1
|
Wang Y, Han X, Zhang J, Zhou MX, Liu AL. Using Pgst-4::GFP-transformed Caenorhabditis elegans for drinking water quality monitoring. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:675. [PMID: 37188927 DOI: 10.1007/s10661-023-11349-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023]
Abstract
Biological effect-based monitoring is essential for predicting or alerting to a possible deterioration in drinking water quality. In the present study, a reporter gene assay based on oxidative stress-mediated Pgst-4::GFP induction in the Caenorhabditis elegans strain VP596 (VP596 assay) was assessed for its applicability in evaluating drinking water safety and quality. This assay was used to measure the oxidative stress response in VP596 worms exposed to six ubiquitous components (As3+, Al3+, F-, NO3--N, CHCl3, and residual chlorine) in drinking water, eight mixtures of these six components designed through orthogonal design, ninety-six unconcentrated water samples from source to tap water in two supply systems, and organic extracts (OEs) of twenty-five selected water samples. Pgst-4::GFP fluorescence was not induced by Al3+, F-, NO3--N, and CHCl3, and was significantly enhanced by As3+ and residual chlorine only at concentrations higher than their respective drinking water guideline levels. Pgst-4::GFP induction was not detected in any of the six-component mixtures. Induction of Pgst-4::GFP was observed in 9.4% (3/32) of the source water samples but not in the drinking water samples. However, a notable induction effect was revealed in the three OEs of drinking water, with a relative enrichment factor of 200. These results suggest that the VP596 assay has limited utility for screening drinking water safety by testing unconcentrated water samples; however, it offers a supplemental in vivo tool for prioritizing water samples for an enhanced quality assessment, monitoring pollutant removal performance by drinking water treatment plants, and evaluating water quality in water supplies.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xue Han
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jie Zhang
- Center of Water Quality Monitoring, Wuhan Water Group Company Limited, Wuhan, 430034, China
| | - Meng-Xuan Zhou
- Center of Water Quality Monitoring, Wuhan Water Group Company Limited, Wuhan, 430034, China
| | - Ai-Lin Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Sun Y, Wang YX, Mustieles V, Shan Z, Zhang Y, Messerlian C. Blood trihalomethane concentrations and allergic sensitization: A nationwide cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162100. [PMID: 36764558 PMCID: PMC10006400 DOI: 10.1016/j.scitotenv.2023.162100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Exposure to disinfection by-products has been associated with several allergic diseases, but its association with allergen-specific immunoglobulin E (IgE) antibodies remains inconclusive. METHODS We included 932 U.S. adolescents and 2187 adults from the National Health and Nutrition Examination Survey 2005-2006 who had quantified blood THM concentrations [chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)] and 19 allergen-specific IgE antibodies. The odds ratios (ORs) of allergen-specific sensitization per 2.7-fold increment in blood THM concentrations were estimated by multivariable logistic regression models. RESULTS Blood THM concentrations were unrelated to any allergen-specific sensitization in adults. Among adolescents, however, we found positive associations between blood TCM and chlorinated THMs (Cl-THMs: sum of TCM, BDCM, and DBCM) concentrations and the odds of pet sensitization [OR = 1.28 (95 % CI: 1.05, 1.55) and 1.38 (1.15, 1.65), respectively, per each 2.7-fold increment], between blood BDCM concentrations and the odds of mold [OR = 1.47 (1.24, 1.74)], plant [OR = 1.25 (1.09, 1.43)], pet [OR = 1.27 (1.07, 1.52)], and food sensitization [OR = 1.18 (1.03, 1.36)], and between blood brominated THM (Br-THMs: sum of BDCM, DBCM, and TBM) and total THM (TTHMs: sum of 4 THMs) concentrations and the odds of mold [OR = 1.52 (1.30 1.78) and 1.30 (1.03, 1.65), respectively], dust mite [OR = 1.39 (1.06, 1.82) and 1.45 (1.06, 1.98), respectively], and pet sensitization [OR = 1.42 (1.05, 1.92) and 1.54 (1.19, 1.98), respectively]. CONCLUSION Higher blood concentrations of THMs were associated with a greater risk of allergic sensitization among U.S. adolescents but not in adults.
Collapse
Affiliation(s)
- Yang Sun
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Yi-Xin Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States.
