/s41467-023-40082-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Small humanin-like peptide 2 (SHLP2) is a mitochondrial-derived peptide implicated in several biological processes such as aging and oxidative stress. However, its functional role in the regulation of energy homeostasis remains unclear, and its corresponding receptor is not identified. Hereby, we demonstrate that both systemic and intracerebroventricular (ICV) administrations of SHLP2 protected the male mice from high-fat diet (HFD)-induced obesity and improved insulin sensitivity. In addition, the activation of pro-opiomelanocortin (POMC) neurons by SHLP2 in the arcuate nucleus of the hypothalamus (ARC) is involved in the suppression of food intake and the promotion of thermogenesis. Through high-throughput structural complementation screening, we discovered that SHLP2 binds to and activates chemokine receptor 7 (CXCR7). Taken together, our study not only reveals the therapeutic potential of SHLP2 in metabolic disorders but also provides important mechanistic insights into how it exerts its effects on energy homeostasis.
Collapse
Affiliation(s)
- Seul Ki Kim
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Korea
- Department of Applied Life Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Le Trung Tran
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Korea
- Department of Applied Life Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Cherl NamKoong
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Hyung Jin Choi
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Hye Jin Chun
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Yong-Ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - MyungHyun Cheon
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Korea
| | - Junmo Hwang
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, 41068, Korea
| | - Hyun-Ho Lim
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, 41068, Korea
| | - Dong Min Shin
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Korea
- Department of Applied Life Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Yun-Hee Choi
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Ki Woo Kim
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Korea.
- Department of Applied Life Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, 03722, Korea.
| |
Collapse
|
7
|
Li J, Hu G, Liu W, Cao X, Chen G, Peng F, Xiaofang X, Peng C. Patchouli alcohol against renal fibrosis of spontaneously hypertensive rats via Ras/Raf-1/ERK1/2 signalling pathway. J Pharm Pharmacol 2023:7161501. [PMID: 37177974 DOI: 10.1093/jpp/rgad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVES The present study was designed to obverse the protection of patchouli alcohol (PA) ameliorates hypertensive nephropathy in spontaneously hypertensive rats (SHR) and reveals potential mechanism. METHODS Briefly, the adult spontaneously hypertensive rats (SHR) or Wistar-Kyoto (WKY) rats (half male and half female) were intragastric gavaged or not with PA (80, 40 and 20 mg/kg) for 8 weeks. Body weight, blood pressure (BP), renal weight, renal function and renal morphology were measured. Further, western blotting and immunohistochemical analysis were used to study the underlying mechanism. KEY FINDINGS Compared with the WKY group, plasmatic levels of renin, angiotensin II (Ang-II), transforming growth factor beta 1(TGF-β1), plasminogen activator inhibitor-1(PAI-1), creatinine (Cr), blood urea nitrogen (BUN), renal index, mRNA levels of ERK1/2 and α-SMA were significantly increased in SHR. Histology results showed that renal tubular injury and tubulointerstitial fibrosis occurred in SHR. After administration, SBP of captopril group decreased at each week after administration, especially at 3, 5, 6 7 and 8 weeks (P < 0.05 or P < 0.01). There is no significant effect was assessed in the olive oil group. Decreased plasma Cr, Renin, Ang-II, TGF-β1, PAI-1, SCFAs and Renin, TGF-β1, PAI-1 in renal tissues were observed significantly in captopril (P <0.05 or P < 0.01). Plasma BUN, Ang-II, TGF-β1 and PAI-1 in renal tissues decreased in the olive oil group significantly (P <0.05 or P < 0.01). PA (80, 40 and 20 mg/kg) lowered BP and plasmatic levels of Renin, Ang-II, TGF-β1 and PAI-1. Treatment with PA (40, 20 mg/kg) decreased levels of Cr, BUN and suppressed of activation of pro-fibrosis cytokines including TGF-β1 in kidney. There is no ameliorative change in the olive oil group and the captopril group (P > 0.05) while PA treatment alleviated renal tubular injury and produced dramatic collagen fibre area reductions in mesangial membrane, basement membrane, and renal interstitium obviously (P < 0.05 or P < 0.01). Treatment of SHR with PA-inhibited MFB activation and downregulated mRNA of α-SMA. Treatment with PA suppressed excessive production of the extracellular matrix (ECM) via decreasing Col I, III and FN, downregulating mRNA of tissue inhibitor of TIMP-1 along with upregulating mRNA of MMP-9. The expression of Col III and MMP-9 mRNA-reduced in the captopril group (P < 0.05). In addition, the expression of ERK1/2 and pERK1/2 also reduced in the captopril group significantly (P < 0.05 or P < 0.01). Treatment with PA (20 mg/kg) downregulated proteins expression of Raf-1, ERK1/2 and pERK1/2 and mRNA expression of Ras, Raf-1 and ERK1/2. CONCLUSIONS Overall, PA restored normal BP, alleviated renal dysfunction and renal fibrosis, possibly by suppressing Ang II and TGF-β1-mediated Ras/Raf-1/ERK1/2 signalling pathway.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Guanying Hu
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Wenxiu Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Guanru Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, PR China
| | - Xie Xiaofang
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| |
Collapse
|
8
|
6-Gingerol, a major ingredient of ginger, attenuated cisplatin-induced pica in rats via regulating 5-HT3R/Ca2+/CaMKII/ERK1/2 signaling pathway. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
