1
|
Yang M, Zhang C. The role of innate immunity in diabetic nephropathy and their therapeutic consequences. J Pharm Anal 2024; 14:39-51. [PMID: 38352948 PMCID: PMC10859537 DOI: 10.1016/j.jpha.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/12/2023] [Accepted: 09/05/2023] [Indexed: 02/16/2024] Open
Abstract
Diabetic nephropathy (DN) is an enduring condition that leads to inflammation and affects a substantial number of individuals with diabetes worldwide. A gradual reduction in glomerular filtration and emergence of proteins in the urine are typical aspects of DN, ultimately resulting in renal failure. Mounting evidence suggests that immunological and inflammatory factors are crucial for the development of DN. Therefore, the activation of innate immunity by resident renal and immune cells is critical for initiating and perpetuating inflammation. Toll-like receptors (TLRs) are an important group of receptors that identify patterns and activate immune responses and inflammation. Meanwhile, inflammatory responses in the liver, pancreatic islets, and kidneys involve inflammasomes and chemokines that generate pro-inflammatory cytokines. Moreover, the activation of the complement cascade can be triggered by glycated proteins. This review highlights recent findings elucidating how the innate immune system contributes to tissue fibrosis and organ dysfunction, ultimately leading to renal failure. This review also discusses innovative approaches that can be utilized to modulate the innate immune responses in DN for therapeutic purposes.
Collapse
Affiliation(s)
- Min Yang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
2
|
Gao J, Gu Z. The Role of Peroxisome Proliferator-Activated Receptors in Kidney Diseases. Front Pharmacol 2022; 13:832732. [PMID: 35308207 PMCID: PMC8931476 DOI: 10.3389/fphar.2022.832732] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors. Accumulating evidence suggests that PPARs may play an important role in the pathogenesis of kidney disease. All three members of the PPAR subfamily, PPARα, PPARβ/δ, and PPARγ, have been implicated in many renal pathophysiological conditions, including acute kidney injury, diabetic nephropathy, and chronic kidney disease, among others. Emerging data suggest that PPARs may be potential therapeutic targets for renal disease. This article reviews the physiological roles of PPARs in the kidney and discusses the therapeutic utility of PPAR agonists in the treatment of kidney disease.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Nephrology, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Zhaoyan Gu
- Department of Endocrinology, Second Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Zhaoyan Gu,
| |
Collapse
|
3
|
Prasad K, Khan AS, Bhanumathy KK. Does AGE-RAGE Stress Play a Role in the Development of Coronary Artery Disease in Obesity? Int J Angiol 2022; 31:1-9. [PMID: 35221846 PMCID: PMC8881108 DOI: 10.1055/s-0042-1742587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
This article deals with the role of AGE (advanced glycation end products)-RAGE (receptor for AGE) stress (AGE/sRAGE) in the development of coronary artery disease (CAD) in obesity. CAD is due to atherosclerosis in coronary artery. The serum/plasma levels of AGE and sRAGE are reduced, while AGE-RAGE stress and expression of RAGE are elevated in obese individuals. However, the levels of AGE are elevated in obese individuals with more than one metabolic syndrome. The increases in the AGE-RAGE stress would elevate the expression and production of atherogenic factors, including reactive oxygen species, nuclear factor-kappa B, cytokines, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, endothelial leukocyte adhesion molecules, monocyte chemoattractant protein-1, granulocyte-macrophage colony-stimulating factor, and growth factors. Low levels of sRAGE would also increase the atherogenic factors. The increases in the AGE-RAGE stress and decreases in the levels of sRAGE would induce development of atherosclerosis, leading to CAD. The therapeutic regimen for AGE-RAGE stress-induced CAD in obesity would include lowering of AGE intake, prevention of AGE formation, degradation of AGE in vivo, suppression of RAGE expression, blockade of AGE-RAGE interaction, downregulation of sRAGE expression, and use of antioxidants. In conclusion, the data suggest that AGE-RAGE stress is involved in the development of CAD in obesity, and the therapeutic interventions to reduce AGE-RAGE would be helpful in preventing, regressing, and slowing the progression of CAD in obesity.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology (APP), College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada,Address for correspondence Kailash Prasad, MBBS, MD, PhD, DSc Department of Physiology (APP), College of Medicine, University of Saskatoon107 Wiggins Road, Saskatoon, SK, S7N 5E5Canada
| | - Amal S. Khan
- Community, Health and Epidemiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kalpana K. Bhanumathy
