1
|
Park SM, Oh YH, Lim GH, An JH, Lee JH, Gwag BJ, Won SJ, Seo KW, Youn HY. Crisdesalazine alleviates inflammation in an experimental autoimmune encephalomyelitis multiple sclerosis mouse model by regulating the immune system. BMC Neurosci 2025; 26:1. [PMID: 39754048 PMCID: PMC11699678 DOI: 10.1186/s12868-024-00920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025] Open
Abstract
Microglia/macrophages participate in the development of and recovery from experimental autoimmune encephalomyelitis (EAE), and the macrophage M1 (pro-inflammatory)/M2 (anti-inflammatory) phase transition is involved in EAE disease progression. We evaluated the efficacy of crisdesalazine (a novel microsomal prostaglandin E2 synthase-1 inhibitor) in an EAE model, including its immune-regulating potency in lipopolysaccharide-stimulated macrophages, and its neuroprotective effects in a macrophage-neuronal co-culture system. Crisdesalazine significantly alleviated clinical symptoms, inhibited inflammatory cell infiltration and demyelination in the spinal cord, and altered the phase of microglial/macrophage and regulatory T cells. Crisdesalazine promoted the M1 to M2 phase transition in macrophages (immunomodulation) and reduced neuronal necrosis (neuroprotection) in vitro. This is the first study to directly demonstrate the therapeutic effects of a microsomal prostaglandin E2 synthase-1 inhibitor in an EAE model and its ability to alter macrophage polarization, suggesting that it may be a new therapeutic option for the treatment of patients affected by multiple sclerosis and other autoimmune diseases.
Collapse
Affiliation(s)
- Su-Min Park
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong-Hun Oh
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ga-Hyun Lim
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju-Hyun An
- Department of Veterinary Emergency and Critical Care Medicine and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon-si, Republic of Korea
| | | | | | - So-Jung Won
- GNT Pharma Co. Ltd., Yongin, Republic of Korea
| | - Kyoung-Won Seo
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Mao L, You J, Xie M, Hu Y, Zhou Q. Arginine Methylation of β-Catenin Induced by PRMT2 Aggravates LPS-Induced Cognitive Dysfunction and Depression-Like Behaviors by Promoting Ferroptosis. Mol Neurobiol 2024; 61:7796-7813. [PMID: 38430350 DOI: 10.1007/s12035-024-04019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/04/2024] [Indexed: 03/03/2024]
Abstract
Depression is a prevalent and debilitating psychiatric disorder, imposing substantial societal and individual burdens. This study aims to investigate the involvement of ferroptosis and microglial polarization in the pathogenesis of depression, as well as the underlying mechanism. Increased protein arginine methyltransferase 2 (PRMT2) expression was observed in BV2 cells and the hippocampus following lipopolysaccharide (LPS) stimulation. Mechanistically, alkylation repair homolog protein 5 (ALKBH5)-mediated m6A modification enhanced the stability of PRMT2 mRNA. PRMT2 promoted arginine methylation of β-catenin and induced proteasomal degradation of β-catenin proteins, resulting in transcriptional inhibition of glutathione peroxidase 4 (GPX4). The upregulation of PRMT2 further accelerated microglia polarization by activating ferroptosis through the β-catenin-GPX4 axis. Depletion of PRMT2 improved LPS-induced depressive- and anxiety-like behaviors as well as cognitive impairment by inhibiting ferroptosis and M1 polarization of microglia. Our findings underscore the crucial involvement of the ALKBH5-PRMT2-β-catenin-GPX4 axis in ferroptosis and M1 polarization of microglia, thereby offering novel insights into the pathogenesis interventions for depression.
Collapse
Affiliation(s)
- Lei Mao
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China
| | - Jiyue You
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China
| | - Min Xie
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China
| | - Yunxia Hu
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China.
| | - Qin Zhou
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
3
|
Ma H, Zhu M, Chen M, Li X, Feng X. The role of macrophage plasticity in neurodegenerative diseases. Biomark Res 2024; 12:81. [PMID: 39135084 PMCID: PMC11321226 DOI: 10.1186/s40364-024-00624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
Tissue-resident macrophages and recruited macrophages play pivotal roles in innate immunity and the maintenance of brain homeostasis. Investigating the involvement of these macrophage populations in eliciting pathological changes associated with neurodegenerative diseases has been a focal point of research. Dysregulated states of macrophages can compromise clearance mechanisms for pathological proteins such as amyloid-β (Aβ) in Alzheimer's disease (AD) and TDP-43 in Amyotrophic lateral sclerosis (ALS). Additionally, recent evidence suggests that abnormalities in the peripheral clearance of pathological proteins are implicated in the pathogenesis and progression of neurodegenerative diseases. Furthermore, numerous genome-wide association studies have linked genetic risk factors, which alter the functionality of various immune cells, to the accumulation of pathological proteins. This review aims to unravel the intricacies of macrophage biology in both homeostatic conditions and neurodegenerative disorders. To this end, we initially provide an overview of the modifications in receptor and gene expression observed in diverse macrophage subsets throughout development. Subsequently, we outlined the roles of resident macrophages and recruited macrophages in neurodegenerative diseases and the progress of targeted therapy. Finally, we describe the latest advances in macrophage imaging methods and measurement of inflammation, which may provide information and related treatment strategies that hold promise for informing the design of future investigations and therapeutic interventions.
Collapse
Affiliation(s)
- Hongyue Ma
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Mingxia Zhu
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Mengjie Chen
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Xiuli Li
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Xinhong Feng
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| |
Collapse
|
4
|
Zhang Q, Sun W, Zheng M, Zhang N. Contribution of microglia/macrophage to the pathogenesis of TMEV infection in the central nervous system. Front Microbiol 2024; 15:1452390. [PMID: 39155988 PMCID: PMC11327027 DOI: 10.3389/fmicb.2024.1452390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
The infection of the central nervous system (CNS) with neurotropic viruses induces neuroinflammation and an immune response, which is associated with the development of neuroinflammatory and neurodegenerative diseases, including multiple sclerosis (MS). The activation of both innate and adaptive immune responses, involving microglia, macrophages, and T and B cells, while required for efficient viral control within the CNS, is also associated with neuropathology. Under pathological events, such as CNS viral infection, microglia/macrophage undergo a reactive response, leading to the infiltration of immune cells from the periphery into the brain, disrupting CNS homeostasis and contributing to the pathogenesis of disease. The Theiler's murine encephalomyelitis virus (TMEV)-induced demyelination disease (TMEV-IDD), which serves as a mouse model of MS. This murine model made significant contributions to our understanding of the pathophysiology of MS following subsequent to infection. Microglia/macrophages could be activated into two different states, classic activated state (M1 state) and alternative activated state (M2 state) during TMEV infection. M1 possesses the capacity to initiate inflammatory response and secretes pro-inflammatory cytokines, and M2-liked microglia/macrophages are anti-inflammatory characterized by the secretion of anti-inflammatory cytokines. This review aims to discuss the roles of microglia/macrophages M1/M2-liked polarization during TMEV infection, and explore the potential therapeutic effect of balancing M1/M2-liked polarization of microglia/macrophages on MS.
Collapse
Affiliation(s)
| | | | | | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China
| |
Collapse
|
5
|
De Masi R, Orlando S, Carata E, Panzarini E. Ultrastructural Characterization of PBMCs and Extracellular Vesicles in Multiple Sclerosis: A Pilot Study. Int J Mol Sci 2024; 25:6867. [PMID: 38999977 PMCID: PMC11241448 DOI: 10.3390/ijms25136867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Growing evidence identifies extracellular vesicles (EVs) as important cell-to-cell signal transducers in autoimmune disorders, including multiple sclerosis (MS). If the etiology of MS still remains unknown, its molecular physiology has been well studied, indicating peripheral blood mononuclear cells (PBMCs) as the main pathologically relevant contributors to the disease and to neuroinflammation. Recently, several studies have suggested the involvement of EVs as key mediators of neuroimmune crosstalk in central nervous system (CNS) autoimmunity. To assess the role of EVs in MS, we applied electron microscopy (EM) techniques and Western blot analysis to study the morphology and content of plasma-derived EVs as well as the ultrastructure of PBMCs, considering four MS patients and four healthy controls. Through its exploratory nature, our study was able to detect significant differences between groups. Pseudopods and large vesicles were more numerous at the plasmalemma interface of cases, as were endoplasmic vesicles, resulting in an activated aspect of the PBMCs. Moreover, PBMCs from MS patients also showed an increased number of multivesicular bodies within the cytoplasm and amorphous material around the vesicles. In addition, we observed a high number of plasma-membrane-covered extensions, with multiple associated large vesicles and numerous autophagosomal vacuoles containing undigested cytoplasmic material. Finally, the study of EV cargo evidenced a number of dysregulated molecules in MS patients, including GANAB, IFI35, Cortactin, Septin 2, Cofilin 1, and ARHGDIA, that serve as inflammatory signals in a context of altered vesicular dynamics. We concluded that EM coupled with Western blot analysis applied to PBMCs and vesiculation can enhance our knowledge in the physiopathology of MS.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of the Salento, 73100 Lecce, Italy;
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of the Salento, 73100 Lecce, Italy;
| |
Collapse
|
6
|
Zarini D, Pasbakhsh P, Mojaverrostami S, Amirizadeh S, Hashemi M, Shabani M, Noshadian M, Kashani IR. Microglia/macrophage polarization regulates spontaneous remyelination in intermittent cuprizone model of demyelination. Biochem Biophys Rep 2024; 37:101630. [PMID: 38234370 PMCID: PMC10793082 DOI: 10.1016/j.bbrep.2023.101630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/19/2024] Open
Abstract
Central nervous system (CNS) lesions can repeatedly be de-and remyelinated during demyelinating diseases such as multiple sclerosis (MS). Here, we designed an intermittent demyelination model by 0.3 % Cuprizone feeding in C57/BL6 mice followed by two weeks recovery. Histochemical staining of luxol fast blue (LFB) was used for study of remyelination, detection of glial and endothelial cells was performed by immunohistochemistry staining for the following antibodies: anti Olig2 for oligodendrocyte progenitor cells, anti APC for mature oligodendrocytes, anti GFAP for astrocytes, and anti Iba-1 for microglia/macrophages, anti iNOS for M1 microglia/macrophage phenotype, anti TREM-2 for M2 microglia/macrophage phenotype and anti CD31 for endothelial cells. Also, real-time polymerase chain reaction was performed for assessment of the expression of the targeted genes. LFB staining results showed enhanced remyelination in the intermittent cuprizone (INTRCPZ) group, which was accompanied by improved motor function, increased mature oligodendrocyte cells, and reduction of astrogliosis and microgliosis. Moreover, switching from M1 to M2 polarity increased in the INTRCPZ group that was in association with downregulation of pro-inflammatory and upregulation of anti-inflammatory genes. Finally, evaluation of microvascular changes revealed a remarkable decrease in the endothelial cells in the cuprizone (CPZ) group which recovered in the INTERCPZ group. The outcomes demonstrate enhanced myelin content during recovery in the intermittent demyelination model which is in association with reshaping macrophage polarity and modification of glial and endothelial cells.
