1
|
Almeida MB, Galdiano CMR, Silva Benvenuto FSRD, Carrilho E, Brazaca LC. Strategies Employed to Design Biocompatible Metal Nanoparticles for Medical Science and Biotechnology Applications. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38688024 DOI: 10.1021/acsami.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The applicability of nanomaterials has evolved in biomedical domains thanks to advances in biocompatibility strategies and the mitigation of cytotoxic effects, allowing diagnostics, imaging, and therapeutic approaches. The application of nanoparticles (NP), particularly metal nanoparticles (mNPs), such as gold (Au) and silver (Ag), includes inherent challenges related to the material characteristics, surface modification, and bioconjugation techniques. By tailoring the surface properties through appropriate coating with biocompatible molecules or functionalization with active biomolecules, researchers can reach a harmonious interaction with biological systems or samples (mostly fluids or tissues). Thus, this review highlights the mechanisms associated with the obtention of biocompatible mNP and presents a comprehensive overview of methods that facilitate safe and efficient production. Therefore, we consider this review to be a valuable resource for all researchers navigating this dynamic field.
Collapse
Affiliation(s)
- Mariana Bortholazzi Almeida
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo 13083-970, Brazil
| | | | - Filipe Sampaio Reis da Silva Benvenuto
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo 13083-970, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo 13083-970, Brazil
| | - Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
| |
Collapse
|
2
|
Li Y, Xia X, Niu Z, Wang K, Liu J, Li X. hCeO 2@ Cu 5.4O nanoparticle alleviates inflammatory responses by regulating the CTSB-NLRP3 signaling pathway. Front Immunol 2024; 15:1344098. [PMID: 38711511 PMCID: PMC11070469 DOI: 10.3389/fimmu.2024.1344098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
Inflammatory responses, especially chronic inflammation, are closely associated with many systemic diseases. There are many ways to treat and alleviate inflammation, but how to solve this problem at the molecular level has always been a hot topic in research. The use of nanoparticles (NPs) as anti-inflammatory agents is a potential treatment method. We synthesized new hollow cerium oxide nanomaterials (hCeO2 NPs) doped with different concentrations of Cu5.4O NPs [the molar ratio of Cu/(Ce + Cu) was 50%, 67%, and 83%, respectively], characterized their surface morphology and physicochemical properties, and screened the safe concentration of hCeO2@Cu5.4O using the CCK8 method. Macrophages were cultured, and P.g-lipopolysaccharide-stimulated was used as a model of inflammation and co-cultured with hCeO2@Cu5.4O NPs. We then observe the effect of the transcription levels of CTSB, NLRP3, caspase-1, ASC, IL-18, and IL-1β by PCR and detect its effect on the expression level of CTSB protein by Western blot. The levels of IL-18 and IL-1β in the cell supernatant were measured by enzyme-linked immunosorbent assay. Our results indicated that hCeO2@Cu5.4O NPs could reduce the production of reactive oxygen species and inhibit CTSB and NLRP3 to alleviate the damage caused by the inflammatory response to cells. More importantly, hCeO2@Cu5.4O NPs showed stronger anti-inflammatory effects as Cu5.4O NP doping increased. Therefore, the development of the novel nanomaterial hCeO2@Cu5.4O NPs provides a possible new approach for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Ying Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xiaomin Xia
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Zhaojun Niu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Ke Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Jie Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xue Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Utembe W, Andraos C, Gulumian M. Immunotoxicity of engineered nanomaterials and their role in asthma. Crit Rev Toxicol 2023; 53:491-505. [PMID: 37933836 DOI: 10.1080/10408444.2023.2270519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/03/2023] [Indexed: 11/08/2023]
Abstract
The toxicity of engineered nanomaterials (ENMs) in vivo and in vitro has formed the basis of most studies. However, the toxicity of ENMs, particularly on the immune system, i.e. immunotoxicity, and their role in manipulating it, are less known. This review addresses the initiation or exacerbation as well as the attenuation of allergic asthma by a variety of ENMs and how they may be used in drug delivery to enhance the treatment of asthma. This review also highlights a few research gaps in the study of the immunotoxicity of ENMs, for example, the potential drawbacks of assays used in immunotoxicity assays; the potential role of hormesis during dosing of ENMs; and the variables that result in discrepancies among different studies, such as the physicochemical properties of ENMs, differences in asthmatic animal models, and different routes of administration.
