1
|
Gisevius B, Duscha A, Poschmann G, Stühler K, Motte J, Fisse AL, Augustyniak S, Rehm A, Renk P, Böse C, Hubert D, Peters K, Jagst M, Gömer A, Todt D, Bader V, Tokic M, Hirschberg S, Krogias C, Trampe N, Coutourier C, Winnesberg C, Steinmann E, Winklhofer K, Gold R, Haghikia A. Propionic acid promotes neurite recovery in damaged multiple sclerosis neurons. Brain Commun 2024; 6:fcae182. [PMID: 38894951 PMCID: PMC11184351 DOI: 10.1093/braincomms/fcae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/21/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Neurodegeneration in the autoimmune disease multiple sclerosis still poses a major therapeutic challenge. Effective drugs that target the inflammation can only partially reduce accumulation of neurological deficits and conversion to progressive disease forms. Diet and the associated gut microbiome are currently being discussed as crucial environmental risk factors that determine disease onset and subsequent progression. In people with multiple sclerosis, supplementation of the short-chain fatty acid propionic acid, as a microbial metabolite derived from the fermentation of a high-fiber diet, has previously been shown to regulate inflammation accompanied by neuroprotective properties. We set out to determine whether the neuroprotective impact of propionic acid is a direct mode of action of short-chain fatty acids on CNS neurons. We analysed neurite recovery in the presence of the short-chain fatty acid propionic acid and butyric acid in a reverse-translational disease-in-a-dish model of human-induced primary neurons differentiated from people with multiple sclerosis-derived induced pluripotent stem cells. We found that recovery of damaged neurites is induced by propionic acid and butyric acid. We could also show that administration of butyric acid is able to enhance propionic acid-associated neurite recovery. Whole-cell proteome analysis of induced primary neurons following recovery in the presence of propionic acid revealed abundant changes of protein groups that are associated with the chromatin assembly, translational, and metabolic processes. We further present evidence that these alterations in the chromatin assembly were associated with inhibition of histone deacetylase class I/II following both propionic acid and butyric acid treatment, mediated by free fatty acid receptor signalling. While neurite recovery in the presence of propionic acid is promoted by activation of the anti-oxidative response, administration of butyric acid increases neuronal ATP synthesis in people with multiple sclerosis-specific induced primary neurons.
Collapse
Affiliation(s)
- Barbara Gisevius
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Alexander Duscha
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University Düsseldorf, 40335 Düsseldorf, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University Düsseldorf, 40335 Düsseldorf, Germany
| | - Jeremias Motte
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Anna Lena Fisse
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Sanja Augustyniak
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Adriana Rehm
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Pia Renk
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Celina Böse
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Diana Hubert
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Kathrin Peters
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Michelle Jagst
- Department for Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - André Gömer
- Department for Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
- European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Marianne Tokic
- Department of Medical Informatics, Biometry and Epidemiology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Sarah Hirschberg
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Christos Krogias
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Nadine Trampe
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Charlotta Coutourier
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Carmen Winnesberg
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Konstanze Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
- Cluster of Excellence RESOLV, 44801 Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Aiden Haghikia
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
2
|
Hamada R, Funasaka Y, Saeki H, Serizawa N, Hagino T, Yano Y, Mitsui H, Kanda N. Dietary habits in adult Japanese patients with vitiligo. J Dermatol 2024; 51:491-508. [PMID: 38421796 PMCID: PMC11484454 DOI: 10.1111/1346-8138.17163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Vitiligo is an autoimmune skin disease with acquired depigmentation. Dietary habits may modulate the pathogenesis of vitiligo. We evaluated dietary habits in adult Japanese patients with nonsegmental vitiligo, and compared their results with those of age- and sex-matched controls. We also examined the relationship between dietary habits and Vitiligo Area Scoring Index (VASI), or vitiligo on different anatomical sites. The intakes of energy, nutrients, and foods in the participants were analyzed using a brief-type self-administered diet history questionnaire. Patients with vitiligo showed higher body mass index (BMI) and lower intakes of manganese, vitamin D, pulses, and confection, compared with controls. Multivariate logistic regression analysis showed that vitiligo was associated with high BMI. VASI was higher in males than in females, and negatively correlated with age or intakes of potatoes and vegetables other than green/yellow vegetables. Linear multivariate regression analysis showed that high VASI was associated with younger age. Multivariate logistic regression analysis showed that moderate to severe vitiligo (VASI ≥ 4.25) was associated with male sex and longer disease duration. Multivariate logistic regression analyses showed the following association with vitiligo on respective anatomical sites: high intake of eggs and dairy products and high VASI on the head or neck, high intake of oils and fats and high VASI on the trunk, high intake of cereals and high VASI on the upper limbs, male sex and high VASI on the lower limbs, and high BMI and high VASI on the hands or feet. In conclusion, the control of obesity might have prophylactic or therapeutic effects on vitiligo.
Collapse
Affiliation(s)
- Risa Hamada
- Department of DermatologyNippon Medical SchoolTokyoJapan
| | - Yoko Funasaka
- Department of DermatologyNippon Medical SchoolTokyoJapan
| | - Hidehisa Saeki
- Department of DermatologyNippon Medical SchoolTokyoJapan
| | - Naotaka Serizawa
- Department of DermatologyNippon Medical School Chiba Hokusoh HospitalInzaiJapan
| | - Teppei Hagino
- Department of DermatologyNippon Medical School Chiba Hokusoh HospitalInzaiJapan
| | | | | | - Naoko Kanda
- Department of DermatologyNippon Medical School Chiba Hokusoh HospitalInzaiJapan
| |
Collapse
|
3
|
Atabilen B, Akdevelioğlu Y, Acar Özen P, Tuncer A. Examining dietary habits in the context of multiple sclerosis: A comprehensive investigative approach. Mult Scler Relat Disord 2024; 83:105467. [PMID: 38301324 DOI: 10.1016/j.msard.2024.105467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
AIMS The aim of this study is to evaluate the nutritional status of patients with multiple sclerosis (MS) and to develop suggestions for changing eating habits in a healthy direction. METHODS The study was conducted on 171 participants (80.1 % female; 19.9 % male) diagnosed with MS between the ages of 18-60 who applied to Ankara Hacettepe University Hospital Neurology Outpatient Clinic between June 2021 and March 2023. Body weight, height, body composition, waist circumference, upper mid-arm circumference and hand grip strength were measured in accordance with the technique of anthropometric measurements. A three-day food consumption record was taken to evaluate the energy, macro, and micronutrient content of the diet. Mediterranean Diet Assessment Tool was used to assess adherence to diet. RESULTS Mean age of the participants was recorded as 35.2 ± 10.81 years. According to the body mass index (BMI) classification, 59.9 % of females were in normal limits, while 61.8 % of males were classified as overweight and obese. However, when evaluated in terms of body composition, body fat percentage was found to be above of normal limits in both genders. Also, 70.8 % of participants were sedentary. The percentage of patients who met their daily energy requirements in women with light and moderate activity was higher than in men, but it was not statistically significant. In participants with high activity level, the percentage of patients meeting energy requirements was below 50 % for both genders. Dietary fat and saturated fat intake were higher than the recommendations, while monounsaturated fatty acids and dietary fiber intake were less. The percentages of patients meeting their calcium requirement was below 50 % in both genders. Mean intake amounts of vegetables, fruits, legumes, nuts, and dairy products were below the Türkiye Nutrition Guideline recommendations. CONCLUSION This study shows the nutritional characteristic of patients with MS in detail with different aspects. Although most of the patients were in normal limits in terms of BMI, body fat percentages were found to be above normal limits in both genders. Total fat and saturated fat intakes were found to be high according to scientific recommendations while the intake of food groups required for a fibre-based diet and intake of dairy products were low.