Collapse
Affiliation(s)
- Davood Zarini
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parichehr Pasbakhsh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Amirizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maedeh Hashemi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrazin Noshadian
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Shen Q, Guo H, Yan Y. Photobiomodulation for Neurodegenerative Diseases: A Scoping Review. Int J Mol Sci 2024; 25:1625. [PMID: 38338901 PMCID: PMC10855709 DOI: 10.3390/ijms25031625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Neurodegenerative diseases involve the progressive dysfunction and loss of neurons in the central nervous system and thus present a significant challenge due to the absence of effective therapies for halting or reversing their progression. Based on the characteristics of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), which have prolonged incubation periods and protracted courses, exploring non-invasive physical therapy methods is essential for alleviating such diseases and ensuring that patients have an improved quality of life. Photobiomodulation (PBM) uses red and infrared light for therapeutic benefits and functions by stimulating, healing, regenerating, and protecting organizations at risk of injury, degradation, or death. Over the last two decades, PBM has gained widespread recognition as a non-invasive physical therapy method, showing efficacy in pain relief, anti-inflammatory responses, and tissue regeneration. Its application has expanded into the fields of neurology and psychiatry, where extensive research has been conducted. This paper presents a review and evaluation of studies investigating PBM in neurodegenerative diseases, with a specific emphasis on recent applications in AD and PD treatment for both animal and human subjects. Molecular mechanisms related to neuron damage and cognitive impairment are scrutinized, offering valuable insights into PBM's potential as a non-invasive therapeutic strategy.
Collapse
Affiliation(s)
- Qi Shen
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Haoyun Guo
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yihua Yan
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
8
|
Gilbert EAB, Livingston J, Flores EG, Khan M, Kandavel H, Morshead CM. Metformin treatment reduces inflammation, dysmyelination and disease severity in a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis. Brain Res 2024; 1822:148648. [PMID: 37890574 DOI: 10.1016/j.brainres.2023.148648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/30/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by inflammation, death or damage of oligodendrocytes, and axonal degeneration. Current MS treatments are non-curative, associated with undesired side-effects, and expensive, highlighting the need for expanded therapeutic options for patients. There is great interest in developing interventions using drugs or therapeutics to reduce symptom onset and protect pre-existing myelin. Metformin is a well-tolerated drug used to treat Type 2 diabetes that has pleiotropic effects in the central nervous system (CNS), including reducing inflammation, enhancing oligodendrogenesis, increasing the survival/proliferation of neural stem cells (NSCs), and increasing myelination. Here, we investigated whether metformin administration could improve functional outcomes, modulate oligodendrocyte precursor cells (OPCs), and reduce inflammation in a well-established mouse model of MS- experimental autoimmune encephalomyelitis (EAE). Male and female mice received metformin treatment at the time of EAE induction ("acute") or upon presentation of disease symptoms ("delayed"). We found that acute metformin treatment improved functional outcomes, concomitant with reduced microglia numbers and decreased dysmyelination. Conversely, delayed metformin treatment did not improve functional outcomes. Our findings reveal that metformin administration can improve EAE outcomes when administered before symptom onset in both sexes.
Collapse
Affiliation(s)
- Emily A B Gilbert
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, ON M5S1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Jessica Livingston
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, ON M5S1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Emilio Garcia Flores
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Monoleena Khan
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, ON M5S1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Harini Kandavel
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, ON M5S1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Cindi M Morshead
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, ON M5S1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S1A8, Canada.
| |
Collapse
|
9
|
El-Sayed MM, Mohak S, Gala D, Fabian R, Peterfi Z, Fabian Z. The Role of the Intestinal Microbiome in Multiple Sclerosis-Lessons to Be Learned from Hippocrates. BIOLOGY 2023; 12:1463. [PMID: 38132289 PMCID: PMC10740531 DOI: 10.3390/biology12121463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
Based on recent advances in research of chronic inflammatory conditions, there is a growing body of evidence that suggests a close correlation between the microbiota of the gastrointestinal tract and the physiologic activity of the immune system. This raises the idea that disturbances of the GI ecosystem contribute to the unfolding of chronic diseases including neurodegenerative pathologies. Here, we overview our current understanding on the putative interaction between the gut microbiota and the immune system from the aspect of multiple sclerosis, one of the autoimmune conditions accompanied by severe chronic neuroinflammation that affects millions of people worldwide.
Collapse
Affiliation(s)
- Mohamed Mahmoud El-Sayed
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Fylde Rd, Preston PR1 2HE, UK;
| | - Sidhesh Mohak
- Department of Clinical Sciences, Saint James School of Medicine, Park Ridge, IL 60068, USA;
| | - Dhir Gala
- American University of the Caribbean School of Medicine, 1 University Drive, Jordan Road, Cupecoy, St Marteen, The Netherlands;
| | - Reka Fabian
- Salerno, Secondary School, Threadneedle Road, H91 D9H3 Galway, Ireland;
| | - Zoltan Peterfi
- Division of Infectology, 1st Department of Internal Medicine, University of Pecs, Clinical Centre, 7623 Pécs, Hungary;
| | - Zsolt Fabian
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Fylde Rd, Preston PR1 2HE, UK;
| |
Collapse
|
10
|
Barbalace MC, Freschi M, Rinaldi I, Mazzara E, Maraldi T, Malaguti M, Prata C, Maggi F, Petrelli R, Hrelia S, Angeloni C. Identification of Anti-Neuroinflammatory Bioactive Compounds in Essential Oils and Aqueous Distillation Residues Obtained from Commercial Varieties of Cannabis sativa L. Int J Mol Sci 2023; 24:16601. [PMID: 38068924 PMCID: PMC10706820 DOI: 10.3390/ijms242316601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Neuroinflammation, which is mainly triggered by microglia, is a key contributor to multiple neurodegenerative diseases. Natural products, and in particular Cannabis sativa L., due to its richness in phytochemical components, represent ideal candidates to counteract neuroinflammation. We previously characterized different C. sativa commercial varieties which showed significantly different chemical profiles. On these bases, the aim of this study was to evaluate essential oils and aqueous distillation residues from the inflorescences of three different hemp varieties for their anti-neuroinflammatory activity in BV-2 microglial cells. Cells were pretreated with aqueous residues or essential oils and then activated with LPS. Unlike essential oils, aqueous residues showed negligible effects in terms of anti-inflammatory activity. Among the essential oils, the one obtained from 'Gorilla Glue' was the most effective in inhibiting pro-inflammatory mediators and in upregulating anti-inflammatory ones through the modulation of the p38 MAPK/NF-κB pathway. Moreover, the sesquiterpenes (E)-caryophyllene, α-humulene, and caryophyllene oxide were identified as the main contributors to the essential oils' anti-inflammatory activity. To our knowledge, the anti-neuroinflammatory activity of α-humulene has not been previously described. In conclusion, our work shows that C. sativa essential oils characterized by high levels of sesquiterpenes can be promising candidates in the prevention/counteraction of neuroinflammation.
Collapse
Affiliation(s)
- Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Michela Freschi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Irene Rinaldi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Eugenia Mazzara
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (E.M.); (F.M.); (R.P.)
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41125 Modena, Italy;
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy;
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (E.M.); (F.M.); (R.P.)
| | - Riccardo Petrelli
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (E.M.); (F.M.); (R.P.)
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| |
Collapse
|
11
|
Luo W, Wang X, Kong L, Chen H, Shi Z, Zhou H. Initial BMI effects on clinical presentation and prognosis in neuromyelitis optica spectrum disorder. Ann Clin Transl Neurol 2023; 10:1673-1681. [PMID: 37496188 PMCID: PMC10502628 DOI: 10.1002/acn3.51857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
OBJECTIVE To investigate the correlation among body mass index at onset, clinical features, and prognosis in patients with neuromyelitis optica spectrum disorder. METHOD This retrospective cohort studied patients with neuromyelitis optica spectrum disorder from January 2015 to January 2022, grouping them by body mass index at onset. Demographics and clinical records were reviewed. Anderson-Gill, Kaplan-Meier, and Cox models evaluated the body mass index's effect on relapse risk and long-term outcomes. RESULTS Of 246 patients with 799 neuromyelitis optica spectrum disorder attacks study, 36 patients had low, 133 had normal, 77 had high body mass index, with a mean onset age of 40 ± 13 years, and the population was 88% female. The medium follow-up time was 49 months; AQP4-IgG was found in 193 (78%) patients. Onset and relapse of area postrema syndrome were less frequent in patients with a normal body mass index. The annual relapse rate after immunosuppressive therapy was significantly lower in patients with a low body mass index. In the multivariable analysis, statistical correlation still existed between body mass index at onset and risk of relapse (HR = 1.03, 95% CI: 1.03-1.03, P < 0.001), risk of severe attack (HR = 0.92, 95% CI: 0.86-0.98, P = 0.013), risk of visual disability (HR = 0.9, 95% CI: 0.81-1, P = 0.047), and overall risk of disability (HR = 0.89, 95% CI: 0.82-0.98, P = 0.015) after adjusting various variables. INTERPRETATION Lower body mass index at onset was associated with less frequent relapse but poor prognosis.
Collapse
Affiliation(s)
- Wenqin Luo
- Department of NeurologyWest China Hospital, Sichuan UniversityNo. 37 Guo Xue XiangChengdu610041Sichuan ProvincePR China
| | - Xiaofei Wang
- Department of NeurologyWest China Hospital, Sichuan UniversityNo. 37 Guo Xue XiangChengdu610041Sichuan ProvincePR China
| | - Lingyao Kong
- Department of NeurologyWest China Hospital, Sichuan UniversityNo. 37 Guo Xue XiangChengdu610041Sichuan ProvincePR China
| | - Hongxi Chen
- Department of NeurologyWest China Hospital, Sichuan UniversityNo. 37 Guo Xue XiangChengdu610041Sichuan ProvincePR China
| | - Ziyan Shi
- Department of NeurologyWest China Hospital, Sichuan UniversityNo. 37 Guo Xue XiangChengdu610041Sichuan ProvincePR China
| | - Hongyu Zhou
- Department of NeurologyWest China Hospital, Sichuan UniversityNo. 37 Guo Xue XiangChengdu610041Sichuan ProvincePR China
| |
Collapse
|
12
|
Zhu Y, Webster MJ, Walker AK, Massa P, Middleton FA, Weickert CS. Increased prefrontal cortical cells positive for macrophage/microglial marker CD163 along blood vessels characterizes a neuropathology of neuroinflammatory schizophrenia. Brain Behav Immun 2023; 111:46-60. [PMID: 36972743 DOI: 10.1016/j.bbi.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Transcript levels of cytokines and SERPINA3 have been used to define a substantial subset (40%) of individuals with schizophrenia with elevated inflammation and worse neuropathology in the dorsolateral prefrontal cortex (DLPFC). In this study, we tested if inflammatory proteins are likewise related to high and low inflammatory states in the human DLFPC in people with schizophrenia and controls. Levels of inflammatory cytokines (IL6, IL1β, IL18, IL8) and a macrophage marker (CD163 protein) were measured in brains obtained from the National Institute of Mental Health (NIMH) (N = 92). First, we tested for diagnostic differences in protein levels overall, then we determined the percentage of individuals that could be defined as "high" inflammation using protein levels. IL-18 was the only cytokine to show increased expression in schizophrenia compared to controls overall. Interestingly, two-step recursive clustering analysis showed that IL6, IL18, and CD163 protein levels could be used as predictors of "high and low" inflammatory subgroups. By this model, a significantly greater proportion of schizophrenia cases (18/32; 56.25%; SCZ) were identified as belonging to the high inflammatory (HI) subgroup compared to control cases (18/60; 30%; CTRL) [χ2(1) = 6.038, p = 0.014]. When comparing across inflammatory subgroups, IL6, IL1β, IL18, IL8, and CD163 protein levels were elevated in both SCZ-HI and CTRL-HI compared to both low inflammatory subgroups (all p < 0.05). Surprisingly, TNFα levels were significantly decreased (-32.2%) in schizophrenia compared to controls (p < 0.001), and were most diminished in the SCZ-HI subgroup compared to both CTRL-LI and CTRL-HI subgroups (p < 0.05). Next, we asked if the anatomical distribution and density of CD163+ macrophages differed in those with schizophrenia and high inflammation status. Macrophages were localized to perivascular sites and found surrounding small, medium and large blood vessels in both gray matter and white matter, with macrophage density highest at the pial surface in all schizophrenia cases examined. A higher density of CD163+ macrophages, that were also larger and more darkly stained, was found in the SCZ-HI subgroup (+154% p < 0.05). We also confirmed the rare existence of parenchymal CD163+ macrophages in both high inflammation subgroups (schizophrenia and controls). Brain CD163+ cell density around blood vessels positively correlated with CD163 protein levels. In conclusion, we find a link between elevated interleukin cytokine protein levels, decreased TNFα protein levels, and elevated CD163+ macrophage densities especially along small blood vessels in those with neuroinflammatory schizophrenia.