Collapse
Affiliation(s)
- Wells Utembe
- Toxicology and Biochemistry, National Institute for Occupational Health, National Health Laboratory Service, Johannesburg, South Africa
- Department of Environmental Health, University of Johannesburg, Johannesburg, South Africa
- Environmental Health Division, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Charlene Andraos
- Toxicology and Biochemistry, National Institute for Occupational Health, National Health Laboratory Service, Johannesburg, South Africa
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary Gulumian
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Haematology and Molecular Medicine Department, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Saenen ND, Witters MS, Hantoro I, Tejeda I, Ethirajan A, Van Belleghem F, Smeets K. Polystyrene Microplastics of Varying Sizes and Shapes Induce Distinct Redox and Mitochondrial Stress Responses in a Caco-2 Monolayer. Antioxidants (Basel) 2023; 12:antiox12030739. [PMID: 36978987 PMCID: PMC10045319 DOI: 10.3390/antiox12030739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Currently, we lack crucial knowledge on how the physicochemical properties of particles affect cellular health, resulting in an important gap in our understanding of the human toxicity of microplastics (MPs). Our aim was to evaluate the impact of the size and the shape of MPs on uptake and the intracellular effects in a human epithelial colorectal adenocarcinoma (Caco-2) cell line. Spherical (200 nm and 2 µm) and fibre-/fragment-shaped (8.9 ± 10.1 µm by 1.14 ± 0.97 µm) polystyrene microplastics (PS-MPs) were used to study their uptake and the potential to induce redox and mitochondrial stress responses after 24 h of exposure. We demonstrated the cellular uptake of both spherical and fibre-/fragment-shaped MPs in a size-dependent manner. In response to 2 µm spheres, we observed differential expressions of redox-related genes, including HMOX1, CAT, and GPX1. All PS-MPs decreased the intracellular H2O2 levels, which can be attributed to mitochondrial stress responses, such as increased mitochondrial DNA content, footprint, and morphology. Altogether, we demonstrated uptakes and changes in redox and mitochondrial parameters for all PS-MPs, with the 200 nm spheres showing the most profound effects. This suggests that the induction of defensive responses in Caco-2 cells mainly correlates with the number of particles taken up.
Collapse
Affiliation(s)
- Nelly D. Saenen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (N.D.S.); (M.S.W.); (I.T.); (F.V.B.)
| | - Margo S. Witters
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (N.D.S.); (M.S.W.); (I.T.); (F.V.B.)
| | - Inneke Hantoro
- Food Technology Department, Soegijapranata Catholic University, Jl. Pawiyatan Luhur IV/1, Bendan Duwur, Semarang 50234, Indonesia;
| | - Inés Tejeda
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (N.D.S.); (M.S.W.); (I.T.); (F.V.B.)
| | - Anitha Ethirajan
- Nano-Biophysics and Soft Matter Interfaces Group, Institute for Materials Research, Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium;
- IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Frank Van Belleghem
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (N.D.S.); (M.S.W.); (I.T.); (F.V.B.)
- Department of Environmental Sciences, Open Universiteit, Valkenburgerweg 177, 6419 AT Heerlen, The Netherlands
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (N.D.S.); (M.S.W.); (I.T.); (F.V.B.)
- Correspondence: ; Tel.: +32-11268319
| |
Collapse
|
5
|
Boinapalli Y, Shankar Pandey R, Singh Chauhan A, Sudheesh MS. Physiological relevance of in-vitro cell-nanoparticle interaction studies as a predictive tool in cancer nanomedicine research. Int J Pharm 2023; 632:122579. [PMID: 36603671 DOI: 10.1016/j.ijpharm.2022.122579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Cell uptake study is a routine experiment used as a surrogate to predict in vivo response in cancer nanomedicine research. Cell culture conditions should be designed in such a way that it emulates 'real' physiological conditions and avoid artefacts. It is critical to dissect the steps involved in cellular uptake to understand the physical, chemical, and biological factors responsible for particle internalization. The two-dimensional model (2D) of cell culture is overly simplistic to mimic the complexity of cancer tissues that exist in vivo. It cannot simulate the critical tissue-specific properties like cell-cell interaction and cell-extracellular matrix (ECM) interaction and its influences on the temporal and spatial distribution of nanoparticles (NPs). The three dimensional model organization of heterogenous cancer and normal cells with the ECM acts as a formidable barrier to NP penetration and cellular uptake. The three dimensional cell culture (3D) technology is a breakthrough in this direction that can mimic the barrier properties of the tumor microenvironment (TME). Herein, we discuss the physiological factors that should be considered to bridge the translational gap between in and vitro cell culture studies and in-vivo studies in cancer nanomedicine.
Collapse
Affiliation(s)
- Yamini Boinapalli
- Dept. of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| | - Ravi Shankar Pandey
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G. 495009, India
| | - Abhay Singh Chauhan
- Department of Biopharmaceutical Sciences, School of Pharmacy, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | - M S Sudheesh
- Dept. of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India.
| |
Collapse
|
6
|
Griego A, Scarpa E, De Matteis V, Rizzello L. Nanoparticle delivery through the BBB in central nervous system tuberculosis. IBRAIN 2023; 9:43-62. [PMID: 37786519 PMCID: PMC10528790 DOI: 10.1002/ibra.12087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 10/04/2023]
Abstract
Recent advances in Nanotechnology have revolutionized the production of materials for biomedical applications. Nowadays, there is a plethora of nanomaterials with potential for use towards improvement of human health. On the other hand, very little is known about how these materials interact with biological systems, especially at the nanoscale level, mainly because of the lack of specific methods to probe these interactions. In this review, we will analytically describe the journey of nanoparticles (NPs) through the brain, starting from the very first moment upon injection. We will preliminarily provide a brief overlook of the physicochemical properties of NPs. Then, we will discuss how these NPs interact with the body compartments and biological barriers, before reaching the blood-brain barrier (BBB), the last gate guarding the brain. Particular attention will be paid to the interaction with the biomolecular, the bio-mesoscopic, the (blood) cellular, and the tissue barriers, with a focus on the BBB. This will be framed in the context of brain infections, especially considering central nervous system tuberculosis (CNS-TB), which is one of the most devastating forms of human mycobacterial infections. The final aim of this review is not a collection, nor a list, of current literature data, as it provides the readers with the analytical tools and guidelines for the design of effective and rational NPs for delivery in the infected brain.
