1
|
Vazquez-Uribe R, Hedin KA, Licht TR, Nieuwdorp M, Sommer MOA. Advanced microbiome therapeutics as a novel modality for oral delivery of peptides to manage metabolic diseases. Trends Endocrinol Metab 2025; 36:29-41. [PMID: 38782649 DOI: 10.1016/j.tem.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
The rising prevalence of metabolic diseases calls for innovative treatments. Peptide-based drugs have transformed the management of conditions such as obesity and type 2 diabetes. Yet, challenges persist in oral delivery of these peptides. This review explores the potential of 'advanced microbiome therapeutics' (AMTs), which involve engineered microbes for delivery of peptides in situ, thereby enhancing their bioavailability. Preclinical work on AMTs has shown promise in treating animal models of metabolic diseases, including obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease. Outstanding challenges toward realizing the potential of AMTs involve improving peptide expression, ensuring predictable colonization control, enhancing stability, and managing safety and biocontainment concerns. Still, AMTs have potential for revolutionizing the treatment of metabolic diseases, potentially offering dynamic and personalized novel therapeutic approaches.
Collapse
Affiliation(s)
- Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Karl Alex Hedin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Max Nieuwdorp
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Cho H, Huh KM, Shim MS, Cho YY, Lee JY, Lee HS, Kang HC. Beyond Nanoparticle-Based Intracellular Drug Delivery: Cytosol/Organelle-Targeted Drug Release and Therapeutic Synergism. Macromol Biosci 2024; 24:e2300590. [PMID: 38488862 DOI: 10.1002/mabi.202300590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/07/2024] [Indexed: 07/16/2024]
Abstract
Nanoparticle (NP)-based drug delivery systems are conceived to solve poor water-solubility and chemical/physical instability, and their purpose expanded to target specific sites for maximizing therapeutic effects and minimizing unwanted events of payloads. Targeted sites are also narrowed from organs/tissues and cells to cytosol/organelles. Beyond specific site targeting, the particular release of payloads at the target sites is growing in importance. This review overviews various issues and their general strategies during multiple steps, from the preparation of drug-loaded NPs to their drug release at the target cytosol/organelles. In particular, this review focuses on current strategies for "first" delivery and "later" release of drugs to the cytosol or organelles of interest using specific stimuli in the target sites. Recognizing or distinguishing the presence/absence of stimuli or their differences in concentration/level/activity in one place from those in another is applied to stimuli-triggered release via bond cleavage or nanostructural transition. In addition, future directions on understanding the intracellular balance of stimuli and their counter-stimuli are demonstrated to synergize the therapeutic effects of payloads released from stimuli-sensitive NPs.
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| |
Collapse
|
3
|
Reese TC, Devineni A, Smith T, Lalami I, Ahn JM, Raj GV. Evaluating physiochemical properties of FDA-approved orally administered drugs. Expert Opin Drug Discov 2024; 19:225-238. [PMID: 37921049 DOI: 10.1080/17460441.2023.2275617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Analyses of orally administered FDA-approved drugs from 1990 to 1993 enabled the identification of a set of physiochemical properties known as Lipinski's Rule of Five (Ro5). The original Ro5 and extended versions still remain the reference criteria for drug development programs. Since many bioactive compounds do not conform to the Ro5, we validated the relevance of and adherence to these rulesets in a contemporary cohort of FDA-approved drugs. AREAS COVERED The authors noted that a significant proportion of FDA-approved orally administered parent compounds from 2011 to 2022 deviate from the original Ro5 criteria (~38%) or the Ro5 with extensions (~53%). They then evaluated if a contemporary Ro5 criteria (cRo5) could be devised to better predict oral bioavailability. Furthermore, they discuss many case studies showcasing the need for and benefit of increasing the size of certain compounds and cover several evolving strategies for improving oral bioavailability. EXPERT OPINION Despite many revisions to the Ro5, the authors find that no single proposed physiochemical rule has universal concordance with absolute oral bioavailability. Innovations in drug delivery and formulation have dramatically expanded the range of physicochemical properties and the chemical diversity for oral administration.
Collapse
Affiliation(s)
- Tanner C Reese
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Anvita Devineni
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Tristan Smith
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Ismail Lalami
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Jung-Mo Ahn
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
4
|
Wu J, Roesger S, Jones N, Hu CMJ, Li SD. Cell-penetrating peptides for transmucosal delivery of proteins. J Control Release 2024; 366:864-878. [PMID: 38272399 DOI: 10.1016/j.jconrel.2024.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Enabling non-invasive delivery of proteins across the mucosal barriers promises improved patient compliance and therapeutic efficacies. Cell-penetrating peptides (CPPs) are emerging as a promising and versatile tool to enhance protein and peptide permeation across various mucosal barriers. This review examines the structural and physicochemical attributes of the nasal, buccal, sublingual, and oral mucosa that hamper macromolecular delivery. Recent development of CPPs for overcoming those mucosal barriers for protein delivery is summarized and analyzed. Perspectives regarding current challenges and future research directions towards improving non-invasive transmucosal delivery of macromolecules for ultimate clinical translation are discussed.
Collapse
Affiliation(s)
- Jiamin Wu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sophie Roesger
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie Jones
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Che-Ming J Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
5
|
Liang J, Wang WF, Zhang Y, Chai YQ, Li YG, Jiang SL, Zhu XH, Guo YL, Wei Z, Sun XZ, Kuang HX, Xia YG. Fructooligosaccharides and fructans from Platycodon grandiflorum: Structural characterization, lung-oriented guidance and targetability. Carbohydr Polym 2024; 323:121457. [PMID: 37940316 DOI: 10.1016/j.carbpol.2023.121457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023]
Abstract
Platycodon grandiflorum (PG) has been widely applied as a conductant drug by ancient and modern traditional Chinese medicine practitioners during long-term clinical practice. However, determining how to guide other medicines to the targeted lungs in traditional Chinese medicine (TCM) prescription remains unclear. An ethanol soluble fraction (Fr. B) was obtained by macroporous resin and 75 % ethanol precipitate. The components were unambiguously determined as fructooligosaccharides and small molecule weight (Mw) fructans according to HILIC-ESI--MS/MS, MS/MS and 1/2D NMR. We discovered that the Fr. B possesses the lung-oriented guidance and targetability by activating Golgi apparatus and endoplasmic reticulum (Golgi-ER) transport system. Rab21, a highly expressed transmembrane protein in the lungs, was found to be the core-affinity target of Fr. B which physically colocalized with the Golgi-ER and directly interacted with Rab21 to accelerate the uptake of extracellular therapeutic substances. The lung-oriented guidance and targetability of Fr. B was validated by the transient knockdown and overexpression of Rab21 considering dynamic observations of colocalization interactions among Fr. B, extracellular substances, and the Golgi-ER. Together, our results delineate a potential mechanism of Fr. B toward lung-oriented guidance and targetability via a direct targeting affinity of Rab21 and resulting collective stimulation of key Golgi-ER transport effectors for the acceleration of extracellular substances into the lungs.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Wen-Fei Wang
- Bio-pharmaceutical Lab, College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yi Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Yan-Qun Chai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Ya-Ge Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Si-Liang Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Xin-Hua Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Yu-Li Guo
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Zhen Wei
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Xi-Zhe Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China.
| |
Collapse
|
6
|
Masloh S, Culot M, Gosselet F, Chevrel A, Scapozza L, Zeisser Labouebe M. Challenges and Opportunities in the Oral Delivery of Recombinant Biologics. Pharmaceutics 2023; 15:pharmaceutics15051415. [PMID: 37242657 DOI: 10.3390/pharmaceutics15051415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Recombinant biological molecules are at the cutting-edge of biomedical research thanks to the significant progress made in biotechnology and a better understanding of subcellular processes implicated in several diseases. Given their ability to induce a potent response, these molecules are becoming the drugs of choice for multiple pathologies. However, unlike conventional drugs which are mostly ingested, the majority of biologics are currently administered parenterally. Therefore, to improve their limited bioavailability when delivered orally, the scientific community has devoted tremendous efforts to develop accurate cell- and tissue-based models that allow for the determination of their capacity to cross the intestinal mucosa. Furthermore, several promising approaches have been imagined to enhance the intestinal permeability and stability of recombinant biological molecules. This review summarizes the main physiological barriers to the oral delivery of biologics. Several preclinical in vitro and ex vivo models currently used to assess permeability are also presented. Finally, the multiple strategies explored to address the challenges of administering biotherapeutics orally are described.