- Division of Oncology, Cancer Cluster Unit, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
Prasad K. Current Status of Primary, Secondary, and Tertiary Prevention of Coronary Artery Disease. Int J Angiol 2021; 30:177-186. [PMID: 34776817 PMCID: PMC8580611 DOI: 10.1055/s-0041-1731273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Fifty percent of all death from cardiovascular diseases is due to coronary artery disease (CAD). This is avoidable if early identification is made. Preventive health care has a major role in the fight against CAD. Atherosclerosis and atherosclerotic plaque rupture are involved in the development of CAD. Modifiable risk factors for CAD are dyslipidemia, diabetes, hypertension, cigarette smoking, obesity, chronic renal disease, chronic infection, high C-reactive protein, and hyperhomocysteinemia. CAD can be prevented by modification of risk factors. This paper defines the primary, secondary, and tertiary prevention of CAD. It discusses the mechanism of risk factor-induced atherosclerosis. This paper describes the CAD risk score and its use in the selection of individuals for primary prevention of CAD. Guidelines for primary, secondary, and tertiary prevention of CAD have been described. Modification of risk factors and use of guidelines for prevention of CAD would prevent, regress, and slow down the progression of CAD, improve the quality of life of patient, and reduce the health care cost.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology (APP), College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
5
|
Abstract
Coronary artery atherosclerosis and atherosclerotic plaque rupture cause coronary artery disease (CAD). Advanced glycation end products (AGE) and its cell receptor RAGE, and soluble receptor (sRAGE) and endogenous secretory RAGE (esRAGE) may be involved in the development of atherosclerosis. AGE and its interaction with RAGE are atherogenic, while sRAGE and esRAGE have antiatherogenic effects. AGE-RAGE stress is a ratio of AGE/sRAGE. A high AGE-RAGE stress results in development and progression of CAD and vice-versa. AGE levels in serum and skin, AGE/sRAGE in patients with CAD, and expression of RAGE in animal model of atherosclerosis were higher, while serum levels of esRAGE were lower in patients with CAD compared with controls. Serum levels of sRAGE in CAD patients were contradictory, increased or decreased. This contradictory data may be due to type of patients used, because the sRAGE levels are elevated in diabetics and end-stage renal disease. AGE/sRAGE ratio is elevated in patients with reduced or elevated levels of serum sRAGE. It is to stress that AGE, RAGE, sRAGE, or esRAGE individually cannot serve as universal biomarker. AGE and sRAGE should be measured simultaneously to assess the AGE-RAGE stress. The treatment of CAD should be targeted at reduction in AGE levels, prevention of AGE formation, degradation of AGE in vivo, suppression of RAGE expression, blockade of RAGE, elevation of sRAGE, and use of antioxidants. In conclusion, AGE-RAGE stress would initiate the development and progression of atherosclerosis. Treatment modalities would prevent, regress, and slow the progression of CAD.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology (APP), College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
6
|
Mikolajczyk TP, Szczepaniak P, Vidler F, Maffia P, Graham GJ, Guzik TJ. Role of inflammatory chemokines in hypertension. Pharmacol Ther 2020; 223:107799. [PMID: 33359600 DOI: 10.1016/j.pharmthera.2020.107799] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Hypertension is associated with immune cells activation and their migration into the kidney, vasculature, heart and brain. These inflammatory mechanisms are critical for blood pressure regulation and mediate target organ damage, creating unique novel targets for pharmacological modulation. In response to angiotensin II and other pro-hypertensive stimuli, the expression of several inflammatory chemokines and their receptors is increased in the target organs, mediating homing of immune cells. In this review, we summarize the contribution of key inflammatory chemokines and their receptors to increased accumulation of immune cells in target organs and effects on vascular dysfunction, remodeling, oxidative stress and fibrosis, all of which contribute to blood pressure elevation. In particular, the role of CCL2, CCL5, CXCL8, CXCL9, CXCL10, CXCL11, CXCL16, CXCL1, CX3CL1, XCL1 and their receptors in the context of hypertension is discussed. Recent studies have tested the efficacy of pharmacological or genetic targeting of chemokines and their receptors on the development of hypertension. Promising results indicate that some of these pathways may serve as future therapeutic targets to improve blood pressure control and prevent target organ consequences including kidney failure, heart failure, atherosclerosis or cognitive impairment.