Collapse
Affiliation(s)
- Anna Griego
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| | - Edoardo Scarpa
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| | - Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”University of SalentoLecceItaly
| | - Loris Rizzello
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| |
Collapse
|
7
|
Ruijter N, Soeteman-Hernández LG, Carrière M, Boyles M, McLean P, Catalán J, Katsumiti A, Cabellos J, Delpivo C, Sánchez Jiménez A, Candalija A, Rodríguez-Llopis I, Vázquez-Campos S, Cassee FR, Braakhuis H. The State of the Art and Challenges of In Vitro Methods for Human Hazard Assessment of Nanomaterials in the Context of Safe-by-Design. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:472. [PMID: 36770432 PMCID: PMC9920318 DOI: 10.3390/nano13030472] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The Safe-by-Design (SbD) concept aims to facilitate the development of safer materials/products, safer production, and safer use and end-of-life by performing timely SbD interventions to reduce hazard, exposure, or both. Early hazard screening is a crucial first step in this process. In this review, for the first time, commonly used in vitro assays are evaluated for their suitability for SbD hazard testing of nanomaterials (NMs). The goal of SbD hazard testing is identifying hazard warnings in the early stages of innovation. For this purpose, assays should be simple, cost-effective, predictive, robust, and compatible. For several toxicological endpoints, there are indications that commonly used in vitro assays are able to predict hazard warnings. In addition to the evaluation of assays, this review provides insights into the effects of the choice of cell type, exposure and dispersion protocol, and the (in)accurate determination of dose delivered to cells on predictivity. Furthermore, compatibility of assays with challenging advanced materials and NMs released from nano-enabled products (NEPs) during the lifecycle is assessed, as these aspects are crucial for SbD hazard testing. To conclude, hazard screening of NMs is complex and joint efforts between innovators, scientists, and regulators are needed to further improve SbD hazard testing.
Collapse
Affiliation(s)
- Nienke Ruijter
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | | | - Marie Carrière
- Univ. Grenoble-Alpes, CEA, CNRS, SyMMES-CIBEST, 17 rue des Martyrs, 38000 Grenoble, France
| | - Matthew Boyles
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Polly McLean
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Julia Catalán
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| | - Alberto Katsumiti
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | | | | | | | - Isabel Rodríguez-Llopis
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | - Flemming R. Cassee
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Hedwig Braakhuis
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
8
|
Hannon G, Prina-Mello A. Testing the Effects of Magnetic Hyperthermia in 2D Cell Culture. Methods Mol Biol 2023; 2645:251-261. [PMID: 37202625 DOI: 10.1007/978-1-0716-3056-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Magnetic hyperthermia is an innovative thermal therapy for the treatment of solid malignancies. This treatment approach utilizes magnetic nanoparticles that are stimulated by alternating magnetic fields to induce temperature elevations in tumor tissue, resulting in cell death. Magnetic hyperthermia is clinically approved for treating glioblastoma in Europe and is undergoing clinical evaluation for prostate cancer in the United States. Numerous studies have also demonstrated efficacy in other cancers, however, and its potential utility extends far beyond its current clinical indications. Despite this great promise, assessing the initial efficacy of magnetic hyperthermia in vitro is a complicated endeavor, with multiple hurdles worth considering, such as accurate thermal monitoring, accounting for nanoparticle interference, and a myriad of treatment controls that make robust experimental planning essential to evaluate treatment outcome. Presented here is an optimized magnetic hyperthermia treatment protocol to test the primary mechanism of cell death in vitro. This protocol can be applied to any cell line and ensures accurate temperature measurements, minimal nanoparticle interference, and controls for multiple factors that can influence experimental outcome.
Collapse
Affiliation(s)
- Gary Hannon
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Adriele Prina-Mello
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Masri A, Brown DM, Smith DGE, Stone V, Johnston HJ. Comparison of In Vitro Approaches to Assess the Antibacterial Effects of Nanomaterials. J Funct Biomater 2022; 13:255. [PMID: 36412895 PMCID: PMC9703965 DOI: 10.3390/jfb13040255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 07/24/2023] Open
Abstract
The antibacterial properties of nanomaterials (NMs) can be exploited in a range of consumer products (e.g., wound dressings, food packaging, textiles, medicines). There is also interest in the exploitation of NMs as treatments for infectious diseases to help combat antibiotic resistance. Whilst the antibacterial activity of NMs has been assessed in vitro and in vivo in numerous studies, the methodology used is very varied. Indeed, while numerous approaches are available to assess the antibacterial effect of NMs in vitro, they have not yet been systematically assessed for their suitability and sensitivity for testing NMs. It is therefore timely to consider what assays should be prioritised to screen the antibacterial properties of NMs. The majority of existing in vitro studies have focused on investigating the antibacterial effects exhibited by silver (Ag) NMs and have employed a limited range of assays. We therefore compared the antibacterial effects of copper oxide (CuO) NMs to Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis at various concentrations (12.5-200 µg/mL) using a battery of tests (well and disc diffusion, plate counts-time-kill method, optical density measurement-OD, Alamar Blue and live/dead viability assays, and quantitative polymerase chain reaction). CuO NMs were most toxic to B. subtilis and E. coli, while P. aeruginosa was the least sensitive strain. All assays employed detected the antibacterial activity of CuO NMs; however, they varied in their sensitivity, time, cost, technical difficulty and requirement for specialized equipment. In the future, we suggest that a combination of approaches is used to provide a robust assessment of the antibacterial activity of NMs. In particular, we recommend that the time-kill and OD assays are prioritised due to their greater sensitivity. We also suggest that standard operating protocols are developed so that the antibacterial activity of NMs can be assessed using a harmonised approach.