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), 18016 Granada, Spain; Instituto de Investigación Biosanitaria Ibs GRANADA, 18016 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 18016 Granada, Spain
| | - Zhilei Shan
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| |
Collapse
|
3
|
Kostoff RN, Briggs MB, Kanduc D, Dewanjee S, Kandimalla R, Shoenfeld Y, Porter AL, Tsatsakis A. Modifiable contributing factors to COVID-19: A comprehensive review. Food Chem Toxicol 2023; 171:113511. [PMID: 36450305 PMCID: PMC9701571 DOI: 10.1016/j.fct.2022.113511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from an individual's dysfunctional immune response following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events ultimately leading to COVID-19. The current study identifies eighty immune system dysfunction-enabling toxic stressors and behaviors (hereafter called modifiable contributing factors (CFs)) that also link directly to COVID-19. Each CF is assigned to one of the five categories in the CF taxonomy shown in Section 3.3.: Lifestyle (e.g., diet, substance abuse); Iatrogenic (e.g., drugs, surgery); Biotoxins (e.g., micro-organisms, mycotoxins); Occupational/Environmental (e.g., heavy metals, pesticides); Psychosocial/Socioeconomic (e.g., chronic stress, lower education). The current study shows how each modifiable factor contributes to decreased immune system capability, increased inflammation and coagulation, and increased neural damage and neurodegeneration. It is unclear how real progress can be made in combatting COVID-19 and other similar diseases caused by viral variants without addressing and eliminating these modifiable CFs.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- Independent Consultant, Gainesville, VA, 20155, USA,Corresponding author. Independent Consultant, 13500 Tallyrand Way, Gainesville, VA, 20155, USA
| | | | - Darja Kanduc
- Dept. of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Via Orabona 4, Bari, 70125, Italy
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - Alan L. Porter
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece
| |
Collapse
|
4
|
Sun Y, Wang YX, Mustieles V, Zhang Y, Pan XF, Messerlian C. Blood trihalomethane concentrations and lung function in US adolescents: a nationally representative cross-sectional study. Eur Respir J 2022; 60:2200753. [PMID: 35680146 DOI: 10.1183/13993003.00753-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/12/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yang Sun
- Department of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Granada, Spain
- Instituto de Investigación Biosanitaria Ibs Granada, Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada, Spain
| | - Yu Zhang
- Department of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiong-Fei Pan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Carmen Messerlian
- Department of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
5
|
Kozima ET, Souza ABFD, Castro TDF, Matos NAD, Philips NE, Costa GDP, Talvani A, Cangussú SD, Bezerra FS. Aluminum hydroxide nebulization-induced redox imbalance and acute lung inflammation in mice. Exp Lung Res 2020; 46:64-74. [PMID: 32067522 DOI: 10.1080/01902148.2020.1728595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose: Aluminum is the third most abundant metal in the earth's crust and is widely used in industry. Chronic contact with aluminum results in a reduction in the activity of electron transport chain complexes, leading to excessive production of reactive oxygen species (ROS) and oxidative stress. This study aimed to evaluate the effects of short-term exposure of aluminum hydroxide on oxidative stress and pulmonary inflammatory response.Materials and methods: Male BALB/c mice were divided into three groups: control group (CG); phosphate buffered saline group (PBSG) and aluminum hydroxide group (AHG). CG was exposed to ambient air, while PBSG and AHG were exposed to PBS or aluminum hydroxide solutions via nebulization, three times per day for five consecutive days. Twenty-four hours after the last exposure, all animals were euthanized for subsequent analysis.Results: Exposure to aluminum hydroxide in the blood resulted in lower platelet levels, higher neutrophils, and lower monocytes compared to CG and PBSG. Aluminum hydroxide promoted the recruitment of inflammatory cells to the lung. Macrophage, neutrophil and lymphocyte counts were higher in AHG compared to CG and PBSG. Protein oxidation and superoxide dismutase activity were higher, while catalase activity and reduced and oxidizes glutathione ratio in AHG were lower compared to CG and PBSG. Furthermore, there was an increase in the inflammatory markers CCL2 and IFN-γ in AHG compared to CG and PBSG.Conclusion: In conclusion, short-term nebulization with aluminum hydroxide induces the influx of inflammatory cells and oxidative stress in adult BALB/c mice.