Collapse
Affiliation(s)
- Solene Masloh
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Maxime Culot
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
| | - Anne Chevrel
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Magali Zeisser Labouebe
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| |
Collapse
|
7
|
|
8
|
Zhu Q, Chen Z, Paul PK, Lu Y, Wu W, Qi J. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm Sin B 2021; 11:2416-2448. [PMID: 34522593 PMCID: PMC8424290 DOI: 10.1016/j.apsb.2021.04.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Proteins and peptides (PPs) have gradually become more attractive therapeutic molecules than small molecular drugs due to their high selectivity and efficacy, but fewer side effects. Owing to the poor stability and limited permeability through gastrointestinal (GI) tract and epithelia, the therapeutic PPs are usually administered by parenteral route. Given the big demand for oral administration in clinical use, a variety of researches focused on developing new technologies to overcome GI barriers of PPs, such as enteric coating, enzyme inhibitors, permeation enhancers, nanoparticles, as well as intestinal microdevices. Some new technologies have been developed under clinical trials and even on the market. This review summarizes the history, the physiological barriers and the overcoming approaches, current clinical and preclinical technologies, and future prospects of oral delivery of PPs.
Collapse
Key Words
- ASBT, apical sodium-dependent bile acid transporter
- BSA, bovine serum albumin
- CAGR, compound annual growth
- CD, Crohn's disease
- COPD, chronic obstructive pulmonary disease
- CPP, cell penetrating peptide
- CaP, calcium phosphate
- Clinical
- DCs, dendritic cells
- DDVAP, desmopressin acetate
- DTPA, diethylene triamine pentaacetic acid
- EDTA, ethylene diamine tetraacetic acid
- EPD, empirical phase diagrams
- EPR, electron paramagnetic resonance
- Enzyme inhibitor
- FA, folic acid
- FDA, U.S. Food and Drug Administration
- FcRn, Fc receptor
- GALT, gut-associated lymphoid tissue
- GI, gastrointestinal
- GIPET, gastrointestinal permeation enhancement technology
- GLP-1, glucagon-like peptide 1
- GRAS, generally recognized as safe
- HBsAg, hepatitis B surface antigen
- HPMCP, hydroxypropyl methylcellulose phthalate
- IBD, inflammatory bowel disease
- ILs, ionic liquids
- LBNs, lipid-based nanoparticles
- LMWP, low molecular weight protamine
- MCT-1, monocarborxylate transporter 1
- MSNs, mesoporous silica nanoparticles
- NAC, N-acetyl-l-cysteine
- NLCs, nanostructured lipid carriers
- Oral delivery
- PAA, polyacrylic acid
- PBPK, physiologically based pharmacokinetics
- PCA, principal component analysis
- PCL, polycarprolacton
- PGA, poly-γ-glutamic acid
- PLA, poly(latic acid)
- PLGA, poly(lactic-co-glycolic acid)
- PPs, proteins and peptides
- PVA, poly vinyl alcohol
- Peptides
- Permeation enhancer
- Proteins
- RGD, Arg-Gly-Asp
- RTILs, room temperature ionic liquids
- SAR, structure–activity relationship
- SDC, sodium deoxycholate
- SGC, sodium glycocholate
- SGF, simulated gastric fluids
- SIF, simulated intestinal fluids
- SLNs, solid lipid nanoparticles
- SNAC, sodium N-[8-(2-hydroxybenzoyl)amino]caprylate
- SNEDDS, self-nanoemulsifying drug delivery systems
- STC, sodium taurocholate
- Stability
- TAT, trans-activating transcriptional peptide
- TMC, N-trimethyl chitosan
- Tf, transferrin
- TfR, transferrin receptors
- UC, ulcerative colitis
- UEA1, ulex europaeus agglutinin 1
- VB12, vitamin B12
- WGA, wheat germ agglutinin
- pHPMA, N-(2-hydroxypropyl)methacrylamide
- pI, isoelectric point
- sCT, salmon calcitonin
- sc, subcutaneous
Collapse
Affiliation(s)
- Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Pijush Kumar Paul
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Department of Pharmacy, Gono Bishwabidyalay (University), Mirzanagar Savar, Dhaka 1344, Bangladesh
| | - Yi Lu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
9
|
A comprehensive review of the strategies to improve oral drug absorption with special emphasis on the cellular and molecular mechanisms. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Yazdi JR, Tafaghodi M, Sadri K, Mashreghi M, Nikpoor AR, Nikoofal-Sahlabadi S, Chamani J, Vakili R, Moosavian SA, Jaafari MR. Folate targeted PEGylated liposomes for the oral delivery of insulin: In vitro and in vivo studies. Colloids Surf B Biointerfaces 2020; 194:111203. [DOI: 10.1016/j.colsurfb.2020.111203] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 02/03/2023]
|
11
|
Wagle SR, Kovacevic B, Walker D, Ionescu CM, Shah U, Stojanovic G, Kojic S, Mooranian A, Al-Salami H. Alginate-based drug oral targeting using bio-micro/nano encapsulation technologies. Expert Opin Drug Deliv 2020; 17:1361-1376. [PMID: 32597249 DOI: 10.1080/17425247.2020.1789587] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Oral delivery is the most common administrated drug delivery path. However, oral administration of lipophilic drugs has some limitations: they have poor dose-response due to low and varied dissolution kinetics and oral bioavailability with sub-optimal dissolution within the aqueous gastrointestinal microenvironment. Therefore, there is a need for robust formulating methods that protect the drug until it reaches to its optimum absorption site, allowing its optimum pharmacological effects via increasing its intestinal permeation and bioavailability. AREA COVERED Herein, we provide insights on orally administered lipophilic drug delivery systems. The detailed description of the obstacles associated with the oral bioavailability of lipophilic drugs are also discussed. Following this, techniques to overcome these obstacles with much emphasis on optimal safety and efficacy are addressed. Newly designed ionic vibrational jet flow encapsulation technology has enormous growth in lipophilic drug delivery systems, which is discussed thereafter. EXPERT OPINION Researchers have shown interest in drug's encapsulation. A combination of drug-bile acid and microencapsulation methods can be one promising strategy to improve the oral delivery of lipophilic drugs. However, the most critical aspect of this approach is the selection of bile acids, polymer, and encapsulation technology.