9
|
Seckler JM, Robinson EN, Lewis SJ, Grossfield A. Surveying nonvisual arrestins reveals allosteric interactions between functional sites. Proteins 2023; 91:99-107. [PMID: 35988049 PMCID: PMC9771995 DOI: 10.1002/prot.26413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022]
Abstract
Arrestins are important scaffolding proteins that are expressed in all vertebrate animals. They regulate cell-signaling events upon binding to active G-protein coupled receptors (GPCR) and trigger endocytosis of active GPCRs. While many of the functional sites on arrestins have been characterized, the question of how these sites interact is unanswered. We used anisotropic network modeling (ANM) together with our covariance compliment techniques to survey all the available structures of the nonvisual arrestins to map how structural changes and protein-binding affect their structural dynamics. We found that activation and clathrin binding have a marked effect on arrestin dynamics, and that these dynamics changes are localized to a small number of distant functional sites. These sites include α-helix 1, the lariat loop, nuclear localization domain, and the C-domain β-sheets on the C-loop side. Our techniques suggest that clathrin binding and/or GPCR activation of arrestin perturb the dynamics of these sites independent of structural changes.
Collapse
Affiliation(s)
- James M. Seckler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Emily N. Robinson
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Alan Grossfield
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| |
Collapse
|
10
|
Zhang X, Zhou W, Niu Y, Zhu S, Zhang Y, Li X, Yu C. Lysyl oxidase promotes renal fibrosis via accelerating collagen cross-link driving by β-arrestin/ERK/STAT3 pathway. FASEB J 2022; 36:e22427. [PMID: 35792886 PMCID: PMC9544652 DOI: 10.1096/fj.202200573r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/25/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022]
Abstract
Lysyl oxidase (LOX) is a copper‐dependent monoamine oxidase whose primary function is the covalent cross‐linking of collagen in the extracellular matrix (ECM). Evidence has shown that LOX is associated with cancer and some fibrotic conditions. We recently found that serum LOX is a potential diagnostic biomarker for renal fibrosis, but the mechanism by which LOX is regulated and contributes to renal fibrosis remains unknown. The current study demonstrates the following: (1) LOX expression was increased in fibrotic kidneys including ischemia‐reperfusion injury‐(IRI‐), unilateral ureteral obstruction‐(UUO‐), and folic acid‐ (FA‐) induced fibrotic kidneys as well as in the paraffin‐embedded sections of human kidneys from the patients with renal fibrosis. (2) The increasing deposition and cross‐linking of collagen induced by LOX was observed in IRI‐, UUO‐ and FA‐kidneys. (3) LOX was regulated by the β‐arrestin‐ERK‐STAT3 pathway in renal fibrosis. STAT3 was the downstream of AT1R‐β‐arrestin‐ERK, ERK entered the nucleus and activated STAT3‐pY705 but not STAT3‐pS727. (4) STAT3 nuclear subtranslocation and binding to the LOX promoter may be responsible for the upregulation of LOX expression. (5) Pharmacologic inhibition of LOX with BAPN in vivo inhibited the upregulation of LOX, decreased collagen over cross‐linking and ameliorated renal fibrosis after ischemic injury. Collectively, these observations suggest that LOX plays an essential role in the development of renal fibrosis by catalyzing collagen over cross‐linking. Thus, strategies targeting LOX could be a new avenue in developing therapeutics against renal fibrosis.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenqian Zhou
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yangyang Niu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Saiya Zhu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingying Zhang
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Dpartment of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Chen Yu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Eishingdrelo H, Qin X, Yuan L, Kongsamut S, Yu L. Ligands can differentially and temporally modulate GPCR interaction with 14-3-3 isoforms. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100123. [PMID: 35992381 PMCID: PMC9389249 DOI: 10.1016/j.crphar.2022.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 12/04/2022] Open
Abstract
GPCR signaling and function depend on their associated proteins and subcellular locations. Besides G-proteins and β-arrestins, 14-3-3 proteins participate in GPCR trafficking and signaling, and they connect a large number of diverse proteins to form signaling networks. Multiple 14-3-3 isoforms exist, and a GPCR can differentially interact with different 14-3-3 isoforms in response to agonist treatment. We found that some agonist-induced GPCR/14-3-3 signal intensities can rapidly decrease. We confirmed that this phenomenon of rapidly decreasing agonist-induced GPCR/14-3-3 signal intensity could also be paralleled with GPCR/β-arrestin-2 signals, indicating diminished levels of GPCR/signal adaptor complexes during endocytosis. The temporal signals could implicate either GPCR/14-3-3 complex dissociation or the complex undergoing a degradation process. Furthermore, we found that certain GPCR ligands can regulate GPCR/14-3-3 signals temporally, suggesting a new approach for GPCR drug development by modulating GPCR/14-3-3 signals temporally. Some GPCRs can engage or dissociate with different 14-3-3 isoforms in response to agonist treatment. Some GPCRs and 14-3-3 isoform interaction signals can be rapidly diminished in response to agonist treatment, the temporal signal strength changes can be paralleled with the same GPCR and β-arrestin-2 interaction signals. Adrenergic receptor alpha 2A (ADRA2A) drugs with different therapeutic indications can temporally regulate ADRA2A/14-3-3γ and ADRA2A/β-arrestin-2 interaction complex signals.