Collapse
Affiliation(s)
- Büşra Atabilen
- Karamanoğlu Mehmetbey University Faculty of Health Sciences Department of Nutrition and Dietetics, Karaman, Türkiye.
| | - Yasemin Akdevelioğlu
- Gazi University Faculty of Health Sciences Department of Nutrition and Dietetics, Ankara, Türkiye
| | - Pınar Acar Özen
- Hacettepe University Faculty of Medicine Department of Neurology, Ankara, Türkiye
| | - Aslı Tuncer
- Hacettepe University Faculty of Medicine Department of Neurology, Ankara, Türkiye
| |
Collapse
|
4
|
Satheesan A, Sharma S, Basu A. Sodium Butyrate Induced Neural Stem/Progenitor Cell Death in an Experimental Model of Japanese Encephalitis. Metab Brain Dis 2023; 38:2831-2847. [PMID: 37650987 DOI: 10.1007/s11011-023-01279-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
The anti-inflammatory and neuroprotective effects of short chain fatty acid (SCFA) butyrate have been explored in a wide array of neurological pathologies. It is a 4-carbon SCFA produced from the fermentation of dietary fibers by the gut-microbiota. As evident from previous literature, butyrate plays a wide array of functions in CNS and interestingly enhances the differentiation potential of Neural stem/Progenitor Cells (NSPCs). Japanese encephalitis virus (JEV) is a well-known member of the Flaviviridae family and has been shown to alter neural stem cell pool of the brain, causing devastating consequences. In this study, we administered sodium butyrate (NaB) post JEV infection in BALB/c mouse model to examine any possible amelioration of the viral infection in NSPCs. In addition, ex vivo neurospheres and in vitro model of NSPCs were also used to study the effect of sodium butyrate in JEV infection. As an unprecedented finding, butyrate treated infected animals presented early onset of symptoms, as compared to their respective JEV infected groups. Alongside, we observed an increased viral load in NSPCs isolated from these animals as well as in cell culture models upon sodium butyrate treatment. Cytometric bead array analysis also revealed an increase in inflammatory cytokines, particularly, MCP-1 and IL-6. Further, increased expression of the key members of the canonical NF-κB pathway, viz-a-viz p-NF-κB, p-Iκ-Bα and p-IKK was observed. Overall, the increased inflammation and cell death caused early symptom progression in NaB-treated JEV infected animal model, which is contradictory to the well documented protective nature of NaB and therefore a better understanding of SCFA-based modulation of the gut-brain axis in viral infections is required.
Collapse
Affiliation(s)
| | - Shivangi Sharma
- National Brain Research Centre, Manesar, Haryana, 122052, India
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, 122052, India.
| |
Collapse
|
5
|
Wang Q, Wu Q, Yang J, Saad A, Mills E, Dowling C, Lundy S, Mao-Draayer Y. Dysregulation of humoral immunity, iron homeostasis, and lipid metabolism is associated with multiple sclerosis progression. Mult Scler Relat Disord 2023; 79:105020. [PMID: 37806231 DOI: 10.1016/j.msard.2023.105020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/02/2023] [Accepted: 09/23/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Though most patients with multiple sclerosis (MS) presented earlier on as a relapsing-remitting (RR) disease, disability progression eventually occurred. Uncovering the mechanisms underlying progression may facilitate the unmet need for developing therapies to prevent progression. Benign MS (BMS), a rare form of MS, is the opposite from secondary progressive MS (SPMS) in that it lacks disease progression defined as Expanded Disability Status Scale (EDSS) ≤3 after at least 15 years of disease onset. BMS is characterized by rare and mild relapses with complete remission of clinical symptoms (lower activity of the disease) and lack of progression. Our study aims to identify transcriptomic and immunological differences between BMS and SPMS to unravel the pathogenesis of disease progression. METHODS We took multi-modal approaches with microarrays, flow cytometry, and lipidomics by three-way comparisons of patients with BMS vs. RRMS (low disease activity vs. moderate or severe activity), RRMS vs. SPMS (continued activity vs. complete transformation into progressive phase) as well as BMS vs. SPMS, matched for age and disease-duration (low disease activity and no progression vs. progression with or without activity). RESULTS We found that patients with RRMS and SPMS have a significantly higher percentage of B cells than those with BMS. BMS shows a different transcriptomic profile than SPMS. Many of the differentially expressed genes (DEGs) are involved in B cell-mediated immune responses. Additionally, long-chain fatty acids (LCFA), which can act as inflammatory mediators, are also altered in SPMS. Overall, our data suggest a role for the dysregulation of B cell differentiation and function, humoral immunity, and iron and lipid homeostasis in the pathogenesis of MS disease progression. CONCLUSION BMS has a unique transcriptomic and immunological profile compared to RRMS and SPMS. These differences will allow for personalized precision medicine and may ultimately lead to the discovery of new therapeutic targets for disease progression.
Collapse
Affiliation(s)
- Qin Wang
- Department of Neurology, University of Michigan Medical School, USA; Autoimmunity Center of Excellence, University of Michigan Medical School, USA
| | - Qi Wu
- Department of Neurology, University of Michigan Medical School, USA; Autoimmunity Center of Excellence, University of Michigan Medical School, USA
| | - Jennifer Yang
- Department of Neurology, University of Michigan Medical School, USA; Autoimmunity Center of Excellence, University of Michigan Medical School, USA
| | - Aiya Saad
- Department of Neurology, University of Michigan Medical School, USA; Autoimmunity Center of Excellence, University of Michigan Medical School, USA
| | - Elizabeth Mills
- Department of Neurology, University of Michigan Medical School, USA; Autoimmunity Center of Excellence, University of Michigan Medical School, USA
| | - Catherine Dowling
- Department of Neurology, University of Michigan Medical School, USA; Autoimmunity Center of Excellence, University of Michigan Medical School, USA
| | - Steven Lundy
- Autoimmunity Center of Excellence, University of Michigan Medical School, USA
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan Medical School, USA; Autoimmunity Center of Excellence, University of Michigan Medical School, USA; Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, USA; Michigan Institute for Neurological Disorders, USA.