Collapse
Affiliation(s)
- Erika Tiemi Kozima
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Natália Alves de Matos
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Nicole Elizabeth Philips
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael´s Hospital, Toronto, ON, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil.,Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael´s Hospital, Toronto, ON, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Campos KKD, Araújo GR, Martins TL, Bandeira ACB, Costa GDP, Talvani A, Garcia CCM, Oliveira LAM, Costa DC, Bezerra FS. The antioxidant and anti-inflammatory properties of lycopene in mice lungs exposed to cigarette smoke. J Nutr Biochem 2017. [DOI: 10.1016/j.jnutbio.2017.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
The Effects of the Combination of a Refined Carbohydrate Diet and Exposure to Hyperoxia in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1014928. [PMID: 28018521 PMCID: PMC5153507 DOI: 10.1155/2016/1014928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/27/2016] [Accepted: 10/05/2016] [Indexed: 12/28/2022]
Abstract
Obesity is a multifactorial disease with genetic, social, and environmental influences. This study aims at analyzing the effects of the combination of a refined carbohydrate diet and exposure to hyperoxia on the pulmonary oxidative and inflammatory response in mice. Twenty-four mice were divided into four groups: control group (CG), hyperoxia group (HG), refined carbohydrate diet group (RCDG), and refined carbohydrate diet + hyperoxia group (RCDHG). The experimental diet was composed of 10% sugar, 45% standard diet, and 45% sweet condensed milk. For 24 hours, the HG and RCDHG were exposed to hyperoxia and the CG and RCDG to ambient air. After the exposures were completed, the animals were euthanized, and blood, bronchoalveolar lavage fluid, and lungs were collected for analyses. The HG showed higher levels of interferon-γ in adipose tissue as compared to other groups and higher levels of interleukin-10 and tumor necrosis factor-α compared to the CG and RCDHG. SOD and CAT activities in the pulmonary parenchyma decreased in the RCDHG as compared to the CG. There was an increase of lipid peroxidation in the HG, RCDG, and RCDHG as compared to the CG. A refined carbohydrate diet combined with hyperoxia promoted inflammation and redox imbalance in adult mice.
Collapse
|
8
|
Murta GL, Campos KKD, Bandeira ACB, Diniz MF, Costa GDP, Costa DC, Talvani A, Lima WG, Bezerra FS. Oxidative effects on lung inflammatory response in rats exposed to different concentrations of formaldehyde. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 211:206-213. [PMID: 26774767 DOI: 10.1016/j.envpol.2015.12.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
The formaldehyde (FA) is a crosslinking agent that reacts with cellular macromolecules such as proteins, nucleic acids and molecules with low molecular weight such as amino acids, and it has been linked to inflammatory processes and oxidative stress. This study aimed to analyze the oxidative effects on pulmonary inflammatory response in Fischer rats exposed to different concentrations of FA. Twenty-eight Fischer rats were divided into 4 groups (N = 7). The control group (CG) was exposed to ambient air and three groups were exposed to different concentrations of FA: 1% (FA1%), 5% (FA5%) and 10% (FA10%). In the Bronchoalveolar Lavage Fluid (BALF), the exposure to a concentration of 10% promoted the increase of inflammatory cells compared to CG. There was also an increase of macrophages and lymphocytes in FA10% and lymphocytes in FA5% compared to CG. The activity of NADPH oxidase in the blood had been higher in FA5% and FA10% compared to CG. The activity of superoxide dismutase enzyme (SOD) had an increase in FA5% and the activity of the catalase enzyme (CAT) showed an increase in FA1% compared to CG. As for the glutathione system, there was an increase in total glutathione (tGSH), reduced glutathione (GSH) and oxidized glutathione (GSSG) in FA5% compared to CG. The reduced/oxidized glutathione ratio (GSH/GSSG) had a decrease in FA5% compared to CG. There was an increase in lipid peroxidation compared to all groups and the protein carbonyl formation in FA10% compared to CG. We also observed an increase in CCL2 and CCL5 chemokines in the treatment groups compared to CG and in serum there was an increase in CCL2, CCL3 and CCL5 compared to CG. Our results point out to the potential of formaldehyde in promoting airway injury by increasing the inflammatory process as well as by the redox imbalance.
Collapse
Affiliation(s)
- Giselle Luciane Murta
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences(NUPEB), Federal University of OuroPreto (UFOP), Ouro Preto, MG, Brazil
| | - Keila Karine Duarte Campos
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences(NUPEB), Federal University of OuroPreto (UFOP), Ouro Preto, MG, Brazil
| | - Ana Carla Balthar Bandeira
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences(NUPEB), Federal University of OuroPreto (UFOP), Ouro Preto, MG, Brazil
| | - Mirla Fiuza Diniz
- Laboratory of Morphopathology (LMP), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences(NUPEB), Federal University of OuroPreto (UFOP), Ouro Preto, MG, Brazil
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences(NUPEB), Federal University of OuroPreto (UFOP), Ouro Preto, MG, Brazil
| | - Daniela Caldeira Costa
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences(NUPEB), Federal University of OuroPreto (UFOP), Ouro Preto, MG, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences(NUPEB), Federal University of OuroPreto (UFOP), Ouro Preto, MG, Brazil
| | - Wanderson Geraldo Lima
- Laboratory of Morphopathology (LMP), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences(NUPEB), Federal University of OuroPreto (UFOP), Ouro Preto, MG, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences(NUPEB), Federal University of OuroPreto (UFOP), Ouro Preto, MG, Brazil.
| |
Collapse
|