Collapse
|
12
|
Perry-Hauser NA, Hopkins JB, Zhuo Y, Zheng C, Perez I, Schultz KM, Vishnivetskiy SA, Kaya AI, Sharma P, Dalby KN, Chung KY, Klug CS, Gurevich VV, Iverson TM. The two non-visual arrestins engage ERK2 differently. J Mol Biol 2022; 434:167465. [PMID: 35077767 PMCID: PMC8977243 DOI: 10.1016/j.jmb.2022.167465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Arrestin binding to active phosphorylated G protein-coupled receptors terminates G protein coupling and initiates another wave of signaling. Among the effectors that bind directly to receptor-associated arrestins are extracellular signal-regulated kinases 1/2 (ERK1/2), which promote cellular proliferation and survival. Arrestins may also engage ERK1/2 in isolation in a pre- or post-signaling complex that is likely in equilibrium with the full signal initiation complex. Molecular details of these binary complexes remain unknown. Here, we investigate the molecular mechanisms whereby arrestin-2 and arrestin-3 (a.k.a. β-arrestin1 and β-arrestin2, respectively) engage ERK1/2 in pairwise interactions. We find that purified arrestin-3 binds ERK2 more avidly than arrestin-2. A combination of biophysical techniques and peptide array analysis demonstrates that the molecular basis in this difference of binding strength is that the two non-visual arrestins bind ERK2 via different parts of the molecule. We propose a structural model of the ERK2-arrestin-3 complex in solution using size-exclusion chromatography coupled to small angle X-ray scattering (SEC-SAXS). This binary complex exhibits conformational heterogeneity. We speculate that this drives the equilibrium either toward the full signaling complex with receptor-bound arrestin at the membrane or toward full dissociation in the cytoplasm. As ERK1/2 regulates cell migration, proliferation, and survival, understanding complexes that relate to its activation could be exploited to control cell fate.
Collapse
Affiliation(s)
- Nicole A Perry-Hauser
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, United States. https://twitter.com/EmilyBroadis
| | - Jesse B Hopkins
- BioCAT, Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, United States
| | - Ya Zhuo
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, United States
| | - Ivette Perez
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, United States; Division of Chemical Biology and Medicinal Chemistry, University of Texas at Austin, Austin, TX 78712, United States
| | - Kathryn M Schultz
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Sergey A Vishnivetskiy
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, United States
| | - Ali I Kaya
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, United States
| | - Pankaj Sharma
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, United States
| | - Kevin N Dalby
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro Jangan-gu, Suwon 16419, Republic of Korea
| | - Ka Young Chung
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-0146, United States
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, United States.
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, United States; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, United States; Division of Chemical Biology and Medicinal Chemistry, University of Texas at Austin, Austin, TX 78712, United States; Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232-0146, United States.
| |
Collapse
|
13
|
Sabbir MG, Inoue A, Taylor CG, Zahradka P. Loss of β-Arrestins or six Gα proteins in HEK293 cells caused Warburg effect and prevented progesterone-induced rapid proteasomal degradation of progesterone receptor membrane component 1. J Steroid Biochem Mol Biol 2021; 214:105995. [PMID: 34506922 DOI: 10.1016/j.jsbmb.2021.105995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Hormonal dysregulation plays a significant role in the metabolic switching during malignant transformation. Progesterone Receptor Membrane Component 1 (PGRMC1) is a single-pass transmembrane receptor activated by the binding of progesterone (P4), a sex hormone. In a previous study, P4 treatment caused rapid (within 30 min) induction of aerobic glycolysis in transformed HEK293 cells, a hallmark malignant phenotype known as the Warburg effect. This metabolic reprogramming was associated with the proteasomal degradation of a 70 kilodalton (kDa) PGRMC1. PGRMC1 interacts with a variety of proteins, including G protein-coupled receptors (GPCRs) and P4-PGRMC1 signaling modulates cyclic adenosine monophosphate (cAMP) production. Therefore, we hypothesized that the P4-induced Warburg effect and proteasomal degradation of PGRMC1 involve G proteins and β-Arrestins (ARRBs). In the present study, we investigated P4-induced aerobic glycolysis, proteasomal degradation of p70 PGRMC1, as well as abundance and subcellular translocation of PGRMC1 along with two key glycolytic enzymes Hexokinase 1 (HK1) and Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) in six Gα subunit (Gsix) proteins or ARRB1/2-deficient HEK293 cells. Loss of ARRB1/2 or Gsix proteins inhibited P4-induced p70 PGRMC1 degradation but failed to prevent the P4-induced Warburg effect. Also, deficiency of ARRB1/2 or Gsix proteins differentially affected the basal as well as P4-induced abundance and subcellular translocation of PGRMC1, HK1, and GAPDH proteins. Overall, the findings indicate that P4-PGRMC1-mediated metabolic reprogramming in HEK293 cells depends on β-Arrestins and Gα proteins suggesting the involvement of an underlying GPCR signal transduction pathway.