| |
Collapse
|
6
|
Butyrate Ameliorates Intraocular Bacterial Infection by Promoting Autophagy and Attenuating the Inflammatory Response. Infect Immun 2023; 91:e0025222. [PMID: 36515524 PMCID: PMC9872663 DOI: 10.1128/iai.00252-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite an important link between the gut and ocular health, the role of the gut-eye axis remains elusive in ocular infections. In this study, we investigated the role of butyrate, a gut microbial metabolite, in the pathobiology of intraocular bacterial (Staphylococcus aureus) infection, endophthalmitis. We found that intravitreal administration of butyrate derivatives, sodium butyrate (NaB), or phenylbutyrate (PBA) reduced intraocular bacterial growth and retinal inflammatory response. The ocular tissue architecture and retinal function were preserved in butyrate-treated eyes. In cultured mouse bone marrow-derived macrophages (BMDMs) and human retinal Müller glia, NaB or PBA treatment reduced S. aureus-induced inflammatory response by inhibiting NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome. However, in vivo data showed NLRP3-independent effects of butyrate. The butyrate-treated mouse retina and cells exhibited induced expression of antimicrobial molecules CRAMP (LL37) and S100A7/A8, resulting in increased bacterial phagocytosis and killing. Moreover, butyrate treatment enhanced AMP-activated protein kinase (AMPK)-dependent autophagy and promoted the co-localization of CRAMP in autophagosomes, indicating autophagy-mediated bacterial killing. Furthermore, pharmacological inhibition of autophagy in mice revealed its role in butyrate-mediated protection. Finally, butyrate exhibited synergy with antibiotic in promoting endophthalmitis resolution. Collectively, our study demonstrated the protective mechanisms of butyrate in ameliorating bacterial endophthalmitis. Therefore, butyrate derivatives could be explored as immunomodulatory and anti-bacterial therapeutics to improve visual outcomes in ocular bacterial infections.
Collapse
|
7
|
Karuppusamy S, Rajauria G, Fitzpatrick S, Lyons H, McMahon H, Curtin J, Tiwari BK, O’Donnell C. Biological Properties and Health-Promoting Functions of Laminarin: A Comprehensive Review of Preclinical and Clinical Studies. Mar Drugs 2022; 20:772. [PMID: 36547919 PMCID: PMC9780867 DOI: 10.3390/md20120772] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Marine algal species comprise of a large portion of polysaccharides which have shown multifunctional properties and health benefits for treating and preventing human diseases. Laminarin, or β-glucan, a storage polysaccharide from brown algae, has been reported to have potential pharmacological properties such as antioxidant, anti-tumor, anti-coagulant, anticancer, immunomodulatory, anti-obesity, anti-diabetic, anti-inflammatory, wound healing, and neuroprotective potential. It has been widely investigated as a functional material in biomedical applications as it is biodegradable, biocompatible, and is low toxic substances. The reported preclinical and clinical studies demonstrate the potential of laminarin as natural alternative agents in biomedical and industrial applications such as nutraceuticals, pharmaceuticals, functional food, drug development/delivery, and cosmeceuticals. This review summarizes the biological activities of laminarin, including mechanisms of action, impacts on human health, and reported health benefits. Additionally, this review also provides an overview of recent advances and identifies gaps and opportunities for further research in this field. It further emphasizes the molecular characteristics and biological activities of laminarin in both preclinical and clinical settings for the prevention of the diseases and as potential therapeutic interventions.
Collapse
Affiliation(s)
- Shanmugapriya Karuppusamy
- School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Gaurav Rajauria
- Department of Biological and Pharmaceutical Sciences, Munster Technological University, Clash, V92 CX88 Tralee, Ireland
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, V92 CX88 Tralee, Ireland
| | | | - Henry Lyons
- Nutramara Ltd., Beechgrove House Strand Street, V92 FH0K Tralee, Ireland
| | - Helena McMahon
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, V92 CX88 Tralee, Ireland
| | - James Curtin
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, D01 K822 Dublin, Ireland
| | - Brijesh K. Tiwari
- Teagasc Food Research Centre, Department of Food Chemistry and Technology, Ashtown, D15 KN3K Dublin, Ireland
| | - Colm O’Donnell
- School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
8
|
Chen C, Wang P, Zhang RD, Fang Y, Jiang LQ, Fang X, Zhao Y, Wang DG, Ni J, Pan HF. Mendelian randomization as a tool to gain insights into the mosaic causes of autoimmune diseases. Clin Exp Rheumatol 2022; 21:103210. [PMID: 36273526 DOI: 10.1016/j.autrev.2022.103210] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
Autoimmune diseases (ADs) are a broad range of disorders which are characterized by long-term inflammation and tissue damage arising from an immune response against one's own tissues. It is now widely accepted that the causes of ADs include environmental factors, genetic susceptibility and immune dysregulation. However, the exact etiology of ADs has not been fully elucidated to date. Because observational studies are plagued by confounding factors and reverse causality, no firm conclusions can be drawn about the etiology of ADs. Over the years, Mendelian randomization (MR) analysis has come into focus, offering unique perspectives and insights into the etiology of ADs and promising the discovery of potential therapeutic interventions. In MR analysis, genetic variation (alleles are randomly dispensed during meiosis, usually irrespective of environmental or lifestyle factors) is used instead of modifiable exposure to explore the link between exposure factors and disease or other outcomes. Therefore, MR analysis can provide a valuable method for exploring the causal relationship between different risk factors and ADs when its inherent assumptions and limitations are fully considered. This review summarized the recent findings of MR in major ADs, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), and type 1 diabetes mellitus (T1DM), focused on the effects of different risk factors on ADs risks. In addition, we also discussed the opportunities and challenges of MR methods in ADs research.
Collapse
Affiliation(s)
- Cong Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - Peng Wang
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China; Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ruo-Di Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - Yang Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - Ling-Qiong Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - Xi Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - Yan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - De-Guang Wang
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China; Department of Nephrology, The Second Hospital of Anhui Medical University, Hefei, China.
| | - Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China.
| |
Collapse
|
9
|
Ghasemi Darestani N, Bahrami A, Mozafarian MR, Esmalian Afyouni N, Akhavanfar R, Abouali R, Moradian A. Association of Polyunsaturated Fatty Acid Intake on Inflammatory Gene Expression and Multiple Sclerosis: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:4627. [PMID: 36364885 PMCID: PMC9656750 DOI: 10.3390/nu14214627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
The health benefits of omega-3 fatty acid (FA) supplementation on inflammatory gene expression (IGE) and multiple sclerosis (MS) are becoming more evident. However, an overview of the results from randomized controlled trials is lacking. This study aimed to conduct a meta-analysis to evaluate the effect of omega-3 fatty acid intake on MS (based on the criteria of the Expanded Disability Status Scale (EDSS)) and inflammatory gene expression (IGE). A search was conducted of PubMed, EMBASE, and Web of Science for cohort studies published from the inception of the database up to May 2022 that assessed the associations of omega-3 polyunsaturated fatty acids (n-3 PUFAs), docosahexaenoic acid (DHA), α-linolenic acid (ALA), and eicosapentaenoic acid (EPA) with EDSS and inflammatory gene expression (peroxisome proliferator-activated receptor gamma (PPAR-γ), tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), and interleukin-8 (IL-8)) outcomes. For the highest vs. lowest comparison, the relative risk (RR) estimates with a 95% confidence interval (CI) were pooled using the random-effect model. In total, 13 cohort studies with 1353 participants were included in the meta-analysis during periods of 3 to 144 weeks. A significant inverse relationship was found between DHA and EDSS scores (RR: 1.05; 95% CI: 0.62, 1.48; p < 0.00001). Our results also showed that omega-3 FAs significantly upregulated the gene expression of PPAR-γ (RR: 0.95; 95% CI: 0.52, 1.38; p < 0.03) and downregulated the expression of TNF-α (RR: −0.15; 95% CI: −0.99, 0.70; p < 0.00001) and IL-1 (RR: −0.60; 95% CI: −1.02, −0.18; p < 0.003). There was no clear evidence of publication bias with Egger’s tests for inflammatory gene expression (p = 0.266). Moreover, n-3 PUFAs and EPA were not significantly associated with EDSS scores (p > 0.05). In this meta-analysis of cohort studies, blood omega-3 FA concentrations were inversely related to inflammatory gene expression (IGE) and EDSS score, which indicates that they may hold great potential markers for the diagnosis, prognosis, and management of MS. However, further clinical trials are required to confirm the potential effects of the omega-3 FAs on MS disease management.