Collapse
Affiliation(s)
- Yunting Zhu
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Adam K Walker
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; Laboratory of Immunopsychiatry, Neuroscience Research Australia, Sydney, NSW, Australia; Monash Institute of Pharmaceutical Science, Monash University, Parkville, Vic, Australia
| | - Paul Massa
- Department of Neurology, Upstate Medical University, Syracuse, NY 13210, USA; Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Frank A Middleton
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Cynthia Shannon Weickert
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia.
| |
Collapse
|
13
|
Abdolmaleki A, Kondori BJ, Raei M, Ghaleh HEG. Cell therapy procedure using anti-inflammatory macrophage M2 can potentially reduce Clinical Score in animals with Experimental Autoimmune Encephalomyelitis: A preclinical systematic review and meta-analysis study. Fundam Clin Pharmacol 2023; 37:215-225. [PMID: 36300567 DOI: 10.1111/fcp.12844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
Macrophage M2 (MP2)-based cell therapy is a novel medicinal treatment for animals with Experimental Autoimmune Encephalomyelitis (EAE) as an experimental model of multiple sclerosis (MS). This systematic review and meta-analysis study was designed to assess the overall therapeutic effects of MP2 cell therapy on Clinical Score and motor impairment in EAE-induced animals. All experiments on MP2 cell therapy in animals with EAE were gathered (by October 2, 2022) from English (PubMed, Scopus, WoS, Science Direct, and ISC) and Persian (MagIran and SID) databases. The searching strategy was designed using "Experimental Autoimmune Encephalomyelitis," "Multiple Sclerosis," and "Macrophage M2" keywords. Following primary and secondary screenings, eligible papers were selected based on the PRISMA 2020 guideline, and the study quality was assessed using the Animal Research: Reporting of In Vivo Experiments (ARRIVE) checklist. The difference in means of Clinical Score (score 0-5) as the effect size (ES) was analyzed based on the random effect model (CMA software, v.2). Subgrouping (EAE phases of Onset, Peak, and Recovery) was applied, and I2 index was used to assess the heterogeneity index. Publication bias and sensitivity indices were also evaluated. P < 0.05 was considered significant, and the confidence interval (CI) was determined 95%. Among 22 gathered papers, medium to high quality studies were selected for meta-analysis. Difference in means, P value, and I2 for Onset, Peak, and Recovery phases were 0.082 (CI95%: -0.323-0.159, P value: 0.504, I2 : 67.961%), -0.606 (CI95%: -1.518 to -0.305, P value: 0.192, I2 : 96.070%), and -1.103 (CI95%: -1.390 to -0.816, P value: 0.000, I2 : 30.880%), respectively and Overall Effect was found -0.509 (CI95%: -0.689 to -0.328, P value < 0.001). Also, P value (two-tailed) indices for publication bias were 0.366 and 0.583 for Egger's regression intercept and Begg rank correlation, respectively. The P value for sensitivity was detected 0.003. Cell therapy procedure using MP2 can potentially alleviate the Clinical Scores Index and correct the motor defects in Recovery phase of EAE animals. In healthy mice, the brain and myelin surrounding neurons are in a healthy and physiological state (1). To evaluate MS in humans, it is necessary to model this type of disease in animals using EAE procedure through subcutaneous injection of CFA, MOG35-55 , MT, and Pert. Thus, inflammation and autoimmunity occur, which finally lead to myelin destruction and motor symptoms (2). By aspiration of progenitor cells available in bone marrow, the MP2 can be isolated and cultured. By activation of these types of cells, a rich collection of MP2 can be prepared for the cell-therapy process (3). After injection through the tail vein or intra-peritoneal procedure, these cells can be located in CNS through crossing from the BBB. They begin their anti-inflammatory activities and help repair the damaged myelin (4). Eventually, the clinical symptoms can be modified considerably, and the animal motor function improves (5). CFA, complete Freund's adjuvant; MOG35-55 , myelin oligodendrocyte glycoprotein; MT, Mycobacterium tuberculosis; Pert, pertussis; EAE, Experimental Autoimmune Encephalomyelitis; BM, bone marrow; MP2, macrophage M2; and BBB, blood brain barrier.
Collapse
Affiliation(s)
- Amir Abdolmaleki
- Department of Anatomical Sciences, Medical School, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahman Jalali Kondori
- Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
14
|
Sharifian A, Varshosaz J, Aliomrani M, Kazemi M. Nose to brain delivery of ibudilast micelles for treatment of multiple sclerosis in an experimental autoimmune encephalomyelitis animal model. Int J Pharm 2023; 638:122936. [PMID: 37030640 DOI: 10.1016/j.ijpharm.2023.122936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Multiple sclerosis is a chronic inflammatory disease of the central nervous system ultimate to neurodegeneration and demyelination. Ibudilast is a phosphodiesterase inhibitor, effective on the function of glial cells and lymphocytes, and inhibits the release of TNF-α by inflammatory cells. Dysregulation of glia is one of the most important pathological causes of MS. Therefore, ibudilast as a glial attenuator can be a useful treatment. The objective of the present study was to investigate the effect of nasal spray of polydopamine coated micelles of surfactin, a biosurfactant, loaded with ibudilast on its brain targeted delivery and effectiveness in remylination and neuroprotection in animal model of MS. In animal studies the micelles were administrated intranasally in different doses of 10, 25 and 50 mg/kg/day in C57/BL6 mice immunized by experimental autoimmune encephalomyelitis (EAE) model. The results of Luxol fast blue staining indicated increment in myelin fiber percent more significantly (p<0.05) in the groups treated with the polydopamine coated micelles (PDAM) compared to nasal spray of free drug or oral administration. These formulations also increased expression of Mbp, Olig2 and Mog genes in the corpus callosum. These results suggest a positive outcome of polydopamine coated micelles loaded with ibudilast in active MS as an anti-inflammatory and neuroprotective agent.
Collapse
Affiliation(s)
- Akram Sharifian
- Department of Pharmaceutics, Novel Drug Delivery Systems Research Centre, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Novel Drug Delivery Systems Research Centre, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mehdi Aliomrani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Kazemi
- Department of Genetics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
15
|
Wang J, Cheng C, Liu Z, Lin Y, Yang L, Zhang Z, Sun X, Zhou M, Jing P, Zhong Z. Inhibition of A1 Astrocytes and Activation of A2 Astrocytes for the Treatment of Spinal Cord Injury. Neurochem Res 2023; 48:767-780. [PMID: 36418652 DOI: 10.1007/s11064-022-03820-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
Spinal cord injury (SCI) is a serious injury to the central nervous system that causes significant physical and psychological trauma to the patient. SCI includes primary spinal cord injuries and secondary spinal cord injuries. The secondary injury refers to the pathological process or reaction after the primary injury. Although SCI has always been thought to be an incurable injury, the human nerve has the ability to repair itself after an injury. However, the reparability is limited because glial scar formation impedes functional recovery. There is a type of astrocyte that can differentiate into two forms of reactive astrocytes known as 'A1' and 'A2' astrocytes. A1 astrocytes release cytotoxic chemicals that cause neurons and oligodendrocytes to die and perform a harmful role. A2 astrocytes can produce neurotrophic factors and act as neuroprotectors. This article discusses ways to block A1 astrocytes while stimulating A2 astrocytes to formulate a new treatment for spinal cord injury.
Collapse
Affiliation(s)
- Jingxuan Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Cai Cheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhongbing Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yan Lin
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lingling Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zijun Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaoduan Sun
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Pei Jing
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Zhirong Zhong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
16
|
Ishikawa M, Izumi Y, Sato K, Sato T, Zorumski CF, Kunikata H, Nakazawa T. Glaucoma and microglia-induced neuroinflammation. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1132011. [PMID: 38983051 PMCID: PMC11182182 DOI: 10.3389/fopht.2023.1132011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/15/2023] [Indexed: 07/11/2024]
Abstract
Glaucoma is a multifactorial neurodegenerative disease characterized by a progressive optic neuropathy resulting in visual field defects. Elevated intraocular pressure (IOP) is the greatest risk factor for the development of glaucoma, and IOP reduction therapy is the only treatment currently available. However, there are many cases in which retinal degeneration progresses despite sufficient control of IOP. Therefore, it is important to elucidate the pathophysiology of glaucoma that is resistant to current IOP lowering therapies. Experiments using animal glaucoma models show the relationships between microglial neuroinflammatory responses and damage of retinal ganglion cells (RGCs). Inhibition of neuroinflammatory pathways associated with microglial activation appears to be neuroprotective, indicating that microglia may be an important therapeutic target for RGC protection. In this review, we will focus on microglia-induced neuroinflammation in the pathogenesis of glaucoma to offer new insights into the possibility of developing novel neuroprotective therapies targeting microglia.
Collapse
Affiliation(s)
- Makoto Ishikawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukitoshi Izumi
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States
- Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taimu Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Charles F. Zorumski
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States
- Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Hiroshi Kunikata
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
17
|
The complex role of inflammation and gliotransmitters in Parkinson's disease. Neurobiol Dis 2023; 176:105940. [PMID: 36470499 PMCID: PMC10372760 DOI: 10.1016/j.nbd.2022.105940] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Our understanding of the role of innate and adaptive immune cell function in brain health and how it goes awry during aging and neurodegenerative diseases is still in its infancy. Inflammation and immunological dysfunction are common components of Parkinson's disease (PD), both in terms of motor and non-motor components of PD. In recent decades, the antiquated notion that the central nervous system (CNS) in disease states is an immune-privileged organ, has been debunked. The immune landscape in the CNS influences peripheral systems, and peripheral immunological changes can alter the CNS in health and disease. Identifying immune and inflammatory pathways that compromise neuronal health and survival is critical in designing innovative and effective strategies to limit their untoward effects on neuronal health.
Collapse
|
18
|
Cycloastragenol suppresses M1 and promotes M2 polarization in LPS-stimulated BV-2 cells and ischemic stroke mice. Int Immunopharmacol 2022; 113:109290. [DOI: 10.1016/j.intimp.2022.109290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/05/2022]
|
19
|
Modulation of the Microglial Nogo-A/NgR Signaling Pathway as a Therapeutic Target for Multiple Sclerosis. Cells 2022; 11:cells11233768. [PMID: 36497029 PMCID: PMC9737582 DOI: 10.3390/cells11233768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Current therapeutics targeting chronic phases of multiple sclerosis (MS) are considerably limited in reversing the neural damage resulting from repeated inflammation and demyelination insults in the multi-focal lesions. This inflammation is propagated by the activation of microglia, the endogenous immune cell aiding in the central nervous system homeostasis. Activated microglia may transition into polarized phenotypes; namely, the classically activated proinflammatory phenotype (previously categorized as M1) and the alternatively activated anti-inflammatory phenotype (previously, M2). These transitional microglial phenotypes are dynamic states, existing as a continuum. Shifting microglial polarization to an anti-inflammatory status may be a potential therapeutic strategy that can be harnessed to limit neuroinflammation and further neurodegeneration in MS. Our research has observed that the obstruction of signaling by inhibitory myelin proteins such as myelin-associated inhibitory factor, Nogo-A, with its receptor (NgR), can regulate microglial cell function and activity in pre-clinical animal studies. Our review explores the microglial role and polarization in MS pathology. Additionally, the potential therapeutics of targeting Nogo-A/NgR cellular mechanisms on microglia migration, polarization and phagocytosis for neurorepair in MS and other demyelination diseases will be discussed.