Collapse
Affiliation(s)
- Mohammad Golam Sabbir
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada; Alzo Biosciences Inc., San Diego, USA.
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Carla G Taylor
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Peter Zahradka
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| |
Collapse
|
14
|
Deng Y, Deng G, Grobe JL, Cui H. Hypothalamic GPCR Signaling Pathways in Cardiometabolic Control. Front Physiol 2021; 12:691226. [PMID: 34262481 PMCID: PMC8274634 DOI: 10.3389/fphys.2021.691226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/26/2021] [Indexed: 01/22/2023] Open
Abstract
Obesity is commonly associated with sympathetic overdrive, which is one of the major risk factors for the development of cardiovascular diseases, such as hypertension and heart failure. Over the past few decades, there has been a growing understanding of molecular mechanisms underlying obesity development with central origin; however, the relative contribution of these molecular changes to the regulation of cardiovascular function remains vague. A variety of G-protein coupled receptors (GPCRs) and their downstream signaling pathways activated in distinct hypothalamic neurons by different metabolic hormones, neuropeptides and monoamine neurotransmitters are crucial not only for the regulation of appetite and metabolic homeostasis but also for the sympathetic control of cardiovascular function. In this review, we will highlight the main GPCRs and associated hypothalamic nuclei that are important for both metabolic homeostasis and cardiovascular function. The potential downstream molecular mediators of these GPCRs will also be discussed.
Collapse
Affiliation(s)
- Yue Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- FOE Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
15
|
Lino CA, de Bortoli Teixeira L, Capelupe Simões S, de Oliveira Silva T, Diniz GP, da Costa-Neto CM, Barreto-Chaves MLM. Beta-arrestin 2 mediates cardiac hypertrophy induced by thyroid hormones via AT1R. J Cell Physiol 2021; 236:4640-4654. [PMID: 33345322 DOI: 10.1002/jcp.30187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022]
Abstract
We have previously reported that angiotensin II receptor type 1 (AT1R) contributes to the hypertrophic effects of thyroid hormones (TH) in cardiac cells. Even though evidence indicates crosstalks between TH and AT1R, the underlying mechanisms are poorly understood. Beta-arrestin (ARRB) signaling has been described as noncanonical signal transduction pathway that exerts important effects in the cardiovascular system through G-protein-coupled receptors, as AT1R. Herein, we investigated the contribution of ARRB signaling in TH-induced cardiomyocyte hypertrophy. Primary cardiomyocyte cultures were treated with Triiodothyronine (T3) to induce cell hypertrophy. T3 rapidly activates extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, which was partially inhibited by AT1R blockade. Also, ERK1/2 inhibition attenuated the hypertrophic effects of T3. ARRB2 was upregulated by T3, and small interfering RNA assays revealed the role of ARRB2-but not ARRB1-on ERK1/2 activation and cardiomyocyte hypertrophy. Corroborating these findings, the ARRB2-overexpressed cells showed increased expression of hypertrophic markers, which were attenuated by ERK1/2 inhibition. Immunocytochemistry and immunoprecipitation assays revealed the increased expression of nuclear AT1R after T3 stimulation and the increased interaction of AT1R/ARRB2. The inhibition of endocytosis also attenuated the T3 effects on cardiac cells. Our results evidence the contribution of ARRB2 on ERK1/2 activation and cardiomyocyte hypertrophy induced by T3 via AT1R.
Collapse
Affiliation(s)
- Caroline Antunes Lino
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Larissa de Bortoli Teixeira
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Sarah Capelupe Simões
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Gabriela Placoná Diniz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Claudio Miguel da Costa-Neto
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
16
|
Remifentanil preconditioning promotes liver regeneration via upregulation of β-arrestin 2/ERK/cyclin D1 pathway. Biochem Biophys Res Commun 2021; 557:69-76. [PMID: 33862462 DOI: 10.1016/j.bbrc.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 12/31/2022]
Abstract
Remifentanil is a potent, short-acting opioid analgesic drug that can protect tissues from ischemia and reperfusion injury though anti-inflammatory effects. However, the utility of remifentanil in liver regeneration after hepatectomy is not known. Using a 70% hepatectomy mouse model (PHx), we found that preconditioning animals with 4 μg/kg remifentanil enhanced liver regeneration through supporting hepatocyte proliferation but not through anti-inflammatory effects. These effects were also phenocopied in vitro where 40 mM remifentanil promoted the proliferation of primary mouse hepatocyte cultures. We further identified that remifentanil treatment increased the expression of β-arrestin 2 in vivo and in vitro. Demonstrating specificity, remifentanil preconditioning failed to promote liver regeneration in liver-specific β-arrestin 2 knockout (CKO) mice subjected to PHx. While remifentanil increased the expression of activated (phosphorylated)-ERK and cyclin D1 in PHx livers, their levels were not significantly changed in remifentanil-treated CKO mice nor in WT mice pretreated with the ERK inhibitor U0126. Our findings suggest that remifentanil promotes liver regeneration via upregulation of a β-arrestin 2/ERK/cyclin D1 axis, with implications for improving regeneration process after hepatectomy.