Collapse
Affiliation(s)
- Nadia Ghasemi Darestani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (N.G.D.); (R.A.)
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Tehran 1417643184, Iran
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, 80333 Munich, Germany
| | - Mohammad Reza Mozafarian
- Department of Nutrition, School of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr 75, Iran;
| | - Nazgol Esmalian Afyouni
- Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (N.G.D.); (R.A.)
| | - Reza Abouali
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases—IRCAD, Università del Piemonte Orientale, 13100 Novara, Italy;
| | - Arsalan Moradian
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Pharmacist, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| |
Collapse
|
10
|
Correale J, Hohlfeld R, Baranzini SE. The role of the gut microbiota in multiple sclerosis. Nat Rev Neurol 2022; 18:544-558. [PMID: 35931825 DOI: 10.1038/s41582-022-00697-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
During the past decade, research has revealed that the vast community of micro-organisms that inhabit the gut - known as the gut microbiota - is intricately linked to human health and disease, partly as a result of its influence on systemic immune responses. Accumulating evidence demonstrates that these effects on immune function are important in neuroinflammatory diseases, such as multiple sclerosis (MS), and that modulation of the microbiome could be therapeutically beneficial in these conditions. In this Review, we examine the influence that the gut microbiota have on immune function via modulation of serotonin production in the gut and through complex interactions with components of the immune system, such as T cells and B cells. We then present evidence from studies in mice and humans that these effects of the gut microbiota on the immune system are important in the development and course of MS. We also consider how strategies for manipulating the composition of the gut microbiota could be used to influence disease-related immune dysfunction and form the basis of a new class of therapeutics. The strategies discussed include the use of probiotics, supplementation with bacterial metabolites, transplantation of faecal matter or defined microbial communities, and dietary intervention. Carefully designed studies with large human cohorts will be required to gain a full understanding of the microbiome changes involved in MS and to develop therapeutic strategies that target these changes.
Collapse
Affiliation(s)
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sergio E Baranzini
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
Momchilova A, Pankov R, Alexandrov A, Markovska T, Pankov S, Krastev P, Staneva G, Vassileva E, Krastev N, Pinkas A. Sphingolipid Catabolism and Glycerophospholipid Levels Are Altered in Erythrocytes and Plasma from Multiple Sclerosis Patients. Int J Mol Sci 2022; 23:ijms23147592. [PMID: 35886939 PMCID: PMC9315580 DOI: 10.3390/ijms23147592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, inflammatory, degenerative disease of the central nervous system. Changes in lipid metabolism have been suggested to play important roles in MS pathophysiology and progression. In this work we analyzed the lipid composition and sphingolipid-catabolizing enzymes in erythrocytes and plasma from MS patients and healthy controls. We observed reduction of sphingomyelin (SM) and elevation of its products—ceramide (CER) and shingosine (SPH). These changes were supported by the detected up-regulation of the activity of acid sphingomyelinase (ASM) in MS plasma and alkaline ceramidase (ALCER) in erythrocytes from MS patients. In addition, Western blot analysis showed elevated expression of ASM, but not of ALCER. We also compared the ratios between saturated (SAT), unsaturated (UNSAT) and polyunsaturated fatty acids and suggest, based on the significant differences observed for this ratio, that the UNSAT/SAT values could serve as a marker distinguishing erythrocytes and plasma of MS from controls. In conclusion, the application of lipid analysis in the medical practice would contribute to definition of more precise diagnosis, analysis of disease progression, and evaluation of therapeutic strategies. Based on the molecular changes of blood lipids in neurodegenerative pathologies, including MS, clinical lipidomic analytical approaches could become a promising contemporary tool for personalized medicine.
Collapse
Affiliation(s)
- Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (A.A.); (T.M.); (S.P.); (G.S.)
- Correspondence: ; Tel.: +359-2-9792686 or +359-898-238971
| | - Roumen Pankov
- Biological Faculty, Sofia University, 8, Dragan Tzankov Str., 1164 Sofia, Bulgaria;
| | - Alexander Alexandrov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (A.A.); (T.M.); (S.P.); (G.S.)
| | - Tania Markovska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (A.A.); (T.M.); (S.P.); (G.S.)
| | - Stefan Pankov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (A.A.); (T.M.); (S.P.); (G.S.)
| | - Plamen Krastev
- Cardiology Clinic, University Hospital St. Ekaterina, 1431 Sofia, Bulgaria;
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (A.A.); (T.M.); (S.P.); (G.S.)
| | - Evgenia Vassileva
- Clinic of Neurology, Tsaritsa Yoanna University Hospital-ISUL, 1527 Sofia, Bulgaria;
| | - Nikolai Krastev
- Department of Anatomy, Histology and Embryology, Medical University-Sofia, Blvd. Sv. Georgi Sofiisky 1, 1431 Sofia, Bulgaria;
- Medical Center Relax, 8 Ami Bue Str., 1606 Sofia, Bulgaria
| | - Adriana Pinkas
- STEP/CSTEP, Office of Continuing Education, Suffolk County Community College 30 Greene Ave., Sayville, NY 11782, USA;
| |
Collapse
|
12
|
Yu H, Bai S, Hao Y, Guan Y. Fatty acids role in multiple sclerosis as "metabokines". J Neuroinflammation 2022; 19:157. [PMID: 35715809 PMCID: PMC9205055 DOI: 10.1186/s12974-022-02502-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/01/2022] [Indexed: 12/21/2022] Open
Abstract
Multiple sclerosis (MS), as an autoimmune neurological disease with both genetic and environmental contribution, still lacks effective treatment options among progressive patients, highlighting the need to re-evaluate disease innate properties in search for novel therapeutic targets. Fatty acids (FA) and MS bear an interesting intimate connection. FA and FA metabolism are highly associated with autoimmunity, as the diet-derived circulatory and tissue-resident FAs level and composition can modulate immune cells polarization, differentiation and function, suggesting their broad regulatory role as “metabokines”. In addition, FAs are indeed protective factors for blood–brain barrier integrity, crucial contributors of central nervous system (CNS) chronic inflammation and progressive degeneration, as well as important materials for remyelination. The remaining area of ambiguity requires further exploration into this arena to validate the existed phenomenon, develop novel therapies, and confirm the safety and efficacy of therapeutic intervention targeting FA metabolism.
Collapse
Affiliation(s)
- Haojun Yu
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Shuwei Bai
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Yong Hao
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China.
