1
|
Kuehnemann C, Wiley CD. Senescent cells at the crossroads of aging, disease, and tissue homeostasis. Aging Cell 2024; 23:e13988. [PMID: 37731189 PMCID: PMC10776127 DOI: 10.1111/acel.13988] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Originally identified as an outcome of continuous culture of primary cells, cellular senescence has moved beyond the culture dish and is now a bona fide driver of aging and disease in animal models, and growing links to human disease. This cellular stress response consists of a stable proliferative arrest coupled to multiple phenotypic changes. Perhaps the most important of these is the senescence-associated secretory phenotype, or senescence-associated secretory phenotype -a complex and variable collection of secreted molecules release by senescent cells with a number of potent biological activities. Senescent cells appear in multiple age-associated conditions in humans and mice, and interventions that eliminate these cells can prevent or even reverse multiple diseases in mouse models. Here, we review salient aspects of senescent cells in the context of human disease and homeostasis. Senescent cells increase in abundance during several diseases that associated with premature aging. Conversely, senescent cells have a key role in beneficial processes such as development and wound healing, and thus can help maintain tissue homeostasis. Finally, we speculate on mechanisms by which deleterious aspects of senescent cells might be targeted while retaining homeostatic aspects in order to improve age-related outcomes.
Collapse
Affiliation(s)
- Chisaka Kuehnemann
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts UniversityBostonMassachusettsUSA
| | - Christopher D. Wiley
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts UniversityBostonMassachusettsUSA
| |
Collapse
|
2
|
Guo L, Liu X, Su X. The role of TEMRA cell-mediated immune senescence in the development and treatment of HIV disease. Front Immunol 2023; 14:1284293. [PMID: 37901239 PMCID: PMC10602809 DOI: 10.3389/fimmu.2023.1284293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Human Immunodeficiency Virus (HIV) has plagued human society for a long time since its discovery, causing a large number of patients to suffer and costing hundreds of millions of medical services every year. Scientists have found that HIV and antiretroviral therapy accelerate immune aging by inducing mitochondrial dysfunction, and that terminal effector memory T cells (TEMRA cells) are crucial in immune aging. This specific subset of effector memory T cells has terminally differentiated properties and exhibits high cytotoxicity and proinflammatory capacity. We therefore explored and described the interplay between exhaustion features, essential markers, functions, and signaling pathways from previous studies on HIV, antiretroviral therapy, immune senescence, and TEMRA cells. Their remarkable antiviral capacity is then highlighted by elucidating phenotypic changes in TEMRA cells during HIV infection, describing changes in TEMRA cells before, during, and after antiretroviral therapy and other drug treatments. Their critical role in complications and cytomegalovirus (CMV)-HIV superinfection is highlighted. These studies demonstrate that TEMRA cells play a key role in the antiviral response and immune senescence during HIV infection. Finally, we review current therapeutic strategies targeting TEMRA cells that may be clinically beneficial, highlight their potential role in HIV-1 vaccine development, and provide perspectives and predictions for related future applications.
Collapse
Affiliation(s)
- Lihui Guo
- Department of Burns and Plastic Surgery, Yanbian University Hospital, Yanji, China
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| | - Xudong Liu
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shen Yang, China
| | - Xin Su
- Department of Burns and Plastic Surgery, Yanbian University Hospital, Yanji, China
| |
Collapse
|
3
|
Dolutegravir-containing HIV therapy reversibly alters mitochondrial health and morphology in cultured human fibroblasts and peripheral blood mononuclear cells. AIDS 2023; 37:19-32. [PMID: 36399361 DOI: 10.1097/qad.0000000000003369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Given the success of combination antiretroviral therapy (cART) in treating HIV viremia, drug toxicity remains an area of interest in HIV research. Despite newer integrase strand transfer inhibitors (InSTIs), such as dolutegravir (DTG) and raltegravir (RAL), having excellent clinical tolerance, there is emerging evidence of off-target effects and toxicities. Although limited in number, recent reports have highlighted the vulnerability of mitochondria to these toxicities. The aim of the present study is to quantify changes in cellular and mitochondrial health following exposure to current cART regimens at pharmacological concentrations. A secondary objective is to determine whether any cART-associated toxicities would be modulated by human telomerase reverse transcriptase (hTERT). METHODS We longitudinally evaluated markers of cellular (cell count, apoptosis), and mitochondrial health [mitochondrial reactive oxygen species (mtROS), membrane potential (MMP) and mass (mtMass)] by flow cytometry in WI-38 human fibroblast with differing hTERT expression/localization and peripheral blood mononuclear cells. This was done after 9 days of exposure to, and 6 days following the removal of, seven current cART regimens, including three that contained DTG. Mitochondrial morphology was assessed by florescence microscopy and quantified using a recently developed deep learning-based pipeline. RESULTS Exposure to DTG-containing regimens increased apoptosis, mtROS, mtMass, induced fragmented mitochondrial networks compared with non-DTG-containing regimens, including a RAL-based combination. These effects were unmodulated by telomerase expression. All effects were fully reversible following removal of drug pressure. CONCLUSION Taken together, our observations indicate that DTG-containing regimens negatively impact cellular and mitochondrial health and may be more toxic to mitochondria, even among the generally well tolerated InSTI-based cART.
Collapse
|
4
|
Correia IM, Navarro AM, Corrêa Cordeiro JF, Gomide EBG, Mazzonetto LF, de Sousa Oliveira A, Sebastião E, Aguilar BA, de Andrade D, Machado DRL, dos Santos AP. Bone Mineral Content Estimation in People Living with HIV: Prediction and Validation of Sex-Specific Anthropometric Models. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12336. [PMID: 36231634 PMCID: PMC9566219 DOI: 10.3390/ijerph191912336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
People living with HIV (PWH) experience an accelerated reduction in bone mineral content (BMC), and a high risk of osteopenia and osteoporosis. Anthropometry is an accurate and low-cost method that can be used to monitor changes in body composition in PWH. To date, no studies have used anthropometry to estimate BMC in PWH. To propose and validate sex-specific anthropometric models to predict BMC in PWH. This cross-sectional study enrolled 104 PWH (64 males) aged >18 years at a local university hospital. BMC was measured using dual energy X-ray absorptiometry (DXA). Anthropometric measures were collected. We used linear regression analysis to generate the models. Cross-validations were conducted using the "leave one out", from the predicted residual error sum of squares (PRESS) method. Bland-Altman plots were used to explore distributions of errors. We proposed models with high coefficient of determination and reduced standard error of estimate for males (r2 = 0.70; SEE = 199.97 g; Q2PRESS = 0.67; SEEPRESS = 208.65 g) and females (r2 = 0.65; SEE = 220.96 g; Q2PRESS = 0.62; SEEPRESS = 221.90 g). Our anthropometric predictive models for BMC are valid, practical, and a low-cost alternative to monitoring bone health in PWH.