Collapse
|
17
|
Kang YY, Wachi Y, Engdorf E, Fumagalli E, Wang Y, Myers J, Massey S, Greiss A, Xu S, Roman G. Normal Ethanol Sensitivity and Rapid Tolerance Require the G Protein Receptor Kinase 2 in Ellipsoid Body Neurons in Drosophila. Alcohol Clin Exp Res 2020; 44:1686-1699. [PMID: 32573992 PMCID: PMC7485117 DOI: 10.1111/acer.14396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND G protein signaling pathways are key neuromodulatory mechanisms for behaviors and neurological functions that affect the impact of ethanol (EtOH) on locomotion, arousal, and synaptic plasticity. Here, we report a novel role for the Drosophila G protein-coupled receptor kinase 2 (GPRK2) as a member of the GRK4/5/6 subfamily in modulating EtOH-induced behaviors. METHODS We studied the requirement of Drosophila Gprk2 for naïve sensitivity to EtOH sedation and ability of the fly to develop rapid tolerance after a single exposure to EtOH, using the loss of righting reflex (LORR) and fly group activity monitor (FlyGrAM) assays. RESULTS Loss-of-function Gprk2 mutants demonstrate an increase in alcohol-induced hyperactivity, reduced sensitivity to the sedative effects of EtOH, and diminished rapid tolerance after a single intoxicating exposure. The requirement for Gprk2 in EtOH sedation and rapid tolerance maps to ellipsoid body neurons within the Drosophila brain, suggesting that wild-type Gprk2 is required for modulation of locomotion and alertness. However, even though Gprk2 loss of function leads to decreased and fragmented sleep, this change in the sleep state does not depend on Gprk2 expression in the ellipsoid body. CONCLUSION Our work on GPRK2 has established a role for this GRK4/5/6 subfamily member in EtOH sensitivity and rapid tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shiyu Xu
- University of HoustonHoustonTexas
| | - Gregg Roman
- University of MississippiUniversityMississippi
| |
Collapse
|
18
|
Kaya AI, Perry NA, Gurevich VV, Iverson TM. Phosphorylation barcode-dependent signal bias of the dopamine D1 receptor. Proc Natl Acad Sci U S A 2020; 117:14139-14149. [PMID: 32503917 PMCID: PMC7321966 DOI: 10.1073/pnas.1918736117] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Agonist-activated G protein-coupled receptors (GPCRs) must correctly select from hundreds of potential downstream signaling cascades and effectors. To accomplish this, GPCRs first bind to an intermediary signaling protein, such as G protein or arrestin. These intermediaries initiate signaling cascades that promote the activity of different effectors, including several protein kinases. The relative roles of G proteins versus arrestins in initiating and directing signaling is hotly debated, and it remains unclear how the correct final signaling pathway is chosen given the ready availability of protein partners. Here, we begin to deconvolute the process of signal bias from the dopamine D1 receptor (D1R) by exploring factors that promote the activation of ERK1/2 or Src, the kinases that lead to cell growth and proliferation. We found that ERK1/2 activation involves both arrestin and Gαs, while Src activation depends solely on arrestin. Interestingly, we found that the phosphorylation pattern influences both arrestin and Gαs coupling, suggesting an additional way the cells regulate G protein signaling. The phosphorylation sites in the D1R intracellular loop 3 are particularly important for directing the binding of G protein versus arrestin and for selecting between the activation of ERK1/2 and Src. Collectively, these studies correlate functional outcomes with a physical basis for signaling bias and provide fundamental information on how GPCR signaling is directed.