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China.
| |
Collapse
|
13
|
Brauckmann V, Nambiar S, Potthoff A, Höxtermann S, Wach J, Kayser A, Tiemann C, Schuppe AK, Brockmeyer NH, Skaletz-Rorowski A. Influence of dietary supplementation of short-chain fatty acid sodium propionate in people living with HIV (PLHIV). J Eur Acad Dermatol Venereol 2022; 36:881-889. [PMID: 35176190 DOI: 10.1111/jdv.18006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/08/2021] [Accepted: 01/07/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Non-AIDS associated chronic diseases in HIV+ patients have been on the rise since the advent of antiretroviral therapy. Especially cardiovascular diseases and disruption in the gastrointestinal tract have limited health-related quality of life (QoL). Several of those complications have been associated with chronic systemic inflammation. Short chain fatty-acids (SCFA), with propionate as one of the major compounds, have been described as an important link between gut microbiota and the immune system, defining the pro- and the anti-inflammatory milieu through direct and indirect regulation of T-cell homeostasis. The effects of dietary supplementation of sodium propionate (SP) in people living with HIV (PLHIV) have not yet been investigated prior to this study. OBJECTIVES To investigate the impact of SP uptake among PLHIV and its relevance to improve QoL, the study aimed to investigate metabolic, immunological, microbiome and patient-reported QoL related changes post SP-supplementation with follow up. METHODS: A prospective, non-randomized, controlled, monocentric interventional study was conducted in WIR, Center for Sexual Health and Medicine, in Bochum, Germany. 32 HIV+ patients with unaltered ART-regimen in the last three months were included. Participants were given SP for a duration of 12 weeks in the form of daily oral supplementation and were additionally followed-up for another 12 weeks. RESULTS The supplementation of SP was well tolerated. We found an improvement in lipid profiles and long-term blood glucose levels. A decrease in pro-inflammatory cytokines and a depletion of effector T-Cells was observed. Regulatory T-Cells and IL-10 decreased. Furthermore, changes in taxonomic composition of the microbiome during follow-up were observed and improvement of items of self-reported life-quality assessment. CONCLUSION: Taken together, the beneficial impact of SP in PLHIV reflects its potential in improving metabolic parameters and modulating pro-inflammatory immune responses. Thus possibly reducing the risk of cardiovascular disorders and facilitating long-term improvement of the gut flora.
Collapse
Affiliation(s)
- Vesta Brauckmann
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany.,Interdisciplinary Immunological Outpatient Clinic, Center for Sexual Health and Medicine, Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| | - S Nambiar
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany.,Interdisciplinary Immunological Outpatient Clinic, Center for Sexual Health and Medicine, Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| | - A Potthoff
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany.,Interdisciplinary Immunological Outpatient Clinic, Center for Sexual Health and Medicine, Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| | - S Höxtermann
- Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| | - J Wach
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany.,Public Health Department Bochum, Bochum, Germany
| | - A Kayser
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany.,Aidshilfe Bochum (Aids Service Organization Bochum) e.V, Bochum, Germany
| | - C Tiemann
- MVZ Laboratory Krone, Molecular Diagnostics, Bad Salzuflen, Germany
| | - A K Schuppe
- MVZ Laboratory Krone, Molecular Diagnostics, Bad Salzuflen, Germany
| | - N H Brockmeyer
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany.,Interdisciplinary Immunological Outpatient Clinic, Center for Sexual Health and Medicine, Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| | - A Skaletz-Rorowski
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany.,Interdisciplinary Immunological Outpatient Clinic, Center for Sexual Health and Medicine, Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| |
Collapse
|
14
|
Ruan S, Zhai L, Wu S, Zhang C, Guan Q. SCFAs promote intestinal double-negative T cells to regulate the inflammatory response mediated by NLRP3 inflammasome. Aging (Albany NY) 2021; 13:21470-21482. [PMID: 34491906 PMCID: PMC8457588 DOI: 10.18632/aging.203487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/11/2021] [Indexed: 01/16/2023]
Abstract
Short-chain fatty acids (SCFAs) are a product of intestinal bacteria metabolism. Our previous study has found that intestinal bacteria in patients with Alzheimer's disease (AD) can promote the activation of NLRP3 inflammasome and mediate neuroinflammation. In this study, we mainly explored the regulation of intestinal microenvironmental immunity by intestinal bacterial metabolite SCFAs and the mechanism of NLRP3 activation. First, wild-type (WT) and APP/PS1 mice were intervened with SCFAs. As a result, the proportion of double-negative T cells (CD3+CD4-CD8-, DNTs) in the intestine was increased, SCFAs could promote the expression of intestinal NLRP3 and inflammatory factors (IL-18, IL-6 and TNF-α). Moreover, SCAFs could also promote the level of inflammatory factors in the cerebrospinal fluid (CSF) of mice and aggravate the cognitive impairment in AD mice. CD3+ T cells isolated from the spleen were pre-treated with SCFAs, followed by detection of the proportion of DNTs. Consequently, SCFAs could promote the formation of DNTs, activate OX40 signal and simultaneously up-regulate the protein expression of Bcl-2, Bcl-xl and Survivin. Knockdown of OX40 could inhibit SCFAs-induced differentiation of DNTs. The co-culture of DNTs and intestinal macrophages showed that DNTs could activate Fas/FasL-TNF-α signal and induce the activation of NLRP3 inflammasome. In AD mouse models, treatment with Fas and TNFR1 inhibitors could significantly inhibit SCFAs-induced NLRP3 activation and inflammatory factors, while attenuate the inflammatory response in the brain tissue of mice and improve the cognitive ability of mice, however, without significant effect on the level of DNTs. The present study showed that SCFAs can promote the formation of DNTs through OX40. DNTs could induce the activation of NLRP3 inflammasome and the release of inflammatory factors in macrophages through Fas/FasL-TNF-α signals, thereby increasing the level of inflammatory factors in the central nervous system. When Fas and TNFR1 were inhibited by suppressing the functions of DNTs and macrophages, the activation of NLRP3 was inhibited. DNTs are affected by SCFAs, which is a new mechanism of neuroinflammation in AD.