Collapse
Affiliation(s)
- Susbin Raj Wagle
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia, Australia
| | - Bozica Kovacevic
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia, Australia
| | - Daniel Walker
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia, Australia
| | - Corina Mihaela Ionescu
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia, Australia
| | - Umar Shah
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia, Australia.,School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University , Perth, WA, Australia
| | - Goran Stojanovic
- Faculty of Technical Sciences, University of Novi Sad , Novi Sad, Serbia
| | - Sanja Kojic
- Faculty of Technical Sciences, University of Novi Sad , Novi Sad, Serbia
| | - Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia, Australia
| |
Collapse
|
12
|
Hua S. Advances in Oral Drug Delivery for Regional Targeting in the Gastrointestinal Tract - Influence of Physiological, Pathophysiological and Pharmaceutical Factors. Front Pharmacol 2020; 11:524. [PMID: 32425781 PMCID: PMC7212533 DOI: 10.3389/fphar.2020.00524] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/03/2020] [Indexed: 12/22/2022] Open
Abstract
The oral route is by far the most common route of drug administration in the gastrointestinal tract and can be used for both systemic drug delivery and for treating local gastrointestinal diseases. It is the most preferred route by patients, due to its advantages, such as ease of use, non-invasiveness, and convenience for self-administration. Formulations can also be designed to enhance drug delivery to specific regions in the upper or lower gastrointestinal tract. Despite the clear advantages offered by the oral route, drug delivery can be challenging as the human gastrointestinal tract is complex and displays a number of physiological barriers that affect drug delivery. Among these challenges are poor drug stability, poor drug solubility, and low drug permeability across the mucosal barriers. Attempts to overcome these issues have focused on improved understanding of the physiology of the gastrointestinal tract in both healthy and diseased states. Innovative pharmaceutical approaches have also been explored to improve regional drug targeting in the gastrointestinal tract, including nanoparticulate formulations. This review will discuss the physiological, pathophysiological, and pharmaceutical considerations influencing drug delivery for the oral route of administration, as well as the conventional and novel drug delivery approaches. The translational challenges and development aspects of novel formulations will also be addressed.
Collapse
Affiliation(s)
- Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
13
|
Williamson B, Colclough N, Fretland AJ, Jones BC, Jones RDO, McGinnity DF. Further Considerations Towards an Effective and Efficient Oncology Drug Discovery DMPK Strategy. Curr Drug Metab 2020; 21:145-162. [PMID: 32164508 DOI: 10.2174/1389200221666200312104837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/06/2020] [Accepted: 02/25/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND DMPK data and knowledge are critical in maximising the probability of developing successful drugs via the application of in silico, in vitro and in vivo approaches in drug discovery. METHODS The evaluation, optimisation and prediction of human pharmacokinetics is now a mainstay within drug discovery. These elements are at the heart of the 'right tissue' component of AstraZeneca's '5Rs framework' which, since its adoption, has resulted in increased success of Phase III clinical trials. With the plethora of DMPK related assays and models available, there is a need to continually refine and improve the effectiveness and efficiency of approaches best to facilitate the progression of quality compounds for human clinical testing. RESULTS This article builds on previously published strategies from our laboratories, highlighting recent discoveries and successes, that brings our AstraZeneca Oncology DMPK strategy up to date. We review the core aspects of DMPK in Oncology drug discovery and highlight data recently generated in our laboratories that have influenced our screening cascade and experimental design. We present data and our experiences of employing cassette animal PK, as well as re-evaluating in vitro assay design for metabolic stability assessments and expanding our use of freshly excised animal and human tissue to best inform first time in human dosing and dose escalation studies. CONCLUSION Application of our updated drug-drug interaction and central nervous system drug exposure strategies are exemplified, as is the impact of physiologically based pharmacokinetic and pharmacokinetic-pharmacodynamic modelling for human predictions.
Collapse
Affiliation(s)
- Beth Williamson
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Nicola Colclough
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Adrian John Fretland
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Oncology R&D, AstraZeneca, Boston MA, United States
| | - Barry Christopher Jones
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Rhys Dafydd Owen Jones
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Dermot Francis McGinnity
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
14
|
Abstract
Protein and peptide therapeutics require parenteral administration, which can be a deterrent to medication adherence. For this reason, there have been extensive efforts to develop alternative delivery strategies, particularly for peptides such as insulin that are used to treat endocrine disorders. Oral delivery is especially desirable, but it faces substantial barriers related to the structural organization and physiological function of the gastrointestinal tract. This article highlights strategies designed to overcome these barriers, including permeation enhancers, inhibitors of gut enzymes, and mucus-penetrating and cell-penetrating peptides. It then focuses on the experience with oral peptides that have reached clinical trials, including insulin, calcitonin, parathyroid hormone and vasopressin, with an emphasis on the advances that have recently led to the landmark approval of an oral formulation of the glucagon-like peptide 1 receptor agonist semaglutide for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Hu X, Yang G, Chen S, Luo S, Zhang J. Biomimetic and bioinspired strategies for oral drug delivery. Biomater Sci 2019; 8:1020-1044. [PMID: 31621709 DOI: 10.1039/c9bm01378d] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oral drug delivery remains the most preferred approach due to its multiple advantages. Recently there has been increasing interest in the development of advanced vehicles for oral delivery of different therapeutics. Among them, biomimetic and bioinspired strategies are emerging as novel approaches that are promising for addressing biological barriers encountered by traditional drug delivery systems. Herein we provide a state-of-the-art review on the current progress of biomimetic particulate oral delivery systems. Different biomimetic nanoparticles used for oral drug delivery are first discussed, mainly including ligand/antibody-functionalized nanoparticles, transporter-mediated nanoplatforms, and nanoscale extracellular vesicles. Then we describe bacteria-derived biomimetic systems, with respect to oral delivery of therapeutic proteins or antigens. Subsequently, yeast-derived oral delivery systems, based on either chemical engineering or bioengineering approaches are discussed, with emphasis on the treatment of inflammatory diseases and cancer as well as oral vaccination. Finally, bioengineered plant cells are introduced for oral delivery of biological agents. A future perspective is also provided to highlight the existing challenges and possible resolution toward clinical translation of currently developed biomimetic oral therapies.
Collapse
Affiliation(s)
- Xiankang Hu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China. and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Guoyu Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China. and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China. and The First Clinical College, Chongqing Medical University, Chongqing 400016, China
| | - Sheng Chen
- Department of Pediatrics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
16
|
Bentata Y. Tacrolimus: 20 years of use in adult kidney transplantation. What we should know about its nephrotoxicity. Artif Organs 2019; 44:140-152. [PMID: 31386765 DOI: 10.1111/aor.13551] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 12/21/2022]
Abstract
Tacrolimus (or FK506), a calcineurin inhibitor (CNI) introduced in field of transplantation in the 1990s, is the cornerstone of most immunosuppressive regimens in solid organ transplantation. Its use has revolutionized the future of kidney transplantation (KT) and has been associated with better graft survival, a lower incidence of rejection, and improved drug tolerance with fewer side effects compared to cyclosporine. However, its monitoring remains complicated and underexposure increases the risk of rejection, whereas overexposure increases the risk of adverse effects, primarily nephrotoxicity, neurotoxicity, infections, malignancies, diabetes, and gastrointestinal complaints. Tacrolimus nephrotoxicity can be nonreversible and can lead to kidney graft loss, and its diagnosis is therefore best made with reference to the clinical context and after exclusion of other causes of graft dysfunction. Many factors contribute to its development including: systemic levels of tacrolimus; local renal exposure to tacrolimus; exposure to metabolites of tacrolimus; local susceptibility factors for CNI nephrotoxicity independent of systemic or local tacrolimus levels, such as the age of a kidney; local renal P-glycoprotein, local intestinal and hepatic cytochrome P450A3, and renin angiotensin system activation. The aim of this review is to describe the pharmacokinetics, pharmacodynamics, and mechanisms of acute and chronic tacrolimus nephrotoxicity in adult KT.