Collapse
Affiliation(s)
- Tomasz P Mikolajczyk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Piotr Szczepaniak
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Francesca Vidler
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Pasquale Maffia
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK; BHF Centre for Excellence Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK; Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Gerard J Graham
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Tomasz J Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland; BHF Centre for Excellence Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
7
|
Sourris KC, Watson A, Jandeleit-Dahm K. Inhibitors of Advanced Glycation End Product (AGE) Formation and Accumulation. Handb Exp Pharmacol 2020; 264:395-423. [PMID: 32809100 DOI: 10.1007/164_2020_391] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A range of chemically different compounds are known to inhibit the formation and accumulation of advanced glycation end products (AGEs) or disrupt associated signalling pathways. There is evidence that some of these agents can provide end-organ protection in chronic diseases including diabetes. Whilst this group of therapeutics are structurally and functionally different and have a range of mechanisms of action, they ultimately reduce the deleterious actions and the tissue burden of advanced glycation end products. To date it remains unclear if this is due to the reduction in tissue AGE levels per se or the modulation of downstream signal pathways. Some of these agents either stimulate antioxidant defence or reduce the formation of reactive oxygen species (ROS), modify lipid profiles and inhibit inflammation. A number of existing treatments for glucose lowering, hypertension and hyperlipidaemia are also known to reduce AGE formation as a by-product of their action. Targeted AGE formation inhibitors or AGE cross-link breakers have been developed and have shown beneficial effects in animal models of diabetic complications as well as other chronic conditions. However, only a few of these agents have progressed to clinical development. The failure of clinical translation highlights the importance of further investigation of the advanced glycation pathway, the diverse actions of agents which interfere with AGE formation, cross-linking or AGE receptor activation and their effect on the development and progression of chronic diseases including diabetic complications. Advanced glycation end products (AGEs) are (1) proteins or lipids that become glycated as a result of exposure to sugars or (2) non-proteinaceous oxidised lipids. They are implicated in ageing and the development, or worsening, of many degenerative diseases, such as diabetes, atherosclerosis, chronic kidney and Alzheimer's disease. Several antihypertensive and antidiabetic agents and statins also indirectly lower AGEs. Direct AGE inhibitors currently investigated include pyridoxamine and epalrestat, the inhibition of the formation of reactive dicarbonyls such as methylglyoxal as an important precursor of AGEs via increased activation of the detoxifying enzyme Glo-1 and inhibitors of NOX-derived ROS to reduce the AGE/RAGE signalling.
Collapse
Affiliation(s)
- Karly C Sourris
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Anna Watson
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Karin Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Inacio MD, Costa MC, Lima TFO, Figueiredo ID, Motta BP, Spolidorio LC, Assis RP, Brunetti IL, Baviera AM. Pentoxifylline mitigates renal glycoxidative stress in obese mice by inhibiting AGE/RAGE signaling and increasing glyoxalase levels. Life Sci 2020; 258:118196. [PMID: 32763295 DOI: 10.1016/j.lfs.2020.118196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022]
Abstract
AIM The pharmacological properties of pentoxifylline have been re-evaluated, particularly in chronic kidney disease in diabetes, favored by its anti-inflammatory action. Definitive evidences of renal outcomes are lacking, which indicates the need for investigation of novel mechanisms of action of pentoxifylline. We postulated that components associated with the metabolism of advanced glycation end products (AGEs) may be modulated by pentoxifylline, which consequently decreases the detrimental effects of obesity on kidneys. MAIN METHODS C57BL-6J mice were fed a high-fat diet for 14 weeks and treated with 50 mg/kg pentoxifylline during the last 7 weeks. Changes in the renal levels of AGE metabolism-associated components were investigated, with particular focus on the receptor for AGEs (RAGE), its downstream components, and components related to AGE detoxification, including glyoxalase 1 (GLO 1). KEY FINDINGS Pentoxifylline reduced body weight gain, improved insulin sensitivity and glucose tolerance, downregulated biomarkers of glycoxidative stress, and enhanced plasma paraoxonase 1 activity. In the kidneys, pentoxifylline inhibited glomerular expansion, lipid deposition, reduced pro-inflammatory cytokine levels, and induced the activation of AMP-activated protein kinase. Pentoxifylline inhibited the renal accumulation of AGEs and reduced the levels of RAGE and its downstream components, and consequently mitigated oxidative stress and apoptosis. Pentoxifylline also increased the renal levels of GLO 1 and the activities of antioxidant enzymes. Urinary albumin levels were observed to be lowered, which reconfirmed the antialbuminuric effects of pentoxifylline. SIGNIFICANCE The novel mechanisms of action help explain the renoprotective effects of pentoxifylline and the attenuation of obesity-associated renal complications related to glycoxidative stress.