Collapse
Affiliation(s)
- Shuiliang Ruan
- Department of Center Laboratory, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Liping Zhai
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Shasha Wu
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Caiqun Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Qiaobing Guan
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| |
Collapse
|
15
|
Mirzaei R, Bouzari B, Hosseini-Fard SR, Mazaheri M, Ahmadyousefi Y, Abdi M, Jalalifar S, Karimitabar Z, Teimoori A, Keyvani H, Zamani F, Yousefimashouf R, Karampoor S. Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomed Pharmacother 2021; 139:111661. [PMID: 34243604 DOI: 10.1016/j.biopha.2021.111661] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
During the past decade, accumulating evidence from the research highlights the suggested effects of bacterial communities of the human gut microbiota and their metabolites on health and disease. In this regard, microbiota-derived metabolites and their receptors, beyond the immune system, maintain metabolism homeostasis, which is essential to maintain the host's health by balancing the utilization and intake of nutrients. It has been shown that gut bacterial dysbiosis can cause pathology and altered bacterial metabolites' formation, resulting in dysregulation of the immune system and metabolism. The short-chain fatty acids (SCFAs), such as butyrate, acetate, and succinate, are produced due to the fermentation process of bacteria in the gut. It has been noted remodeling in the gut microbiota metabolites associated with the pathophysiology of several neurological disorders, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease, amyotrophic lateral sclerosis, stress, anxiety, depression, autism, vascular dementia, schizophrenia, stroke, and neuromyelitis optica spectrum disorders, among others. This review will discuss the current evidence from the most significant studies dealing with some SCFAs from gut microbial metabolism with selected neurological disorders.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mazaheri
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Milad Abdi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Karimitabar
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Volkova A, Ruggles KV. Predictive Metagenomic Analysis of Autoimmune Disease Identifies Robust Autoimmunity and Disease Specific Microbial Signatures. Front Microbiol 2021; 12:621310. [PMID: 33746917 PMCID: PMC7969817 DOI: 10.3389/fmicb.2021.621310] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Within the last decade, numerous studies have demonstrated changes in the gut microbiome associated with specific autoimmune diseases. Due to differences in study design, data quality control, analysis and statistical methods, many results of these studies are inconsistent and incomparable. To better understand the relationship between the intestinal microbiome and autoimmunity, we have completed a comprehensive re-analysis of 42 studies focusing on the gut microbiome in 12 autoimmune diseases to identify a microbial signature predictive of multiple sclerosis (MS), inflammatory bowel disease (IBD), rheumatoid arthritis (RA) and general autoimmune disease using both 16S rRNA sequencing data and shotgun metagenomics data. To do this, we used four machine learning algorithms, random forest, eXtreme Gradient Boosting (XGBoost), ridge regression, and support vector machine with radial kernel and recursive feature elimination to rank disease predictive taxa comparing disease vs. healthy participants and pairwise comparisons of each disease. Comparing the performance of these models, we found the two tree-based methods, XGBoost and random forest, most capable of handling sparse multidimensional data, to consistently produce the best results. Through this modeling, we identified a number of taxa consistently identified as dysregulated in a general autoimmune disease model including Odoribacter, Lachnospiraceae Clostridium, and Mogibacteriaceae implicating all as potential factors connecting the gut microbiome to autoimmune response. Further, we computed pairwise comparison models to identify disease specific taxa signatures highlighting a role for Peptostreptococcaceae and Ruminococcaceae Gemmiger in IBD and Akkermansia, Butyricicoccus, and Mogibacteriaceae in MS. We then connected a subset of these taxa with potential metabolic alterations based on metagenomic/metabolomic correlation analysis, identifying 215 metabolites associated with autoimmunity-predictive taxa.
Collapse
Affiliation(s)
- Angelina Volkova
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, United States
| | - Kelly V. Ruggles
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, United States
- Division of Translational Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
17
|
Chemudupati M, Kenney AD, Smith AC, Fillinger RJ, Zhang L, Zani A, Liu SL, Anderson MZ, Sharma A, Yount JS. Butyrate Reprograms Expression of Specific Interferon-Stimulated Genes. J Virol 2020; 94:e00326-20. [PMID: 32461320 PMCID: PMC7394905 DOI: 10.1128/jvi.00326-20] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/22/2020] [Indexed: 12/31/2022] Open
Abstract
Butyrate is an abundant metabolite produced by gut microbiota. While butyrate is a known histone deacetylase inhibitor that activates expression of many genes involved in immune system pathways, its effects on virus infections and on the antiviral type I interferon (IFN) response have not been adequately investigated. We found that butyrate increases cellular infection with viruses relevant to human and animal health, including influenza virus, reovirus, HIV-1, human metapneumovirus, and vesicular stomatitis virus. Mechanistically, butyrate suppresses levels of specific antiviral IFN-stimulated gene (ISG) products, such as RIG-I and IFITM3, in human and mouse cells without inhibiting IFN-induced phosphorylation or nuclear translocation of the STAT1 and STAT2 transcription factors. Accordingly, we discovered that although butyrate globally increases baseline expression of more than 800 cellular genes, it strongly represses IFN-induced expression of 60% of ISGs and upregulates 3% of ISGs. Our findings reveal that there are differences in the IFN responsiveness of major subsets of ISGs depending on the presence of butyrate in the cell environment, and overall, they identify a new mechanism by which butyrate influences virus infection of cells.IMPORTANCE Butyrate is a lipid produced by intestinal bacteria. Here, we newly show that butyrate reprograms the innate antiviral immune response mediated by type I interferons (IFNs). Many of the antiviral genes induced by type I IFNs are repressed in the presence of butyrate, resulting in increased virus infection and replication. Our research demonstrates that metabolites produced by the gut microbiome, such as butyrate, can have complex effects on cellular physiology, including dampening of an inflammatory innate immune pathway resulting in a proviral cellular environment. Our work further suggests that butyrate could be broadly used as a tool to increase growth of virus stocks for research and for the generation of vaccines.
Collapse
Affiliation(s)
- Mahesh Chemudupati
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Adam D Kenney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Anna C Smith
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Robert J Fillinger
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Lizhi Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Ashley Zani
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Shan-Lu Liu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Matthew Z Anderson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Amit Sharma
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
18
|
Ferreira HB, Neves B, Guerra IM, Moreira A, Melo T, Paiva A, Domingues MR. An overview of lipidomic analysis in different human matrices of multiple sclerosis. Mult Scler Relat Disord 2020; 44:102189. [PMID: 32516740 DOI: 10.1016/j.msard.2020.102189] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis is a chronic inflammatory and neurodegenerative disease of the central nervous system, and it is one of the most common neurological cause of disability in young adults. It is known that several factors contribute to increase the risk of development and pathogenesis of multiple sclerosis, nonetheless, but the true etiology of this pathology remains unknown. Similar to other inflammatory diseases, oxidative stress and lipid peroxidation are also associated to multiple sclerosis. Alterations in the lipid profile seem to be a hallmark of this pathology which can contribute to the dysregulation of lipid homeostasis and lipid metabolism in multiple sclerosis. Lipidomic studies analysed in this review clearly demonstrate the role of lipids in inflammatory processes, in immunity, and in the onset and development of multiple sclerosis. Several investigations reported alterations of some molecular lipid species, in particular, with decrease of fatty acids (FA) 18:2 and 20:4 and total polyunsaturated FA, with compensatory increases of saturated FA with shorter carbon chains. Oxidized phospholipids were reported in few studies as well. Also, it was shown that clinical lipidomics has potential as a tool to aid both in multiple sclerosis diagnosis and therapeutics by allowing a detailed lipidome profiling of the patients suffering with this disease.
Collapse
Affiliation(s)
- Helena Beatriz Ferreira
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Inês M Guerra
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Moreira
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| | - Artur Paiva
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.; Instituto Politécnico de Coimbra, ESTESC - Coimbra Health School, Ciências Biomédicas Laboratoriais, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal.
| |
Collapse
|
19
|
Maguire G. Better preventing and mitigating the effects of Covid-19. Future Sci OA 2020; 6:FSO586. [PMID: 32685190 PMCID: PMC7238752 DOI: 10.2144/fsoa-2020-0051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/29/2020] [Indexed: 01/08/2023] Open
Abstract
Currently, there are no proven medical treatments against SARS-CoV-2, the virus responsible for Covid-19. In addition to the all important public health measures needed to prevent the spread of this disease, a number of strategies related to our exposome are recommended herein, to better prevent and mitigate the effects of a SARS-CoV-2 infection through enhancement of our immune system and reduction of inflammation.