Collapse
Affiliation(s)
- Yassamine Bentata
- Nephrology and Kidney Transplantation Unit, University Hospital Mohammed VI, University Mohammed First, Oujda, Morocco.,Laboratory of Epidemiology, Clinical Research and Public Health, Medical School, University Mohammed First, Oujda, Morocco
| |
Collapse
|
17
|
Rashid M, Malik MY, Singh SK, Chaturvedi S, Gayen JR, Wahajuddin M. Bioavailability Enhancement of Poorly Soluble Drugs: The Holy Grail in Pharma Industry. Curr Pharm Des 2019; 25:987-1020. [DOI: 10.2174/1381612825666190130110653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
Abstract
Background:
Bioavailability, one of the prime pharmacokinetic properties of a drug, is defined as the
fraction of an administered dose of unchanged drug that reaches the systemic circulation and is used to describe
the systemic availability of a drug. Bioavailability assessment is imperative in order to demonstrate whether the
drug attains the desirable systemic exposure for effective therapy. In recent years, bioavailability has become
the subject of importance in drug discovery and development studies.
Methods:
A systematic literature review in the field of bioavailability and the approaches towards its enhancement
have been comprehensively done, purely focusing upon recent papers. The data mining was performed
using databases like PubMed, Science Direct and general Google searches and the collected data was exhaustively
studied and summarized in a generalized manner.
Results:
The main prospect of this review was to generate a comprehensive one-stop summary of the numerous
available approaches and their pharmaceutical applications in improving the stability concerns, physicochemical
and mechanical properties of the poorly water-soluble drugs which directly or indirectly augment their bioavailability.
Conclusion:
The use of novel methods, including but not limited to, nano-based formulations, bio-enhancers,
solid dispersions, lipid-and polymer-based formulations which provide a wide range of applications not only
increases the solubility and permeability of the poorly bioavailable drugs but also improves their stability, and
targeting efficacy. Although, these methods have drastically changed the pharmaceutical industry demand for the
newer potential methods with better outcomes in the field of pharmaceutical science to formulate various dosage
forms with adequate systemic availability and improved patient compliance, further research is required.
Collapse
Affiliation(s)
- Mamunur Rashid
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Mohd Yaseen Malik
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Sandeep K. Singh
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Swati Chaturvedi
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Jiaur R Gayen
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | | |
Collapse
|
18
|
Shreya AB, Raut SY, Managuli RS, Udupa N, Mutalik S. Active Targeting of Drugs and Bioactive Molecules via Oral Administration by Ligand-Conjugated Lipidic Nanocarriers: Recent Advances. AAPS PharmSciTech 2018; 20:15. [PMID: 30564942 DOI: 10.1208/s12249-018-1262-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/24/2018] [Indexed: 12/13/2022] Open
Abstract
The oral route is the most widely accepted and commonly used route for administration. However, this route may not be suitable for certain drug candidates which suffer from the problem of low aqueous solubility and gastrointestinal absorption and extensive first-pass effect. Nanotechnology-based approaches can be taken up as remedies to overcome the disadvantages associated with the oral route. Among the various nanocarriers, lipidic nanocarriers are widely used for oral delivery of bioactive molecules owing to their several advantages. Active targeting of bioactive molecules via lipidic nanocarriers has also been widely attempted to improve oral bioavailability and to avoid first-pass effect. This active targeting approach involves the use of ligands grafted or conjugated onto a nanocarrier that is specific to the receptors. Active targeting increases the therapeutic efficacy as well as reduces the toxic side effects of the drug or bioactive molecules. This review mainly focuses on the challenges involved in the oral delivery of drugs and its approaches to overcome the challenges using nanotechnology, specifically focusing on lipidic nanocarriers like liposomes, solid lipid nanoparticles, and nanostructured lipid carriers and active targeting of drug molecules by making use of ligand-conjugated lipidic nanocarriers.
Collapse
|
19
|
Wong CY, Al-Salami H, Dass CR. Recent advancements in oral administration of insulin-loaded liposomal drug delivery systems for diabetes mellitus. Int J Pharm 2018; 549:201-217. [DOI: 10.1016/j.ijpharm.2018.07.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 11/30/2022]
|
20
|
Tyagi P, Pechenov S, Anand Subramony J. Oral peptide delivery: Translational challenges due to physiological effects. J Control Release 2018; 287:167-176. [DOI: 10.1016/j.jconrel.2018.08.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 01/15/2023]
|
21
|
Managuli RS, Raut SY, Reddy MS, Mutalik S. Targeting the intestinal lymphatic system: a versatile path for enhanced oral bioavailability of drugs. Expert Opin Drug Deliv 2018; 15:787-804. [PMID: 30025212 DOI: 10.1080/17425247.2018.1503249] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The major challenge of first pass metabolism in oral drug delivery can be surmounted by directing delivery toward intestinal lymphatic system (ILS). ILS circumvents the liver and transports drug directly into systemic circulation via thoracic duct. Lipid and polymeric nanoparticles are transported into ILS through lacteal and Peyer's patches. Moreover, surface modification of nanoparticles with ligand which is specific for Peyer's patches enhances the uptake of drugs into ILS. Bioavailability enhancement by lymphatic uptake is an advantageous approach adopted by scientists today. Therefore, it is important to understand clear insight of ILS in targeted drug delivery and challenges involved in it. AREAS COVERED Current review includes an overview of ILS, factors governing lymphatic transport of nanoparticles and absorption mechanism of lipid and polymeric nanoparticles into ILS. Various ligands used to target Peyer's patch and their conjugation strategies to nanoparticles are explained in detail. In vitro and in vivo models used to assess intestinal lymphatic transport of molecules are discussed further. EXPERT OPINION Although ILS offers a versatile pathway for nanotechnology based targeted drug delivery, extensive investigations on validation of the lymphatic transport models and on the strategies for gastric protection of targeted nanocarriers have to be perceived in for excellent performance of ILS in oral drug delivery.
Collapse
Affiliation(s)
- Renuka Suresh Managuli
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal Karnataka State , India
| | - Sushil Yadaorao Raut
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal Karnataka State , India
| | - Meka Sreenivasa Reddy
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal Karnataka State , India
| | - Srinivas Mutalik
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal Karnataka State , India
| |
Collapse
|
22
|
Zhang C, Shen L, Cui M, Liu X, Gu Z. Ticagrelor-induced life-threatening bleeding via the cyclosporine-mediated drug interaction: A case report. Medicine (Baltimore) 2017; 96:e8065. [PMID: 28906404 PMCID: PMC5604673 DOI: 10.1097/md.0000000000008065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
RATIONALE Ticagrelor has become one of the first-line antiplatelet agents in acute coronary syndrome (ACS) patients recommend by the guideline due to its more potent and predictable antiplatelet effect. However, bleeding is still a severe drug adverse reaction of ticagrelor therapy. We report a first case on ticagrelor-induced life-threatening bleeding via the cyclosporine-mediated drug interaction. PATIENT CONCERNS A 58-year-old Chinese male who received cyclosporine 200 mg daily 5 years after renal transplantation. Ticagrelor was added for treating ACS. Unfortunately, gum bleeding and life-threatening bloody stool appeared 8 days later, accompanied with the sudden drop of blood pressure. INTERVENTIONS Ticagrelor was replaced with clopidogrel. Intravenous injection of proton pump inhibitor and agkistrodon snake venom hemocoagulase were used to stop the bleeding. Meanwhile, packed red blood cells and plasma were continuously transfused to maintain adequate blood volume. OUTCOMES The patient's bloody stool was well controlled after treatment. LESSONS The present case demonstrates that a potential drug-drug interaction (DDI) may lead to a life-threatening drug adverse reaction especially in special subjects. Therefore, regarding DDI, optimizing antiplatelet treatment should be considered for the efficacy and safety of P2Y12 receptor antagonist in this fragile population.