Collapse
Affiliation(s)
- Ali I Kaya
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Nicole A Perry
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | | | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232;
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
19
|
Thach TT, Wu C, Hwang KY, Lee SJ. Azelaic Acid Induces Mitochondrial Biogenesis in Skeletal Muscle by Activation of Olfactory Receptor 544. Front Physiol 2020; 11:329. [PMID: 32411005 PMCID: PMC7199515 DOI: 10.3389/fphys.2020.00329] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/20/2020] [Indexed: 12/31/2022] Open
Abstract
Mouse olfactory receptor 544 (Olfr544) is ectopically expressed in varied extra-nasal organs with tissue specific functions. Here, we investigated the functionality of Olfr544 in skeletal muscle cells and tissue. The expression of Olfr544 is confirmed by RT-PCR and qPCR in skeletal muscle cells and mouse skeletal muscle assessed by RT-PCR and qPCR. Olfr544 activation by its ligand, azelaic acid (AzA, 50 μM), induced mitochondrial biogenesis and autophagy in cultured skeletal myotubes by induction of cyclic adenosine monophosphate-response element binding protein (CREB)-peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)-extracellular signal-regulated kinase-1/2 (ERK1/2) signaling axis. The silencing Olfr544 gene expression abrogated these effects of AzA in cultured myotubes. Similarly, in mice, the acute subcutaneous injection of AzA induced the CREB-PGC-1α-ERK1/2 pathways in mouse skeletal muscle, but these activations were negated in those of Olfr544 knockout mice. These demonstrate that the induction of mitochondrial biogenesis in skeletal muscle by AzA is Olfr544-dependent. Oral administration of AzA to high-fat-diet fed obese mice for 6 weeks increased mitochondrial DNA content in the skeletal muscle as well. Collectively, these findings demonstrate that Olfr544 activation by AzA regulates mitochondrial biogenesis in skeletal muscle. Intake of AzA or food containing AzA may help to improve skeletal muscle function.
Collapse
Affiliation(s)
- Trung Thanh Thach
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21-PLUS, Korea University, Seoul, South Korea.,Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Chunyan Wu
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21-PLUS, Korea University, Seoul, South Korea.,Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Kwang Yeon Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Sung-Joon Lee
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21-PLUS, Korea University, Seoul, South Korea.,Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
20
|
Khalid E, Chang JP. β-Arrestin-dependent signaling in GnRH control of hormone secretion from goldfish gonadotrophs and somatotrophs. Gen Comp Endocrinol 2020; 287:113340. [PMID: 31778712 DOI: 10.1016/j.ygcen.2019.113340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022]
Abstract
In goldfish, two native isoforms of gonadotropin-releasing hormone (GnRH2 and GnRH3) stimulate luteinizing hormone (LH) and growth hormone (GH) release from pituitary cells through activation of cell-surface GnRH-receptors (GnRHRs) on gonadotrophs and somatotrophs. Interestingly, GnRH2 and GnRH3 induce LH and GH release via non-identical post-receptor signal transduction pathways in a ligand- and cell-type-selective manner. In this study, we examined the involvement of β-arrestins in the control of GnRH-induced LH and GH secretion from dispersed goldfish pituitary cells. Treatment with Barbadin, which interferes with β-arrestin and β2-adaptin subunit interaction, reduced LH responses to GnRH2 and GnRH3, as well as GH responses to GnRH2; but enhanced GnRH3-induced GH secretion. Barbadin also had positive influences on basal hormone release, and basal GH release in particular, as well as basal activity of extracellular signal-regulated kinase (ERK) and GnRH-induced ERK activation. These findings indicate that β-arrestins play permissive roles in the control of GnRH-stimulated LH release. However, in somatotrophs, β-arrestins, perhaps by mediating agonist-selective endosomal trafficking of engaged GnRHRs, participate in GnRH-isoform-specific GH release responses (stimulatory and inhibitory for GnRH2-GnRHR and GnRH3-GnRHR activation, respectively). The correlative stimulatory influences of Barbadin on basal hormone release and ERK activation suggest that β-arrestins may negatively regulate basal secretion through modulation of basal ERK activity. These results provide the first direct evidence of a role for β-arrestins in hormone secretion from an untransformed primary pituitary cell model, and establish these proteins as important receptor-proximal players in mediating functional selectivity downstream of goldfish GnRHRs.
Collapse
Affiliation(s)
- Enezi Khalid
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - John P Chang
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada.
| |
Collapse
|
21
|
Sundqvist M, Christenson K, Gabl M, Holdfeldt A, Jennbacken K, Møller TC, Dahlgren C, Forsman H. Staphylococcus aureus–Derived PSMα Peptides Activate Neutrophil FPR2 but Lack the Ability to Mediate β-Arrestin Recruitment and Chemotaxis. THE JOURNAL OF IMMUNOLOGY 2019; 203:3349-3360. [DOI: 10.4049/jimmunol.1900871] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022]
|
22
|
14-3-3 signal adaptor and scaffold proteins mediate GPCR trafficking. Sci Rep 2019; 9:11156. [PMID: 31371790 PMCID: PMC6673703 DOI: 10.1038/s41598-019-47478-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/18/2019] [Indexed: 11/09/2022] Open
Abstract
Receptor trafficking is pivotal for the temporal and spatial control of GPCR signaling and is regulated by multiple cellular proteins. We provide evidence that GPCRs interact with 14-3-3 signal adaptor/scaffold proteins and that this interaction regulates receptor trafficking in two ways. We found GPCR/14-3-3 interaction signals can be agonist-induced or agonist-inhibited. Some GPCRs associate with 14-3-3 proteins at the cell membrane and agonist treatments result in disrupted GPCR/14-3-3 interaction signals. The diminished GPCR/14-3-3 interaction signals are temporally correlated with increased GPCR/β-arrestin interaction signals in response to agonist treatment. Other GPCRs showed agonist-induced GPCR/14-3-3 interaction signal increases that occur later than agonist-induced GPCR/β-arrestin interaction signals, indicating that GPCR/14-3-3 interaction occurred after receptor endocytosis. These two types of GPCR/14-3-3 interaction patterns correlate with different receptor trafficking patterns. In addition, the bioinformatic analysis predicts that approximately 90% of GPCRs contain at least one putative 14-3-3 binding motif, suggesting GPCR/14-3-3 association could be a general phenomenon. Based on these results and collective evidence, we propose a working model whereby 14-3-3 serves as a sorting factor to regulate receptor trafficking.