Collapse
Affiliation(s)
- Igor Massari Correia
- School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo at Ribeirao Preto, Sao Paulo 14040-900, Brazil
| | | | | | - Euripedes Barsanulfo Gonçalves Gomide
- College of Nursing, University of Sao Paulo at Ribeirao Preto, Sao Paulo 14040-902, Brazil
- Anthropometry, Training and Sport Study and Research Group, School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo at Ribeirao Preto, Sao Paulo 14040-900, Brazil
| | - Lisa Fernanda Mazzonetto
- School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo at Ribeirao Preto, Sao Paulo 14040-900, Brazil
- Anthropometry, Training and Sport Study and Research Group, School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo at Ribeirao Preto, Sao Paulo 14040-900, Brazil
| | - Alcivandro de Sousa Oliveira
- School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo at Ribeirao Preto, Sao Paulo 14040-900, Brazil
- Anthropometry, Training and Sport Study and Research Group, School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo at Ribeirao Preto, Sao Paulo 14040-900, Brazil
| | - Emerson Sebastião
- Health and Exercise Research Group, Department of Kinesiology and Physical Education, Northern Illinois University, Dekalb, IL 60115, USA
| | - Bruno Augusto Aguilar
- Faculty of Medicine, University of Sao Paulo at Ribeirao Preto, Sao Paulo 14049-900, Brazil
| | - Denise de Andrade
- College of Nursing, University of Sao Paulo at Ribeirao Preto, Sao Paulo 14040-902, Brazil
- Department, Human Exposome and Infectious Diseases Network (HEID), Ribeirao Preto, Sao Paulo 14040-902, Brazil
| | - Dalmo Roberto Lopes Machado
- School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo at Ribeirao Preto, Sao Paulo 14040-900, Brazil
- College of Nursing, University of Sao Paulo at Ribeirao Preto, Sao Paulo 14040-902, Brazil
- Anthropometry, Training and Sport Study and Research Group, School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo at Ribeirao Preto, Sao Paulo 14040-900, Brazil
| | - André Pereira dos Santos
- School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo at Ribeirao Preto, Sao Paulo 14040-900, Brazil
- College of Nursing, University of Sao Paulo at Ribeirao Preto, Sao Paulo 14040-902, Brazil
- Anthropometry, Training and Sport Study and Research Group, School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo at Ribeirao Preto, Sao Paulo 14040-900, Brazil
- Department, Human Exposome and Infectious Diseases Network (HEID), Ribeirao Preto, Sao Paulo 14040-902, Brazil
| |
Collapse
|
5
|
Ndlovu SS, Ghazi T, Chuturgoon AA. The Potential of Moringa oleifera to Ameliorate HAART-Induced Pathophysiological Complications. Cells 2022; 11:2981. [PMID: 36230942 PMCID: PMC9563018 DOI: 10.3390/cells11192981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 12/06/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) comprises a combination of two or three antiretroviral (ARV) drugs that are administered together in a single tablet. These drugs target different steps within the human immunodeficiency virus (HIV) life cycle, providing either a synergistic or additive antiviral effect; this enhances the efficiency in which viral replication is suppressed. HIV cannot be completely eliminated, making HAART a lifetime treatment. With long-term HAART usage, an increasing number of patients experience a broadening array of complications, and this significantly affects their quality of life, despite cautious use. The mechanism through which ARV drugs induce toxicity is associated with metabolic complications such as mitochondrial dysfunction, oxidative stress, and inflammation. To address this, it is necessary to improve ARV drug formulation without compromising its efficacy; alternatively, safe supplementary medicine may be a suitable solution. The medicinal plant Moringa oleifera (MO) is considered one of the most important sources of novel nutritionally and pharmacologically active compounds that have been shown to prevent and treat various diseases. MO leaves are rich in polyphenols, vitamins, minerals, and tannins; studies have confirmed the therapeutic properties of MO. MO leaves provide powerful antioxidants, scavenge free radicals, promote carbohydrate metabolism, and repair DNA. MO also induces anti-inflammatory, hepatoprotective, anti-proliferative, and anti-mutagenic effects. Therefore, MO can be a source of affordable and safe supplement therapy for HAART-induced toxicity. This review highlights the potential of MO leaves to protect against HAART-induced toxicity in HIV patients.
Collapse
Affiliation(s)
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
6
|
Ding H, Jambunathan K, Jiang G, Margolis DM, Leng I, Ihnat M, Ma JX, Mirsalis J, Zhang Y. 3D Spheroids of Human Primary Urine-Derived Stem Cells in the Assessment of Drug-Induced Mitochondrial Toxicity. Pharmaceutics 2022; 14:1042. [PMID: 35631624 PMCID: PMC9145543 DOI: 10.3390/pharmaceutics14051042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondrial toxicity (Mito-Tox) risk has increased due to the administration of several classes of drugs, particularly some life-long antiretroviral drugs for HIV+ individuals. However, no suitable in vitro assays are available to test long-term Mito-Tox (≥4 weeks). The goal of this study is to develop a 3D spheroid system of human primary urine-derived stem cells (USC) for the prediction of drug-induced delayed Mito-Tox. The cytotoxicity and Mito-Tox were assessed in 3D USC spheroids 4 weeks after treatment with antiretroviral drugs: zalcitabine (ddC; 0.1, 1 and 10 µM), tenofovir (TFV; 3, 30 and 300 µM) or Raltegravir (RAL; 2, 20 and 200 µM). Rotenone (RTNN, 10 µM) and 0.1% DMSO served as positive and negative controls. Despite only mild cytotoxicity, ddC significantly inhibited the expression of oxidative phosphorylation enzyme Complexes I, III, and IV; and RAL transiently reduced the level of Complex IV. A significant increase in caspase 3 and ROS/RNS level but a decrease in total ATP were observed in USC treated with ddC, TFV, RAL, and RTNN. Levels of mtDNA content and mitochondrial mass were decreased in ddC but minimally or not in TFV- and RAL-treated spheroids. Thus, 3D USC spheroid using antiretroviral drugs as a model offers an alternative platform to assess drug-induced late Mito-Tox.
Collapse
Affiliation(s)
- Huifen Ding
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Kalyani Jambunathan
- SRI Biosciences, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA; (K.J.); (J.M.)
| | - Guochun Jiang
- University of North Carolina HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (G.J.); (D.M.M.)
| | - David M. Margolis
- University of North Carolina HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (G.J.); (D.M.M.)
| | - Iris Leng
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Michael Ihnat
- Department of Pharmaceutical Sciences, The University of Oklahoma College of Pharmacy, Oklahoma City, OK 73117, USA;
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA;
| | - Jon Mirsalis
- SRI Biosciences, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA; (K.J.); (J.M.)
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
| |
Collapse
|
7
|
Agarwal N, Ramirez Bustamante CE, Wu H, Armamento‐Villareal R, Lake JE, Balasubramanyam A, Hartig S. Heightened levels of plasma growth differentiation factor 15 in men living with HIV. Physiol Rep 2022; 10:e15293. [PMID: 35510313 PMCID: PMC9069165 DOI: 10.14814/phy2.15293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 01/13/2023] Open
Abstract
Plasma biomarkers that reflect energy balance disorders in people living with HIV (PLWH) remain limited. Growth differentiation factor 15 (GDF15) abundance in plasma of mice and humans induces negative energy balance but also becomes highly elevated in obesity and other metabolic diseases. We sought to compare plasma GDF15 levels in PLWH and HIV-negative persons and mouse models expressing the HIV accessory protein Vpr (that recapitulate HIV-associated metabolic disorders) and determine their relationship to metabolic parameters. We measured liver Gdf15 mRNA levels and plasma GDF15 levels in male Vpr mice and littermate controls. In parallel, we analyzed plasma GDF15 levels in 18 male PLWH on stable, long-term antiretroviral therapy and 13 HIV-negative men (6 healthy controls and 7 with metabolic syndrome). Plasma GDF15 levels were correlated with anthropometric and immune cell parameters in humans. Gene expression analysis of Vpr mouse liver demonstrated elevated Gdf15 mRNA. Plasma GDF15 levels were also higher in Vpr mouse models. Levels of plasma GDF15 in PLWH were greater than in both HIV-negative groups and correlated positively with the CD4/CD8 T cell ratio in PLWH. Plasma GDF15 levels correlated positively with age in the HIV-negative subjects but not in PLWH. Since GDF15 levels predict fatty liver disease and energy balance disorders, further studies are warranted to determine the effect of GDF15 in mediating the metabolic disturbances that occur in Vpr mice and PLWH.