Collapse
|
10
|
Du Y, Chen Z, Hussain MI, Yan P, Zhang C, Fan Y, Kang L, Wang R, Zhang J, Ren X, Ge C. Evaluation of cytotoxicity and biodistribution of mesoporous carbon nanotubes (pristine/-OH/-COOH) to HepG2 cells in vitro and healthy mice in vivo. Nanotoxicology 2022; 16:895-912. [PMID: 36704847 DOI: 10.1080/17435390.2023.2170836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mesoporous carbon nanotubes (mCNTs) hold great promise interests, owing to their superior nano-platform properties for biomedicine. To fully utilize this potential, the toxicity and biodistribution of pristine and surface-modified mCNTs (-OH/-COOH) should preferentially be addressed. The results of cell viability suggested that pristine mCNTs induced cell death in a concentration-dependent manner. As evidence of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD), pristine mCNTs induced noticeable redox imbalance. 99mTc tracing data suggested that the cellular uptake of pristine mCNTs posed a concentrate-dependent and energy-dependent manner via macropinocytotic and clathrin-dependent pathways, and the main accumulated organs were lung, liver and spleen. With OH modification, the ROS generation, MDA deposition and SOD consumption were evidently reduced compared with the pristine mCNTs at 24/48 h high-dose exposure. With COOH modification, the modified mCNTs only showed a significant difference in SOD consumption at 24/48 h exposure, but there was no significant difference in the measurement of ROS and MDA. The internalization mechanism and organ distribution of modified mCNTs were basically invariant. Together, our study provides evidence that mCNTs and the modified mCNTs all could induce oxidative damage and thereby impair cells. 99mTc-mCNTs can effectively trace the distribution of nanotubes in vivo.
Collapse
Affiliation(s)
- Yujing Du
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Zhipei Chen
- Institute of Nuclear Energy and New Energy System Materials, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
| | - M Irfan Hussain
- Institute of Nuclear Energy and New Energy System Materials, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Ping Yan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Chunli Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Yan Fan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China.,Department of Nuclear Medicine, Peking University International Hospital, Beijing, China
| | - Jianhua Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Xiaona Ren
- Institute of Nuclear Energy and New Energy System Materials, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Changchun Ge
- Institute of Nuclear Energy and New Energy System Materials, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
11
|
Interlaboratory evaluation of a digital holographic microscopy-based assay for label-free in vitro cytotoxicity testing of polymeric nanocarriers. Drug Deliv Transl Res 2022; 12:2207-2224. [PMID: 35799027 PMCID: PMC9263039 DOI: 10.1007/s13346-022-01207-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2022] [Indexed: 01/19/2023]
Abstract
State-of-the-art in vitro test systems for nanomaterial toxicity assessment are based on dyes and several staining steps which can be affected by nanomaterial interference. Digital holographic microscopy (DHM), an interferometry-based variant of quantitative phase imaging (QPI), facilitates reliable proliferation quantification of native cell populations and the extraction of morphological features in a fast and label- and interference-free manner by biophysical parameters. DHM therefore has been identified as versatile tool for cytotoxicity testing in biomedical nanotechnology. In a comparative study performed at two collaborating laboratories, we investigated the interlaboratory variability and performance of DHM in nanomaterial toxicity testing, utilizing complementary standard operating procedures (SOPs). Two identical custom-built off-axis DHM systems, developed for usage in biomedical laboratories, equipped with stage-top incubation chambers were applied at different locations in Europe. Temporal dry mass development, 12-h dry mass increments and morphology changes of A549 human lung epithelial cell populations upon incubation with two variants of poly(alkyl cyanoacrylate) (PACA) nanoparticles were observed in comparison to digitonin and cell culture medium controls. Digitonin as cytotoxicity control, as well as empty and cabazitaxel-loaded PACA nanocarriers, similarly impacted 12-h dry mass development and increments as well as morphology of A549 cells at both participating laboratories. The obtained DHM data reflected the cytotoxic potential of the tested nanomaterials and are in agreement with corresponding literature on biophysical and chemical assays. Our results confirm DHM as label-free cytotoxicity assay for polymeric nanocarriers as well as the repeatability and reproducibility of the technology. In summary, the evaluated DHM assay could be efficiently implemented at different locations and facilitates interlaboratory in vitro toxicity testing of nanoparticles with prospects for application in regulatory science.