Collapse
|
20
|
Zhang SS, Zhang NN, Guo TT, Sheen LY, Ho CT, Bai NS. The impact of phyto- and endo-cannabinoids on central nervous system diseases:A review. J Tradit Complement Med 2022; 13:30-38. [PMID: 36685079 PMCID: PMC9845650 DOI: 10.1016/j.jtcme.2022.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 01/12/2023] Open
Abstract
Background and aim Cannabis sativa L. is a medicinal plant with a long history. Phyto-cannabinoids are a class of compounds from C. sativa L. with varieties of structures. Endocannabinoids exist in the human body. This article provides an overview of natural cannabinoids (phyto-cannabinoids and endocannabinoids) with an emphasis on their pharmacology activities. Experimental procedure The keywords "Cannabis sativa L″, "cannabinoids", and "central nervous system (CNS) diseases" were used for searching and collecting pieces of literature from PubMed, ScienceDirect, Web of Science, and Google Scholar. The data were extracted and analyzed to explore the effects of cannabinoids on CNS diseases. Result and conclusion In this paper, schematic diagrams are used to intuitively show the phyto-cannabinoids skeletons' mutual conversion and pharmacological activities, with special emphasis on their relevant pharmacological activities on central nervous system (CNS) diseases. It was found that the endocannabinoid system and microglia play a crucial role in the treatment of CNS diseases. In the past few years, pharmacological studies focused on Δ9-THC, CBD, and the endocannabinoids system. It is expected to encourage new studies on a more deep exploration of other types of cannabinoids and the mechanism of their pharmacological activities in the future.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China,College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Niu-Niu Zhang
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Tian-Tian Guo
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ, 08901, USA,Corresponding author.
| | - Nai-Sheng Bai
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China,Corresponding author.
| |
Collapse
|
21
|
Xu J, Zheng Y, Wang L, Liu Y, Wang X, Li Y, Chi G. miR-124: A Promising Therapeutic Target for Central Nervous System Injuries and Diseases. Cell Mol Neurobiol 2022; 42:2031-2053. [PMID: 33886036 DOI: 10.1007/s10571-021-01091-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Central nervous system injuries and diseases, such as ischemic stroke, spinal cord injury, neurodegenerative diseases, glioblastoma, multiple sclerosis, and the resulting neuroinflammation often lead to death or long-term disability. MicroRNAs are small, non-coding, single-stranded RNAs that regulate posttranscriptional gene expression in both physiological and pathological cellular processes, including central nervous system injuries and disorders. Studies on miR-124, one of the most abundant microRNAs in the central nervous system, have shown that its dysregulation is related to the occurrence and development of pathology within the central nervous system. Herein, we review the molecular regulatory functions, underlying mechanisms, and effective delivery methods of miR-124 in the central nervous system, where it is involved in pathological conditions. The review also provides novel insights into the therapeutic target potential of miR-124 in the treatment of human central nervous system injuries or diseases.
Collapse
Affiliation(s)
- Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China
| | - Yangyang Zheng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China
| | - Liangjia Wang
- Clinical Medical College, Jilin University, Changchun, 130000, People's Republic of China
| | - Yining Liu
- Clinical Medical College, Jilin University, Changchun, 130000, People's Republic of China
| | - Xishu Wang
- Clinical Medical College, Jilin University, Changchun, 130000, People's Republic of China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China.
| |
Collapse
|
22
|
Rao X, Hua F, Zhang L, Lin Y, Fang P, Chen S, Ying J, Wang X. Dual roles of interleukin-33 in cognitive function by regulating central nervous system inflammation. J Transl Med 2022; 20:369. [PMID: 35974336 PMCID: PMC9382782 DOI: 10.1186/s12967-022-03570-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/04/2022] [Indexed: 12/13/2022] Open
Abstract
With the advent of an aging society, the incidence of dementia is increasing, resulting in a vast burden on society. It is increasingly acknowledged that neuroinflammation is implicated in various neurological diseases with cognitive dysfunction such as Alzheimer’s disease, multiple sclerosis, ischemic stroke, traumatic brain injury, and central nervous system infections. As an important neuroinflammatory factor, interleukin-33 (IL-33) is highly expressed in various tissues and cells in the mammalian brain, where it plays a role in the pathogenesis of a number of central nervous system conditions. Reams of previous studies have shown that IL-33 has both pro- and anti-inflammatory effects, playing dual roles in the progression of diseases linked to cognitive impairment by regulating the activation and polarization of immune cells, apoptosis, and synaptic plasticity. This article will summarize the current findings on the effects IL-33 exerts on cognitive function by regulating neuroinflammation, and attempt to explore possible therapeutic strategies for cognitive disorders based on the adverse and protective mechanisms of IL-33.
Collapse
Affiliation(s)
- Xiuqin Rao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Pu Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
23
|
Zahoor I, Suhail H, Datta I, Ahmed ME, Poisson LM, Waters J, Rashid F, Bin R, Singh J, Cerghet M, Kumar A, Hoda MN, Rattan R, Mangalam AK, Giri S. Blood-based untargeted metabolomics in relapsing-remitting multiple sclerosis revealed the testable therapeutic target. Proc Natl Acad Sci U S A 2022; 119:e2123265119. [PMID: 35700359 PMCID: PMC9231486 DOI: 10.1073/pnas.2123265119] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/06/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic aberrations impact the pathogenesis of multiple sclerosis (MS) and possibly can provide clues for new treatment strategies. Using untargeted metabolomics, we measured serum metabolites from 35 patients with relapsing-remitting multiple sclerosis (RRMS) and 14 healthy age-matched controls. Of 632 known metabolites detected, 60 were significantly altered in RRMS. Bioinformatics analysis identified an altered metabotype in patients with RRMS, represented by four changed metabolic pathways of glycerophospholipid, citrate cycle, sphingolipid, and pyruvate metabolism. Interestingly, the common upstream metabolic pathway feeding these four pathways is the glycolysis pathway. Real-time bioenergetic analysis of the patient-derived peripheral blood mononuclear cells showed enhanced glycolysis, supporting the altered metabolic state of immune cells. Experimental autoimmune encephalomyelitis mice treated with the glycolytic inhibitor 2-deoxy-D-glucose ameliorated the disease progression and inhibited the disease pathology significantly by promoting the antiinflammatory phenotype of monocytes/macrophage in the central nervous system. Our study provided a proof of principle for how a blood-based metabolomic approach using patient samples could lead to the identification of a therapeutic target for developing potential therapy.
Collapse
Affiliation(s)
- Insha Zahoor
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Hamid Suhail
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Indrani Datta
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202
| | | | - Laila M. Poisson
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202
| | - Jeffrey Waters
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Faraz Rashid
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Rui Bin
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Jaspreet Singh
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Mirela Cerghet
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Ashok Kumar
- Department of Anatomy and Cell Biology, School of Medicine, Wayne State University, Detroit, MI 48202
| | - Md Nasrul Hoda
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Ramandeep Rattan
- Women’s Health Services, Henry Ford Health System, Detroit, MI 48202
| | - Ashutosh K. Mangalam
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 5224
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| |
Collapse
|
24
|
Wang H, He Y, Sun Z, Ren S, Liu M, Wang G, Yang J. Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression. J Neuroinflammation 2022; 19:132. [PMID: 35668399 PMCID: PMC9168645 DOI: 10.1186/s12974-022-02492-0] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder is a highly debilitating psychiatric disorder involving the dysfunction of different cell types in the brain. Microglia are the predominant resident immune cells in the brain and exhibit a critical role in depression. Recent studies have suggested that depression can be regarded as a microglial disease. Microglia regulate inflammation, synaptic plasticity, and the formation of neural networks, all of which affect depression. In this review, we highlighted the role of microglia in the pathology of depression. First, we described microglial activation in animal models and clinically depressed patients. Second, we emphasized the possible mechanisms by which microglia recognize depression-associated stress and regulate conditions. Third, we described how antidepressants (clinical medicines and natural products) affect microglial activation. Thus, this review aimed to objectively analyze the role of microglia in depression and focus on potential antidepressants. These data suggested that regulation of microglial actions might be a novel therapeutic strategy to counteract the adverse effects of devastating mental disorders.
Collapse
Affiliation(s)
- Haixia Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Yi He
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Zuoli Sun
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Siyu Ren
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Mingxia Liu
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China. .,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China.
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China. .,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
25
|
Jan Z, Mollazadeh S, Abnous K, Taghdisi SM, Danesh A, Ramezani M, Alibolandi M. Targeted Delivery Platforms for the Treatment of Multiple Sclerosis. Mol Pharm 2022; 19:1952-1976. [PMID: 35501974 DOI: 10.1021/acs.molpharmaceut.1c00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative condition of the central nervous system (CNS) that presents with varying levels of disability in patients, displaying the significance of timely and effective management of this complication. Though several treatments have been developed to protect nerves, comprehensive improvement of MS is still considered an essential bottleneck. Therefore, the development of innovative treatment methods for MS is one of the core research areas. In this regard, nanoscale platforms can offer practical and ideal approaches to the diagnosis and treatment of various diseases, especially immunological disorders such as MS, to improve the effectiveness of conventional therapies. It should be noted that there is significant progress in the development of neuroprotective strategies through the implementation of various nanoparticles, monoclonal antibodies, peptides, and aptamers. In this study, we summarize different particle systems as well as targeted therapies, such as antibodies, peptides, nucleic acids, and engineered cells for the treatment of MS, and discuss their potential in the treatment of MS in the preclinical and clinical stages. Future advances in targeted delivery of medical supplies may offer new strategies for complete recovery as well as practical treatment of progressive forms of MS.
Collapse
Affiliation(s)
- Zeinab Jan
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Science, 7GJP+VPQ Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, F82C+G8V Bojnurd, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Abolghasem Danesh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Science, 7GJP+VPQ Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| |
Collapse
|
26
|
El-Emam MA, El Achy S, Abdallah DM, El-Abhar HS, Gowayed MA. Does physical exercise improve or deteriorate treatment of multiple sclerosis with mitoxantrone? Experimental autoimmune encephalomyelitis study in rats. BMC Neurosci 2022; 23:11. [PMID: 35247984 PMCID: PMC8897955 DOI: 10.1186/s12868-022-00692-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/02/2022] [Indexed: 12/11/2022] Open
Abstract
Background Mitoxantrone has proved efficacy in treatment of multiple sclerosis (MS). The fact that physical exercise could slow down the progression of disease and improve performance is still a debatable issue, hence; we aimed at studying whether combining mitoxantrone with exercise is of value in the management of MS. Methods Thirty-six male rats were divided into sedentary and exercised groups. During a 14-day habituation period rats were subjected to exercise training on a rotarod (30 min/day) before Experimental Autoimmune Encephalomyelitis (EAE) induction and thereafter for 17 consecutive days. On day 13 after induction, EAE groups (exercised &sedentary) were divided into untreated and mitoxantrone treated ones. Disease development was evaluated by motor performance and EAE score. Cerebrospinal fluid (CSF) was used for biochemical analysis. Brain stem and cerebellum were examined histopathological and immunohistochemically. Results Exercise training alone did not add a significant value to the studied parameters, except for reducing Foxp3 immunoreactivity in EAE group and caspase-3 in the mitoxantrone treated group. Unexpectedly, exercise worsened the mitoxantrone effect on EAE score, Bcl2 and Bax. Mitoxantrone alone decreased EAE/demyelination/inflammation scores, Foxp3 immunoreactivity, and interleukin-6, while increased the re-myelination marker BDNF without any change in tumor necrosis factor-α. It clearly interrupted the apoptotic pathway in brain stem, but worsened EAE mediated changes of the anti-apoptotic Bcl2 and pro-apoptotic marker Bax in the CSF. Conclusions The neuroprotective effect of mitoxantrone was related with remyelination, immunosuppressive and anti-inflammatory potentials. Exercise training did not show added value to mitoxantrone, in contrast, it disrupts the apoptotic pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00692-1.