Collapse
Affiliation(s)
- Greg Maguire
- BioRegenerative Sciences Inc., NeoGenesis Inc., San Diego, CA 94704, USA
- The California Physiological Society, Berkeley, CA 94704, USA
| |
Collapse
|
20
|
Ma S, Yeom J, Lim YH. Dairy Propionibacterium freudenreichii ameliorates acute colitis by stimulating MUC2 expression in intestinal goblet cell in a DSS-induced colitis rat model. Sci Rep 2020; 10:5523. [PMID: 32218552 PMCID: PMC7099060 DOI: 10.1038/s41598-020-62497-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 03/09/2020] [Indexed: 12/21/2022] Open
Abstract
An intact mucus layer is important in managing inflammatory bowel disease (IBD). Dairy Propionibacterium freudenreichii has probiotic potential, produces propionic acid and is known to promote health. The aim of this study was to evaluate the effects of P. freudenreichii on the improvement of colitis. LS 174T goblet cells and a dextran sodium sulfate (DSS)-induced colitis rat model were used to investigate the P. freudenreichii-induced stimulation of mucin production in vitro and in vivo, respectively. The mRNA and protein expression levels of MUC2, a main component of intestinal mucus, increased in the supernatant of P. freudenreichii culture (SPFC)-treated LS 174 cells. The SPFC and live P. freudenreichii (LPF) reduced the disease activity index (DAI) in the rats with DSS-induced colitis. After treatment with SPFC or LPF, the mRNA levels of typical pro-inflammatory cytokines decreased and the inflammatory state was histologically improved in the rats with DSS-induced colitis. The SPFC and LPF treatments increased the gene and protein expression levels of MUC2 in the rats with DSS-induced colitis compared with the expression levels in the negative control rats, and immunohistochemistry (IHC) showed an increase of the intestinal MUC2 level. In addition, SPFC and LPF augmented the level of propionate in the faeces of the rats with DSS-induced colitis. In conclusion, P. freudenreichii might improve acute colitis by restoring goblet cell number and stimulating the expression of MUC2 in intestinal goblet cells.
Collapse
Affiliation(s)
- Seongho Ma
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Jiah Yeom
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Young-Hee Lim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea. .,Department of Public Health Science (Brain Korea 21 PLUS program), Graduate School, Korea University, Seoul, 02841, Republic of Korea. .,Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea.
| |
Collapse
|
21
|
Radzikowska U, Rinaldi AO, Çelebi Sözener Z, Karaguzel D, Wojcik M, Cypryk K, Akdis M, Akdis CA, Sokolowska M. The Influence of Dietary Fatty Acids on Immune Responses. Nutrients 2019; 11:E2990. [PMID: 31817726 PMCID: PMC6950146 DOI: 10.3390/nu11122990] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
Diet-derived fatty acids (FAs) are essential sources of energy and fundamental structural components of cells. They also play important roles in the modulation of immune responses in health and disease. Saturated and unsaturated FAs influence the effector and regulatory functions of innate and adaptive immune cells by changing membrane composition and fluidity and by acting through specific receptors. Impaired balance of saturated/unsaturated FAs, as well as n-6/n-3 polyunsaturated FAs has significant consequences on immune system homeostasis, contributing to the development of many allergic, autoimmune, and metabolic diseases. In this paper, we discuss up-to-date knowledge and the clinical relevance of the influence of dietary FAs on the biology, homeostasis, and functions of epithelial cells, macrophages, dendritic cells, neutrophils, innate lymphoid cells, T cells and B cells. Additionally, we review the effects of dietary FAs on the pathogenesis of many diseases, including asthma, allergic rhinitis, food allergy, atopic dermatitis, rheumatoid arthritis, multiple sclerosis as well as type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Arturo O Rinaldi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| | - Zeynep Çelebi Sözener
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Department of Chest Disease, Division of Allergy and Clinical Immunology, Ankara University School of Medicine, 06100 Ankara, Turkey
| | - Dilara Karaguzel
- Department of Biology, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| | - Marzena Wojcik
- Department of Structural Biology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Katarzyna Cypryk
- Department of Internal Medicine and Diabetology, Medical University of Lodz, 90-549 Lodz, Poland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| |
Collapse
|
22
|
Maguire M, Maguire G. Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Rev Neurosci 2019; 30:179-201. [PMID: 30173208 DOI: 10.1515/revneuro-2018-0024] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
Abstract
Here we offer a review of the evidence for a hypothesis that a combination of ingestible probiotics, prebiotics, postbiotics, and amino acids will help ameliorate dysbiosis and degeneration of the gut, and therefore promote restoration of nervous system function in a number of neurological indications.
Collapse
Affiliation(s)
- Mia Maguire
- BioRegenerative Sciences, Inc., 505 Coast Blvd South, #208, La Jolla, CA 92037, USA
| | - Greg Maguire
- BioRegenerative Sciences, Inc., 11588 Sorrento Valley Rd. #18, San Diego, CA 92121, USA
| |
Collapse
|
23
|
Maguire G, Paler L, Green L, Mella R, Valcarcel M, Villace P. Rescue of degenerating neurons and cells by stem cell released molecules: using a physiological renormalization strategy. Physiol Rep 2019; 7:e14072. [PMID: 31050222 PMCID: PMC6497969 DOI: 10.14814/phy2.14072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/26/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022] Open
Abstract
Evidence suggests that adult stem cell types and progenitor cells act collectively in a given tissue to maintain and heal organs, such as muscle, through a release of a multitude of molecules packaged into exosomes from the different cell types. Using this principle for the development of bioinspired therapeutics that induces homeostatic renormalization, here we show that the collection of molecules released from four cell types, including mesenchymal stem cells, fibroblast, neural stem cells, and astrocytes, rescues degenerating neurons and cells. Specifically, oxidative stress induced in a human recombinant TDP-43- or FUS-tGFP U2OS cell line by exposure to sodium arsenite was shown to be significantly reduced by our collection of molecules using in vitro imaging of FUS and TDP-43 stress granules. Furthermore, we also show that the collective secretome rescues cortical neurons from glutamate toxicity as evidenced by increased neurite outgrowth, reduced LDH release, and reduced caspase 3/7 activity. These data are the first in a series supporting the development of stem cell-based exosome systems therapeutics that uses a physiological renormalization strategy to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Greg Maguire
- BioRegenerative Sciences, Inc.San DiegoCalifornia
- Auditory Sound Waves, LLCSan DiegoCalifornia
| | - Lee Paler
- BioRegenerative Sciences, Inc.San DiegoCalifornia
- Auditory Sound Waves, LLCSan DiegoCalifornia
| | - Linda Green
- BioRegenerative Sciences, Inc.San DiegoCalifornia
| | | | | | | |
Collapse
|
24
|
Amato MP, Prestipino E, Bellinvia A. Identifying risk factors for cognitive issues in multiple sclerosis. Expert Rev Neurother 2019; 19:333-347. [PMID: 30829076 DOI: 10.1080/14737175.2019.1590199] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Cognitive impairment (CI) in Multiple Sclerosis (MS) has progressively regained clinical and research interest and is currently recognized as a debilitating and burdensome problem for these patients. Studying risk and protecting factors that may influence the development and course of CI is currently an area of increasing interest, due to the potential for preventive strategies. Areas covered: In this narrative review the authors briefly addressed the physiopathologic basis, assessment and management of CI in MS and then focused on identifying modifiable and not modifiable risk factors for CI in MS, providing an overview of the current knowledge in the field and indicating avenues for future research. Expert opinion: Improving our understanding of potentially modifiable environmental and lifestyle risk factors or protective factors for CI is important in order to prompt preventive strategies and orient patient counselling and clinical management. To this aim, we need to enhance the current level of evidence linking lifestyle factors to cognition and evaluate some factors that were only preliminary addressed in research. Moreover, we need to explore the role of each factor into the subject cognitive outcome, next to the possible interactions between different environmental factors as well as between environmental and genetic factors.
