1
|
Skv M, Abraham SM, Eshwari O, Golla K, Jhelum P, Maity S, Komal P. Tremendous Fidelity of Vitamin D3 in Age-related Neurological Disorders. Mol Neurobiol 2024; 61:7211-7238. [PMID: 38372958 DOI: 10.1007/s12035-024-03989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Vitamin D3 (VD) is a secosteroid hormone and shows a pleiotropic effect in brain-related disorders where it regulates redox imbalance, inflammation, apoptosis, energy production, and growth factor synthesis. Vitamin D3's active metabolic form, 1,25-dihydroxy Vitamin D3 (1,25(OH)2D3 or calcitriol), is a known regulator of several genes involved in neuroplasticity, neuroprotection, neurotropism, and neuroinflammation. Multiple studies suggest that VD deficiency can be proposed as a risk factor for the development of several age-related neurological disorders. The evidence for low serum levels of 25-hydroxy Vitamin D3 (25(OH)D3 or calcidiol), the major circulating form of VD, is associated with an increased risk of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), dementia, and cognitive impairment. Despite decades of evidence on low VD association with neurological disorders, the precise molecular mechanism behind its beneficial effect remains controversial. Here, we will be delving into the neurobiological importance of VD and discuss its benefits in different neuropsychiatric disorders. The focus will be on AD, PD, and HD as they share some common clinical, pathological, and epidemiological features. The central focus will be on the different attributes of VD in the aspect of its anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholinesterase activity, and psychotropic effect in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Manjari Skv
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Sharon Mariam Abraham
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Omalur Eshwari
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Kishore Golla
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Priya Jhelum
- Centre for Research in Neuroscience and Brain Program, The Research Instituteof the, McGill University Health Centre , Montreal, QC, Canada
| | - Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Pragya Komal
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India.
| |
Collapse
|
2
|
Mishra P, Sivakumar A, Johnson A, Pernaci C, Warden AS, El-Hachem LR, Hansen E, Badell-Grau RA, Khare V, Ramirez G, Gillette S, Solis AB, Guo P, Coufal N, Cherqui S. Gene editing improves endoplasmic reticulum-mitochondrial contacts and unfolded protein response in Friedreich's ataxia iPSC-derived neurons. Front Pharmacol 2024; 15:1323491. [PMID: 38420191 PMCID: PMC10899513 DOI: 10.3389/fphar.2024.1323491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
Friedreich ataxia (FRDA) is a multisystemic, autosomal recessive disorder caused by homozygous GAA expansion mutation in the first intron of frataxin (FXN) gene. FXN is a mitochondrial protein critical for iron-sulfur cluster biosynthesis and deficiency impairs mitochondrial electron transport chain functions and iron homeostasis within the organelle. Currently, there is no effective treatment for FRDA. We have previously demonstrated that single infusion of wild-type hematopoietic stem and progenitor cells (HSPCs) resulted in prevention of neurologic and cardiac complications of FRDA in YG8R mice, and rescue was mediated by FXN transfer from tissue engrafted, HSPC-derived microglia/macrophages to diseased neurons/myocytes. For a future clinical translation, we developed an autologous stem cell transplantation approach using CRISPR/Cas9 for the excision of the GAA repeats in FRDA patients' CD34+ HSPCs; this strategy leading to increased FXN expression and improved mitochondrial functions. The aim of the current study is to validate the efficiency and safety of our gene editing approach in a disease-relevant model. We generated a cohort of FRDA patient-derived iPSCs and isogenic lines that were gene edited with our CRISPR/Cas9 approach. iPSC derived FRDA neurons displayed characteristic apoptotic and mitochondrial phenotype of the disease, such as non-homogenous microtubule staining in neurites, increased caspase-3 expression, mitochondrial superoxide levels, mitochondrial fragmentation, and partial degradation of the cristae compared to healthy controls. These defects were fully prevented in the gene edited neurons. RNASeq analysis of FRDA and gene edited neurons demonstrated striking improvement in gene clusters associated with endoplasmic reticulum (ER) stress in the isogenic lines. Gene edited neurons demonstrated improved ER-calcium release, normalization of ER stress response gene, XBP-1, and significantly increased ER-mitochondrial contacts that are critical for functional homeostasis of both organelles, as compared to FRDA neurons. Ultrastructural analysis for these contact sites displayed severe ER structural damage in FRDA neurons, that was undetected in gene edited neurons. Taken together, these results represent a novel finding for disease pathogenesis showing dramatic ER structural damage in FRDA, validate the efficacy profile of our FXN gene editing approach in a disease relevant model, and support our approach as an effective strategy for therapeutic intervention for Friedreich's ataxia.