Collapse
Affiliation(s)
- Neeti Agarwal
- Division of Diabetes, Endocrinology, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | | | - Huaizhu Wu
- Atherosclerosis and Lipoprotein ResearchBaylor College of MedicineHoustonTexasUSA
| | - Reina Armamento‐Villareal
- Division of Diabetes, Endocrinology, and MetabolismBaylor College of MedicineHoustonTexasUSA
- Center for Translational Research on Inflammatory DiseasesMichael E DeBakey VA Medical CenterHoustonTexasUSA
| | - Jordan E. Lake
- Division of Infectious DiseasesDepartment of Internal MedicineMcGovern Medical SchoolUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Sean M. Hartig
- Division of Diabetes, Endocrinology, and MetabolismBaylor College of MedicineHoustonTexasUSA
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
8
|
Chen YF, Stampley JE, Irving BA, Dugas TR. Chronic Nucleoside Reverse Transcriptase Inhibitors Disrupt Mitochondrial Homeostasis and Promote Premature Endothelial Senescence. Toxicol Sci 2020; 172:445-456. [PMID: 31545371 DOI: 10.1093/toxsci/kfz203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Combination antiretroviral therapy (cART) has improved the life expectancy of HIV patients, thus increasing the number of people living with HIV (PLWH). However, cardiovascular diseases (CVD) are now one of the most prevalent causes of death among PLWH. Nucleoside reverse transcriptase inhibitors (NRTIs) are the backbone of cART, and the emtricitabine (FTC) and tenofovir disoproxil fumarate (TDF) coformulation is commonly used. In prior studies, acute NRTI treatment-induced endothelial dysfunction, increased reactive oxygen species production, and mitophagic activity, suggesting that mitochondrial dysfunction may be critical to NRTI-induced endothelial dysfunction. Mitochondrial dysfunction plays a causal role in endothelial senescence, whereas premature endothelial senescence can promote the development of CVD. We hypothesize that for chronic NRTI treatment, a disruption in mitochondrial homeostasis leads to premature endothelial senescence and predisposes PLWH to CVD. We used human aortic endothelial cells (HAEC) and HIV-1 transgenic (Tg26) mice to test the interrelationship between mitochondrial and vascular dysfunction after chronic NRTI treatment in vitro and in vivo. Mitochondrial DNA copy number was decreased in late-passage HAEC treated with NRTIs, and senescence-associated β-galactosidase accumulation was elevated. In late-passage HAEC, NRTIs decreased the activity of Parkin-mediated mitophagy. In Tg26 mice treated with FTC, plasma nitrite levels were decreased. Endothelium-dependent vasodilation in NRTI-treated Tg26 mice was also reduced. Our work suggests that long-term use of NRTI may disrupt mitochondrial homeostasis, induce premature endothelial senescence, and impair vascular function.
Collapse
Affiliation(s)
- Yi-Fan Chen
- Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Baton Rouge, Louisiana 70808
| | - James E Stampley
- College of Human Sciences and Education, LSU School of Kinesiology, Baton Rouge, Louisiana 70803
| | - Brian A Irving
- College of Human Sciences and Education, LSU School of Kinesiology, Baton Rouge, Louisiana 70803.,Pennington Biomedical Research Center, Baton Rouge, Louisiana, 70808
| | - Tammy R Dugas
- Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Baton Rouge, Louisiana 70808
| |
Collapse
|
9
|
Chen YF, Hebert VY, Stadler K, Xue SY, Slaybaugh K, Luttrell-Williams E, Glover MC, Krzywanski DM, Dugas TR. Coenzyme Q10 Alleviates Chronic Nucleoside Reverse Transcriptase Inhibitor-Induced Premature Endothelial Senescence. Cardiovasc Toxicol 2020; 19:500-509. [PMID: 31020509 DOI: 10.1007/s12012-019-09520-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus (HIV)-infected patients undergoing antiretroviral therapy are afforded an increased lifespan but also exhibit an elevated incidence of cardiovascular disease. HIV therapy uses a combination drug approach, and nucleoside reverse transcriptase inhibitors (NRTI) are a backbone of this therapy. Endothelial dysfunction is an initiating event in cardiovascular disease etiology, and in our prior studies, NRTIs induced an endothelial dysfunction that was dependent upon mitochondrial oxidative stress. Moreover, short-term NRTI administration induced a mitophagy-associated endothelial toxicity and increased reactive oxygen species (ROS) production that was rescued by coenzyme Q10 (Q10) or overexpression of a mitochondrial antioxidant enzyme. Thus, our objective was to examine mitochondrial toxicity in endothelial cells after chronic NRTI treatment and evaluate Q10 as a potential adjunct therapy for preventing NRTI-induced mitochondrial toxicity. Human aortic endothelial cells (HAEC) were exposed to chronic NRTI treatment, with or without Q10. ROS production, cell proliferation rate, levels of senescence, and mitochondrial bioenergetic function were determined. Chronic NRTI increased ROS production but decreased population doubling. In addition, NRTI increased the accumulation of β-galactosidase, indicative of an accelerated rate of senescence. Moreover, ATP-linked respiration was diminished. Co-treatment with Q10 delayed the onset of NRTI-induced senescence, decreased ROS production and rescued the cells' mitochondrial respiration rate. Thus, our findings may suggest antioxidant enrichment approaches for reducing the cardiovascular side effects of NRTI therapy.
Collapse
Affiliation(s)
- Yi-Fan Chen
- Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA, 70808, USA
| | - Valeria Y Hebert
- Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Stephen Y Xue
- Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Kate Slaybaugh
- Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Elliot Luttrell-Williams
- Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Mitzi C Glover
- Clinical Laboratory Sciences, School of Allied Health Professions, LSU Health Sciences Center, 1900 Gravier Street, New Orleans, LA, 70112, USA
| | - David M Krzywanski
- Cellular Biology and Anatomy, LSU Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Tammy R Dugas
- Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
10
|
Chen YF, Dugas TR. Endothelial mitochondrial senescence accelerates cardiovascular disease in antiretroviral-receiving HIV patients. Toxicol Lett 2019; 317:13-23. [PMID: 31562912 DOI: 10.1016/j.toxlet.2019.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023]
Abstract
Combination antiretroviral therapy (cART) has been hugely successful in reducing the mortality associated with human immunodeficiency virus (HIV) infection, resulting in a growing population of people living with HIV (PLWH). Since PLWH now have a longer life expectancy, chronic comorbidities have become the focus of the clinical management of HIV. For example, cardiovascular complications are now one of the most prevalent causes of death in PLWH. Numerous epidemiological studies show that antiretroviral treatment increases cardiovascular disease (CVD) risk and early onset of CVD in PLWH. Nucleoside reverse transcriptase inhibitors (NRTIs) are the backbone of cART, and two NRTIs are typically used in combination with one drug from another drug class, e.g., a fusion inhibitor. NRTIs are known to induce mitochondrial dysfunction, contributing to toxicity in numerous tissues, such as myopathy, lipoatrophy, neuropathy, and nephropathy. In in vitro studies, short-term NRTI treatment induces an endothelial dysfunction with an increased reactive oxygen species (ROS) production; long-term NRTI treatment decreases cell replication capacity, while increasing mtROS production and senescent cell accumulation. These findings suggest that a mitochondrial oxidative stress is involved in the pathogenesis of NRTI-induced endothelial dysfunction and premature senescence. Mitochondrial dysfunction, defined by a compromised mitochondrial quality control via biogenesis and mitophagy, has a causal role in premature endothelial senescence and can potentially initiate early cardiovascular disease (CVD) development in PLWH. In this review, we explore the hypothesis and present literature supporting that long-term NRTI treatment induces vascular dysfunction by interfering with endothelial mitochondrial homeostasis and provoking mitochondrial genomic instability, resulting in premature endothelial senescence.