Collapse
Affiliation(s)
- Maiara Destro Inacio
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Mariana Campos Costa
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Tayra Ferreira Oliveira Lima
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Ingrid Delbone Figueiredo
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Bruno Pereira Motta
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Luís Carlos Spolidorio
- São Paulo State University (Unesp), Araraquara School of Dentistry, Department of Physiology and Pathology, Araraquara, São Paulo, Brazil
| | - Renata Pires Assis
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil; Paulista University (UNIP), Institute of Health Sciences, Araraquara, São Paulo, Brazil
| | - Iguatemy Lourenço Brunetti
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Amanda Martins Baviera
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| |
Collapse
|
9
|
Prasad K, Bhanumathy KK. AGE-RAGE Axis in the Pathophysiology of Chronic Lower Limb Ischemia and a Novel Strategy for Its Treatment. Int J Angiol 2020; 29:156-167. [PMID: 33041612 DOI: 10.1055/s-0040-1710045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This review focuses on the role of advanced glycation end products (AGEs) and its cell receptor (RAGE) and soluble receptor (sRAGE) in the pathogenesis of chronic lower limb ischemia (CLLI) and its treatment. CLLI is associated with atherosclerosis in lower limb arteries. AGE-RAGE axis which comprises of AGE, RAGE, and sRAGE has been implicated in atherosclerosis and restenosis. It may be involved in atherosclerosis of lower limb resulting in CLLI. Serum and tissue levels of AGE, and expression of RAGE are elevated, and the serum levels of sRAGE are decreased in CLLI. It is known that AGE, and AGE-RAGE interaction increase the generation of various atherogenic factors including reactive oxygen species, nuclear factor-kappa B, cell adhesion molecules, cytokines, monocyte chemoattractant protein-1, granulocyte macrophage-colony stimulating factor, and growth factors. sRAGE acts as antiatherogenic factor because it reduces the generation of AGE-RAGE-induced atherogenic factors. Treatment of CLLI should be targeted at lowering AGE levels through reduction of dietary intake of AGE, prevention of AGE formation and degradation of AGE, suppression of RAGE expression, blockade of AGE-RAGE binding, elevation of sRAGE by upregulating sRAGE expression, and exogenous administration of sRAGE, and use of antioxidants. In conclusion, AGE-RAGE stress defined as a shift in the balance between stressors (AGE, RAGE) and antistressor (sRAGE) in favor of stressors, initiates the development of atherosclerosis resulting in CLLI. Treatment modalities would include reduction of AGE levels and RAGE expression, RAGE blocker, elevation of sRAGE, and antioxidants for prevention, regression, and slowing of progression of CLLI.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology (APP), College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kalpana K Bhanumathy
- Division of Oncology, Cancer Cluster Unit, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
10
|
Effect of Telmisartan in the Oxidative Stress Components Induced by Ischemia Reperfusion in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1302985. [PMID: 31354899 PMCID: PMC6636510 DOI: 10.1155/2019/1302985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/15/2019] [Accepted: 05/15/2019] [Indexed: 01/01/2023]
Abstract
The therapeutic effects of telmisartan, an angiotensin II receptor antagonist and a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, have been demonstrated in several disorders. It has antioxidant and immune response modulator properties and has shown promising results in the treatment of an ischemia/reperfusion (I/R) lesion. In this study, a skeletal muscle (right gastrocnemius muscle) I/R lesion was induced in rats and different reperfusion times (1 h, 24 h, 72 h, 7-day, and 14-day subgroups) were assessed. Furthermore, levels of oxidative markers such as enzymatic scavengers (catalase (CAT) and superoxide dismutase (SOD)) and metabolites (nitrates and 8-oxo-deoxyguanosine) were determined. The degree of tissue injury (total lesioned fibers and inflammatory cell count) was also evaluated. We observed an increase in CAT and SOD expression levels under telmisartan treatment, with a decrease in injury and oxidative biomarker levels in the 72 h, 7-day, and 14-day subgroups. Telmisartan reduced oxidative stress and decreased the damage of the I/R lesion.