Collapse
Affiliation(s)
- Priyanka Mishra
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Anusha Sivakumar
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Avalon Johnson
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Carla Pernaci
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Anna S. Warden
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Lilas Rony El-Hachem
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Emily Hansen
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Rafael A. Badell-Grau
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Veenita Khare
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Gabriela Ramirez
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Sydney Gillette
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Angelyn B. Solis
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Peng Guo
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
| | - Nicole Coufal
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
3
|
Ghanbari M, Khosroshahi NS, Alamdar M, Abdi A, Aghazadeh A, Feizi MAH, Haghi M. An Updated Review on the Significance of DNA and Protein Methyltransferases and De-methylases in Human Diseases: From Molecular Mechanism to Novel Therapeutic Approaches. Curr Med Chem 2024; 31:3550-3587. [PMID: 37287285 DOI: 10.2174/0929867330666230607124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
Epigenetic mechanisms are crucial in regulating gene expression. These mechanisms include DNA methylation and histone modifications, like methylation, acetylation, and phosphorylation. DNA methylation is associated with gene expression suppression; however, histone methylation can stimulate or repress gene expression depending on the methylation pattern of lysine or arginine residues on histones. These modifications are key factors in mediating the environmental effect on gene expression regulation. Therefore, their aberrant activity is associated with the development of various diseases. The current study aimed to review the significance of DNA and histone methyltransferases and demethylases in developing various conditions, like cardiovascular diseases, myopathies, diabetes, obesity, osteoporosis, cancer, aging, and central nervous system conditions. A better understanding of the epigenetic roles in developing diseases can pave the way for developing novel therapeutic approaches for affected patients.
Collapse
Affiliation(s)
- Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Negin Sadi Khosroshahi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Maryam Alamdar
- Department of Genetics Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Adel Abdi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Aida Aghazadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Mehdi Haghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
4
|
Lee DY, Salahuddin T, Iqbal J. Lysine-Specific Demethylase 1 (LSD1)-Mediated Epigenetic Modification of Immunogenicity and Immunomodulatory Effects in Breast Cancers. Curr Oncol 2023; 30:2127-2143. [PMID: 36826125 PMCID: PMC9955398 DOI: 10.3390/curroncol30020164] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Tumor evolution to evade immune surveillance is a hallmark of carcinogenesis, and the modulation of tumor immunogenicity has been a challenge to present therapeutic responses in immunotherapies alone for numerous cancers. By altering the cell phenotype and reshaping the tumor microenvironment, epigenetic modifications enable tumor cells to overcome immune surveillance as a mechanism of cancer progression and immunotherapy resistance. Demethylase enzymatic activity of lysine-specific demethylase 1 (LSD1), a histone demethylase first identified in 2004, plays a pivotal role in the vast cellular processes of cancer. While FDA-approved indications for epigenetic therapies are limited to hematological malignancies, it is imperative to understand how epigenetic machinery can be targeted to prime immunotherapy responses in breast cancers. In this review, we discuss the potential roles of epigenetics and demethylating agent LSD1 as a potent new cancer management strategy to combat the current challenges of breast cancers, which have presented modest efficacy to immune checkpoint inhibitors till date. Additionally, we describe the combined use of LSD1-specific inhibitors and immune checkpoint inhibitors in existing breast cancer preclinical and clinical trials that elicits a robust immune response and benefit. Overall, the promising results observed in LSD1-targeting therapies signify the central role of epigenetics as a potential novel strategy to overcome resistance commonly seen in immunotherapies.