Collapse
Affiliation(s)
| | - Long Shen
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | | | | |
Collapse
|
23
|
Dave VS, Gupta D, Yu M, Nguyen P, Varghese Gupta S. Current and evolving approaches for improving the oral permeability of BCS Class III or analogous molecules. Drug Dev Ind Pharm 2016; 43:177-189. [PMID: 27998192 DOI: 10.1080/03639045.2016.1269122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The Biopharmaceutics Classification System (BCS) classifies pharmaceutical compounds based on their aqueous solubility and intestinal permeability. The BCS Class III compounds are hydrophilic molecules (high aqueous solubility) with low permeability across the biological membranes. While these compounds are pharmacologically effective, poor absorption due to low permeability becomes the rate-limiting step in achieving adequate bioavailability. Several approaches have been explored and utilized for improving the permeability profiles of these compounds. The approaches include traditional methods such as prodrugs, permeation enhancers, ion-pairing, etc., as well as relatively modern approaches such as nanoencapsulation and nanosizing. The most recent approaches include a combination/hybridization of one or more traditional approaches to improve drug permeability. While some of these approaches have been extremely successful, i.e. drug products utilizing the approach have progressed through the USFDA approval for marketing; others require further investigation to be applicable. This article discusses the commonly studied approaches for improving the permeability of BCS Class III compounds.
Collapse
Affiliation(s)
- Vivek S Dave
- a Wegmans School of Pharmacy , St. John Fisher College , Rochester , NY , USA
| | - Deepak Gupta
- b Lake Eerie College of Osteopathic Medicine , School of Pharmacy, Pharmaceutical Sciences , Bradenton , FL , USA
| | - Monica Yu
- b Lake Eerie College of Osteopathic Medicine , School of Pharmacy, Pharmaceutical Sciences , Bradenton , FL , USA
| | - Phuong Nguyen
- b Lake Eerie College of Osteopathic Medicine , School of Pharmacy, Pharmaceutical Sciences , Bradenton , FL , USA
| | - Sheeba Varghese Gupta
- c Department of Pharmaceutical Sciences , USF College of Pharmacy , Tampa , FL , USA
| |
Collapse
|
24
|
Ghaffarian R, Herrero EP, Oh H, Raghavan SR, Muro S. Chitosan-Alginate Microcapsules Provide Gastric Protection and Intestinal Release of ICAM-1-Targeting Nanocarriers, Enabling GI Targeting In Vivo. ADVANCED FUNCTIONAL MATERIALS 2016; 26:3382-3393. [PMID: 27375374 PMCID: PMC4926773 DOI: 10.1002/adfm.201600084] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
When administered intravenously, active targeting of drug nanocarriers (NCs) improves biodistribution and endocytosis. Targeting may also improve oral delivery of NCs to treat gastrointestinal (GI) pathologies or for systemic absoption. However, GI instability of targeting moieties compromises this strategy. We explored whether encapsulation of antibody-coated NCs in microcapsules would protect against gastric degradation, providing NCs release and targeting in intestinal conditions. We used nanoparticles coated with antibodies against intercellular adhesion molecule-1 (anti-ICAM) or non-specific IgG. NCs (~160-nm) were encapsulated in ~180-μm microcapsules with an alginate core, in the absence or presence of a chitosan shell. We found >95% NC encapsulation within microcapsules and <10% NC release from microcapsules in storage. There was minimal NC release at gastric pH (<10%) and burst release at intestinal pH (75-85%), slightly attenuated by chitosan. Encapsulated NCs afforded increased protection against degradation (3-4 fold) and increased cell targeting (8-20 fold) after release vs. non-encapsulated NCs. Mouse oral gavage showed that microencapsulation provided 38-65% greater protection of anti-ICAM NCs in the GI tract, 40% lower gastric retention, and 4-9-fold enhanced intestinal biodistribution vs. non-encapsulated NCs. Therefore, microencapsulation of antibody-targeted NCs may enable active targeting strategies to be effective in the context of oral drug delivery.
Collapse
Affiliation(s)
- Rasa Ghaffarian
- Fischell Department of Bioengineering, 2330 Jeong H. Kim Engineering Building, University of Maryland, College Park, MD 20742, USA
| | - Edgar Pérez Herrero
- Institute for Bioscience and Biotechnology Research, 5115 Plant Sciences Building, University of Maryland, College Park, MD 20742, USA
| | - Hyuntaek Oh
- Department of Chemical and Biomolecular Engineering, 1227C Chemical & Nuclear Engineering Building, University of Maryland, College Park, MD 20742, USA
| | - Srinivasa R. Raghavan
- Department of Chemical and Biomolecular Engineering, 1227C Chemical & Nuclear Engineering Building, University of Maryland, College Park, MD 20742, USA
| | - Silvia Muro
- Fischell Department of Bioengineering and Institute for Bioscience and Biotechnology Research, 5115 Plant Sciences Building, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
25
|
Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse. J Control Release 2014; 197:48-57. [PMID: 25449804 DOI: 10.1016/j.jconrel.2014.10.026] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/13/2014] [Accepted: 10/27/2014] [Indexed: 02/07/2023]
Abstract
It is believed that mucoadhesive surface properties on particles delivered to the gastrointestinal (GI) tract improve oral absorption or local targeting of various difficult-to-deliver drug classes. To test the effect of nanoparticle mucoadhesion on distribution of nanoparticles in the GI tract, we orally and rectally administered nano- and microparticles that we confirmed possessed surfaces that were either strongly mucoadhesive or non-mucoadhesive. We found that mucoadhesive particles (MAP) aggregated in mucus in the center of the GI lumen, far away from the absorptive epithelium, both in healthy mice and in a mouse model of ulcerative colitis (UC). In striking contrast, water absorption by the GI tract rapidly and uniformly transported non-mucoadhesive mucus-penetrating particles (MPP) to epithelial surfaces, including reaching the surfaces between villi in the small intestine. When using high gavage fluid volumes or injection into ligated intestinal loops, common methods for assessing oral drug and nanoparticle absorption, we found that both MAP and MPP became well-distributed throughout the intestine, indicating that the barrier properties of GI mucus were compromised. In the mouse colorectum, MPP penetrated into mucus in the deeply in-folded surfaces to evenly coat the entire epithelial surface. Moreover, in a mouse model of UC, MPP were transported preferentially into the disrupted, ulcerated tissue. Our results suggest that delivering drugs in non-mucoadhesive MPP is likely to provide enhanced particle distribution, and thus drug delivery, in the GI tract, including to ulcerated tissues.