Collapse
Affiliation(s)
- Yi-Fan Chen
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA, 70808, United States
| | - Tammy R Dugas
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA, 70808, United States.
| |
Collapse
|
11
|
Impact of HIV/simian immunodeficiency virus infection and viral proteins on adipose tissue fibrosis and adipogenesis. AIDS 2019; 33:953-964. [PMID: 30946149 DOI: 10.1097/qad.0000000000002168] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE HIV-infected patients receiving antiretroviral treatment (ART) often present adipose tissue accumulation and/or redistribution. adipose tissue has been shown to be an HIV/SIV reservoir and viral proteins as Tat or Nef can be released by infected immune cells and exert a bystander effect on adipocytes or precursors. Our aim was to demonstrate that SIV/HIV infection per se could alter adipose tissue structure and/or function. DESIGN Morphological and functional alterations of subcutaneous (SCAT) and visceral adipose tissue (VAT) were studied in SIV-infected macaques and HIV-infected ART-controlled patients. To analyze the effect of Tat or Nef, we used human adipose stem cells (ASCs) issued from healthy donors, and analyzed adipogenesis and extracellular matrix component production using two dimensional (2D) and three-dimensional (3D) culture models. METHODS Adipocyte size and index of fibrosis were determined on Sirius red-stained adipose tissue samples. Proliferating and adipocyte 2D-differentiating or 3D-differentiating ASCs were treated chronically with Tat or Nef. mRNA, protein expression and secretion were examined by RT-PCR, western-blot and ELISA. RESULTS SCAT and VAT from SIV-infected macaques displayed small adipocytes, decreased adipogenesis and severe fibrosis with collagen deposition. SCAT and VAT from HIV-infected ART-controlled patients presented similar alterations. In vitro, Tat and/or Nef induced a profibrotic phenotype in undifferentiated ASCs and altered adipogenesis and collagen production in adipocyte-differentiating ASCs. CONCLUSION We demonstrate here a specific role for HIV/SIV infection per se on adipose tissue fibrosis and adipogenesis, probably through the release of viral proteins, which could be involved in adipose tissue dysfunction contributing to cardiometabolic alterations of HIV-infected individuals.
Collapse
|
12
|
Saberi S, Kalloger SE, Zhu MMT, Sattha B, Maan EJ, van Schalkwyk J, Money DM, Côté HCF. Dynamics of leukocyte telomere length in pregnant women living with HIV, and HIV-negative pregnant women: A longitudinal observational study. PLoS One 2019; 14:e0212273. [PMID: 30840638 PMCID: PMC6402636 DOI: 10.1371/journal.pone.0212273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/30/2019] [Indexed: 12/25/2022] Open
Abstract
Background HIV-mediated inflammation and immune activation can accelerate telomere attrition. In addition, antiretrovirals can inhibit telomerase, possibly shortening telomeres. We examined the longitudinal dynamics of leukocyte telomere length (LTL) during pregnancy in a unique cohort of women living with HIV (WLWH) treated with combination antiretroviral therapy (cART), and HIV-negative control women. Methods Blood was collected at three visits during pregnancy, at 13–23, >23–30, and >30–40 weeks of gestation, and for WLWH only, at 6 weeks post-partum. LTL was measured by qPCR and both cross-sectional and longitudinal (MANOVA) models were used to examine possible predictors of LTL among participants who attended all three visits during pregnancy. Results Among WLWH (n = 64) and HIV-negative women (n = 41), within participant LTL were correlated throughout pregnancy (p<0.001). LTL was shorter among WLWH at first visit, but this difference waned by the second visit. WLWH who discontinued cART post-partum experienced a decrease in LTL. Longitudinally, LTL was similar in both groups and increased as gestation progressed, a change that was more pronounced among women under 35 years. Among WLWH, both smoking throughout pregnancy (p = 0.04) and receiving a ritonavir-boosted protease inhibitor-based regimen (p = 0.03) were independently associated with shorter LTL. Conclusions LTL increases as pregnancy progresses; the reasons for this are unknown but may relate to changes in blood volume, hormones, and/or cell subset distribution. While our observations need confirmation in an independent cohort, our data suggest that although some cART regimens may influence LTL, being on cART appears overall protective and that stopping cART post-partum may negatively impact LTL. The effect of smoking on LTL is clearly negative, stressing the importance of smoking cessation.
Collapse
Affiliation(s)
- Sara Saberi
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Obstetrics & Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steve E. Kalloger
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mayanne M. T. Zhu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Beheroze Sattha
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evelyn J. Maan
- British Columbia Women’s Hospital and Health Centre, Vancouver, British Columbia, Canada
| | - Julianne van Schalkwyk
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Obstetrics & Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Women’s Hospital and Health Centre, Vancouver, British Columbia, Canada
- Women’s Health Research Institute, Vancouver, British Columbia, Canada
| | - Deborah M. Money
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Obstetrics & Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Women’s Hospital and Health Centre, Vancouver, British Columbia, Canada
- Women’s Health Research Institute, Vancouver, British Columbia, Canada
| | - Hélène C. F. Côté
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Women’s Health Research Institute, Vancouver, British Columbia, Canada
- Centre for Blood Research, Vancouver, British Columbia, Canada
- * E-mail:
| | | |
Collapse
|
13
|
Adipose Tissue is Enriched for Activated and Late-Differentiated CD8+ T Cells and Shows Distinct CD8+ Receptor Usage, Compared With Blood in HIV-Infected Persons. J Acquir Immune Defic Syndr 2018; 77:e14-e21. [PMID: 29040163 DOI: 10.1097/qai.0000000000001573] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Adverse viral and medication effects on adipose tissue contribute to the development of metabolic disease in HIV-infected persons, but T cells also have a central role modulating local inflammation and adipocyte function. We sought to characterize potentially proinflammatory T-cell populations in adipose tissue among persons on long-term antiretroviral therapy and assess whether adipose tissue CD8 T cells represent an expanded, oligoclonal population. METHODS We recruited 10 HIV-infected, non-diabetic, overweight or obese adults on efavirenz, tenofovir, and emtricitabine for >4 years with consistent viral suppression. We collected fasting blood and subcutaneous abdominal adipose tissue to measure the percentage of CD4 and CD8 T cells expressing activation, exhaustion, late differentiation/senescence, and memory surface markers. We performed T-cell receptor (TCR) sequencing on sorted CD8 cells. We compared the proportion of each T-cell subset and the TCR repertoire diversity, in blood versus adipose tissue. RESULTS Adipose tissue had a higher percentage of CD3CD8 T cells compared with blood (61.0% vs. 51.7%, P < 0.01) and was enriched for both activated CD8HLA-DR T cells (5.5% vs. 0.9%, P < 0.01) and late-differentiated CD8CD57 T cells (37.4% vs. 22.7%, P < 0.01). Adipose tissue CD8 T cells displayed distinct TCRβ V and J gene usage, and the Shannon Entropy index, a measure of overall TCRβ repertoire diversity, was lower compared with blood (4.39 vs. 4.46; P = 0.05). CONCLUSIONS Adipose tissue is enriched for activated and late-differentiated CD8 T cells with distinct TCR usage. These cells may contribute to tissue inflammation and impaired adipocyte fitness in HIV-infected persons.
Collapse
|
14
|
Cohen J, D'Agostino L, Tuzer F, Torres C. HIV antiretroviral therapy drugs induce premature senescence and altered physiology in HUVECs. Mech Ageing Dev 2018; 175:74-82. [PMID: 30055190 PMCID: PMC6133242 DOI: 10.1016/j.mad.2018.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/10/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022]
Abstract
Developments in medicine have led to a significant increase in the average human lifespan. This increase in aging is most readily apparent in the case of HIV where antiretroviral therapy has shifted infection from a terminal to a chronic but manageable disease. Despite this advance, patients suffer from co-morbidities best described as an accelerated aging phenotype. A potential contributor is cellular senescence, an aging-associated growth arrest, which has already been linked to other HIV co-morbidities such as lipodystrophies and osteoporosis in response to antiretroviral drugs. We have previously demonstrated that astrocytes senescence in response to antiretroviral drugs. As endothelial cells play a critical role regulating the blood brain barrier (BBB) and senescence could severely impact barrier permeability, we investigate the role of a commonly used combination of HIV reverse transcriptase inhibitors on the senescence program of human umbilical vein endothelial cells (HUVECs). Our studies indicate that HUVECs underwent premature senescence associated with inflammation, oxidative stress and altered eNOS activation. Treated cells had detrimental paracrine effects on astrocytes including paracrine senescence, suggesting that senescent HUVECs could influence astrocytes, which line the other side of the BBB. These results may have implications for HIV-associated neurocognitive disorders (HAND), a set of neurological deficits.