Collapse
Affiliation(s)
- Dong Yeul Lee
- Department of Anatomical Pathology, Singapore General Hospital, 20 College Road, Academia, Level 10, Diagnostics Tower, Singapore 169856, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Correspondence: (D.Y.L.); (J.I.)
| | - Talha Salahuddin
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Jabed Iqbal
- Department of Anatomical Pathology, Singapore General Hospital, 20 College Road, Academia, Level 10, Diagnostics Tower, Singapore 169856, Singapore
- Correspondence: (D.Y.L.); (J.I.)
| |
Collapse
|
5
|
Tang Z, Cao J, Yao J, Fan X, Zhao J, Zhao M, Duan Q, Han B, Duan S. KDM1A-mediated upregulation of METTL3 ameliorates Alzheimer's disease via enhancing autophagic clearance of p-Tau through m6A-dependent regulation of STUB1. Free Radic Biol Med 2023; 195:343-358. [PMID: 36587923 DOI: 10.1016/j.freeradbiomed.2022.12.099] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a severe neurodegenerative disorder that progressively destroys cognitive skills. Exploring the mechanism underlying autophagic clearance of phosphorylated tau (p-Tau) contributes to developing novel therapeutic strategies for AD. METHODS SH-SY5Y and HT22 cells were treated with Aβ1-42 to establish an in vitro model of AD. Cell viability was examined using CCK-8. TUNEL staining was applied to evaluate cell apoptosis. LC3 puncta was examined by IF staining. m6A modification level was evaluated through MeRIP. RNA pull-down and RIP assays were used for analyzing the interaction between IGF2BP1 and STUB1 transcripts. The binding of KDM1A to the promoter of METTL3 was confirmed by ChIP assays. APP/PS1 transgenic mice were used as an in vivo model of AD. Cognitive skills of mice were evaluated with the Morris water maze. Hippocampal damage and Aβ deposition were detected through H&E and IHC staining. RESULTS Dysregulated levels of autophagy, p-Tau and m6A was observed in an in vitro model of AD. Overexpression of METTL3 or STUB1 enhanced autophagy but reduced p-Tau level in Aβ1-42-treated cells. METTL3 stabilized STUB1 mRNA through the m6A-IGF2BP1-dependent mechanism and naturally promoted STUB1 expression, thereby enhancing autophagic p-Tau clearance in Aβ1-42-treated cells. Overexpression of KDM1A enhanced autophagy, m6A modification and autophagic p-Tau clearance in Aβ1-42-treated cells. KDM1A-mediated upregulation of METTL3 promoted autophagic p-Tau clearance and ameliorated Alzheimer's disease both in vitro and in vivo. CONCLUSION KDM1A-mediated upregulation of METTL3 enhances autophagic clearance of p-Tau through m6A-dependent regulation of STUB1, thus ameliorating Alzheimer's disease. Our study provides novel mechanistic insights into AD pathogenesis and potential drug targets for AD.
Collapse
Affiliation(s)
- Zhanbin Tang
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, PR China
| | - Jingwei Cao
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, PR China
| | - Jialin Yao
- Harbin First Hospital, Harbin, 150081, Heilongjiang, PR China
| | - Xuehui Fan
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, PR China
| | - Jingkun Zhao
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, PR China
| | - Mianqiao Zhao
- Harbin Second Hospital, Harbin, 150081, Heilongjiang, PR China
| | - Qiong Duan
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, PR China
| | - Baichao Han
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, PR China
| | - Shurong Duan
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, PR China.
| |
Collapse
|
6
|
Ma T, Li A, Guo Y, Li S, Li M, Feng S, Liu H. KDM1A/LSD1 as a promising target in various diseases treatment by regulating autophagy network. Biomed Pharmacother 2022; 148:112762. [PMID: 35240522 DOI: 10.1016/j.biopha.2022.112762] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Epigenetics refers to alterations in gene expressions that are reversible and stable, but do not involve changes in DNA sequences. In recent years, an increasing number of studies have shown that epigenetics plays a critical role in autophagy, which can be schematized as a biological process comprising of the following steps: autophagy signal activation, autophagic vesicle elongation, autophagosome maturation and autophagosome-lysosome fusion. As previously reported, autophagy can maintain intracellular homeostasis and autophagy dysfunction will lead to various diseases. For instance, the abnormal expression of genes involved in autophagy can result in the occurrence of many cancers and atherosclerosis. It is also well known that epigenetic modifications can affect autophagy related genes expressions and modulate other signaling molecular involved in autophagy. As an important epigenetic enzyme, LSD1 (lysine specific demethylase 1) plays an essential role in modulating autophagy. On one hand, LSD1 directly regulates autophagy-related genes expressions, including ATGs, Beclin-1, LC3 and SQSTM1/p62. On the other hand, inhibition of LSD1 can activate autophagy through regulating the activities of some other proteins such as p53, SESN2, mTORC1 and PTEN. Since autophagy activation is tightly related to the occurrence of various diseases and can be induced by LSD1 inhibition, development of LSD1 inhibitors will provide a new direction to treat such diseases. In this review, we described the mechanisms by which LSD1 regulates autophagy in different manners and how autophagic dysfunction leads to diseases occurrence. In addition, some LSD1 inhibitors used to treat diseases through modulating autophagy are also summarized in our review.