Collapse
|
11
|
Silveira MAD, Teles F, Berretta AA, Sanches TR, Rodrigues CE, Seguro AC, Andrade L. Effects of Brazilian green propolis on proteinuria and renal function in patients with chronic kidney disease: a randomized, double-blind, placebo-controlled trial. BMC Nephrol 2019; 20:140. [PMID: 31023272 PMCID: PMC6485062 DOI: 10.1186/s12882-019-1337-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 04/15/2019] [Indexed: 01/13/2023] Open
Abstract
Background Chronic kidney disease (CKD) is a public health problem worldwide, and proteinuria is a well-established marker of disease progression in CKD patients. Propolis, a natural resin produced by bees from plant materials, has anti-inflammatory, immunomodulatory, and anti-oxidant properties, as well as having been shown to have an antiproteinuric effect in experimental CKD. The aim of this study was to evaluate the impact of Brazilian green propolis extract on proteinuria reduction and the changes in the estimated glomerular filtration rate (eGFR). Methods This was a randomized, double-blind, placebo-controlled study including patients with CKD caused by diabetes or of another etiology, 18–90 years of age, with an eGFR of 25–70 ml/min per 1.73 m2 and proteinuria (urinary protein excretion > 300 mg/day) or micro- or macro-albuminuria (urinary albumin-to-creatinine ratio > 30 mg/g or > 300 mg/g, respectively). We screened 148 patients and selected 32, randomly assigning them to receive 12 months of Brazilian green propolis extract at a dose of 500 mg/day (n = 18) or 12 months of a placebo (n = 14). Results At the end of treatment, proteinuria was significantly lower in the propolis group than in the placebo group—695 mg/24 h (95% CI, 483 to 999) vs. 1403 mg/24 h (95% CI, 1031 to 1909); P = 0.004—independent of variations in eGFR and blood pressure, which did not differ between the groups during follow-up. Urinary monocyte chemoattractant protein-1 was also significantly lower in the propolis group than in the placebo group—58 pg/mg creatinine (95% CI, 36 to 95) vs. 98 pg/mg creatinine (95% CI, 62 to 155); P = 0.038. Conclusions Brazilian green propolis extract was found to be safe and well tolerated, as well as to reduce proteinuria significantly in patients with diabetic and non-diabetic CKD. Trial Registration. (ClinicalTrials.gov number NCT02766036. Registered: May 9, 2016). Electronic supplementary material The online version of this article (10.1186/s12882-019-1337-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcelo Augusto Duarte Silveira
- Division of Nephrology, University of São Paulo School of Medicine, São Paulo, SP, Av. Dr. Arnaldo, 455, 3° andar, sala 3310, CEP 01246-903, Brazil.
| | - Flávio Teles
- School of Medicine, Federal University of Alagoas, Maceió, Brazil
| | - Andressa A Berretta
- Laboratory of Research, Development & Innovation, Apis Flora Industrial e Comercial Ltda, Ribeirão Preto, Brazil
| | - Talita R Sanches
- Division of Nephrology, University of São Paulo School of Medicine, São Paulo, SP, Av. Dr. Arnaldo, 455, 3° andar, sala 3310, CEP 01246-903, Brazil
| | - Camila Eleutério Rodrigues
- Division of Nephrology, University of São Paulo School of Medicine, São Paulo, SP, Av. Dr. Arnaldo, 455, 3° andar, sala 3310, CEP 01246-903, Brazil
| | - Antonio Carlos Seguro
- Division of Nephrology, University of São Paulo School of Medicine, São Paulo, SP, Av. Dr. Arnaldo, 455, 3° andar, sala 3310, CEP 01246-903, Brazil
| | - Lúcia Andrade
- Division of Nephrology, University of São Paulo School of Medicine, São Paulo, SP, Av. Dr. Arnaldo, 455, 3° andar, sala 3310, CEP 01246-903, Brazil
| |
Collapse
|
12
|
Lunder M, Janić M, Šabovič M. Prevention of Vascular Complications in Diabetes Mellitus Patients: Focus on the Arterial Wall. Curr Vasc Pharmacol 2018; 17:6-15. [DOI: 10.2174/1570161116666180206113755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/16/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022]
Abstract
In Diabetes Mellitus (DM), hyperglycaemia and insulin resistance progressively lead to both
microvascular and macrovascular complications. Whereas the incidence of microvascular complications
is closely related to tight glycaemic control, this does not apply to macrovascular complications. Hyperglycaemia
influences many interweaving molecular pathways that initially lead to increased oxidative
stress, increased inflammation and endothelial dysfunction. The latter represents the initial in both types
of vascular complications; it represents the “obligatory damage” in microvascular complications development
and only “introductory damage” in macrovascular complications development. Other risk factors,
such as arterial hypertension and dyslipidaemia, also play an important role in the progression of
macrovascular complications. All these effects accumulate and lead to functional and structural arterial
wall damage. In the end, all factors combined lead to the promotion of atherosclerosis and consequently
major adverse cardiovascular events. If we accept the pivotal role of vascular wall impairment in the
pathogenesis and progression of microvascular and macrovascular complications, treatment focused
directly on the arterial wall should be one of the priorities in prevention of vascular complications in
patients with DM. In this review, an innovative approach aimed at improving arterial wall dysfunction is
described, which may show efficacy in clinical studies. In addition, the potential protective effects of
current treatment approaches targeting the arterial wall are summarised.