Collapse
|
27
|
Mahmood A, Miron VE. Microglia as therapeutic targets for central nervous system remyelination. Curr Opin Pharmacol 2022; 63:102188. [PMID: 35219055 DOI: 10.1016/j.coph.2022.102188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
Abstract
Failed remyelination underpins neurodegeneration and central nervous system (CNS) dysfunction with aging and progression of neurological diseases, such as multiple sclerosis and Alzheimer's disease. Existing therapies have shown limited efficacy in halting disease progression in humans, highlighting the need to identify pro-remyelination treatments. Microglia are CNS-resident macrophages with critical roles in the regulation of remyelination, representing a promising therapeutic target. However, there are currently no therapeutics which specifically target microglia. Recent studies have revealed that microglia are a heterogenous population with distinct transcriptional states in health and disease conditions, including during remyelination, suggesting functional differences between states. Here, we discuss the potential contributions of different microglia states to degenerative and regenerative processes, examine the potential to target microglia in a state-specific manner to promote remyelination and consider the key issues to be addressed before such therapies can be clinically applied.
Collapse
Affiliation(s)
- Ayisha Mahmood
- United Kingdom Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom; Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, United Kingdom; Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Veronique E Miron
- United Kingdom Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom; Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, United Kingdom; Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
28
|
Rahiman N, Mohammadi M, Alavizadeh SH, Arabi L, Badiee A, Jaafari MR. Recent advancements in nanoparticle-mediated approaches for restoration of multiple sclerosis. J Control Release 2022; 343:620-644. [PMID: 35176392 DOI: 10.1016/j.jconrel.2022.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022]
Abstract
Multiple Sclerosis (MS) is an autoimmune disease with complicated immunopathology which necessitates considering multifactorial aspects for its management. Nano-sized pharmaceutical carriers named nanoparticles (NPs) can support impressive management of disease not only in early detection and prognosis level but also in a therapeutic manner. The most prominent initiator of MS is the domination of cellular immunity to humoral immunity and increment of inflammatory cytokines. The administration of several platforms of NPs for MS management holds great promise so far. The efforts for MS management through in vitro and in vivo (experimental animal models) evaluations, pave a new way to a highly efficient therapeutic means and aiding its translation to the clinic in the near future.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of pharmaceutics, School of pharmacy, Mashhad University of Medical sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
AQP4 Attenuated TRAF6/NFκB Activation in Acrylamide-Induced Neurotoxicity. Molecules 2022; 27:molecules27031066. [PMID: 35164330 PMCID: PMC8838058 DOI: 10.3390/molecules27031066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
Acrylamide (ACR) is present in high-temperature-processed high-carbohydrate foods, cigarette smoke, and industrial pollution. Chronic exposure to ACR may induce neurotoxicity from reactive oxygen species (ROS); however, the mechanisms underlying ACR-induced neurotoxicity remain unclear. We studied 28-day subacute ACR toxicity by repeatedly feeding ACR (0, 15, or 30 mg/kg) to rats. We conducted RNA sequencing and Western blot analyses to identify differences in mRNA expression in the blood and in protein expression in the brain tissues, respectively, of the rats. AQP4 transient transfection was performed to identify potential associations with protein regulation. The rats treated with 30 mg/kg ACR exhibited hind-limb muscle weakness. Matrix metalloproteinase (MMP9) expression was higher in the ACR-treated group than in the control group. ACR induced MMP-9 and AQP4 protein expression in the brain tissues of the rats, which subsequently presented with neurotoxicity. In the in vitro study, Neuro-2a cells were transiently transfected with AQP4, which inhibited MMP-9 and TNF receptor-associated factor 6 (TRAF6) expression, and inhibited ACR induced expression of TRAF6, IκBα, and nuclear factor κB (NFκB). Using a combination of in vivo and in vitro experiments, this study revealed that depressive symptoms associated with ACR-induced neurotoxicity are associated with downregulation of AQP4 and induction of the TRAF6 pathway.
Collapse
|
30
|
4R-cembranoid protects neuronal cells from oxygen-glucose deprivation by modulating microglial cell activation. Brain Res Bull 2022; 179:74-82. [PMID: 34942325 PMCID: PMC8849140 DOI: 10.1016/j.brainresbull.2021.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 02/03/2023]
Abstract
As major immune responsive cells in the central nervous system (CNS), activated microglia can present pro-inflammatory M1 phenotype aggravating the neuronal injury or anti-inflammatory M2 phenotype providing neuroprotection and promoting neuronal survival in neurodegenerative diseases. In this study, we demonstrated that a compound, 4R-cembranoid (4R, 1S, 2E, 4R, 6R,-7E, 11E-2, 7, 11-cembratriene-4, 6-diol cembranoids) promoted M2 phenotype while attenuated M1 phenotype in N9 cells, a microglial cell line. Following Lipopolysaccharides (LPS) or Oxygen-glucose deprivation (OGD) treatment, the N9 cells treated by 1 µM 4R showed an increased Arginase-1 (Arg1, a M2 marker) expression and a reduced inducible nitric oxide synthase (iNOS, M1 marker) expression. In addition, the conditioned medium of 4R-treated post-OGD N9 cells protected neuro2a cells, a neuronal cell line, from OGD-induced injury. The viability of neuro2a cells in OGD condition was increased by 54.5% after treated with the conditioned medium of 4R-treated post-OGD N9 cells. Furthermore, we demonstrated the protective mechanism of 4R was associated with a decreased TNF-α release and an increased IL-10 release from N9 cells. In conclusion, our study demonstrated that the neuroprotective effects of 4R were through the regulation of microglial activation by promoting the protective M2 activation and inhibiting the damaging M1 activation. Therefore, the findings of this study suggest that 4R could be a promising lead structure for the development of drugs for the treatment of ischemic stroke and other neurodegenerative diseases with an inflammatory component involved.
Collapse
|
31
|
Mu X, Zhang X, Gao H, Gao L, Li Q, Zhao C. Crosstalk between peripheral and the brain-resident immune components in epilepsy. J Integr Neurosci 2022; 21:9. [PMID: 35164445 DOI: 10.31083/j.jin2101009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2025] Open
Abstract
Epilepsy is one of the most common neurology diseases. It is characterized by recurrent, spontaneous seizures and accompanied by various comorbidities which can significantly affect a person's life. Accumulating evidence indicates an essential pathophysiological role for neuroinflammation in epilepsy, which involves activation of microglia and astrocytes, recruitment of peripheral leukocytes into the central nervous system, and release of some inflammatory mediators, including pro-inflammatory factors and anti-inflammatory cytokines. There is complex crosstalk between the central nervous system and peripheral immune responses associated with the progression of epilepsy. This review provides an update of current knowledge about the contribution of this crosstalk associated with epilepsy. Additionally, how gut microbiota is involved in epilepsy and its possible influence on crosstalk is also discussed. Such recent advances in understanding suggest innovative methods for targeting the molecules correlated with the crosstalk and may provide a better prognosis for patients diagnosed with epilepsy.
Collapse
Affiliation(s)
- Xiaopeng Mu
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Xiuchun Zhang
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| | - Honghua Gao
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Lianbo Gao
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Qingchang Li
- Department of Pathology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| | - Chuansheng Zhao
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
- Stroke Center, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| |
Collapse
|
32
|
Microglia Polarization from M1 toward M2 Phenotype Is Promoted by Astragalus Polysaccharides Mediated through Inhibition of miR-155 in Experimental Autoimmune Encephalomyelitis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:5753452. [PMID: 34976303 PMCID: PMC8720009 DOI: 10.1155/2021/5753452] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022]
Abstract
Activated microglia is considered to be major mediators of the neuroinflammatory environment in demyelinating diseases of the central nervous system (CNS). Activated microglia are mainly polarized into M1 type, which plays a role in promoting inflammation and demyelinating. However, the proportion of microglia polarized into M2 type is relatively low, which cannot fully play the role of anti-inflammatory and resistance to demyelinating. Our previous study found that Astragalus polysaccharides (APS) has an immunomodulatory effect and can inhibit neuroinflammation and demyelination in experimental autoimmune encephalomyelitis (EAE), which is a classic animal model of CNS demyelinating disease. In this study, we found that APS was effective in treating EAE mice. It restored microglia balance by inhibiting the polarization of microglia to M1-like phenotype and promoting the polarization of microglia to M2-like phenotype in vivo and in vitro. miR-155 is a key factor in regulating microglia polarization. We found that APS could inhibit the expression level of miR-155 in vivo and in vitro. Furthermore, we performed transfection overexpression and blocking experiments. The results showed that miR-155 mediated the polarization of microglia M1/M2 phenotype, while the selective inhibitor of miR-155 attenuated the inhibition of APS on microglia M1 phenotype and eliminated the promotion of APS on microglia M2 phenotype. Microglia can secrete IL-1α, TNF-α, and C1q after polarizing into M1 type and induce the activation of A1 neurotoxic astrocytes, further aggravating neuroinflammation and demyelination. APS reduced the secretion of IL-1α, TNF-α, and C1q by activated microglia, thus inhibited the formation of A1 neurotoxic astrocytes. In summary, our study suggests that APS regulates the polarization of microglia from M1 to M2 phenotype by inhibiting the miR-155, reduces the secretion of inflammatory factors, and inhibits the activation of neurotoxic astrocytes, thus effectively treating EAE.
Collapse
|
33
|
Polaryzacja mikrogleju i makrofagów w wybranych chorobach degeneracyjnych i zapalnych układu nerwowego. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
Makrofagi to komórki efektorowe układu odpornościowego zdolne do polaryzacji, czyli zmiany fenotypu powiązanej ze zmianą aktywności. Można wyróżnić: polaryzację klasyczną (M1), która służy obronie przed patogenami, a makrofagi M1 mają aktywność ogólnie prozapalną, oraz polaryzację alternatywną (M2), która sprzyja wygaszaniu stanu zapalnego i regeneracji tkanki. Makrofagi zasiedlają niemal cały organizm, więc zjawisko ich polaryzacji ma wpływ na wiele procesów zachodzących w różnych tkankach. W układzie nerwowym reprezentacją osiadłych makrofagów jest mikroglej. Jednak w wielu sytuacjach patologicznych w mózgu pojawiają się także makrofagi rekrutowane z monocytów krążących we krwi. Choroby neurodegeneracyjne, urazy i choroby autoimmunologiczne są związane z reakcją układu odpornościowego, która może mieć istotny wpływ na dalszy przebieg choroby i na tempo regeneracji tkanki. Polaryzacja makrofagów ma w związku z tym znaczenie w chorobach centralnego układu nerwowego. Aktywność komórek M1 i M2 może bowiem różnie wpływać na przeżywalność neuronów i oligodendrocytów, na wzrost aksonów, na proces demielinizacji czy na szczelność bariery krew–mózg. Wynika to z różnic między fenotypami w wytwarzaniu reaktywnych form tlenu i tlenku azotu, wydzielaniu cytokin i czynników wzrostu, bezpośrednich oddziaływaniach na sąsiednie komórki i zdolnościach do fagocytozy. W artykule omówiono to zagadnienie w: udarze mózgu, urazie rdzenia kręgowego, chorobie Alzheimera, stwardnieniu zanikowym bocznym i stwardnieniu rozsianym. W wielu spośród tych patologii obserwuje się gradient czasowy lub przestrzenny rozmieszczenia w tkance poszczególnych fenotypów mikrogleju i/lub makrofagów. Wydaje się zatem, że zmiany polaryzacji makrofagów mogą potencjalnie sprzyjać regeneracji tkanki lub hamować rozwój chorób neurodegeneracyjnych.