Collapse
|
23
|
Arrestin-3 scaffolding of the JNK3 cascade suggests a mechanism for signal amplification. Proc Natl Acad Sci U S A 2018; 116:810-815. [PMID: 30591558 DOI: 10.1073/pnas.1819230116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Scaffold proteins tether and orient components of a signaling cascade to facilitate signaling. Although much is known about how scaffolds colocalize signaling proteins, it is unclear whether scaffolds promote signal amplification. Here, we used arrestin-3, a scaffold of the ASK1-MKK4/7-JNK3 cascade, as a model to understand signal amplification by a scaffold protein. We found that arrestin-3 exhibited >15-fold higher affinity for inactive JNK3 than for active JNK3, and this change involved a shift in the binding site following JNK3 activation. We used systems biochemistry modeling and Bayesian inference to evaluate how the activation of upstream kinases contributed to JNK3 phosphorylation. Our combined experimental and computational approach suggested that the catalytic phosphorylation rate of JNK3 at Thr-221 by MKK7 is two orders of magnitude faster than the corresponding phosphorylation of Tyr-223 by MKK4 with or without arrestin-3. Finally, we showed that the release of activated JNK3 was critical for signal amplification. Collectively, our data suggest a "conveyor belt" mechanism for signal amplification by scaffold proteins. This mechanism informs on a long-standing mystery for how few upstream kinase molecules activate numerous downstream kinases to amplify signaling.
Collapse
|
24
|
Venuti A, Pastori C, Siracusano G, Pennisi R, Riva A, Tommasino M, Sciortino MT, Lopalco L. The Abrogation of Phosphorylation Plays a Relevant Role in the CCR5 Signalosome Formation with Natural Antibodies to CCR5. Viruses 2017; 10:E9. [PMID: 29283386 PMCID: PMC5795422 DOI: 10.3390/v10010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/21/2017] [Accepted: 12/25/2017] [Indexed: 12/23/2022] Open
Abstract
The exposure to CCR5 (CC chemokine receptor 5) specific natural antibodies in vitro produces a Class B β-arrestin2-dependent CCR5 retention with the aid of ERK1, due to the formation of a CCR5 signalosome, which remains stable for at least 48 h. Considering that β-arrestins and MAPKs are receptive to environmental signals, their signal complexes could be one of the key junction for GPCRs internalization related signal transduction. Here, we demonstrate that, in T cells, the phosphorylation status of either CCR5 receptor or ERK1 protein is necessary to drive the internalized receptor into the early endosomes, forming the CCR5 signalosome. In particular, our data show that β-arrestin2/ERK1 complex is a relevant transducer in the CCR5 signaling pathway. Understanding the mechanism of CCR5 regulation is essential for many inflammatory disorders, tumorigenesis and viral infection such as HIV.
Collapse
Affiliation(s)
- Assunta Venuti
- Division of Immunology, Transplantation and Infectious Diseases, DIBIT-San Raffaele Scientific Institute, 20132 Milan, Italy.
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon CEDEX 08, France.
| | - Claudia Pastori
- Division of Immunology, Transplantation and Infectious Diseases, DIBIT-San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Gabriel Siracusano
- Division of Immunology, Transplantation and Infectious Diseases, DIBIT-San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Rosamaria Pennisi
- Department of Chemical Biological Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Agostino Riva
- Third Division of Infectious Diseases, Luigi Sacco Hospital, University of Milan, 20157 Milan, Italy.
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon CEDEX 08, France.
| | - Maria Teresa Sciortino
- Department of Chemical Biological Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, DIBIT-San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
25
|
Venuti A, Pastori C, Pennisi R, Riva A, Sciortino MT, Lopalco L. Class B β-arrestin2-dependent CCR5 signalosome retention with natural antibodies to CCR5. Sci Rep 2016; 6:39382. [PMID: 28008933 PMCID: PMC5180096 DOI: 10.1038/srep39382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/16/2016] [Indexed: 12/15/2022] Open
Abstract
CCR5 stimulation with natural ligands, such as RANTES, classically induces short-term internalization with transient activation of β-arrestins and rapidly recycling on the cell surface. Here we discovered that, in T cells, natural CCR5 antibodies induce a CCR5-negative phenotype with the involvement of β-arrestin2, which leads to the formation of a stable CCR5 signalosome with both β-arrestin2 and ERK1. The activation of β-arrestin2 is necessary to CCR5 signaling for the signalosome formation and stabilization. When all stimuli were washed out, β-arrestin1 silencing favors the activity of β-arrestin2 for the CCR5 signalosome retention. Interestingly, CCR5 turn from Class A trafficking pattern, normally used for its internalization with natural modulating molecules (i.e. RANTES), into a long lasting Class B type specifically induced by stimulation with natural anti-CCR5 antibodies. This new CCR5 pathway is relevant not only to study in depth the molecular basis of all pathologies where CCR5 is involved but also to generate new antidody-based therapeutics.