Collapse
Affiliation(s)
- Mojca Lunder
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloska cesta 7; SI-1000 Ljubljana, Slovenia
| | - Miodrag Janić
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloska cesta 7; SI-1000 Ljubljana, Slovenia
| | - Mišo Šabovič
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloska cesta 7; SI-1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
A causal link between oxidative stress and inflammation in cardiovascular and renal complications of diabetes. Clin Sci (Lond) 2018; 132:1811-1836. [PMID: 30166499 DOI: 10.1042/cs20171459] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 12/14/2022]
Abstract
Chronic renal and vascular oxidative stress in association with an enhanced inflammatory burden are determinant processes in the development and progression of diabetic complications including cardiovascular disease (CVD), atherosclerosis and diabetic kidney disease (DKD). Persistent hyperglycaemia in diabetes mellitus increases the production of reactive oxygen species (ROS) and activates mediators of inflammation as well as suppresses antioxidant defence mechanisms ultimately contributing to oxidative stress which leads to vascular and renal injury in diabetes. Furthermore, there is increasing evidence that ROS, inflammation and fibrosis promote each other and are part of a vicious connection leading to development and progression of CVD and kidney disease in diabetes.
Collapse
|
14
|
Lim S, Lee ME, Jeong J, Lee J, Cho S, Seo M, Park S. sRAGE attenuates angiotensin II-induced cardiomyocyte hypertrophy by inhibiting RAGE-NFκB-NLRP3 activation. Inflamm Res 2018; 67:691-701. [DOI: 10.1007/s00011-018-1160-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/17/2018] [Accepted: 05/16/2018] [Indexed: 11/27/2022] Open
|
15
|
Effects of rumenic acid rich conjugated linoleic acid supplementation on cognitive function and handgrip performance in older men and women. Exp Gerontol 2016; 84:1-11. [PMID: 27521997 DOI: 10.1016/j.exger.2016.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/20/2016] [Accepted: 08/08/2016] [Indexed: 12/24/2022]
Abstract
The purpose of this study was to investigate the effects of 8weeks at 6g per day of RAR CLA versus placebo on cognitive function and handgrip performance in older men and women. Sixty-five (43 women, 22 men) participants (mean±SD; age=72.4±5.9yrs; BMI=26.6±4.2kg·m-2) were randomly assigned to a RAR CLA (n=30: 10 men, 20 women) or placebo (PLA; high oleic sunflower oil; n=35: 12 men, 23 women) group in double-blind fashion and consumed 6g·d-1 of their allocated supplement for 8weeks. Before (Visit 1) and after supplementation (Visit 2), subjects completed the Serial Sevens Subtraction Test (S7), Trail Making Test Part A (TMA) and Part B (TMB), and Rey's Auditory Verbal Learning Test (RAVLT) to measure cognitive function. The RAVLT included 5, 15-item auditory word recalls (R1-5), an interference word recall (RB), a 6th word recall (R6), and a 15-item visual word recognition trial (RR). For handgrip performance, subjects completed maximal voluntary isometric handgrip strength (MVIC) testing before (MVICPRE) and after (MVICPOST) a handgrip fatigue test at 50% MVICPRE. Hand joint discomfort was measured during MVICPRE, MVICPOST, and the handgrip fatigue test. There were no treatment differences (p>0.05) for handgrip strength, handgrip fatigue, or cognitive function as measured by the Trail Making Test and Serial Seven's Subtraction Test in men or women. However, RAR CLA supplementation improved cognitive function as indicated by the RAVLT R5 in men. A qualitative examination of the mean change scores suggested that, compared to PLA, RAR CLA supplementation was associated with a small improvement in joint discomfort in both men and women. Longer-term studies are needed to more fully understand the potential impact of RAR CLA on cognitive function and hand joint discomfort in older adults, particularly in those with lower cognitive function.
Collapse
|
16
|
Nadkarni GN, Rao V, Ismail-Beigi F, Fonseca VA, Shah SV, Simonson MS, Cantley L, Devarajan P, Parikh CR, Coca SG. Association of Urinary Biomarkers of Inflammation, Injury, and Fibrosis with Renal Function Decline: The ACCORD Trial. Clin J Am Soc Nephrol 2016; 11:1343-1352. [PMID: 27189318 PMCID: PMC4974890 DOI: 10.2215/cjn.12051115] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/12/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND OBJECTIVES Current measures for predicting renal functional decline in patients with type 2 diabetes with preserved renal function are unsatisfactory, and multiple markers assessing various biologic axes may improve prediction. We examined the association of four biomarker-to-creatinine ratio levels (monocyte chemotactic protein-1, IL-18, kidney injury molecule-1, and YKL-40) with renal outcome. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We used a nested case-control design in the Action to Control Cardiovascular Disease Trial by matching 190 participants with ≥40% sustained eGFR decline over the 5-year follow-up period to 190 participants with ≤10% eGFR decline in a 1:1 fashion on key characteristics (age within 5 years, sex, race, baseline albumin-to-creatinine ratio within 20 μg/mg, and baseline eGFR within 10 ml/min per 1.73 m(2)), with ≤10% decline. We used a Mesoscale Multiplex Platform and measured biomarkers in baseline and 24-month specimens, and we examined biomarker associations with outcome using conditional logistic regression. RESULTS Baseline and 24-month levels of monocyte chemotactic protein-1-to-creatinine ratio levels were higher for cases versus controls. The highest quartile of baseline monocyte chemotactic protein-1-to-creatinine ratio had fivefold greater odds, and each log increment had 2.27-fold higher odds for outcome (odds ratio, 5.27; 95% confidence interval, 2.19 to 12.71 and odds ratio, 2.27; 95% confidence interval, 1.44 to 3.58, respectively). IL-18-to-creatinine ratio, kidney injury molecule-1-to-creatinine ratio, and YKL-40-to-creatinine ratio were not consistently associated with outcome. C statistic for traditional predictors of eGFR decline was 0.70, which improved significantly to 0.74 with monocyte chemotactic protein-1-to-creatinine ratio. CONCLUSIONS Urinary monocyte chemotactic protein-1-to-creatinine ratio concentrations were strongly associated with sustained renal decline in patients with type 2 diabetes with preserved renal function.