Collapse
Affiliation(s)
- Ting Ma
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Anqi Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Yueyang Guo
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Shaotong Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Siqi Feng
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Wang X, Zhang C, Zhang X, Wang J, Zhao L, Zhao D, Cheng M. Design, synthesis and biological evaluation of 2-aminopyrimidine-based LSD1 inhibitors. Bioorg Chem 2022; 121:105699. [PMID: 35219044 DOI: 10.1016/j.bioorg.2022.105699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/08/2022] [Accepted: 02/19/2022] [Indexed: 12/25/2022]
Abstract
AZD9291, with excellent pharmaceutical properties, has been reported to have certain LSD1 inhibitory activity. Therefore, we carried out structural optimization based on the AZD9291 skeleton to increase the LSD1 inhibitory potential of the compound. Then, a series of 2-aminopyrimidine derivatives were designed and synthesized as LSD1 inhibitors, and their structure-activity relationships were studied. The most promising compound, X43, with an IC50 of 0.89 μM showed remarkable LSD1 selectivity not only to EGFRwt (>100-fold) but also to MAO-A/B (>50-fold). Further studies showed that X43 inhibited LSD1 activity and induced the apoptosis of A549 cells in a dose-dependent manner. Meanwhile, compound X43 showed a superior ability to inhibit the proliferation of A549 and THP-1 cells, with IC50 values of 1.62 μM and 1.21 μM, respectively. Then, analyses of the stability of human liver microsomes, CYP inhibition and in vivo pharmacokinetics in rats showed that X43 had favorable profiles in vitro and in vivo and the potential for further study. Our findings suggested that a 2-aminopyrimidine-based LSD1 inhibitor deserves further investigation as a treatment for LSD1-overexpressing cancer.
Collapse
Affiliation(s)
- Xinran Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing 102488, China
| | - Cai Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Chaoyang District, Beijing 102488, China
| | - Xiangyu Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Jiming Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Liyu Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| |
Collapse
|
8
|
Shalev I, Somekh J, Eran A. Multimodal bioinformatic analyses of the neurodegenerative disease-associated TECPR2 gene reveal its diverse roles. J Med Genet 2021; 59:1002-1009. [PMID: 34933910 DOI: 10.1136/jmedgenet-2021-108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/01/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Loss of tectonin β-propeller repeat-containing 2 (TECPR2) function has been implicated in an array of neurodegenerative disorders, yet its physiological function remains largely unknown. Understanding TECPR2 function is essential for developing much needed precision therapeutics for TECPR2-related diseases. METHODS We leveraged considerable amounts of functional data to obtain a comprehensive perspective of the role of TECPR2 in health and disease. We integrated expression patterns, population variation, phylogenetic profiling, protein-protein interactions and regulatory network data for a minimally biased multimodal functional analysis. Genes and proteins linked to TECPR2 via multiple lines of evidence were subject to functional enrichment analyses to identify molecular mechanisms involving TECPR2. RESULTS TECPR2 was found to be part of a tight neurodevelopmental gene expression programme that includes KIF1A, ATXN1, TOM1L2 and FA2H, all implicated in neurological diseases. Functional enrichment analyses of TECPR2-related genes converged on a role in late autophagy and ribosomal processes. Large-scale population variation data demonstrated that this role is non-redundant. CONCLUSIONS TECPR2 might serve as an indicator for the energy balance between protein synthesis and autophagy, and a marker for diseases associated with their imbalance, such as Alzheimer's disease and Huntington's disease. Specifically, we speculate that TECPR2 plays an important role as a proteostasis regulator during synaptogenesis, highlighting its importance in developing neurons. By advancing our understanding of TECPR2 function, this work provides an essential stepping stone towards the development of precision diagnostics and targeted treatment options for TECPR2-related disorders.