Collapse
|
26
|
A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnol Adv 2014; 32:1269-1282. [DOI: 10.1016/j.biotechadv.2014.07.006] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/21/2014] [Accepted: 07/28/2014] [Indexed: 12/26/2022]
|
27
|
Diallinas G. Understanding transporter specificity and the discrete appearance of channel-like gating domains in transporters. Front Pharmacol 2014; 5:207. [PMID: 25309439 PMCID: PMC4162363 DOI: 10.3389/fphar.2014.00207] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/22/2014] [Indexed: 12/12/2022] Open
Abstract
Transporters are ubiquitous proteins mediating the translocation of solutes across cell membranes, a biological process involved in nutrition, signaling, neurotransmission, cell communication and drug uptake or efflux. Similarly to enzymes, most transporters have a single substrate binding-site and thus their activity follows Michaelis-Menten kinetics. Substrate binding elicits a series of structural changes, which produce a transporter conformer open toward the side opposite to the one from where the substrate was originally bound. This mechanism, involving alternate outward- and inward-facing transporter conformers, has gained significant support from structural, genetic, biochemical and biophysical approaches. Most transporters are specific for a given substrate or a group of substrates with similar chemical structure, but substrate specificity and/or affinity can vary dramatically, even among members of a transporter family that show high overall amino acid sequence and structural similarity. The current view is that transporter substrate affinity or specificity is determined by a small number of interactions a given solute can make within a specific binding site. However, genetic, biochemical and in silico modeling studies with the purine transporter UapA of the filamentous ascomycete Aspergillus nidulans have challenged this dogma. This review highlights results leading to a novel concept, stating that substrate specificity, but also transport kinetics and transporter turnover, are determined by subtle intramolecular interactions between a major substrate binding site and independent outward- or cytoplasmically-facing gating domains, analogous to those present in channels. This concept is supported by recent structural evidence from several, phylogenetically and functionally distinct transporter families. The significance of this concept is discussed in relationship to the role and potential exploitation of transporters in drug action.
Collapse
|
28
|
Zhang X, Wu W. Ligand-mediated active targeting for enhanced oral absorption. Drug Discov Today 2014; 19:898-904. [DOI: 10.1016/j.drudis.2014.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/21/2014] [Accepted: 03/03/2014] [Indexed: 01/08/2023]
|
29
|
Grobler L, Grobler A, Haynes R, Masimirembwa C, Thelingwani R, Steenkamp P, Steyn HS. The effect of the Pheroid delivery system on the in vitro metabolism and in vivo pharmacokinetics of artemisone. Expert Opin Drug Metab Toxicol 2014; 10:313-25. [PMID: 24511903 DOI: 10.1517/17425255.2014.885503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES The objectives were to determine the pharmacokinetics (PK) of artemisone and artemisone formulated in the Pheroid® drug delivery system in primates and to establish whether the formulation affects the in vitro metabolism of artemisone in human and monkey liver and intestinal microsomes. METHODS For the PK study, a single oral dose of artemisone was administered to vervet monkeys using a crossover design. Plasma samples were analyzed by means of liquid chromatography-tandem mass spectrometry. For the in vitro metabolism study, clearance was determined using microsomes and recombinant CYP3A4 enzymes, and samples were analyzed by means of ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. RESULTS Artemisone and M1 plasma levels were unexpectedly low compared to those previously recorded in rodents and humans. The in vitro intrinsic clearance (CLint) of the reference formulation with monkey liver microsomes was much higher (1359.33 ± 103.24 vs 178.86 ± 23.42) than that of human liver microsomes. The in vitro data suggest that microsomal metabolism of artemisone is inhibited by the Pheroid delivery system. CONCLUSIONS The in vivo results obtained in this study indicate that the Pheroid delivery system improves the PK profile of artemisone. The in vitro results indicate that microsomal metabolism of artemisone is inhibited by the Pheroid delivery system.
Collapse
Affiliation(s)
- Lizette Grobler
- North-West University, Faculty of Health Sciences, DST/NWU Preclinical Drug Development Platform , Potchefstroom , South Africa +27 18 299 2281, +27 18 299 4467 ; +27 18 285 2233 ; ;
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhang X, Qi J, Lu Y, Hu X, He W, Wu W. Enhanced hypoglycemic effect of biotin-modified liposomes loading insulin: effect of formulation variables, intracellular trafficking, and cytotoxicity. NANOSCALE RESEARCH LETTERS 2014; 9:185. [PMID: 24739082 PMCID: PMC3996857 DOI: 10.1186/1556-276x-9-185] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/03/2014] [Indexed: 05/05/2023]
Abstract
Peroral protein/peptide delivery has been one of the most challenging, but encouraging topics in pharmaceutics. This article was intended to explore the potential of biotin-modified liposomes (BLPs) as oral insulin delivery carriers. By incorporating biotin-DSPE into the lipid bilayer, we prepared BLPs using reverse evaporation/sonication method. We investigated hypoglycemic effects in normal rats after oral administration of BLPs, and the possible absorption mechanism by a series of in vitro tests. The relative pharmacological bioavailability of BLPs was up to 11.04% that was as much as 5.28 folds of conventional liposomes (CLPs). The results showed that the enhanced oral absorption of insulin mainly attributed to biotin ligand-mediated endocytosis. The results provided proof of BLPs as effective carriers for oral insulin delivery.
Collapse
Affiliation(s)
- Xingwang Zhang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Shanghai 201203, People's Republic of China
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jianping Qi
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Shanghai 201203, People's Republic of China
| | - Yi Lu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Shanghai 201203, People's Republic of China
| | - Xiongwei Hu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Shanghai 201203, People's Republic of China
| | - Wei He
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Shanghai 201203, People's Republic of China
| | - Wei Wu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Shanghai 201203, People's Republic of China
| |
Collapse
|
31
|
Zhang X, Qi J, Lu Y, He W, Li X, Wu W. Biotinylated liposomes as potential carriers for the oral delivery of insulin. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:167-76. [DOI: 10.1016/j.nano.2013.07.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/09/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
|
32
|
Khatun Z, Nurunnabi M, Reeck GR, Cho KJ, Lee YK. Oral delivery of taurocholic acid linked heparin-docetaxel conjugates for cancer therapy. J Control Release 2013; 170:74-82. [PMID: 23665255 DOI: 10.1016/j.jconrel.2013.04.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 03/14/2013] [Accepted: 04/28/2013] [Indexed: 11/30/2022]
Abstract
We have synthesized taurocholic acid (TCA) linked heparin-docetaxel (DTX) conjugates for oral delivery of anticancer drug. The ternary biomolecular conjugates formed self-assembly nanoparticles where docetaxel was located inside the core and taurocholic acid was located on the surface of the nanoparticles. The coupled taurocholic acid in the nanoparticles had enhanced oral absorption, presumably through the stimulation of a bile acid transporter of the small intestine. The oral absorption profile demonstrated that the concentration of the conjugates in plasma is about 6 fold higher than heparin alone. An anti-tumor study in MDA-MB231 and KB tumor bearing mice showed significant tumor growth inhibition activity by the ternary biomolecular conjugates. Ki-67 histology study also showed evidence of anticancer activity of the nanoparticles. Finally, noninvasive imaging using a Kodak Molecular Imaging System demonstrated that the nanoparticles were accumulated efficiently in tumors. Thus, this approach for oral delivery using taurocholic acid in the ternary biomolecular conjugates is promising for treatment of various types of cancer.
Collapse
Affiliation(s)
- Zehedina Khatun
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | | | | | | | | |
Collapse
|
33
|
Drug carriers for oral delivery of peptides and proteins: accomplishments and future perspectives. Ther Deliv 2013; 4:251-65. [PMID: 23343163 DOI: 10.4155/tde.12.143] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Effective formulation for peptide and protein delivery through the oral route has always been the critical effort with the advent of biotechnology. Stability, enzymatic degradation and ineffective absorption are common difficulties found for conventional dosage forms. As a result, new drug-delivery approaches are used to circumvent these limitations and enhance effective oral drug delivery. Some of these technologies have reached late stages of clinical trials and promising results will be available in the near future. This review covers, in general, the recent carriers reported in literature.