Collapse
Affiliation(s)
- Girish N. Nadkarni
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Veena Rao
- Department of Medicine, Division of Nephrology, Yale University School of Medicine, New Haven, Connecticut
| | - Faramarz Ismail-Beigi
- Department of Medicine, Division of Clinical and Molecular Endocrinology, Case Western Reserve University, Cleveland, Ohio
| | - Vivian A. Fonseca
- Department of Medicine, Division of Endocrinology, Tulane University, New Orleans, Louisiana
| | - Sudhir V. Shah
- Department of Medicine, Division of Nephrology, University of Arkansas Medical Sciences, Little Rock, Arkansas; and
| | - Michael S. Simonson
- Department of Medicine, Division of Clinical and Molecular Endocrinology, Case Western Reserve University, Cleveland, Ohio
| | - Lloyd Cantley
- Department of Medicine, Division of Nephrology, Yale University School of Medicine, New Haven, Connecticut
| | - Prasad Devarajan
- Department of Pediatrics, Division of Nephrology, University of Cincinnati, Cincinnati, Ohio
| | - Chirag R. Parikh
- Department of Medicine, Division of Nephrology, Yale University School of Medicine, New Haven, Connecticut
| | - Steven G. Coca
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
17
|
Michel MC, Brunner HR, Foster C, Huo Y. Angiotensin II type 1 receptor antagonists in animal models of vascular, cardiac, metabolic and renal disease. Pharmacol Ther 2016; 164:1-81. [PMID: 27130806 DOI: 10.1016/j.pharmthera.2016.03.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 02/07/2023]
Abstract
We have reviewed the effects of angiotensin II type 1 receptor antagonists (ARBs) in various animal models of hypertension, atherosclerosis, cardiac function, hypertrophy and fibrosis, glucose and lipid metabolism, and renal function and morphology. Those of azilsartan and telmisartan have been included comprehensively whereas those of other ARBs have been included systematically but without intention of completeness. ARBs as a class lower blood pressure in established hypertension and prevent hypertension development in all applicable animal models except those with a markedly suppressed renin-angiotensin system; blood pressure lowering even persists for a considerable time after discontinuation of treatment. This translates into a reduced mortality, particularly in models exhibiting marked hypertension. The retrieved data on vascular, cardiac and renal function and morphology as well as on glucose and lipid metabolism are discussed to address three main questions: 1. Can ARB effects on blood vessels, heart, kidney and metabolic function be explained by blood pressure lowering alone or are they additionally directly related to blockade of the renin-angiotensin system? 2. Are they shared by other inhibitors of the renin-angiotensin system, e.g. angiotensin converting enzyme inhibitors? 3. Are some effects specific for one or more compounds within the ARB class? Taken together these data profile ARBs as a drug class with unique properties that have beneficial effects far beyond those on blood pressure reduction and, in some cases distinct from those of angiotensin converting enzyme inhibitors. The clinical relevance of angiotensin receptor-independent effects of some ARBs remains to be determined.
Collapse
Affiliation(s)
- Martin C Michel
- Dept. Pharmacology, Johannes Gutenberg University, Mainz, Germany; Dept. Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim, Ingelheim, Germany.