Collapse
Affiliation(s)
- Ido Shalev
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Zlotowsky Center for Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Judith Somekh
- Department of Information Systems, University of Haifa, Haifa, Israel
| | - Alal Eran
- Zlotowsky Center for Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel .,Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Huang MJ, Guo JW, Fu YD, You YZ, Xu WY, Song TY, Li R, Chen ZT, Huang LH, Liu HM. Discovery of new tranylcypromine derivatives as highly potent LSD1 inhibitors. Bioorg Med Chem Lett 2021; 41:127993. [PMID: 33775841 DOI: 10.1016/j.bmcl.2021.127993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Tranylcypromine (TCP)-based structural modifications lead to the discovery of new LSD1 inhibitors, of which compounds 26b and 29b effectively inhibit LSD1 with the IC50 values of 17 and 11 nM, respectively and also show good selectivity over MAO-B. Mechanistic studies showed that compound 29b concentration-dependently induced H3K4me1/2 accumulation in LSD1 overexpressed MGC-803 cells and also inhibited metastasis of MGC-803 cells. Collectively, both compounds could be promising lead compounds for further investigation.
Collapse
Affiliation(s)
- Ming-Jie Huang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jia-Wen Guo
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yun-Dong Fu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ya-Zhen You
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wen-Yu Xu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ting-Yu Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ran Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zi-Tong Chen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Li-Hua Huang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
10
|
Wang B J, Wang S, Xiao M, Zhang J, Wang A J, Guo Y, Tang Y, Gu J. Regulatory mechanisms of Sesn2 and its role in multi-organ diseases. Pharmacol Res 2020; 164:105331. [PMID: 33285232 DOI: 10.1016/j.phrs.2020.105331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
Sestrin2 (Sesn2) is a powerful anti-oxidant that can prevent acute and chronic diseases. The role of Sesn2 has been thoroughly reviewed in liver, nervous system, and immune system diseases. However, there is a limited number of reviews that have summarized the effects of Sesn2 in heart and vascular diseases, and very less literature-based information is available on involvement of Sesn2 in renal and respiratory pathologies. This review summarizes the latest research on Sesn2 in multi-organ stress responses, with a particular focus on the protective role of Sesn2 in cardiovascular, respiratory, and renal diseases, emphasizing the potential therapeutic benefit of targeting Sesn2 in stress-related diseases.
Collapse
Affiliation(s)
- Jie Wang B
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shudong Wang
- Department of Cardiology at the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Mengjie Xiao
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jingjing Zhang
- Department of Cardiology at the First Hospital of China Medical University, Department of Cardiology at the People's Hospital of Liaoning Province, Shenyang, Liaoning, 110016, China
| | - Jie Wang A
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yuanfang Guo
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Junlian Gu
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
11
|
Wei Q, Guo Z, Chen D, Jia X. MiR-542-3p Suppresses Neuroblastoma Cell Proliferation and Invasion by Downregulation of KDM1A and ZNF346. Open Life Sci 2020; 15:173-184. [PMID: 33987474 PMCID: PMC8114778 DOI: 10.1515/biol-2020-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Neuroblastoma is one of the most common malignancies in infants and children. MicroRNAs (miRNAs) have been reported as significant regulators that play important roles in neuroblastoma development. This research aimed to analyze the functional mechanism of miR-542-3p in neuroblastoma. Here, we found that miR-542-3p was downregulated and KDM1A as well as ZNF346 were upregulated in neuroblastoma tissues and cells. Both overexpression of miR-542-3p and the knockdown of KDM1A suppressed cell proliferation and invasion in neuroblastomas. Moreover, miR-542-3p reduced the levels of KDM1A and ZNF346 through interaction. Both KDM1A overexpression and ZNF346 upregulation weakened the effect of miR-542-3p on neuroblastoma cells. Besides, miR-542-3p negatively regulated tumor growth in vivo. Our results suggested that miR-542-3p suppressed cell proliferation and invasion by targeting KDM1A and ZNF346 in neuroblastomas, providing a theoretical basis for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Qiang Wei
- Department II of General Surgery, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Zhao Guo
- Department II of General Surgery, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Dong Chen
- Department II of General Surgery, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Xinjian Jia
- Department II of General Surgery, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
12
|
He M, Zhang T, Zhu Z, Qin S, Wang H, Zhao L, Zhang X, Hu J, Wen J, Cai H, Xin Q, Guo Q, Lin L, Zhou B, Zhang H, Xia G, Wang C. LSD1 contributes to programmed oocyte death by regulating the transcription of autophagy adaptor SQSTM1/p62. Aging Cell 2020; 19:e13102. [PMID: 32074399 PMCID: PMC7059144 DOI: 10.1111/acel.13102] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Accepted: 11/23/2019] [Indexed: 12/11/2022] Open
Abstract
In female mammals, the size of the initially established primordial follicle (PF) pool within the ovaries determines the reproductive lifespan of females. Interestingly, the establishment of the PF pool is accompanied by a remarkable programmed oocyte loss for unclear reasons. Although apoptosis and autophagy are involved in the process of oocyte loss, the underlying mechanisms require substantial study. Here, we identify a new role of lysine-specific demethylase 1 (LSD1) in controlling the fate of oocytes in perinatal mice through regulating the level of autophagy. Our results show that the relatively higher level of LSD1 in fetal ovaries sharply reduces from 18.5 postcoitus (dpc). Meanwhile, the level of autophagy increases while oocytes are initiating programmed death. Specific disruption of LSD1 resulted in significantly increased autophagy and obviously decreased oocyte number compared with the control. Conversely, the oocyte number is remarkably increased by the overexpression of Lsd1 in ovaries. We further demonstrated that LSD1 exerts its role by regulating the transcription of p62 and affecting autophagy level through its H3K4me2 demethylase activity. Finally, in physiological conditions, a decrease in LSD1 level leads to an increased level of autophagy in the oocyte when a large number of oocytes are being lost. Collectively, LSD1 may be one of indispensible epigenetic molecules who protects oocytes against preterm death through repressing the autophagy level in a time-specific manner. And epigenetic modulation contributes to programmed oocyte death by regulating autophagy in mice.