Collapse
Affiliation(s)
- Assunta Venuti
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Claudia Pastori
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Rosamaria Pennisi
- Department of Chemical Biological Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Agostino Riva
- Third Division of Infectious Diseases, Luigi Sacco Hospital, University of Milan, Milan, 20157, Italy
| | - Maria Teresa Sciortino
- Department of Chemical Biological Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, 20132, Italy
| |
Collapse
|
26
|
Casarini L, Reiter E, Simoni M. β-arrestins regulate gonadotropin receptor-mediated cell proliferation and apoptosis by controlling different FSHR or LHCGR intracellular signaling in the hGL5 cell line. Mol Cell Endocrinol 2016; 437:11-21. [PMID: 27502035 DOI: 10.1016/j.mce.2016.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/08/2016] [Accepted: 08/03/2016] [Indexed: 01/01/2023]
Abstract
Gonadotropin signaling classically involves proliferative, steroidogenic and apoptotic stimuli. In this study, we used the human granulosa cell line hGL5 to demonstrate how follicle-stimulating hormone (FSH) and luteinizing hormone (LH) differently control proliferative or apoptotic signals, revealing novel intrinsic properties of their receptors (FSHR, LHCGR). We found that, in this tumor-like cell line, the expression of endogenous FSHR and LHCGR is serum-dependent, but both receptors were unable to activate the canonical cAMP/PKA pathway upon gonadotropin stimulation, failing to produce cAMP, progesterone and G protein-coupled receptor (GPCR)-mediated apoptosis in vitro. Conversely, ligand treatment resulted in FSHR- and LHCGR-mediated ERK1/2 phosphorylation and cell proliferation due to receptor coupling to β-arrestins. The inactive cAMP/PKA pathway was unlocked by siRNA-mediated knock-down of β-arrestin 1 and 2, leading to progesterone synthesis and apoptosis. Surprisingly, FSH, but not LH treatment accelerated the cAMP/PKA-mediated apoptosis after β-arrestin silencing, an effect which could be reproduced by overexpressing the FSHR, but not the LHCGR. This work demonstrates that the expression of FSHR and LHCGR can be induced in hGL5 cells but that the FSHR-dependent cAMP/PKA pathway is constitutively silenced, possibly to protect cells from FSHR-cAMP-PKA-induced apoptosis. Also, we revealed previously unrecognized features intrinsic to the two structurally similar gonadotropin receptors, oppositely resulting in the regulation of life and death signals in vitro.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy.
| | - Eric Reiter
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Manuela Simoni
- Unit of Endocrinology, Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy; Azienda USL, NOCSAE, Modena, Italy
| |
Collapse
|
27
|
G-protein-coupled receptors mediate 14-3-3 signal transduction. Signal Transduct Target Ther 2016; 1:16018. [PMID: 29263900 PMCID: PMC5661649 DOI: 10.1038/sigtrans.2016.18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/12/2016] [Accepted: 09/04/2016] [Indexed: 01/14/2023] Open
Abstract
G-protein-coupled receptor (GPCR)-interacting proteins likely participate in regulating GPCR signaling by eliciting specific signal transduction cascades, inducing cross-talk with other pathways, and fine tuning the signal. However, except for G-proteins and β-arrestins, other GPCR-interacting proteins are poorly characterized. 14-3-3 proteins are signal adaptors, and their participation in GPCR signaling is not well understood or recognized. Here we demonstrate that GPCR-mediated 14-3-3 signaling is ligand-regulated and is likely to be a more general phenomenon than suggested by the previous reports of 14-3-3 involvement with a few GPCRs. For the first time, we can pharmacologically characterize GPCR/14-3-3 signaling. We have shown that GPCR-mediated 14-3-3 signaling is phosphorylation-dependent, and that the GPCR/14-3-3 interaction likely occurs later than receptor desensitization and internalization. GPCR-mediated 14-3-3 signaling can be β-arrestin-independent, and individual agonists can have different potencies on 14-3-3 and β-arrestin signaling. GPCRs can also mediate the interaction between 14-3-3 and Raf-1. Our work opens up a new broad realm of previously unappreciated GPCR signal transduction. Linking GPCRs to 14-3-3 signal transduction creates the potential for the development of new research directions and provides a new signaling pathway for drug discovery.
Collapse
|