Collapse
Affiliation(s)
- Justin Cohen
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Luca D'Agostino
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Ferit Tuzer
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Claudio Torres
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Obiebi IP, Nwannadi EA. Tenofovir-induced renal tubular dysfunction among human immunodeficiency virus patients on antiretroviral therapy in Nigeria: Prospects for early detection of presymptomatic nephrotoxicity. Kidney Res Clin Pract 2018; 37:230-238. [PMID: 30254847 PMCID: PMC6147191 DOI: 10.23876/j.krcp.2018.37.3.230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 01/07/2023] Open
Abstract
Background Tenofovir disoproxil fumarate (TDF) is relatively safe, although renal toxicity has been reported. In Nigeria, there is insufficient data on renal toxicity among patients on TDF. This study assesses TDF-associated tubular dysfunction among human immunodeficiency virus (HIV) patients at a hospital in Nigeria. Methods In this cohort study, 104 adult HIV patients were recruited with a simple random technique from the outpatient clinic. Biochemical indices of renal function were estimated from serum and urine at the 16th and 24th week after an initial assessment at baseline. Results There were no significant differences in baseline proteinuria or glycosuria between TDF and non-TDF groups. Mean baseline urine and serum parameters did not differ significantly between the two groups (P > 0.05). In the TDF group, all urine parameters differed significantly between baseline and 24th week values (P < 0.001). After 16 weeks, mean urine phosphate and urine uric acid increased significantly (P < 0.05) by 2.97 mg/dL and 50.9 mg/dL, respectively, in the TDF group. The rise in mean urine glucose from baseline to the 24th week was more marked in the TDF than the non-TDF group (0.25 vs. 0.07 mmol/L). Higher mean differences in urine albumin were also recorded in the TDF group from baseline to the 24th week. Conclusion Indicators of tubular dysfunction were markedly higher among patients on the TDF-based treatment regimen. Biomarkers of tubular dysfunction could be useful for detecting pre-symptomatic nephrotoxicity before marked reduction of glomerular filtration rate in HIV patients on TDF.
Collapse
Affiliation(s)
- Irikefe Paul Obiebi
- Department of Community Medicine, Delta State University Teaching Hospital, Oghara, Nigeria
| | | |
Collapse
|
16
|
Reciprocal Effects of Antiretroviral Drugs Used To Treat HIV Infection on the Fibroblast Growth Factor 21/β-Klotho System. Antimicrob Agents Chemother 2018; 62:AAC.00029-18. [PMID: 29661866 PMCID: PMC5971578 DOI: 10.1128/aac.00029-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/05/2018] [Indexed: 01/01/2023] Open
Abstract
Following antiretroviral therapy, HIV-infected patients show increased circulating levels of the antidiabetic hormone fibroblast growth factor 21 (FGF21). In contrast, the expression of the FGF21-obligatory coreceptor β-Klotho (KLB) is reduced in target tissues. This situation is comparable to the FGF21 resistance status observed in obesity and type 2 diabetes. Here, we performed the first systematic study of the effects of distinct members of different antiretroviral drug classes on the FGF21/KLB system in human hepatic, adipose, and skeletal muscle cells. Most protease inhibitors and the nonnucleoside reverse transcriptase inhibitor efavirenz induced FGF21 gene expression. Neither nucleoside reverse transcriptase inhibitors nor the viral entry inhibitor maraviroc had any effect. Among the integrase inhibitors, elvitegravir significantly induced FGF21 expression, whereas raltegravir had minor effects only in adipose cells. In human hepatocytes and adipocytes, known target cells of FGF21 action, efavirenz, elvitegravir, and the lopinavir-ritonavir combination exerted inhibitory effects on KLB gene expression. Drug treatments that elicited FGF21 induction/KLB repression were those found to induce endoplasmic reticulum (ER) stress and oxidative stress. Notably, the pharmacological agents thapsigargin and tunicamycin, which induce these stress pathways, mimicked the effects of drug treatments. Moreover, pharmacological inhibitors of either ER or oxidative stress significantly impaired lopinavir–ritonavir-induced regulation of FGF21, but not KLB. In conclusion, the present in vitro screen study identifies the antiretroviral drugs that affect FGF21/KLB expression in human cells. The present results could have important implications for the management of comorbidities resulting from side effects of specific antiretroviral drugs for the treatment of HIV-infected patients.
Collapse
|
17
|
Cohen J, D'Agostino L, Wilson J, Tuzer F, Torres C. Astrocyte Senescence and Metabolic Changes in Response to HIV Antiretroviral Therapy Drugs. Front Aging Neurosci 2017; 9:281. [PMID: 28900395 PMCID: PMC5581874 DOI: 10.3389/fnagi.2017.00281] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/11/2017] [Indexed: 12/03/2022] Open
Abstract
With the advent of highly active antiretroviral therapy (HAART) survival rates among patients infected by HIV have increased. However, even though survival has increased HIV-associated neurocognitive disorders (HAND) still persist, suggesting that HAART-drugs may play a role in the neurocognitive impairment observed in HIV-infected patients. Given previous data demonstrating that astrocyte senescence plays a role in neurocognitive disorders such as Alzheimer’s disease (AD), we examined the role of HAART on markers of senescence in primary cultures of human astrocytes (HAs). Our results indicate HAART treatment induces cell cycle arrest, senescence-associated beta-galactosidase, and the cell cycle inhibitor p21. Highly active antiretroviral therapy treatment is also associated with the induction of reactive oxygen species and upregulation of mitochondrial oxygen consumption. These changes in mitochondria correlate with increased glycolysis in HAART drug treated astrocytes. Taken together these results indicate that HAART drugs induce the senescence program in HAs, which is associated with oxidative and metabolic changes that could play a role in the development of HAND.
Collapse
Affiliation(s)
- Justin Cohen
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, PhiladelphiaPA, United States
| | - Luca D'Agostino
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, PhiladelphiaPA, United States
| | - Joel Wilson
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, PhiladelphiaPA, United States
| | - Ferit Tuzer
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, PhiladelphiaPA, United States
| | - Claudio Torres
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, PhiladelphiaPA, United States
| |
Collapse
|
18
|
Hodes RJ, Sierra F, Austad SN, Epel E, Neigh GN, Erlandson KM, Schafer MJ, LeBrasseur NK, Wiley C, Campisi J, Sehl ME, Scalia R, Eguchi S, Kasinath BS, Halter JB, Cohen HJ, Demark-Wahnefried W, Ahles TA, Barzilai N, Hurria A, Hunt PW. Disease drivers of aging. Ann N Y Acad Sci 2017; 1386:45-68. [PMID: 27943360 DOI: 10.1111/nyas.13299] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/14/2022]
Abstract
It has long been known that aging, at both the cellular and organismal levels, contributes to the development and progression of the pathology of many chronic diseases. However, much less research has examined the inverse relationship-the contribution of chronic diseases and their treatments to the progression of aging-related phenotypes. Here, we discuss the impact of three chronic diseases (cancer, HIV/AIDS, and diabetes) and their treatments on aging, putative mechanisms by which these effects are mediated, and the open questions and future research directions required to understand the relationships between these diseases and aging.
Collapse
Affiliation(s)
| | | | - Steven N Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elissa Epel
- Department of Psychiatry, University of California, San Francisco, San Francisco, California
| | | | | | - Marissa J Schafer
- Robert and Arlene Kogod Center on Aging and Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging and Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | - Judith Campisi
- Buck Institute for Research on Aging, Novato, California
| | - Mary E Sehl
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Rosario Scalia
- Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Balakuntalam S Kasinath
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, South Texas Veterans Health Care System, San Antonio, Texas
| | - Jeffrey B Halter
- Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | - Tim A Ahles
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, New York, New York
| | - Arti Hurria
- City of Hope National Medical Center, Duarte, California
| | - Peter W Hunt
- University of California, San Francisco, School of Medicine, San Francisco, California
| |
Collapse
|
19
|
Cohen J, Torres C. HIV-associated cellular senescence: A contributor to accelerated aging. Ageing Res Rev 2017; 36:117-124. [PMID: 28017881 DOI: 10.1016/j.arr.2016.12.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/28/2016] [Accepted: 12/12/2016] [Indexed: 01/15/2023]
Abstract
Due to the advent of antiretroviral therapy HIV is no longer a terminal disease and the HIV infected patients are becoming increasingly older. While this is a major success, with increasing age comes an increased risk for disease. The age-related comorbidities that HIV infected patients experience suggest that they suffer from accelerated aging. One possible contributor to this accelerated aging is cellular senescence, an age-associated response that can occur prematurely in response to stress, and that is emerging as a contributor to disease and aging. HIV patients experience several stressors such as the virus itself, antiretroviral drugs and to a lesser extent, substance abuse that can induce cellular senescence. This review summarizes the current knowledge of senescence induction in response to these stressors and their relation to the comorbidities in HIV patients. Cellular senescence may be a possible therapeutic target for these comorbidities.