Collapse
Affiliation(s)
- Meina He
- State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University Beijing China
| | - Tuo Zhang
- State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University Beijing China
| | - Zijian Zhu
- State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University Beijing China
| | - Shaogang Qin
- State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University Beijing China
| | - Huarong Wang
- State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University Beijing China
| | - Lihua Zhao
- State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University Beijing China
| | - Xinran Zhang
- State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University Beijing China
| | - Jiayi Hu
- State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University Beijing China
| | - Jia Wen
- State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University Beijing China
| | - Han Cai
- State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University Beijing China
| | - Qiliang Xin
- State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University Beijing China
| | - Qirui Guo
- State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University Beijing China
| | - Lin Lin
- State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University Beijing China
| | - Bo Zhou
- State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University Beijing China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University Beijing China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University Beijing China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China Ningxia University Yinchuan China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University Beijing China
| |
Collapse
|
13
|
Konc J. Identification of neurological disease targets of natural products by computational screening. Neural Regen Res 2019; 14:2075-2076. [PMID: 31397338 PMCID: PMC6788253 DOI: 10.4103/1673-5374.262576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Janez Konc
- Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
14
|
Cuyàs E, Gumuzio J, Lozano-Sánchez J, Carreras D, Verdura S, Llorach-Parés L, Sanchez-Martinez M, Selga E, Pérez GJ, Scornik FS, Brugada R, Bosch-Barrera J, Segura-Carretero A, Martin ÁG, Encinar JA, Menendez JA. Extra Virgin Olive Oil Contains a Phenolic Inhibitor of the Histone Demethylase LSD1/KDM1A. Nutrients 2019; 11:nu11071656. [PMID: 31331073 PMCID: PMC6683035 DOI: 10.3390/nu11071656] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
The lysine-specific histone demethylase 1A (LSD1) also known as lysine (K)-specific demethylase 1A (KDM1A) is a central epigenetic regulator of metabolic reprogramming in obesity-associated diseases, neurological disorders, and cancer. Here, we evaluated the ability of oleacein, a biophenol secoiridoid naturally present in extra virgin olive oil (EVOO), to target LSD1. Molecular docking and dynamic simulation approaches revealed that oleacein could target the binding site of the LSD1 cofactor flavin adenosine dinucleotide with high affinity and at low concentrations. At higher concentrations, oleacein was predicted to target the interaction of LSD1 with histone H3 and the LSD1 co-repressor (RCOR1/CoREST), likely disturbing the anchorage of LSD1 to chromatin. AlphaScreen-based in vitro assays confirmed the ability of oleacein to act as a direct inhibitor of recombinant LSD1, with an IC50 as low as 2.5 μmol/L. Further, oleacein fully suppressed the expression of the transcription factor SOX2 (SEX determining Region Y-box 2) in cancer stem-like and induced pluripotent stem (iPS) cells, which specifically occurs under the control of an LSD1-targeted distal enhancer. Conversely, oleacein failed to modify ectopic SOX2 overexpression driven by a constitutive promoter. Overall, our findings provide the first evidence that EVOO contains a naturally occurring phenolic inhibitor of LSD1, and support the use of oleacein as a template to design new secoiridoid-based LSD1 inhibitors.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | | | - Jesús Lozano-Sánchez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Research and Development Functional Food Centre (CIDAF), PTS Granada, 18100 Granada, Spain
| | - David Carreras
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, 17071 Girona, Spain
| | - Sara Verdura
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | | | | | - Elisabet Selga
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, 17071 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
| | - Guillermo J Pérez
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, 17071 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Fabiana S Scornik
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, 17071 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Ramon Brugada
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, 17071 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Dr. Josep Trueta Hospital of Girona, 17007 Girona, Spain
| | - Joaquim Bosch-Barrera
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
- Medical Oncology, Catalan Institute of Oncology (ICO), 17007 Girona, Spain
- Department of Medical Sciences, Medical School University of Girona, 17071 Girona, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Research and Development Functional Food Centre (CIDAF), PTS Granada, 18100 Granada, Spain
| | | | - José Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain
| | - Javier A Menendez
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, 17007 Girona, Spain.