Collapse
|
34
|
Araújo F, Fonte P, Santos HA, Sarmento B. Oral delivery of glucagon-like peptide-1 and analogs: alternatives for diabetes control? J Diabetes Sci Technol 2012; 6:1486-97. [PMID: 23294796 PMCID: PMC3570891 DOI: 10.1177/193229681200600630] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most prevalent diseases worldwide. Current treatments are often associated with off-target effects and do not significantly impact disease progression. New therapies are therefore urgently needed to overcome this social burden. Glucagon-like peptide-1 (GLP-1), an incretin hormone, has been used to control T2DM symptomatology. However, the administration of peptide or proteins drugs is still a huge challenge in the pharmaceutical field, requiring administration by parenteral routes. This article reviews the main hurdles in oral administration of GLP-1 and focuses on the strategies utilized to overcome them.
Collapse
Affiliation(s)
- Francisca Araújo
- Department of Pharmaceutical Sciences, Centro de Investigação em Ciências da Saúde, Health Sciences Research Center,Instituto Superior de Ciências da Saúde, CESPU, Gandra, Portugal
- Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
| | - Pedro Fonte
- Department of Pharmaceutical Sciences, Centro de Investigação em Ciências da Saúde, Health Sciences Research Center,Instituto Superior de Ciências da Saúde, CESPU, Gandra, Portugal
- Department of Chemistry, Faculty of Pharmacy, REQUIMTE, University of Porto, Porto, Portugal
| | - Hélder A. Santos
- Division of Pharmaceutical Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Bruno Sarmento
- Department of Pharmaceutical Sciences, Centro de Investigação em Ciências da Saúde, Health Sciences Research Center,Instituto Superior de Ciências da Saúde, CESPU, Gandra, Portugal
- Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
35
|
Ghaffarian R, Bhowmick T, Muro S. Transport of nanocarriers across gastrointestinal epithelial cells by a new transcellular route induced by targeting ICAM-1. J Control Release 2012; 163:25-33. [PMID: 22698938 DOI: 10.1016/j.jconrel.2012.06.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 05/21/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
Bioavailability of oral drugs, particularly large hydrophilic agents, is often limited by poor adhesion and transport across gastrointestinal (GI) epithelial cells. Drug delivery systems, such as sub-micrometer polymer carriers (nanocarriers, NCs) coupled to affinity moieties that target GI surface markers involved in transport, may improve this aspect. To explore this strategy, we coated 100-nm polymer particles with an antibody to ICAM-1 (a protein expressed on the GI epithelium and other tissues) and evaluated targeting, uptake, and transport in human GI epithelial cells. Fluorescence and electron microscopy, and radioisotope tracing revealed that anti-ICAM NCs specifically bound to cells in culture, were internalized via CAM-mediated endocytosis, trafficked by transcytosis across cell monolayers without disrupting the permeability barrier or cell viability, and enabled transepithelial transport of a model therapeutic enzyme (α-galactosidase, deficient in lysosomal Fabry disease). These results indicate that ICAM-1 targeting may provide delivery of therapeutics, such as enzymes, to and across the GI epithelium.
Collapse
Affiliation(s)
- Rasa Ghaffarian
- Fischell Department of Bioengineering, 2330 Jeong H. Kim Engineering Building, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
36
|
Ma RH, Yang J, Qi LW, Xin GZ, Wang CZ, Yuan CS, Wen XD, Li P. In vivo microdialysis with LC–MS for analysis of spinosin and its interaction with cyclosporin A in rat brain, blood and bile. J Pharm Biomed Anal 2012; 61:22-9. [DOI: 10.1016/j.jpba.2011.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/11/2011] [Accepted: 11/12/2011] [Indexed: 02/02/2023]
|
37
|
Derakhshandeh K, Hosseinalizadeh A, Nikmohammadi M. The effects of PLGA microparticles on intestinal absorption of p-glycoprotein substrate using the everted rat intestinal sac model. Arch Pharm Res 2011; 34:1989-97. [DOI: 10.1007/s12272-011-1120-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 07/09/2011] [Accepted: 08/01/2011] [Indexed: 10/14/2022]
|
38
|
Fasinu P, Pillay V, Ndesendo VMK, du Toit LC, Choonara YE. Diverse approaches for the enhancement of oral drug bioavailability. Biopharm Drug Dispos 2011; 32:185-209. [PMID: 21480294 DOI: 10.1002/bdd.750] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 11/23/2010] [Accepted: 01/28/2011] [Indexed: 12/31/2022]
Abstract
In conscious and co-operating patients, oral drug delivery remains the preferable route of drug administration. However, not all drugs possess the desirable physicochemical and pharmacokinetic properties which favor oral administration mainly due to poor bioavailability. This has in some cases led to the choice of other routes of administration, which may compromise the convenience and increase the risk of non-compliance. Poor bioavailability has necessitated the administration of higher than normally required oral doses which often leads to economic wastages, risk of toxicity, erratic and unpredictable responses. The challenge over the years has been to design techniques that will allow oral administration of most drugs, irrespective of their properties, to achieve a therapeutic systemic availability. This will be a worthy achievement since over 90% of therapeutic compounds are known to possess oral bioavailability limitations. In this review, an attempt has been made to explore various approaches that have been used in recent years to improve oral drug bioavailability, including physical and chemical means. This review strives to provide a comprehensive overview of advances made over the past 10 years (2000-2010) in the improvement of the oral bioavailability of drugs. Briefly, the design of prodrugs to bypass metabolism or to enhance solubility as well as modification of formulation techniques such as the use of additives, permeation enhancers, solubilizers, emulsifiers and non-aqueous vehicles have been discussed. Arising approaches, such as formulation modification techniques; novel drug delivery systems, which exploit the gastrointestinal regionality of drugs, and include the pharmaceutical application of nanotechnology as an emerging area in drug delivery; inhibition of efflux pumps; and inhibition of presystemic metabolism have been more extensively addressed. This critical review sought to assess each method aimed at enhancing the oral bioavailability of drugs in terms of the purpose, scientific basis, limitations, commercial application, as well as the areas in which current research efforts are being focused and should be focused in the future.
Collapse
Affiliation(s)
- Pius Fasinu
- Department of Pharmacy and Pharmacology, University of the Witwatersrand, 7 York Road, Parktown 2193, Johannesburg, South Africa
| | | | | | | | | |
Collapse
|
39
|
Bogatcheva E, Dubuisson T, Protopopova M, Einck L, Nacy CA, Reddy VM. Chemical modification of capuramycins to enhance antibacterial activity. J Antimicrob Chemother 2010; 66:578-87. [PMID: 21186194 DOI: 10.1093/jac/dkq495] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To extend capuramycin spectrum of activity beyond mycobacteria and improve intracellular drug activity. METHODS Three capuramycin analogues (SQ997, SQ922 and SQ641) were conjugated with different natural and unnatural amino acids or decanoic acid (DEC) through an ester bond at one or more available hydroxyl groups. In vitro activity of the modified compounds was determined against Mycobacterium spp. and representative Gram-positive and Gram-negative bacteria. Intracellular activity was evaluated in J774A.1 mouse macrophages infected with Mycobacterium tuberculosis (H37Rv). RESULTS Acylation of SQ997 and SQ641 with amino undecanoic acid (AUA) improved in vitro activity against most of the bacteria tested. Conjugation of SQ922 with DEC, but not AUA, improved its activity against Gram-positive bacteria. In the presence of efflux pump inhibitor phenylalanine arginine β-naphthyl amide, MICs of SQ997-AUA, SQ641-AUA and SQ922-DEC compounds improved even further against drug-susceptible and drug-resistant Staphylococcus aureus. In Gram-negative bacteria, EDTA-mediated permeabilization caused 4- to 16-fold enhancement of the activity of AUA-conjugated SQ997, SQ922 and SQ641. Conjugation of all three capuramycin analogues with AUA improved intracellular killing of H37Rv in murine macrophages. CONCLUSIONS Conjugation of capuramycin analogues with AUA or DEC enhanced in vitro activity, extended the spectrum of activity in Gram-positive bacteria and increased intracellular activity against H37Rv.