Collapse
|
20
|
Major health impact of accelerated aging in young HIV-infected individuals on antiretroviral therapy. AIDS 2017; 31:1393-1403. [PMID: 28358731 DOI: 10.1097/qad.0000000000001475] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Aging among HIV-infected individuals on antiretroviral therapy (ART) is a significant clinical challenge; however, studies assessing multidimensional aspects of aging are lacking. We characterized 10 geriatric conditions encompassing multiple functional domains, its health impact and associated risk factors in HIV-infected and age-matched uninfected controls. METHODS HIV-infected individuals were recruited from the outpatient clinic in University Malaya Medical Centre, Malaysia and controls from the community. All participants were aged at least 25 years of age with no acute illness, and HIV-infected individuals were on stable ART. Geriatric conditions were assessed and the burden scored as a composite of geriatric conditions present in an individual (total score = 10). Multivariate regression analysis was performed to determine the risk factors and health impact associated with the burden of geriatric conditions. RESULTS We analyzed data from 336 HIV-infected individuals (total HIV+), of whom 172 were matched for age, sex, and ethnicity with 172 HIV-uninfected controls (matched subset). In the total HIV-positive cohort, median (interquartile range) age was 44 (38-51) years and CD4 T-cell count was 562 (398-737) cells/μl. The burden of geriatric conditions was significantly higher in the HIV-infected group compared with controls (P < 0.001). With an increasing geriatric condition burden, quality-of-life scores were 2.2-times poorer, healthcare use five times greater, and mortality risk scores four times higher in the HIV-infected group compared with matched controls. Both sociobehavioural and HIV-related clinical factors were independently associated with an increasing burden of geriatric condition in HIV. CONCLUSIONS A high burden of geriatric conditions with significant impact on health outcomes, including mortality risk scores are observed among HIV-infected individuals on ART in a resource-limited setting.
Collapse
|
21
|
Abstract
: The increased prevalence of age-related comorbidities and mortality is worrisome in ageing HIV-infected patients. Here, we aim to analyse the different ageing mechanisms with regard to HIV infection. Ageing results from the time-dependent accumulation of random cellular damage. Epigenetic modifications and mitochondrial DNA haplogroups modulate ageing. In antiretroviral treatment-controlled patients, epigenetic clock appears to be advanced, and some haplogroups are associated with HIV infection severity. Telomere shortening is enhanced in HIV-infected patients because of HIV and some nucleoside analogue reverse transcriptase inhibitors. Mitochondria-related oxidative stress and mitochondrial DNA mutations are increased during ageing and also by some nucleoside analogue reverse transcriptase inhibitors. Overall, increased inflammation or 'inflammageing' is a major driver of ageing and could result from cell senescence with secreted proinflammatory mediators, altered gut microbiota, and coinfections. In HIV-infected patients, the level of inflammation and innate immunity activation is enhanced and related to most comorbidities and to mortality. This status could result, in addition to age, from the virus itself or viral protein released from reservoirs, from HIV-enhanced gut permeability and dysbiosis, from antiretroviral treatment, from frequent cytomegalovirus and hepatitis C virus coinfections, and also from personal and environmental factors, as central fat accumulation or smoking. Adaptive immune activation and immunosenescence are associated with comorbidities and mortality in the general population but are less predictive in HIV-infected patients. Biomarkers to evaluate ageing in HIV-infected patients are required. Numerous systemic or cellular inflammatory, immune activation, oxidative stress, or senescence markers can be tested in serum or peripheral blood mononuclear cells. The novel European Study to Establish Biomarkers of Human Ageing MARK-AGE algorithm, evaluating the biological age, is currently assessed in HIV-infected patients and reveals an advanced biological age. Some enhanced inflammatory or innate immune activation markers are interesting but still not validated for the patient's follow-up. To be able to assess patients' biological age is an important objective to improve their healthspan.
Collapse
|
22
|
Madeddu G, Ortu S, Garrucciu G, Maida I, Melis M, Muredda AA, Mura MS, Babudieri S. DNMT1 modulation in chronic hepatitis B patients and hypothetic influence on mitochondrial DNA methylation status during long-term nucleo(t)side analogs therapy. J Med Virol 2017; 89:1208-1214. [PMID: 27922198 DOI: 10.1002/jmv.24742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 11/11/2016] [Indexed: 01/03/2023]
Abstract
Inhibition of viral replication is the most important goal in patients with Hepatitis B virus chronic infection (CHB). Currently, five oral nucleo(t)side analogs (NAs), including Lamivudine, Adefovir, Telbivudine, Entecavir, and Tenofovir, have been approved for treatment. The widespread use of NAs has also been linked with a progressive growth of unlikely anomaly attributable to mitochondrial dysfunctions, not previously recognized. Here, we explore the hypothesis that NAs may cause persistent epigenetic changes during prolonged NAs therapy in CHB patients. We obtained peripheral blood mononuclear cells (PBMC) from whole blood samples of consecutive patients with chronic HBV infection, 18 receiving NAs and 20 untreated patients. All patients were Caucasian and Italians. Epigenetic analysis was performed by Bisulphite sequencing PCR to search the existence of methylated cytosine residues in the Light (L)-strands of mitochondrial DNA control region (D-loop). Gene expression analysis of DNA methyltransferases 1 was performed by a quantitative relative Real-Time Polymerase Chain Reaction (PCR). DNMT1 expression was significantly (P < 000001) higher in NA treated patients (4.09, IQR 3.52-5.15) when compared with HBV naives (0.61, IQR 0.34-0.82). Besides, DNMT1 expression was significantly correlated with NA therapy duration (Spearman Rho = 0.67; P < 0.05). Furthermore, NA therapy duration was the only significant predictor of DNMT1 expression at multivariate analysis (Beta = 0.95, P < 0.0000001). Bisulphite PCR sequencing showed that methylation of cytosine residues occurred in a higher percentage in patients treated with NAs in comparison with untreated patients and healthy controls. Our data showed a DNMT1 overexpression significantly correlated to NA therapy duration and an higher regional mtDNA hypermethylation. This might suggest an epigenetic alteration that could be involved in one of the possible mechanisms of mitochondrial gene regulation during NAs therapy.
Collapse
Affiliation(s)
- Giordano Madeddu
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Silvia Ortu
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Giovanni Garrucciu
- Unit of Internal Medicine, Department of Clinical and Experimental Medicine, University Hospital, Sassari, Italy
| | - Ivana Maida
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Michela Melis
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Alberto Augusto Muredda
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Maria Stella Mura
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Sergio Babudieri
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
23
|
Willig AL, Overton ET. Metabolic Complications and Glucose Metabolism in HIV Infection: A Review of the Evidence. Curr HIV/AIDS Rep 2016; 13:289-96. [PMID: 27541600 PMCID: PMC5425100 DOI: 10.1007/s11904-016-0330-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
HIV infection and antiretroviral therapy (ART) use are associated with perturbations in glucose and lipid metabolism. Increasing incidence of diabetes, cardiovascular disease, and obesity highlights the need for early identification and treatment of metabolic dysfunction. Newer ART regimens are less toxic for cellular function and metabolism but have failed to completely eliminate metabolic dysfunction with HIV infection. Additional factors, including viral-host interactions, diet, physical activity, non-ART medications, and aging may further contribute to metabolic disease risk in the HIV setting. We summarize the recent literature regarding the impact on metabolic function of HIV infection, ART, and pharmaceutical or lifestyle prescriptions.