Collapse
|
34
|
Liu Z, Zhu Z, He Y, Kang Q, Li F, Zhang W, He Y, Lin Y, Huang B, Mo M, Xu P, Zhu X. A Novel Hydrogen Sulfide Donor Reduces Pilocarpine-Induced Status Epilepticus and Regulates Microglial Inflammatory Profile. Front Cell Neurosci 2021; 15:780447. [PMID: 34924959 PMCID: PMC8674866 DOI: 10.3389/fncel.2021.780447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/25/2021] [Indexed: 01/07/2023] Open
Abstract
Although epilepsy is one of the most common neurologic disorders, there is still a lack of effective therapeutic drugs for it. Recently, we synthesized a novel hydrogen sulfide (H2S) donor, which is found to reduce seizures in animal models effectively. But it remains to be determined for its mechanism. In the present study, we found that the novel H2S donor could reduce pilocarpine-induced seizures in mice. It alleviated the epileptic behavior, the hippocampal electroencephalography (EEG) activity of seizures, and the damage of hippocampal neurons in status epilepticus mice. In addition, the novel H2S donor could reduce microglial inflammatory response. It not only reduced the upregulation of pro-inflammatory markers [inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2)] in status epilepticus mice, but also increased the levels of microglial anti-inflammatory marker arginase-1 (Arg-1). In lipopolysaccharide-treated microglia BV2 cells, administration of the H2S donor also significantly reduced the lipopolysaccharide-induced upregulation of the expression of the pro-inflammatory markers and increased the expression of the anti-inflammatory markers. Thus, the novel H2S donor regulates microglial inflammatory profile in status epilepticus mice and in vitro. These results suggested that the novel H2S donor can reduce seizures and regulate microglial inflammatory profile, which may be a novel mechanism and potential therapeutic strategy of the H2S donor anti-seizures.
Collapse
Affiliation(s)
- Zhongrui Liu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ziting Zhu
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yan He
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiyun Kang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fei Li
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenlong Zhang
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuehua He
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuwan Lin
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Baoyi Huang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqin Zhu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
35
|
Akaishi T, Misu T, Fujihara K, Nakaya N, Nakamura T, Kogure M, Hatanaka R, Itabashi F, Kanno I, Takahashi T, Kuroda H, Fujimori J, Takai Y, Nishiyama S, Kaneko K, Ishii T, Aoki M, Nakashima I, Hozawa A. White blood cell count profiles in multiple sclerosis during attacks before the initiation of acute and chronic treatments. Sci Rep 2021; 11:22357. [PMID: 34785750 PMCID: PMC8595427 DOI: 10.1038/s41598-021-01942-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a major demyelinating disease of the central nervous system; however, its exact mechanism is unknown. This study aimed to elucidate the profile of white blood cells (WBCs) in the acute phase of an MS attack. Sixty-four patients with MS at the time of diagnosis and 2492 age- and sex-adjusted healthy controls (HCs) were enrolled. Data regarding the blood cell counts were compared between the groups. The total WBC (p < 0.0001), monocyte (p < 0.0001), basophil (p = 0.0027), and neutrophil (p < 0.0001) counts were higher in the MS group than in the HC group, whereas the lymphocyte and eosinophil counts did not differ. Adjustments for the smoking status and body mass index yielded the same results. The total and differential WBC counts of the patients with MS did not correlate with the counts of T2 hyperintense brain lesions or the levels of neurological disturbance. In summary, patients with MS showed elevated counts of total WBCs, monocytes, basophils, and neutrophils at the time of diagnosis. However, the clinical relevance of these biomarkers in the context of the development and progression of MS remains unclear.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Neurology, Tohoku University Graduate School of Medicine, Seiryo-machi 1-1, Aoba-ku, Sendai, Miyagi, 980-8574, Japan. .,Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan.
| | - Tatsuro Misu
- Department of Neurology, Tohoku University Graduate School of Medicine, Seiryo-machi 1-1, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University, Fukushima, Japan
| | - Naoki Nakaya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Tomohiro Nakamura
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Mana Kogure
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Rieko Hatanaka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Fumi Itabashi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ikumi Kanno
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Toshiyuki Takahashi
- Department of Neurology, Tohoku University Graduate School of Medicine, Seiryo-machi 1-1, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.,Department of Neurology, National Hospital Organization Yonezawa National Hospital, Yonezawa, Japan
| | - Hiroshi Kuroda
- Department of Neurology, Tohoku University Graduate School of Medicine, Seiryo-machi 1-1, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Juichi Fujimori
- Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoshiki Takai
- Department of Neurology, Tohoku University Graduate School of Medicine, Seiryo-machi 1-1, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Shuhei Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, Seiryo-machi 1-1, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kimihiko Kaneko
- Department of Neurology, Tohoku University Graduate School of Medicine, Seiryo-machi 1-1, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Tadashi Ishii
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Seiryo-machi 1-1, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Ichiro Nakashima
- Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Atsushi Hozawa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
36
|
Remyelination in PNS and CNS: current and upcoming cellular and molecular strategies to treat disabling neuropathies. Mol Biol Rep 2021; 48:8097-8110. [PMID: 34731366 DOI: 10.1007/s11033-021-06755-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 09/15/2021] [Indexed: 10/19/2022]
Abstract
Myelin is a lipid-rich nerve cover that consists of glial cell's plasmalemma layers and accelerates signal conduction. Axon-myelin contact is a source for many developmental and regenerative signals of myelination. Intra- or extracellular factors including both enhancers and inhibitors are other factors affecting the myelination process. Myelin damages are observed in several congenital and hereditary diseases, physicochemical conditions, infections, or traumatic insults, and remyelination is known as an intrinsic response to injuries. Here we discuss some molecular events and conditions involved in de- and remyelination and compare the phenomena of remyelination in CNS and PNS. We have explained applying some of these molecular events in myelin restoration. Finally, the current and upcoming treatment strategies for myelin restoration are explained in three groups of immunotherapy, endogenous regeneration enhancement, and cell therapy to give a better insight for finding the more effective rehabilitation strategies considering the underlying molecular events of a lesion formation and its current condition.
Collapse
|
37
|
Park J, Choi SW, Cha BG, Kim J, Kang SJ. Alternative Activation of Macrophages through Interleukin-13-Loaded Extra-Large-Pore Mesoporous Silica Nanoparticles Suppresses Experimental Autoimmune Encephalomyelitis. ACS Biomater Sci Eng 2021; 7:4446-4453. [PMID: 34435775 DOI: 10.1021/acsbiomaterials.1c00946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) treatment via cytokine-mediated immunomodulation has been hampered by the difficulty with which cytokines can be stably and noninvasively delivered to the central nervous system. Here, we show that interleukin (IL)-13 packaged in extra-large-pore mesoporous silica nanoparticles (XL-MSNs) is protected from degradation and directs the alternative activation of macrophages both in vitro and in vivo. Furthermore, the noninvasive intranasal delivery of IL-13-loaded XL-MSNs ameliorated the symptoms of experimental autoimmune encephalomyelitis, a murine model of MS, accompanied by the induction of chemokines orchestrating immune cell infiltration. These results demonstrate the therapeutic potential of IL-13-loaded XL-MSNs for MS patients.
Collapse
Affiliation(s)
- Jiyeon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seung Woo Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul 06355, Republic of Korea
| | - Bong Geun Cha
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul 06355, Republic of Korea.,School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.,Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Suk-Jo Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
38
|
Radandish M, Khalilian P, Esmaeil N. The Role of Distinct Subsets of Macrophages in the Pathogenesis of MS and the Impact of Different Therapeutic Agents on These Populations. Front Immunol 2021; 12:667705. [PMID: 34489926 PMCID: PMC8417824 DOI: 10.3389/fimmu.2021.667705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/31/2021] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating inflammatory disorder of the central nervous system (CNS). Besides the vital role of T cells, other immune cells, including B cells, innate immune cells, and macrophages (MФs), also play a critical role in MS pathogenesis. Tissue-resident MФs in the brain’s parenchyma, known as microglia and monocyte-derived MФs, enter into the CNS following alterations in CNS homeostasis that induce inflammatory responses in MS. Although the neuroprotective and anti-inflammatory actions of monocyte-derived MФs and resident MФs are required to maintain CNS tolerance, they can release inflammatory cytokines and reactivate primed T cells during neuroinflammation. In the CNS of MS patients, elevated myeloid cells and activated MФs have been found and associated with demyelination and axonal loss. Thus, according to the role of MФs in neuroinflammation, they have attracted attention as a therapeutic target. Also, due to their different origin, location, and turnover, other strategies may require to target the various myeloid cell populations. Here we review the role of distinct subsets of MФs in the pathogenesis of MS and different therapeutic agents that target these cells.
Collapse
Affiliation(s)
- Maedeh Radandish
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvin Khalilian
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
39
|
Leuti A, Talamonti E, Gentile A, Tiberi M, Matteocci A, Fresegna D, Centonze D, Chiurchiù V. Macrophage Plasticity and Polarization Are Altered in the Experimental Model of Multiple Sclerosis. Biomolecules 2021; 11:biom11060837. [PMID: 34200023 PMCID: PMC8229971 DOI: 10.3390/biom11060837] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/09/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system. MS is characterized by infiltrations of leukocytes such as T and B lymphocytes and macrophages. Macrophages have been identified as major effectors of inflammation and demyelination in both MS and its animal model, experimental autoimmune encephalomyelitis (EAE). However, the activation and heterogeneity of macrophages in MS has been poorly investigated. Thus, in this study, we evaluated M1 and M2 macrophages immunophenotype from EAE and control mice by analyzing over 30 surface and intracellular markers through polychromatic flow cytometry, qRT-PCR, and ELISA assay. We showed that M1 macrophages possessed a higher proinflammatory profile in EAE compared to control mice, since they expressed higher levels of activation/co-stimulatory markers (iNOS, CD40, and CD80) and cytokines/chemokines (IL-6, IL-12, CCL2, and CXCL10), whereas M2 lost their M2-like phenotype by showing a decreased expression of their signature markers CD206 and CCL22, as well as a concomitant upregulation of several M1 makers. Furthermore, immunization of M1 and M2 macrophages with MOG35-55 led to a significant hyperactivation of M1 and a concomitant shift of anti-inflammatory M2 to pro-inflammatory M1 macrophages. Overall, we provide evidence for a phenotypic alteration of M1/M2 balance during MS, which can be of crucial importance not only for a better understanding of the immunopathology of this neurodegenerative disease but also to potentially develop new macrophage-centered therapeutic strategies.
Collapse
Affiliation(s)
- Alessandro Leuti
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy;
- Laboratory of Neurochemistry of Lipids, European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Emanuela Talamonti
- Department of Molecular Biosciences, The Wenner-Gren Institute, University of Stockholm, 114 Stockholm, Sweden;
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00163 Rome, Italy; (A.G.); (D.F.)
| | - Marta Tiberi
- Laboratory of Resolution of Neuroinflammation, European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (M.T.); (A.M.)
| | - Alessandro Matteocci
- Laboratory of Resolution of Neuroinflammation, European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (M.T.); (A.M.)
| | - Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00163 Rome, Italy; (A.G.); (D.F.)