Collapse
|
12
|
Marcelo GA, Galhano J, Duarte MP, Capelo-Martínez JL, Lodeiro C, Oliveira E. Validation of a Standard Luminescence Method for the Fast Determination of the Antimicrobial Activity of Nanoparticles in Escherichia coli. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2164. [PMID: 35807997 PMCID: PMC9268724 DOI: 10.3390/nano12132164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023]
Abstract
The use of nanoparticles in multiple industries has raised concerned voices about the assessment of their toxicity/antimicrobial activity and the development of standardized handling protocols. Issues emerge during the antimicrobial assaying of multiple cargo, colorimetric, colloidal nanoformulations, as standard protocols often rely on visual evaluations, or optical density (OD) measurements, leading to high variance inhibitory concentrations (MIC). Thus, a fast, luminescence-based assay for the effective assessment of the antimicrobial activity of nanoparticles is herein reported, using the bioluminescence of an in-house E. coli ATCC® 8739TM construct with the pMV306G13 + Lux plasmid (E. coli Lux). The new strain's sensitivity to ofloxacin as a standard antibiotic was confirmed, and the methodology robustness verified against multiple nanoparticles and colorimetric drugs. The reduction of incubation from 24 to only 8 h, and the sole use of luminescence (LUX490) to accurately determine and distinguish MIC50 and MIC90, are two main advantages of the method. By discarding OD measurements, one can avoid turbidity and color interferences when calculating bacterial growth. This approach is an important tool that contributes to the standardization of methods, reducing samples' background interference and focusing on luminescence as a direct probe for bacterial metabolic activity, growth and, most importantly, the correct assessment of nanomaterials' antimicrobial activity.
Collapse
Affiliation(s)
- Gonçalo A. Marcelo
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, NOVA University Lisbon, 2829-516 Caparica, Portugal; (G.A.M.); (J.G.); (J.L.C.-M.); (C.L.)
| | - Joana Galhano
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, NOVA University Lisbon, 2829-516 Caparica, Portugal; (G.A.M.); (J.G.); (J.L.C.-M.); (C.L.)
| | - Maria Paula Duarte
- MEtRICs, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - José Luis Capelo-Martínez
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, NOVA University Lisbon, 2829-516 Caparica, Portugal; (G.A.M.); (J.G.); (J.L.C.-M.); (C.L.)
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2825-182 Caparica, Portugal
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, NOVA University Lisbon, 2829-516 Caparica, Portugal; (G.A.M.); (J.G.); (J.L.C.-M.); (C.L.)
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2825-182 Caparica, Portugal
| | - Elisabete Oliveira
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, NOVA University Lisbon, 2829-516 Caparica, Portugal; (G.A.M.); (J.G.); (J.L.C.-M.); (C.L.)
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2825-182 Caparica, Portugal
| |
Collapse
|
13
|
Kim B, Shin JH, Kim HP, Jo MS, Kim HS, Lee JS, Lee HK, Kwon HC, Han SG, Kang N, Gulumian M, Bello D, Yu IJ. On-Site Deployment of an Air-Liquid-Interphase Device to Assess Health Hazard Potency of Airborne Workplace Contaminants: The Case of 3-D Printers. FRONTIERS IN TOXICOLOGY 2022; 4:818942. [PMID: 35399295 PMCID: PMC8990836 DOI: 10.3389/ftox.2022.818942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Biomonitoring of workers is an approach of evaluating workers’ exposure to chemicals and particulate matter by measuring biomarkers of parent chemicals, their metabolites, and reaction products in workers’ biospecimens. Prerequisites for biological monitoring in the workplace include permission to enter the workplace, approval of the study plan from the IRB (Institutional Review Board), and obtaining consent from workers. Because of the complex legal process involved in biomonitoring, few studies have been conducted so far on biomonitoring of workers’ exposures to nanoparticles and other hazards from emerging materials and advanced nanotechnologies. We have developed a cell-based biomonitoring device that can evaluate acute cytotoxicity and various other effect biomakers, such as inflammation, at realistic workplace exposure. This device is based on air–liquid interphase (ALI) and can be used to evaluate cell toxicity and early effect biomarkers along adverse outcome pathways. Following exposure of A549 lung epithelial cells in ALI to workplace air for 1–2 h, the cells were processed to assess the induction of inflammatory and cell damage biomarkers. Initially, we estimated the deposition rate of nanoparticles in the transwell by exposing the cell-free ALI device to silver nanoparticle aerosols (AgNP 20–30 nm) for 2 h in the laboratory. Then A549 lung epithelial cells cultured on the transwell in the ALI device were exposed to AgNP nanoaerosols for 2 h and evaluated for cytotoxicity and induction of mRNAs of pro-inflammatory cytokines IL-1b, IL-6, and TNF-α. Then the cells in the ALI device were exposed to 3-D printer emissions at the workplace and evaluated for the same matched endpoints. The mRNA levels for IL-1b, IL-6, and TNF-α increased significantly at the end of 2-h exposure of A549 cells to the positive control AgNP aerosols. These mRNAs, as well as LDH and microprotein concentrations, increased even more after 24-h post-exposure incubation (p < 0.05). Cytotoxicity evaluation of 3-D printer emissions at 810 and 957 μg/m3, which was more than 80 times higher than the airborne total suspended particulate concentrations in the workplace air (9–12.5 μg/m3), suggested no significant acute cytotoxicity at the end of 2-h exposure to 3-D-printing emission, as well as at 24-h post-exposure incubation. Hyperspectral microscopic observation showed that 3-D printers emitted particles to be attached to A549 cells after 2-h exposure, and many particles were internalized by A549 cells after 24 h of post-exposure incubation. The mRNA expression of pro-inflammatory cytokine IL-1b and IL-6 increased significantly after 2-h exposure to 3-D printer emissions and after 24-h incubation (only IL-6). In contrast, the expression of TNF-α mRNA decreased significantly after 2 h of exposure to 3-D printers and decreased even more after 24-h post-exposure incubation. These results support the use of cell-based ALI devices for direct assessment of airborne hazards in the workplace, for probing toxicological properties of airborne contaminants using adverse molecular pathways, and for guiding study design for workplace biomonitoring. ALI devices can bridge conventional exposure assessment with cellular toxicity testing platforms for hazard and risk assessment.