Collapse
Affiliation(s)
- Elena Bogatcheva
- Sequella, Inc., 9610 Medical Center Drive, Suite 200, Rockville, MD 20850, USA
| | | | | | | | | | | |
Collapse
|
40
|
Brandsma ME, Jevnikar AM, Ma S. Recombinant human transferrin: beyond iron binding and transport. Biotechnol Adv 2010; 29:230-8. [PMID: 21147210 DOI: 10.1016/j.biotechadv.2010.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 11/22/2010] [Accepted: 11/26/2010] [Indexed: 11/15/2022]
Abstract
Iron is indispensible for life and essential for such processes as oxygen transport, electron transfer and DNA synthesis. Transferrin (Tf) is a ubiquitous protein with a central role in iron transport and metabolism. There is evidence, however, that Tf has many other biological roles in addition to its primary function of facilitating iron transport and metabolism, such as its profound effect on mammalian cell growth and productivity. The multiple functions of Tf can be exploited to develop many novel applications. Indeed, over the past several years, considerable efforts have been directed towards exploring human serum Tf (hTf), especially the use of recombinant native hTf and recombinant Tf fusion proteins, for various applications within biotechnology and medicine. Here, we review some of the remarkable progress that has been made towards the application of hTf in these diverse areas and discuss some of the exciting future prospects for hTf.
Collapse
Affiliation(s)
- Martin E Brandsma
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
41
|
Liu C, Liu D, Bai F, Zhang J, Zhang N. In vitro and in vivo studies of lipid-based nanocarriers for oral N3-o-toluyl-fluorouracil delivery. Drug Deliv 2010; 17:352-63. [PMID: 20387993 DOI: 10.3109/10717541003762839] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lipid-based drug delivery systems show great potential for enhancing oral bioavailability but have not been broadly applied, largely due to lack of general formulation guidance. In the previous studies, three different formulations including anionic SLNs, cationic SLNs, and liposomes were investigated and significantly enhanced the oral bioavailability of N3-o-toluyl-fluorouracil (TFu) compared with its aqueous suspension, which indicated their high potential as oral delivery carriers. In order to define which formulation is worthy of being further researched and developed, the studies on Caco-2 cell model and rat intestine were investigated. In both studies of crossing Caco-2 cell monolayers and the single-pass intestinal perfusion (SPIP) in rat, SLNs exhibited much more capability to enhance transport of TFu than liposomes. More specifically, in cell study, the P(app) values of cationic SLNs (p < 0.01) and anionic SLNs (p < 0.05) were significantly higher than liposomes. Especially the cationic SLNs present the most effective capacity. During SPIP study, both Ka and uptake percentage of these three different formulations followed a rank order: anionic SLN > cationic SLN > liposomes. In addition, the P(eff) of different nanocarriers in various intestinal segments indicated they all exhibited site-dependent absorption behavior. By comparing the transmucosal behavior of these nanocarriers in vitro and in vivo, the anionic SLNs were identified to be more effective in the transport of TFu and were worthy of being further researched and developed.
Collapse
Affiliation(s)
- Chunxi Liu
- Department of Pharmaceutics, School of Pharmaceutical Science, Shandong University, 44 Wenhua Western Road, Jinan 250012, PR China
| | | | | | | | | |
Collapse
|
42
|
Dorababu M, Nishimura A, Prabha T, Naruhashi K, Sugioka N, Takada K, Shibata N. Effect of cyclosporine on drug transport and pharmacokinetics of nifedipine. Biomed Pharmacother 2009; 63:697-702. [PMID: 19819100 DOI: 10.1016/j.biopha.2009.04.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 01/29/2009] [Accepted: 04/01/2009] [Indexed: 02/07/2023] Open
Abstract
Nifedipine (NFP) is an anti-hypersensitive drug and a well-known substrate of cytochrome P450 3A4 (CYP3A4), while cyclosporine (CSP) is a potent p-glycoprotein (P-gp) inhibitor. P-gp is a drug transporter, which determines the absorption and bioavailability of many drugs that are substrates for P-gp. Drugs that induce or inhibit P-gp may have a profound effect on the absorption and pharmacokinetics (PK) of drugs transported by P-gp within the body, possibly compromising their bioavailability. But the role of P-gp in the NFP efflux and its impact on PK profile is not known. Hence in our present study we attempted to investigate the effect of CSP on oral absorption and PK of NFP. Rhodamine 123 (Rho 123), a known P-gp substrate was used as a positive control. Male Wistar rats (350-400 g) were used for the study. Rats were divided into 4 groups (n=6 each); one group was treated with vehicle (cremophor) followed by NFP (0.2 mg/kg; i.v. bolus) and the other group with CSP (10 mg/kg; i.v.) followed by NFP. Group 3 and 4 were treated with vehicle (cremophor) followed by Rho 123 (0.2 mg/kg, i.v.) and CSP (10 mg/kg; i.v.) followed by Rho 123 (0.2 mg/kg, i.v.) respectively. The blood samples were collected at 0, 5, 10, 15, 30, 60, 90, 120, 180 and 240 min after NFP administration. NFP concentrations in plasma were analyzed by LC-MS-MS and Rho 123 was analyzed by fluorimetric detector. NFP efflux was significantly decreased in CSP treated rats (49.1% decrease, P<0.05), while NFP concentration in plasma were not changed. However the decrease in NFP efflux did not show any significant changes in NFP PK parameters (T(max); 2.0 vs. 2.5 min, C(max); 0.084 vs. 0.076 microg/ml, T(1/2); 84.0 vs. 91.4 min, AUC(0-t); 4.183 vs. 3.467 microg h/ml, AUC(infinity); 5.915 vs. 4.769 microg h/ml, AUMC(0-t); 224.073 vs. 173.063 microg h/ml, AUMC(infinity); 776.871 vs. 575.038 microg h/ml, MRT(0-t); 53.608 vs. 49.538 microg h/ml, MRT(infinity); 118.194 vs. 115.246 microg h/ml, CL(tot); 0.0375 vs. 0.0433 l/h, Vd(ss); 3.999 vs. 4.641 l in NFP alone vs. CSP+NFP groups respectively). Thus the results indicate that NFP would belong to a group of P-gp substrate. The decrease in efflux of NFP by CSP, through inhibition of P-gp, into the intestinal lumen did not show any impact on PK. This could be due to the activity of other transporters and/or CYP3A4 may have more limiting role than P-gp on NFP metabolism and disposition that is why inhibiting P-gp did not lead to increase the bioavailability and PK alterations.
Collapse
Affiliation(s)
- Madhura Dorababu
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | |
Collapse
|