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy;
| | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy;
- Unit of Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Valerio Chiurchiù
- Laboratory of Resolution of Neuroinflammation, European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (M.T.); (A.M.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
- Correspondence: or ; Tel.: +39-06-501703210
| |
Collapse
|
40
|
Li Q, Feng C, Li L, Xu G, Gu H, Li S, Li D, Liu M, Han S, Zheng B. Lipid Receptor G2A-Mediated Signal Pathway Plays a Critical Role in Inflammatory Response by Promoting Classical Macrophage Activation. THE JOURNAL OF IMMUNOLOGY 2021; 206:2338-2352. [PMID: 33941654 DOI: 10.4049/jimmunol.2000231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Macrophage polarization is a dynamic and integral process in tissue inflammation and remodeling. In this study, we describe that lipoprotein-associated phospholipase A2 (Lp-PLA2) plays an important role in controlling inflammatory macrophage (M1) polarization in rodent experimental autoimmune encephalomyelitis (EAE) and in monocytes from multiple sclerosis (MS) patients. Specific inhibition of Lp-PLA2 led to an ameliorated EAE via markedly decreased inflammatory and demyelinating property of M1. The effects of Lp-PLA2 on M1 function were mediated by lysophosphatidylcholine, a bioactive product of oxidized lipids hydrolyzed by Lp-PLA2 through JAK2-independent activation of STAT5 and upregulation of IRF5. This process was directed by the G2A receptor, which was only found in differentiated M1 or monocytes from MS patients. M1 polarization could be inhibited by a G2A neutralizing Ab, which led to an inhibited disease in rat EAE. In addition, G2A-deficient rats showed an ameliorated EAE and an inhibited autoimmune response. This study has revealed a mechanism by which lipid metabolites control macrophage activation and function, modification of which could lead to a new therapeutic approach for MS and other inflammatory disorders.
Collapse
Affiliation(s)
- Qing Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Chunlei Feng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Lingyun Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Guiliang Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Haijuan Gu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Shiqiang Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Shuhua Han
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Biao Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and .,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
41
|
Zhang N, Liu C, Zhang R, Jin L, Yin X, Zheng X, Siebert HC, Li Y, Wang Z, Loers G, Petridis AK. Amelioration of clinical course and demyelination in the cuprizone mouse model in relation to ketogenic diet. Food Funct 2021; 11:5647-5663. [PMID: 32539054 DOI: 10.1039/c9fo02944c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ketogenic diet (KD) is defined as a high-fat, low-carbohydrate diet with appropriate amounts of protein, which has broad neuroprotective effects. However, the mechanisms of ameliorating the demyelination and of the neuroprotective effects of KD have not yet been completely elucidated. Therefore, the present study investigated the protection mechanism of KD treatment in the cuprizone (bis-cyclohexanone oxalydihydrazone, CPZ)-induced demyelination mice model, with special emphasis on neuroinflammation. After the KD treatment, an increased ketone body level in the blood of mice was detected, and a significant increase in the distance traveled within the central area was observed in the open field test, which reflected the increased exploration and decreased anxiety of mice that received CPZ. The results of Luxol fast blue and myelin basic protein (MBP) immunohistochemistry staining for the evaluation of the myelin content within the corpus callosum revealed a noticeable increase in the number of myelinated fibers and myelin score after KD administration in these animals. Concomitant, the protein expressions of glial fibrillary acidic protein (GFAP, an astrocyte marker), ionized calcium-binding adaptor molecule 1 (Iba-1, a microglial marker), CD68 (an activated microglia marker) and CD16/32 (a M1 microglial marker) were down-regulated, while the expression of oligodendrocyte lineage transcription factor 2 (OLIG2, an oligodendrocyte precursor cells marker) was up-regulated by the KD treatment. In addition, the KD treatment not only reduced the level of the C-X-C motif chemokine 10 (CXCL10), which is correlated to the recruitment of activated microglia, but also inhibited the production of proinflammatory cytokines, including interleukin 1β (IL-1β) and tumor necrosis factor-α (TNF-α), which are closely correlated to the M1 phenotype microglia. It is noteworthy, that the expression levels of histone deacetylase 3 (HADC3) and nod-like receptor pyrin domain containing 3 (NLRP3) significantly decreased after KD administration. In conclusion, these data demonstrate that KD decreased the reactive astrocytes and activated the microglia in the corpus callosum, and that KD inhibited the HADC3 and NLRP3 inflammasome signaling pathway in CPZ-treated mice. This suggests that the inhibition of the HADC3 and NLRP3 signaling pathway may be a novel mechanism by which KD exerts its protective actions for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Chunhong Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Li Jin
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Xiaohan Yin
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Xuexing Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Hans-Christian Siebert
- RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Yubao Li
- College of agriculture, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Gabriele Loers
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, University of Hamburg, Falkenried 94, 20251 Hamburg, Germany
| | - Athanasios K Petridis
- Neurosurgical Department, Heinrich Heine University of Düsseldorf, Moorenstraße 5, 40255 Düsseldorf, Germany
| |
Collapse
|
42
|
Liu CP, Zhong M, Sun JX, He J, Gao Y, Qin FX. miR‑146a reduces depressive behavior by inhibiting microglial activation. Mol Med Rep 2021; 23:463. [PMID: 33880591 PMCID: PMC8097766 DOI: 10.3892/mmr.2021.12102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/01/2021] [Indexed: 11/12/2022] Open
Abstract
Depression is one of the major psychiatric diseases affecting the quality of life for individuals worldwide. Numerous reports have investigated depression, although its etiology remains to be elucidated. microRNA (miR)-146a is suggested to regulate innate immune and inflammatory responses. However, it is unclear whether miR-146a is involved in depression. Depression model mice were established using lipopolysaccharide-induced depression and chronic unpredictable mild stress, separately. miR-146a mimic and short interfering RNA were used to treat depressed mice. Depression-like behaviors and levels of pro-inflammatory cytokines were measured, while ionized calcium binding adapter molecule 1 (Iba-1) expression in hippocampus was quantified by immunohistochemistry. Neuroinflammatory factor levels in hippocampus were measured by western blotting. BV-2 cells were used to confirm that miR-146a suppressed microglia activation. Compared with control mice, the two depressed mouse models showed clearly decreased sucrose preference and significantly increased immobility time in the forced swimming test and tail suspension test (P<0.05). miR-146a overexpression significantly increased sucrose preference and reduced immobility time in depressed mice (P<0.05). However, total distance traveled in the locomotor activity test did not differ among groups. Compared with controls, expression levels of Iba-1, inducible nitric oxide, IL-1β, TNF-α, interleukin 1 receptor associated kinase 1 (IRAK1), TNF receptor-associated factor 6 (TRAF6) and phosphorylated NF-κB p65 were significantly increased in depressed mice (P<0.05). miR-146a overexpression effectively inhibited expression of these neuroinflammatory proteins, while miR-146a silencing significantly upregulated their expression (P<0.05). Consistent with these in vivo results, miR-146a mimic treatment inhibited TNF-α, IL-1β, IRAK1 and TRAF6 expression in BV-2 cells. miR-146a improved depressive behaviors in depressed model mice by inhibiting microglial activation and neuroinflammatory factor expression.
Collapse
Affiliation(s)
- Chuan-Peng Liu
- Department of Psychiatry, Binzhou People's Hospital, Binzhou, Shandong 256600, P.R. China
| | - Ming Zhong
- Department of Psychiatry, Binzhou Youfu Hospital, Binzhou, Shandong 256600, P.R. China
| | - Jun-Xia Sun
- Department of Psychiatry, Binzhou Youfu Hospital, Binzhou, Shandong 256600, P.R. China
| | - Jin He
- Department of Psychiatry, Binzhou People's Hospital, Binzhou, Shandong 256600, P.R. China
| | - Yong Gao
- Department of Psychiatry, Binzhou People's Hospital, Binzhou, Shandong 256600, P.R. China
| | - Fang-Xia Qin
- Department of Psychology, Shandong Provincial Mental Health Center, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
43
|
El-Emam MA, El Achy S, Abdallah DM, El-Abhar HS, Gowayed MA. Neuroprotective role of galantamine with/without physical exercise in experimental autoimmune encephalomyelitis in rats. Life Sci 2021; 277:119459. [PMID: 33836162 DOI: 10.1016/j.lfs.2021.119459] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022]
Abstract
AIMS The fact that physical activity besides central cholinergic enhancement contributes in improving neuronal function and spastic plasticity, recommends the use of the anticholinesterase and cholinergic drug galantamine with/without exercise in the management of the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). MATERIALS AND METHODS Sedentary and 14 days exercised male Sprague Dawley rats were subjected to EAE. Hereafter, exercised rats continued on rotarod for 30 min for 17 consecutive days. At the onset of symptoms (day 13), EAE sedentary/exercised groups were subdivided into untreated and post-treated with galantamine. The disease progression was assessed by EAE score, motor performance, and biochemically using cerebrospinal fluid (CSF). Cerebellum and brain stem samples were used for histopathology and immunohistochemistry analysis. KEY FINDINGS Galantamine decreased EAE score of sedentary/exercised rats and enhanced their motor performance. Galantamine with/without exercise inhibited CSF levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6), and Bcl-2-associated X protein (Bax), besides caspase-3 and forkhead box P3 (Foxp3) expression in the brain stem. Contrariwise, it has elevated CSF levels of brain derived neurotrophic factor (BDNF) and B-cell lymphoma (Bcl-2) and enhanced remyelination of cerebral neurons. Noteworthy, exercise boosted the drug effect on Bcl-2 and Bax. SIGNIFICANCE The neuroprotective effect of galantamine against EAE was associated with anti-inflammatory and anti-apoptotic potentials, along with increasing BDNF and remyelination. It also normalized regulatory T-cells levels in the brain stem. The impact of the add-on of exercise was markedly manifested in reducing neuronal apoptosis.
Collapse
Affiliation(s)
- Mohamed A El-Emam
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar El Achy
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
44
|
Fani Maleki A, Cisbani G, Laflamme N, Prefontaine P, Plante MM, Baillargeon J, Rangachari M, Gosselin J, Rivest S. Selective Immunomodulatory and Neuroprotective Effects of a NOD2 Receptor Agonist on Mouse Models of Multiple Sclerosis. Neurotherapeutics 2021; 18:889-904. [PMID: 33479802 PMCID: PMC8423880 DOI: 10.1007/s13311-020-00998-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
The significance of monocytes has been demonstrated in multiple sclerosis (MS). One of the therapeutic challenges is developing medications that induce mild immunomodulation that is solely targeting specific monocyte subsets without affecting microglia. Muramyl dipeptide (MDP) activates the NOD2 receptor, and systemic MDP administrations convert Ly6Chigh into Ly6Clow monocytes. Here, we report selective immunomodulatory and therapeutic effects of MDP on cuprizone and experimental autoimmune encephalomyelitis (EAE) mouse models of MS. MDP treatment exerted various therapeutic effects in EAE, including delaying EAE onset and reducing infiltration of leukocytes into the CNS before EAE onset. Of great interest is the robust beneficial effect of the MDP treatment in mice already developing the disease several days after EAE onset. Finally, we found that the NOD2 receptor plays a critical role in MDP-mediated EAE resistance. Our results demonstrate that MDP is beneficial in both early and progressive phases of EAE. Based on these results, and upon comprehensive basic and clinical research, we anticipate developing NOD2 agonist-based medications for MS in the future.