Collapse
Affiliation(s)
- Boowook Kim
- Institute of Health and Environment, Seoul National University, Seoul, Korea
- Institute of Occupation and Environment, KCOMWEL, Incheon, Korea
| | - Jae Hoon Shin
- Institute of Occupation and Environment, KCOMWEL, Incheon, Korea
| | - Hoi Pin Kim
- Aerosol Toxicology Research Center, HCTm, Icheon, Korea
| | - Mi Seong Jo
- Aerosol Toxicology Research Center, HCTm, Icheon, Korea
| | - Hee Sang Kim
- Aerosol Toxicology Research Center, HCTm, Icheon, Korea
| | - Jong Sung Lee
- Institute of Occupation and Environment, KCOMWEL, Incheon, Korea
| | - Hong Ku Lee
- Aerosol Toxicology Research Center, HCTm, Icheon, Korea
| | - Hyuk Cheol Kwon
- Toxicology Laboratory, Sanghuh College of Life Science, Konkuk University, Seoul, Korea
| | - Sung Gu Han
- Toxicology Laboratory, Sanghuh College of Life Science, Konkuk University, Seoul, Korea
| | - Noeul Kang
- Division of Allergy, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Mary Gulumian
- Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa
- Water Research Group, Unit for Environmental Sciences and Management, North West University, Potchefstroom, South Africa
| | - Dhimiter Bello
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, United States
| | - Il Je Yu
- HCT. Co., Icheon, Korea
- *Correspondence: Il Je Yu,
| |
Collapse
|
14
|
Eder KM, Marzi A, Barroso Á, Ketelhut S, Kemper B, Schnekenburger J. Label-Free Digital Holographic Microscopy for In Vitro Cytotoxic Effect Quantification of Organic Nanoparticles. Cells 2022; 11:cells11040644. [PMID: 35203295 PMCID: PMC8870653 DOI: 10.3390/cells11040644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Cytotoxicity quantification of nanoparticles is commonly performed by biochemical assays to evaluate their biocompatibility and safety. We explored quantitative phase imaging (QPI) with digital holographic microscopy (DHM) as a time-resolved in vitro assay to quantify effects caused by three different types of organic nanoparticles in development for medical use. Label-free proliferation quantification of native cell populations facilitates cytotoxicity testing in biomedical nanotechnology. Therefore, DHM quantitative phase images from measurements on nanomaterial and control agent incubated cells were acquired over 24 h, from which the temporal course of the cellular dry mass was calculated within the observed field of view. The impact of LipImage™ 815 lipidots® nanoparticles, as well as empty and cabazitaxel-loaded poly(alkyl cyanoacrylate) nanoparticles on the dry mass development of four different cell lines (RAW 264.7, NIH-3T3, NRK-52E, and RLE-6TN), was observed vs. digitonin as cytotoxicity control and cells in culture medium. The acquired QPI data were compared to a colorimetric cell viability assay (WST-8) to explore the use of the DHM assay with standard biochemical analysis methods downstream. Our results show that QPI with DHM is highly suitable to identify harmful or low-toxic nanomaterials. The presented DHM assay can be implemented with commercial microscopes. The capability for imaging of native cells and the compatibility with common 96-well plates allows high-throughput systems and future embedding into existing experimental routines for in vitro cytotoxicity assessment.