Collapse
Affiliation(s)
- Amanda L Willig
- Division of Infectious Diseases. UAB Center for AIDS Research, University of Alabama School of Medicine, 845 19th Street South, BBRB 207, Birmingham, AL, 35294, USA
| | - Edgar Turner Overton
- Division of Infectious Diseases, University of Alabama School of Medicine, 908 20th St, South, CCB Rm 330A, Birmingham, AL, 35294, USA.
| |
Collapse
|
24
|
Nacarelli T, Azar A, Sell C. Mitochondrial stress induces cellular senescence in an mTORC1-dependent manner. Free Radic Biol Med 2016; 95:133-54. [PMID: 27016071 DOI: 10.1016/j.freeradbiomed.2016.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 03/07/2016] [Accepted: 03/12/2016] [Indexed: 11/25/2022]
Abstract
Although mitochondrial stress is a key determinant of cellular homeostasis, the intracellular mechanisms by which this stress is communicated to the nucleus and its impact on cell fate decisions are not well defined. In this study, we report that activation of mTORC1 signaling triggered by mitochondrial-generated reactive oxygen species (ROS) results in activation of the senescence program. We show that exposure of human fibroblasts to nucleoside analogs commonly used in antiretroviral therapies, and known to induce mitochondrial dysfunction, increases mitochondrial ROS and leads to a rise in intracellular ROS concomitant with activation of mTORC1. In this setting, it appears that mTORC1 activates senescence through HDM2 phosphorylation, facilitating a p53-mediated response. Inhibition of mTORC1 by rapamycin decreases HDM2 phosphorylation and blocks activation of the senescence program in human cells. In addition, decreasing mitochondrial ROS directly blocks mTORC1 signaling and prevents the onset of senescence. Consistent with these results, both total and mitochondrial-specific ROS increased in cells undergoing replicative senescence along with ribosomal p70 phosphorylation. The results reveal a novel link between mitochondrial dysfunction, mTORC1 signaling, and the senescence program.
Collapse
Affiliation(s)
- Timothy Nacarelli
- Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102, United States
| | - Ashley Azar
- Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102, United States
| | - Christian Sell
- Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102, United States.
| |
Collapse
|
25
|
Estrada V, Monge S, Gómez-Garre MD, Sobrino P, Masiá M, Berenguer J, Portilla J, Viladés C, Martínez E, Blanco JR. Relationship between plasma bilirubin level and oxidative stress markers in HIV-infected patients on atazanavir- vs. efavirenz-based antiretroviral therapy. HIV Med 2016; 17:653-61. [PMID: 26935006 DOI: 10.1111/hiv.12368] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Chronic oxidative stress (OS) may play a role in cardiovascular disease in HIV-infected patients, and increased bilirubin levels may have a beneficial role in counteracting OS. Atazanavir (ATV) inhibits UDP-glucuronosyl-transferase 1A1 (UGT1A1), thus increasing unconjugated bilirubin levels. We aimed to compare changes in OS markers in patients on ATV/ritonavir (ATV/r)- vs. efavirenz (EFV)-based first-line antiretroviral therapy (ART). METHODS A multicentre, prospective cohort study of HIV-infected patients who started first-line ART with either ATV/r or EFV was conducted. Lipoprotein-associated phospholipase A2 (Lp-PLA2), myeloperoxidase (MPO) and oxidized low-density lipoprotein (oxLDL) were measured for 145 patients in samples obtained at baseline and after at least 9 months of ART during which the initial regimen was maintained and the patient was virologically suppressed. The change in OS markers was modelled using multiple linear regressions adjusting for baseline values and confounders. RESULTS After adjustment for baseline variables, patients on ATV/r had a significantly greater decrease in Lp-PLA2 [estimated difference -16.3; 95% confidence interval (CI) -31.4, -1.25; P = 0.03] and a significantly smaller increase in OxLDL (estimated difference -21.8; 95% CI -38.0, -5.6; P < 0.01) relative to those on EFV, whereas changes in MPO were not significantly different (estimated difference 1.2; 95% CI -14.3, 16.7; P = 0.88). Adjusted changes in bilirubin were significantly greater for the ATV/r group than for the EFV group (estimated difference 1.33 mg/dL; 95% CI 1.03, 1.52 mg/dL; P < 0.01). Changes in bilirubin and changes in OS markers were significantly correlated. CONCLUSIONS When compared with EFV, ATV/r-based therapy was associated with lower levels of oxidative stress biomarkers, which was in part attributable to increased bilirubin levels.
Collapse
Affiliation(s)
- V Estrada
- Hospital Clínico San Carlos-IdiSSC, Universidad Complutense, Madrid, Spain
| | - S Monge
- Universidad de Alcalá de Henares, CIBERESP, Spain
| | - M D Gómez-Garre
- Hospital Clínico San Carlos-IdiSSC, Universidad Complutense, Madrid, Spain
| | - P Sobrino
- Universidad de Alcalá de Henares, CIBERESP, Spain
| | - M Masiá
- Hospital General de Elche, Elche, Spain
| | - J Berenguer
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - J Portilla
- Hospital General Universitario de Alicante, Alicante, Spain
| | - C Viladés
- Hospital Universitari de Tarragona Joan XXIII, Universitat Rovira i Virgili, Tarragona, Spain
| | | | - J R Blanco
- Hospital San Pedro-CIBIR, Logroño, Spain
| | | |
Collapse
|
26
|
Transcriptional profiling suggests that Nevirapine and Ritonavir cause drug induced liver injury through distinct mechanisms in primary human hepatocytes. Chem Biol Interact 2015; 255:31-44. [PMID: 26626330 DOI: 10.1016/j.cbi.2015.11.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/28/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022]
Abstract
Drug induced liver injury (DILI), a major cause of pre- and post-approval failure, is challenging to predict pre-clinically due to varied underlying direct and indirect mechanisms. Nevirapine, a non-nucleoside reverse transcriptase inhibitor (NNRTI) and Ritonavir, a protease inhibitor, are antiviral drugs that cause clinical DILI with different phenotypes via different mechanisms. Assessing DILI in vitro in hepatocyte cultures typically requires drug exposures significantly higher than clinical plasma Cmax concentrations, making clinical interpretations of mechanistic pathway changes challenging. We previously described a system that uses liver-derived hemodynamic blood flow and transport parameters to restore primary human hepatocyte biology, and drug responses at concentrations relevant to in vivo or clinical exposure levels. Using this system, primary hepatocytes from 5 human donors were exposed to concentrations approximating clinical therapeutic and supra-therapeutic levels of Nevirapine (11.3 and 175.0 μM) and Ritonavir (3.5 and 62.4 μM) for 48 h. Whole genome transcriptomics was performed by RNAseq along with functional assays for metabolic activity and function. We observed effects at both doses, but a greater number of genes were differentially expressed with higher probability at the toxic concentrations. At the toxic doses, both drugs showed direct cholestatic potential with Nevirapine increasing bile synthesis and Ritonavir inhibiting bile acid transport. Clear differences in antigen presentation were noted, with marked activation of MHC Class I by Nevirapine and suppression by Ritonavir. This suggests CD8+ T cell involvement for Nevirapine and possibly NK Killer cells for Ritonavir. Both compounds induced several drug metabolizing genes (including CYP2B6, CYP3A4 and UGT1A1), mediated by CAR activation in Nevirapine and PXR in Ritonavir. Unlike Ritonavir, Nevirapine did not increase fatty acid synthesis or activate the respiratory electron chain with simultaneous mitochondrial uncoupling supporting clinical reports of a lower propensity for steatosis. This in vitro study offers insights into the disparate direct and immune-mediated toxicity mechanisms underlying Nevirapine and Ritonavir toxicity in the clinic.