Collapse
MESH Headings
- Acetylmuramyl-Alanyl-Isoglutamine/pharmacology
- Acetylmuramyl-Alanyl-Isoglutamine/therapeutic use
- Adjuvants, Immunologic/pharmacology
- Adjuvants, Immunologic/therapeutic use
- Animals
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Freund's Adjuvant/toxicity
- Immunomodulating Agents/pharmacology
- Immunomodulating Agents/therapeutic use
- Male
- Mice
- Mice, Inbred C57BL
- Monocytes/drug effects
- Monocytes/immunology
- Multiple Sclerosis/chemically induced
- Multiple Sclerosis/immunology
- Multiple Sclerosis/prevention & control
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Nod2 Signaling Adaptor Protein/agonists
- Peptide Fragments/toxicity
Collapse
Affiliation(s)
- Adham Fani Maleki
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Giulia Cisbani
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Nataly Laflamme
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Paul Prefontaine
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Marie-Michele Plante
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Joanie Baillargeon
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Manu Rangachari
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Jean Gosselin
- Laboratory of Innate Immunity, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU of Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Quebec City, QC, G1V 4G2, Canada.
| |
Collapse
|
45
|
Remez L, Ganelin-Cohen E, Safina D, Hellmann MA, Lotan I, Bosak N, Buxbaum C, Vaknin A, Shifrin A, Rozenberg A. Alemtuzumab mediates the CD39 + T-regulatory cell response via CD23 + macrophages. Immunol Cell Biol 2021; 99:521-531. [PMID: 33306219 DOI: 10.1111/imcb.12431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/22/2020] [Accepted: 12/08/2020] [Indexed: 11/24/2022]
Abstract
Alemtuzumab (ALM) effectively prevents relapses of multiple sclerosis (MS). It causes lymphocyte depletion with subsequent enhancement of the T-regulatory cell population. Direct administration of ALM to T cells causes cytolysis. However, the T cells may be indirectly affected by monocyte-derived cells, which are resistant to ALM cytotoxicity. We aimed to examine whether ALM modulates monocytes and whether the crosstalk between monocytes and lymphocytes previously exposed to ALM would result in anti-inflammatory effects. The CD14+ monocytes of 10 healthy controls and 10 MS (treatment naive) patients were isolated from peripheral blood mononuclear cells (PBMCs), exposed to ALM and reintroduced to PBMCs depleted of CD14+ cells. The macrophage profile was assessed and T-cell markers were measured. ALM promoted M2 anti-inflammatory phenotype as noted by an increased percentage in the populations of CD23+ , CD83+ and CD163+ cells. The CD23+ cells were the most upregulated (7-fold, P = 0.0002), and the observed effect was higher in patients with MS than in healthy subjects. ALM-exposed macrophages increased the proportion of T-regulatory cells, without affecting the proportion of T-effector cells. Neutralizing the CD23+ monocytes with antibodies reversed the effect specifically on the CD4+ CD39+ T-regulatory cell subpopulation but not on the CD4+ CD25hi CD127lo FOXP3+ subpopulation. ALM induces the conversion of monocytes into anti-inflammatory macrophages, which in turn promotes T-regulatory cell enhancement, in a CD23-dependent manner. These findings suggest that the mechanism of action of ALM is relevant to aspects of MS pathogenesis.
Collapse
Affiliation(s)
- Lital Remez
- Neuroimmunology Laboratory, Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Esther Ganelin-Cohen
- Neuroimmunological Clinic, Institute of Pediatric Neurology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dina Safina
- Neuroimmunology Laboratory, Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Mark A Hellmann
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Itay Lotan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Noam Bosak
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Chen Buxbaum
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Adi Vaknin
- Unit for Neuro-Immunology, Multiple Sclerosis & Cell Therapy, Department of Neurology, Hadassah Medical Center, Jerusalem, Israel
| | - Alla Shifrin
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Ayal Rozenberg
- Neuroimmunology Laboratory, Department of Neurology, Rambam Health Care Campus, Haifa, Israel.,Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
46
|
Chu F, Shi M, Lang Y, Chao Z, Jin T, Cui L, Zhu J. Adoptive transfer of immunomodulatory M2 macrophages suppresses experimental autoimmune encephalomyelitis in C57BL/6 mice via blockading NF-κB pathway. Clin Exp Immunol 2021; 204:199-211. [PMID: 33426702 DOI: 10.1111/cei.13572] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Macrophages play important roles in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), and M2 macrophage may have anti-inflammatory effects. In this study, we elucidated the roles of M1 and M2 macrophages in the pathogenesis of EAE and the effects of treatment with M2 macrophages that target certain proinflammatory cytokines and with immunomodulatory preparations that beneficially influence the disease course. We found macrophages increased at the onset of clinical signs in the EAE group, consistent with an increased proportion of M1 macrophages and low numbers of M2 macrophages. As the disease progressed and the symptoms worsened, M1 macrophages decreased and M2 macrophages gradually increased until the peak. In the recovery stage, M2 macrophages gradually decreased. Treatment with M2 macrophages inhibited the nuclear factor kappa B (NF-κB) pathway, alleviated the symptoms of EAE, reduced inflammatory cell infiltration and demyelination in the central nervous system and decreased the numbers of macrophages in the spleens. BAY-11-7082, an NF-κB blocking agent, could reduce the total number of macrophages both in vivo and in vitro, effectively prevented EAE development and significantly inhibited EAE symptoms in mice. Our study demonstrates that macrophages may play a crucial role in the pathogenesis of EAE, while M2 macrophages have anti-inflammatory effects. Transfer of M2 macrophages to EAE mice can block the NF-κB pathway successfully and relieve EAE symptoms. Application of NF-κB blockers is useful in the prevention and treatment of EAE.
Collapse
Affiliation(s)
- F Chu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - M Shi
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Y Lang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Z Chao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - T Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - L Cui
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - J Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
47
|
Elo P, Li XG, Liljenbäck H, Gardberg M, Moisio O, Miner M, Virta J, Saraste A, Srinivasarao M, Pugh M, Low PS, Knuuti J, Jalkanen S, Airas L, Lu YJ, Roivainen A. Efficacy and tolerability of folate-aminopterin therapy in a rat focal model of multiple sclerosis. J Neuroinflammation 2021; 18:30. [PMID: 33472663 PMCID: PMC7819223 DOI: 10.1186/s12974-021-02073-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Activated macrophages in the experimental model of multiple sclerosis (MS) express folate receptor-β (FR-β), representing a promising target for the treatment of MS. Here, we both evaluated the efficacy of a novel folate-aminopterin construct (EC2319) in a rat focal model of multiple sclerosis (MS) and investigated the utility of 68Ga-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid-conjugated folate (68Ga-FOL) for assessing inflammatory lesions. In addition, we investigated whether FR-β is expressed in the brain of patients with MS. METHODS Focal delayed-type hypersensitivity experimental autoimmune encephalomyelitis (fDTH-EAE) was induced in 40 Lewis rats; 20 healthy Lewis rats were used as controls. Rats were divided into six groups according to the duration of disease (control, acute, or chronic) and intervention (vehicle versus EC2319). 68Ga-FOL analyses, histology, and immunofluorescence of the brain were performed to evaluate the efficacy of subcutaneously administered EC2319 on lesion development. Immunofluorescence was used to assess FR-β expression in postmortem brain samples from 5 patients with MS and 5 healthy controls. RESULTS Immunofluorescence and histological analyses revealed significant reductions in FR-β expression (P < 0.05) and lesion size (P < 0.01), as well as improved inducible nitric oxide synthase/mannose receptor C type 1 ratios (P < 0.01) in macrophages and microglia during the chronic but not acute phase of fDTH-EAE in EC2319-treated rats. The uptake of IV-injected 68Ga-FOL in the brain was low and did not differ between the groups, but the in vitro binding of 68Ga-FOL was significantly lower in EC2319-treated rats (P < 0.01). FR-β positivity was observed in chronically active lesions and in normal-appearing white matter in MS brain samples. CONCLUSIONS EC2319 was well tolerated and attenuated inflammation and lesion development in a rat model of a chronic progressive form of MS. Human MS patients have FR-β-positive cells in chronically active plaques, which suggests that these results may have translational relevance.
Collapse
Affiliation(s)
- Petri Elo
- Turku PET Centre, University of Turku, Turku, Finland
| | - Xiang-Guo Li
- Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Maria Gardberg
- Department of Pathology, Turku University Hospital and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Olli Moisio
- Turku PET Centre, University of Turku, Turku, Finland
| | - Maxwell Miner
- Turku PET Centre, University of Turku, Turku, Finland
| | - Jenni Virta
- Turku PET Centre, University of Turku, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland
| | | | - Michael Pugh
- Endocyte, Inc., now part of Novartis Institutes for Biomedical Research, West Lafayette, IN, USA
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Åbo Akademi University, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Laura Airas
- Department of Neurology, Turku University Hospital, Turku, Finland
| | - Yingjuan June Lu
- Endocyte, Inc., now part of Novartis Institutes for Biomedical Research, West Lafayette, IN, USA
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Turku, Finland. .,Turku Center for Disease Modeling, University of Turku, Turku, Finland. .,Turku PET Centre, Turku University Hospital, Turku, Finland.
| |
Collapse
|
48
|
Zhang N, Jin L, Liu C, Zhang R, Siebert HC, Li Y, Loers G, Petridis AK, Xia Z, Dong H, Zheng X. An antarctic krill oil-based diet elicits neuroprotective effects by inhibiting oxidative stress and rebalancing the M1/M2 microglia phenotype in a cuprizone model for demyelination. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
49
|
Positive Allosteric Modulation of CB1 and CB2 Cannabinoid Receptors Enhances the Neuroprotective Activity of a Dual CB1R/CB2R Orthosteric Agonist. Life (Basel) 2020; 10:life10120333. [PMID: 33302569 PMCID: PMC7763181 DOI: 10.3390/life10120333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022] Open
Abstract
Preclinical studies highlighted that compounds targeting cannabinoid receptors could be useful for developing novel therapies against neurodegenerative disorders. However, the chronic use of orthosteric agonists alone has several disadvantages, limiting their usefulness as clinically relevant drugs. Positive allosteric modulators might represent a promising approach to achieve the potential therapeutic benefits of orthosteric agonists of cannabinoid receptors through increasing their activity and limiting their adverse effects. The aim of the present study was to show the effects of positive allosteric ligands of cannabinoid receptors on the activity of a potent dual orthosteric agonist for neuroinflammation and excitotoxic damage by excessive glutamate release. The results indicate that the combination of an orthosteric agonist with positive allosteric modulators could represent a promising therapeutic approach to the treatment of neurodegenerative disorders.
Collapse
|
50
|
Abstract
Traumatic brain injury leads to cellular damage which in turn results in the rapid release of damage-associated molecular patterns (DAMPs) that prompt resident cells to release cytokines and chemokines. These in turn rapidly recruit neutrophils, which assist in limiting the spread of injury and removing cellular debris. Microglia continuously survey the CNS (central nervous system) compartment and identify structural abnormalities in neurons contributing to the response. After some days, when neutrophil numbers start to decline, activated microglia and astrocytes assemble at the injury site—segregating injured tissue from healthy tissue and facilitating restorative processes. Monocytes infiltrate the injury site to produce chemokines that recruit astrocytes which successively extend their processes towards monocytes during the recovery phase. In this fashion, monocytes infiltration serves to help repair the injured brain. Neurons and astrocytes also moderate brain inflammation via downregulation of cytotoxic inflammation. Depending on the severity of the brain injury, T and B cells can also be recruited to the brain pathology sites at later time points.
Collapse
|