Collapse
|
15
|
Lynch I, Nymark P, Doganis P, Gulumian M, Yoon TH, Martinez DST, Afantitis A. Methods, models, mechanisms and metadata: Introducing the Nanotoxicology collection at F1000Research. F1000Res 2021; 10:1196. [PMID: 34853679 PMCID: PMC8613506 DOI: 10.12688/f1000research.75113.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 11/28/2022] Open
Abstract
Nanotoxicology is a relatively new field of research concerning the study and application of nanomaterials to evaluate the potential for harmful effects in parallel with the development of applications. Nanotoxicology as a field spans materials synthesis and characterisation, assessment of fate and behaviour, exposure science, toxicology / ecotoxicology, molecular biology and toxicogenomics, epidemiology, safe and sustainable by design approaches, and chemoinformatics and nanoinformatics, thus requiring scientists to work collaboratively, often outside their core expertise area. This interdisciplinarity can lead to challenges in terms of interpretation and reporting, and calls for a platform for sharing of best-practice in nanotoxicology research. The F1000Research Nanotoxicology collection, introduced via this editorial, will provide a place to share accumulated best practice, via original research reports including no-effects studies, protocols and methods papers, software reports and living systematic reviews, which can be updated as new knowledge emerges or as the domain of applicability of the method, model or software is expanded. This editorial introduces the Nanotoxicology Collection in
F1000Research. The aim of the collection is to provide an open access platform for nanotoxicology researchers, to support an improved culture of
data sharing and documentation of evolving protocols, biological and computational models, software tools and datasets, that can be applied and built upon to develop predictive models and move towards
in silico nanotoxicology and nanoinformatics. Submissions will be assessed for fit to the collection and subjected to the F1000Research open peer review process.
Collapse
Affiliation(s)
- Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Stockholm, 17 177, Sweden
| | - Philip Doganis
- School of Chemical Engineering, National Technical University of Athens, Athens, 10682, Greece
| | - Mary Gulumian
- National Health Laboratory Services, 1 Modderfontein Rd, Sandringham, Johannesburg, 2192, South Africa.,Haematology and Molecular Medicine, University of the Witwatersrand, 1 Jan Smuts Ave, Johannesburg, 2000, South Africa.,Water Research Group, Unit for Environmental Sciences and Management Potchefstroom, North West University, Potchefstroom, South Africa
| | - Tae-Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea.,Institute of Next Generation Material Design, Hanyang University, Seoul, 04763, South Korea
| | - Diego S T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas,, Sao Paulo, CEP 13083-970, Brazil
| | | |
Collapse
|
16
|
Kelly S, Byrne MH, Quinn SJ, Simpson JC. Multiparametric nanoparticle-induced toxicity readouts with single cell resolution in HepG2 multicellular tumour spheroids. NANOSCALE 2021; 13:17615-17628. [PMID: 34661590 DOI: 10.1039/d1nr04460e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of nanomaterials as therapeutic delivery vehicles requires their careful pre-clinical evaluation. Of particular importance in this regard is measurement of cellular toxicity, ideally assessing multiple parameters in parallel from various relevant subcellular organelles. In recent years it has become evident that in vitro monolayer-grown cells do not always accurately predict any toxicity response seen in vivo, and so there is a need for more sophisticated in vitro cell models, employing a greater depth of characterisation. In this work we present an automated high-content screening microscopy approach for quantifying nanoparticle-induced toxicity in a three-dimensional multicellular tumour spheroid (MCTS) cell model. As a proof-of-principle, we perform a comparative toxicity profile study of carboxylate- versus amine-modified polystyrene nanoparticles in HepG2 spheroids. Following treatment with these nanoparticle types, we demonstrate that several hundred spheroids, of various sizes, can be morphologically profiled in a single well using automated high-content image analysis. This provides a first level of information about spheroid health in response to nanoparticle treatment. Using a range of fluorescent reporters assessing membrane permeability, lysosome function and mitochondrial activity, we also show that nanoparticle-induced toxicity information can be obtained from individual cells with subcellular resolution. Strikingly, our work demonstrates that individual cells do not all behave in a consistent manner within a spheroid structure after exposure to nanoparticles. This highlights the need for toxicity studies to not only assess an appropriate number of spheroids, but also the importance of extracting information at the subcellular level.
Collapse
Affiliation(s)
- Suainibhe Kelly
- Cell Screening Laboratory, UCD School of Biology & Environmental Science, University College Dublin, Dublin 4, Ireland.