Collapse
Affiliation(s)
- Maria Pia Amato
- a NEUROFARBA Department, Neuroscience section , University of Florence , Florence , Italy.,b IRCSS Fondazione Don Carlo Gnocchi , Florence , Italy
| | - Elio Prestipino
- a NEUROFARBA Department, Neuroscience section , University of Florence , Florence , Italy
| | - Angelo Bellinvia
- a NEUROFARBA Department, Neuroscience section , University of Florence , Florence , Italy
| |
Collapse
|
25
|
Metabolome-based signature of disease pathology in MS. Mult Scler Relat Disord 2019; 31:12-21. [PMID: 30877925 DOI: 10.1016/j.msard.2019.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/06/2019] [Accepted: 03/05/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Diagnostic delays are common for multiple sclerosis (MS) since diagnosis typically depends on the presentation of nonspecific clinical symptoms together with radiologically-determined central nervous system (CNS) lesions. It is important to reduce diagnostic delays as earlier initiation of disease modifying therapies mitigates long-term disability. Developing a metabolomic blood-based MS biomarker is attractive, but prior efforts have largely focused on specific subsets of metabolite classes or analytical platforms. Thus, there are opportunities to interrogate metabolite profiles using more expansive and comprehensive approaches for developing MS biomarkers and for advancing our understanding of MS pathogenesis. METHODS To identify putative blood-based MS biomarkers, we comprehensively interrogated the metabolite profiles in 12 non-Hispanic white, non-smoking, male MS cases who were drug naïve for 3 months prior to biospecimen collection and 13 non-Hispanic white, non-smoking male controls who were frequency matched to cases by age and body mass index. We performed untargeted two-dimensional gas chromatography and time-of-flight mass spectrometry (GCxGC-TOFMS) and targeted lipidomic and amino acid analysis on serum. 325 metabolites met quality control and supervised machine learning was used to identify metabolites most informative for MS status. The discrimination potential of these select metabolites were assessed using receiver operator characteristic curves based on logistic models; top candidate metabolites were defined as having area under the curves (AUC) >80%. The associations between whole-genome expression data and the top candidate metabolites were examined, followed by pathway enrichment analyses. Similar associations were examined for 175 putative MS risk variants and the top candidate metabolites. RESULTS 12 metabolites were determined to be informative for MS status, of which 6 had AUCs >80%: pyroglutamate, laurate, acylcarnitine C14:1, N-methylmaleimide, and 2 phosphatidylcholines (PC ae 40:5, PC ae 42:5). These metabolites participate in glutathione metabolism, fatty acid metabolism/oxidation, cellular membrane composition, and transient receptor potential channel signaling. Pathway analyses based on the gene expression association for each metabolite suggested enrichment for pathways associated with apoptosis and mitochondrial dysfunction. Interestingly, the predominant MS genetic risk allele HLA-DRB1×15:01 was associated with one of the 6 top metabolites. CONCLUSION Our analysis represents the most comprehensive description of metabolic changes associated with MS in serum, to date, with the inclusion of genomic and genetic information. We identified atypical metabolic processes that differed between MS patients and controls, which may enable the development of biological targets for diagnosis and treatment.
Collapse
|
26
|
Armon-Omer A, Waldman C, Simaan N, Neuman H, Tamir S, Shahien R. New Insights on the Nutrition Status and Antioxidant Capacity in Multiple Sclerosis Patients. Nutrients 2019; 11:nu11020427. [PMID: 30781687 PMCID: PMC6413226 DOI: 10.3390/nu11020427] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Multiple sclerosis (MS) is a multifactorial disease with unknown etiology. It is assumed to result from interplay between genetic and environmental factors, including nutrition. We hypothesized that there are differences in nutritional parameters between MS patients and healthy controls. Methods: We examined 63 MS patients and 83 healthy controls. Nutritional status was determined by a dietary questionnaire, blood tests, quantification of cell membrane fatty acids, and serum antioxidant capacity. Results: We found that MS patients consumed a more limited diet compared with the healthy group, indicated by a lower average of 31 nutrients and by consumption levels of zinc and thiamine below the recommended daily intake. Both consumption and measured iron values were significantly lower in MS patients, with the lowest measures in the severe MS group. Long saturated fatty acids (>C16) were significantly lower in MS patients, while palmitic and palmitoleic acids were both higher. Serum total antioxidant capacity was significantly lower in the MS group compared with healthy controls, with the lowest measures in patients with severe MS. Conclusions: This study points to a possible correlation between nutritional status and MS. Understanding the clinical meaning of these findings will potentially allow for the development of future personalized dietary interventions as part of MS treatment.
Collapse
Affiliation(s)
| | - Chen Waldman
- Research Laboratory, Ziv Medical Center, Zefat 1311001, Israel.
| | - Naaem Simaan
- Department of Neurology, Ziv Medical Center, Zefat 1311001, Israel.
- Faculty of Medicine, Bar Ilan University, Zefat 1311502, Israel.
| | - Hadar Neuman
- Research Laboratory, Ziv Medical Center, Zefat 1311001, Israel.
- Department of Medical Laboratory Sciences, Zefat Academic College, Zefat 1320611, Israel.
| | - Snait Tamir
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Kiryat Shmona 11016, Israel.
- Nutritional Sciences, Tel-Hai College, Upper Galilee 12208, Israel.
| | - Radi Shahien
- Department of Neurology, Ziv Medical Center, Zefat 1311001, Israel.
- Faculty of Medicine, Bar Ilan University, Zefat 1311502, Israel.
| |
Collapse
|
27
|
Metabolic Dysfunction and Peroxisome Proliferator-Activated Receptors (PPAR) in Multiple Sclerosis. Int J Mol Sci 2018; 19:ijms19061639. [PMID: 29865151 PMCID: PMC6032172 DOI: 10.3390/ijms19061639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS) probably caused, in most cases, by the interaction of genetic and environmental factors. This review first summarizes some clinical, epidemiological and pathological characteristics of MS. Then, the involvement of biochemical pathways is discussed in the development and repair of the CNS lesions and the immune dysfunction in the disease. Finally, the potential roles of peroxisome proliferator-activated receptors (PPAR) in MS are discussed. It is suggested that metabolic mechanisms modulated by PPAR provide a window to integrate the systemic and neurological events underlying the pathogenesis of the disease. In conclusion, the reviewed data highlight molecular avenues of understanding MS that may open new targets for improved therapies and preventive strategies for the disease.
Collapse
|