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain.
| |
Collapse
|
15
|
Majello B, Gorini F, Saccà CD, Amente S. Expanding the Role of the Histone Lysine-Specific Demethylase LSD1 in Cancer. Cancers (Basel) 2019; 11:cancers11030324. [PMID: 30866496 PMCID: PMC6468368 DOI: 10.3390/cancers11030324] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023] Open
Abstract
Studies of alterations in histone methylation in cancer have led to the identification of histone methyltransferases and demethylases as novel targets for therapy. Lysine-specific demethylase 1 (LSD1, also known as KDM1A), demethylates H3K4me1/2, or H3K9me1/2 in a context-dependent manner. In addition to the well-studied role of LSD1 in the epigenetic regulation of histone methylation changes, LSD1 regulates the methylation dynamic of several non-histone proteins and participates in the assembly of different long noncoding RNA (lncRNA_ complexes. LSD1 is highly expressed in various cancers, playing a pivotal role in different cancer-related processes. Here, we summarized recent findings on the role of LSD1 in the regulation of different biological processes in cancer cells through dynamic methylation of non-histone proteins and physical association with dedicated lncRNA.
Collapse
Affiliation(s)
- Barbara Majello
- Department of Biology, University of Naples 'Federico II', 80126 Naples, Italy.
| | - Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples, 'Federico II', 80131 Naples, Italy.
| | | | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples, 'Federico II', 80131 Naples, Italy.
| |
Collapse
|
16
|
Ambrosio S, Ballabio A, Majello B. Histone methyl-transferases and demethylases in the autophagy regulatory network: the emerging role of KDM1A/LSD1 demethylase. Autophagy 2018; 15:187-196. [PMID: 30208749 DOI: 10.1080/15548627.2018.1520546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Macroautophagy/autophagy is a physiological mechanism that is essential for the maintenance of cellular homeostasis and stress adaptation. Defective autophagy is associated with many human diseases, including cancer and neurodegenerative disorders. The emerging implication of epigenetic events in the control of the autophagic process opens new avenues of investigation and offers the opportunity to develop novel therapeutic strategies in diseases associated with dysfunctional autophagy-lysosomal pathways. Accumulating evidence reveals that several methyltransferases and demethylases are essential regulators of autophagy, and recent studies have led to the identification of the lysine demethylase KDM1A/LSD1 as a promising drug target. KDM1A/LSD1 modulates autophagy at multiple levels, participating in the transcriptional control of several downstream effectors. This review summarizes our current understanding of the role of KDM1A/LSD1 in the autophagy regulatory network.
Collapse
Affiliation(s)
- Susanna Ambrosio
- a Department of Biology , Federico II University , Naples , Italy.,b Telethon Institute of Genetics and Medicine (TIGEM) , Pozzuoli, Naples , Italy
| | - Andrea Ballabio
- b Telethon Institute of Genetics and Medicine (TIGEM) , Pozzuoli, Naples , Italy.,c Medical Genetics, Department of Translational Medicine , Federico II University , Naples , Italy.,d Department of Molecular and Human Genetics , Baylor College of Medicine and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital , Houston , TX , USA
| | - Barbara Majello
- a Department of Biology , Federico II University , Naples , Italy
| |
Collapse
|