| | - Maria H Byrne
- UCD School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Susan J Quinn
- UCD School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Jeremy C Simpson
- Cell Screening Laboratory, UCD School of Biology & Environmental Science, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
17
|
Rohde MM, Snyder CM, Sloop J, Solst SR, Donati GL, Spitz DR, Furdui CM, Singh R. The mechanism of cell death induced by silver nanoparticles is distinct from silver cations. Part Fibre Toxicol 2021; 18:37. [PMID: 34649580 PMCID: PMC8515661 DOI: 10.1186/s12989-021-00430-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/21/2021] [Indexed: 01/21/2023] Open
Abstract
Background Precisely how silver nanoparticles (AgNPs) kill mammalian cells still is not fully understood. It is not clear if AgNP-induced damage differs from silver cation (Ag+), nor is it known how AgNP damage is transmitted from cell membranes, including endosomes, to other organelles. Cells can differ in relative sensitivity to AgNPs or Ag+, which adds another layer of complexity to identifying specific mechanisms of action. Therefore, we determined if there were specific effects of AgNPs that differed from Ag+ in cells with high or low sensitivity to either toxicant. Methods Cells were exposed to intact AgNPs, Ag+, or defined mixtures of AgNPs with Ag+, and viability was assessed. The level of dissolved Ag+ in AgNP suspensions was determined using inductively coupled plasma mass spectrometry. Changes in reactive oxygen species following AgNP or Ag+ exposure were quantified, and treatment with catalase, an enzyme that catalyzes the decomposition of H2O2 to water and oxygen, was used to determine selectively the contribution of H2O2 to AgNP and Ag+ induced cell death. Lipid peroxides, formation of 4-hydroxynonenol protein adducts, protein thiol oxidation, protein aggregation, and activation of the integrated stress response after AgNP or Ag+ exposure were quantified. Lastly, cell membrane integrity and indications of apoptosis or necrosis in AgNP and Ag+ treated cells were examined by flow cytometry. Results We identified AgNPs with negligible Ag+ contamination. We found that SUM159 cells, which are a triple-negative breast cancer cell line, were more sensitive to AgNP exposure less sensitive to Ag+ compared to iMECs, an immortalized, breast epithelial cell line. This indicates that high sensitivity to AgNPs was not predictive of similar sensitivity to Ag+. Exposure to AgNPs increased protein thiol oxidation, misfolded proteins, and activation of the integrated stress response in AgNP sensitive SUM159 cells but not in iMEC cells. In contrast, Ag+ cause similar damage in Ag+ sensitive iMEC cells but not in SUM159 cells. Both Ag+ and AgNP exposure increased H2O2 levels; however, treatment with catalase rescued cells from Ag+ cytotoxicity but not from AgNPs. Instead, our data support a mechanism by which damage from AgNP exposure propagates through cells by generation of lipid peroxides, subsequent lipid peroxide mediated oxidation of proteins, and via generation of 4-hydroxynonenal (4-HNE) protein adducts. Conclusions There are distinct differences in the responses of cells to AgNPs and Ag+. Specifically, AgNPs drive cell death through lipid peroxidation leading to proteotoxicity and necrotic cell death, whereas Ag+ increases H2O2, which drives oxidative stress and apoptotic cell death. This work identifies a previously unknown mechanism by which AgNPs kill mammalian cells that is not dependent upon the contribution of Ag+ released in extracellular media. Understanding precisely which factors drive the toxicity of AgNPs is essential for biomedical applications such as cancer therapy, and of importance to identifying consequences of unintended exposures. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00430-1.
Collapse
Affiliation(s)
- Monica M Rohde
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC, 27157, USA
| | - Christina M Snyder
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC, 27157, USA
| | - John Sloop
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Shane R Solst
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - George L Donati
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.,Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston Salem, NC, 27157, USA
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC, 27157, USA. .,Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston Salem, NC, 27157, USA.
| |
Collapse
|
18
|
Gulumian M, Cassee FR. Safe by design (SbD) and nanotechnology: a much-discussed topic with a prudence? Part Fibre Toxicol 2021; 18:32. [PMID: 34425830 PMCID: PMC8381576 DOI: 10.1186/s12989-021-00423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Safe-by-Design (SbD) has been put forward as a concept to assure that only safe nanomaterials will reach the market and that safety aspects have already been considered in a very early stage of the innovation process. In practice, several laboratory test have been proposed to screen newly developed nanomaterials and nano-enabled products to assess their hazardous nature. These tests need to have sufficient predictive power for possible adverse effects on human health, not only due to acute (peak) exposures, but also for long-term (low dose) exposures as these materials may accumulate over time in organs and tissues.
Collapse
Affiliation(s)
- Mary Gulumian
- National Institute for Occupational Health, Johannesburg, South Africa.,University of the Witwatersrand, Johannesburg, South Africa.,Water research group, Northwest University, Potchefstroom, South Africa
| | - Flemming R Cassee
- National Institute for Public Health and the Environment, PObox 1, 3720, BA, Bilthoven, the Netherlands. .,Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Toxicity of Carbon Nanomaterials-Towards Reliable Viability Assessment via New Approach in Flow Cytometry. Int J Mol Sci 2021; 22:ijms22147750. [PMID: 34299367 PMCID: PMC8305450 DOI: 10.3390/ijms22147750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/25/2022] Open
Abstract
The scope of application of carbon nanomaterials in biomedical, environmental and industrial fields is recently substantially increasing. Since in vitro toxicity testing is the first essential step for any commercial usage, it is crucial to have a reliable method to analyze the potentially harmful effects of carbon nanomaterials. Even though researchers already reported the interference of carbon nanomaterials with common toxicity assays, there is still, unfortunately, a large number of studies that neglect this fact. In this study, we investigated interference of four bio-promising carbon nanomaterials (graphene acid (GA), cyanographene (GCN), graphitic carbon nitride (g-C3N4) and carbon dots (QCDs)) in commonly used LIVE/DEAD assay. When a standard procedure was applied, materials caused various types of interference. While positively charged g-C3N4 and QCDs induced false results through the creation of free agglomerates and intrinsic fluorescence properties, negatively charged GA and GCN led to false signals due to the complex quenching effect of the fluorescent dye of a LIVE/DEAD kit. Thus, we developed a new approach using a specific gating strategy based on additional controls that successfully overcame all types of interference and lead to reliable results in LIVE/DEAD assay. We suggest that the newly developed procedure should be a mandatory tool for all in vitro flow cytometry assays of any class of carbon nanomaterials.
Collapse
|