Collapse
|
27
|
Diaz-Zamudio M, Dey D, LaBounty T, Nelson M, Fan Z, Szczepaniak LS, Hsieh BPC, Rajani R, Berman D, Li D, Dharmakumar R, Hardy WD, Conte AH. Increased pericardial fat accumulation is associated with increased intramyocardial lipid content and duration of highly active antiretroviral therapy exposure in patients infected with human immunodeficiency virus: a 3T cardiovascular magnetic resonance feasibility study. J Cardiovasc Magn Reson 2015; 17:91. [PMID: 26520571 PMCID: PMC4628336 DOI: 10.1186/s12968-015-0193-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/09/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The aim of the current study was to examine whether the use of highly active antiretroviral therapy (HAART) in patients with HIV is associated with changes in pericardial fat and myocardial lipid content measured by cardiovascular magnetic resonance (CMR). METHODS In this prospective case-control study, we compared 27 HIV seropositive (+) male subjects receiving HAART to 22 control male subjects without HIV matched for age, ethnicity and body mass index. All participants underwent CMR imaging for determination of pericardial fat [as volume at the level of the origin of the left main coronary artery (LM) and at the right ventricular free wall] and magnetic resonance spectroscopy (MRS) for evaluation of intramyocardial lipid content (% of fat to water in a single voxel at the interventricular septum). All measurements were made by two experienced readers blinded to the clinical history of the study participants. Two-sample t-test, Spearman's correlation coefficient or Pearson's correlation coefficient and multivariable logistic regression were used for statistical analysis. RESULTS Pericardial fat volume at the level of LM origin was higher in HIV (+) subjects (33.4 cm(3) vs. 27.4 cm(3), p = 0.03). On multivariable analysis adjusted for age, Framingham risk score (FRS) and waist/hip ratio, pericardial fat remained significantly associated to HIV-status (OR 1.09, p = 0.047). For both HIV (+) and HIV (-) subjects, pericardial fat volume showed strong correlation with intramyocardial lipid content (r = 0.58, p < 0.0001) and FRS (r = 0.53, p = 0.0002). Among HIV (+) subjects, pericardial fat was significantly higher in patients with lipo-accumulation (37 cm(3) vs. 27.1 cm(3), p = 0.03) and showed significant correlation with duration of both HIV infection (r = 0.5, p = 0.01) and HAART (r = 0.46, p = 0.02). CONCLUSIONS Pericardial fat content is increased in HIV (+) subjects on chronic HAART (>5 years), who demonstrate HAART-related lipo-accumulation and prolonged HIV duration of infection. Further investigation is warranted to determine whether increased pericardial fat is associated with higher cardiovascular risk leading to premature cardiovascular events in this patient population.
Collapse
Affiliation(s)
- Mariana Diaz-Zamudio
- Division of Nuclear Medicine, Department of Imaging & Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Troy LaBounty
- Department of Medicine, Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA.
| | - Michael Nelson
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Lidia S Szczepaniak
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Bill Pei-Chin Hsieh
- Division of Nuclear Medicine, Department of Imaging & Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Ronak Rajani
- Division of Nuclear Medicine, Department of Imaging & Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Daniel Berman
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Rohan Dharmakumar
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - W David Hardy
- David-Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Antonio Hernandez Conte
- Department of Anesthesiology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite 8211, Los Angeles, CA, 90048, USA.
| |
Collapse
|
28
|
Zidovudine induces downregulation of mitochondrial deoxynucleoside kinases: implications for mitochondrial toxicity of antiviral nucleoside analogs. Antimicrob Agents Chemother 2014; 58:6758-66. [PMID: 25182642 DOI: 10.1128/aac.03613-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) catalyze the initial phosphorylation of deoxynucleosides in the synthesis of the DNA precursors required for mitochondrial DNA (mtDNA) replication and are essential for mitochondrial function. Antiviral nucleosides are known to cause toxic mitochondrial side effects. Here, we examined the effects of 3'-azido-2',3'-dideoxythymidine (AZT) (zidovudine) on mitochondrial TK2 and dGK levels and found that AZT treatment led to downregulation of mitochondrial TK2 and dGK in U2OS cells, whereas cytosolic deoxycytidine kinase (dCK) and thymidine kinase 1 (TK1) levels were not affected. The AZT effects on mitochondrial TK2 and dGK were similar to those of oxidants (e.g., hydrogen peroxide); therefore, we examined the oxidative effects of AZT. We found a modest increase in cellular reactive oxygen species (ROS) levels in the AZT-treated cells. The addition of uridine to AZT-treated cells reduced ROS levels and protein oxidation and prevented the degradation of mitochondrial TK2 and dGK. In organello studies indicated that the degradation of mitochondrial TK2 and dGK is a mitochondrial event. These results suggest that downregulation of mitochondrial TK2 and dGK may lead to decreased mitochondrial DNA precursor pools and eventually mtDNA depletion, which has significant implications for the regulation of mitochondrial nucleotide biosynthesis and for antiviral therapy using nucleoside analogs.
Collapse
|
29
|
Capel E, Auclair M, Caron-Debarle M, Capeau J. Effects of ritonavir-boosted darunavir, atazanavir and lopinavir on adipose functions and insulin sensitivity in murine and human adipocytes. Antivir Ther 2011; 17:549-56. [PMID: 22293506 DOI: 10.3851/imp1988] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2011] [Indexed: 10/15/2022]
Abstract
BACKGROUND Ritonavir-boosted protease inhibitors (PIs) could adversely affect metabolism and adipose tissue to different extents, depending on the molecule. Using drugs with minimal adverse metabolic effects is an important consideration in at-risk HIV-infected patients. In vitro adipocyte models can be useful for comparing the effects of different PIs. METHODS We compared the effects of darunavir, darunavir/ritonavir, atazanavir/ritonavir and lopinavir/ritonavir in murine and human adipocytes on differentiation, mitochondrial function, reactive oxygen species (ROS) production and insulin sensitivity. RESULTS In human and murine adipocytes, differentiation evaluated by lipid content and protein expression of adipogenic markers, mitochondrial function evaluated by aggregation of the cationic dye JC-1 and by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide lysis, and mitochondrial mass evaluated by MitoTracker fluorescence and the expression of mitochondrial proteins were unaffected by darunavir, mildly affected by darunavir/ritonavir and further altered by atazanavir/ritonavir and lopinavir/ritonavir. ROS production was unaltered by darunavir and darunavir/ritonavir but was increased by lopinavir/ritonavir and atazanavir/ritonavir. Regarding insulin sensitivity, darunavir and darunavir/ritonavir had no significant effect on insulin activation of protein kinase B (Akt/PKB) and MAP kinase and of glucose transport, whereas lopinavir/ritonavir and atazanavir/ritonavir partly impaired the effect of insulin. The effect of atazanavir/ritonavir was generally milder than that of lopinavir/ritonavir. CONCLUSIONS The various PIs differentially modified adipocyte functions. Darunavir alone did not affect adipocyte functions and only modestly altered differentiation and mitochondrial function when associated with ritonavir. Lopinavir/ritonavir adversely affected differentiation and lipid content, mitochondrial function, ROS production and insulin sensitivity, and the effect of atazanavir/ritonavir was intermediate. Thus, in vitro, darunavir/ritonavir presented a safer metabolic profile on adipocytes than atazanavir/ritonavir and lopinavir/ritonavir.
Collapse
Affiliation(s)
- Emilie Capel
- INSERM, UMR_S 938, Faculté de Médecine Saint Antoine, Paris, France
| | | | | | | |
Collapse
|
30
|
McGee KC, Shahmanesh M, Boothby M, Nightingale P, Gathercole LL, Tripathi G, Harte AL, Shojaee-Moradie F, Umpleby AM, Das S, Al-Daghri NM, McTernan PG, Tomlinson JW. Evidence for a shift to anaerobic metabolism in adipose tissue in efavirenz-containing regimens for HIV with different nucleoside backbones. Antivir Ther 2011; 17:495-507. [DOI: 10.3851/imp2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2011] [Indexed: 10/14/2022]
|
31
|
Boothby M, McGee KC, Tomlinson JW, Gathercole LL, McTernan PG, Shojaee-Moradie F, Umpleby AM, Nightingale P, Shahmanesh M. Adipocyte differentiation, mitochondrial gene expression and fat distribution: differences between zidovudine and tenofovir after 6 months. Antivir Ther 2009; 14:1089-100. [DOI: 10.3851/imp1457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|