| | | | - Carolyn Foster
- Retiree from Dept. of Research Networking, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Yong Huo
- Dept. Cardiology & Heart Center, Peking University First Hospital, Beijing, PR China
| |
Collapse
|
18
|
LIU YAOWU, ZHU XIA, CHENG YAQIN, LU QIAN, ZHANG FAN, GUO HAO, YIN XIAOXING. Ibuprofen attenuates nephropathy in streptozotocin-induced diabetic rats. Mol Med Rep 2016; 13:5326-34. [DOI: 10.3892/mmr.2016.5150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 01/08/2016] [Indexed: 11/05/2022] Open
|
19
|
Miranda-Díaz AG, Pazarín-Villaseñor L, Yanowsky-Escatell FG, Andrade-Sierra J. Oxidative Stress in Diabetic Nephropathy with Early Chronic Kidney Disease. J Diabetes Res 2016; 2016:7047238. [PMID: 27525285 PMCID: PMC4971321 DOI: 10.1155/2016/7047238] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022] Open
Abstract
The increase in the prevalence of diabetes mellitus (DM) and the secondary kidney damage produces diabetic nephropathy (DN). Early nephropathy is defined as the presence of microalbuminuria (30-300 mg/day), including normal glomerular filtration rate (GFR) or a mildly decreased GFR (60-89 mL/min/1.73 m(2)), with or without overt nephropathy. The earliest change caused by DN is hyperfiltration with proteinuria. The acceptable excretion rate of albumin in urine is <30 mg/day. Albuminuria represents the excretion of >300 mg/day. Chronic kidney disease (CKD) is characterized by abnormalities in renal function that persist for >3 months with health implications. Alterations in the redox state in DN are caused by the persistent state of hyperglycemia and the increase in advanced glycation end products (AGEs) with ability to affect the renin-angiotensin system and the transforming growth factor-beta (TGF-β), producing chronic inflammation and glomerular and tubular hypertrophy and favoring the appearance of oxidative stress. In DN imbalance between prooxidant/antioxidant processes exists with an increase in reactive oxygen species (ROS). The overproduction of ROS diminishes expression of the antioxidant enzymes (manganese superoxide dismutase, glutathione peroxidase, and catalase). The early detection of CKD secondary to DN and the timely identification of patients would permit decreasing its impact on health.
Collapse
Affiliation(s)
- Alejandra Guillermina Miranda-Díaz
- Department of Physiology, University Health Sciences Centre (Centro Universitario de Ciencias de la Salud), University of Guadalajara, 44150 Guadalajara, JAL, Mexico
- *Alejandra Guillermina Miranda-Díaz:
| | | | | | - Jorge Andrade-Sierra
- Nephrology Service, Civil Hospital of Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, JAL, Mexico
| |
Collapse
|
20
|
Redox Signaling in Diabetic Nephropathy: Hypertrophy versus Death Choices in Mesangial Cells and Podocytes. Mediators Inflamm 2015; 2015:604208. [PMID: 26491232 PMCID: PMC4600552 DOI: 10.1155/2015/604208] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/18/2015] [Indexed: 02/06/2023] Open
Abstract
This review emphasizes the role of oxidative stress in diabetic nephropathy, acting as trigger, modulator, and linker within the complex network of pathologic events. It highlights key molecular pathways and new hypothesis in diabetic nephropathy, related to the interferences of metabolic, oxidative, and inflammatory stresses. Main topics this review is addressing are biomarkers of oxidative stress in diabetic nephropathy, the sources of reactive oxygen species (mitochondria, NADPH-oxidases, hyperglycemia, and inflammation), and the redox-sensitive signaling networks (protein kinases, transcription factors, and epigenetic regulators). Molecular switches deciding on the renal cells fate in diabetic nephropathy are presented, such as hypertrophy versus death choices in mesangial cells and podocytes. Finally, the antioxidant response of renal cells in diabetic nephropathy is tackled, with emphasis on targeted therapy. An integrative approach is needed for identifying key molecular networks which control cellular responses triggered by the array of stressors in diabetic nephropathy. This will foster the discovery of reliable biomarkers for early diagnosis and prognosis, and will guide the discovery of new therapeutic approaches for personalized medicine in diabetic nephropathy.
Collapse
|
21
|
Lin CM, Tsai JT, Chang CK, Cheng JT, Lin JW. Development of telmisartan in the therapy of spinal cord injury: pre-clinical study in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4709-17. [PMID: 26316709 PMCID: PMC4544623 DOI: 10.2147/dddt.s86616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Decrease of peroxisome proliferator-activated receptors-δ (PPARδ) expression has been observed after spinal cord injury (SCI). Increase of PPARδ may improve the damage in SCI. Telmisartan, the antihypertensive agent, has been mentioned to increase the expression of PPARδ. Thus, we are going to screen the effectiveness of telmisartan in SCI for the development of it in clinical application. METHODS In the present study, we used compressive SCI in rats. Telmisartan was then used to evaluate the influence in rats after SCI. Change in PPARδ expression was identified by Western blots. Also, behavioral tests were performed to check the recovery of damage. RESULTS Recovery of damage from SCI was observed in telmisartan-treated rats. Additionally, this action of telmisartan was inhibited by GSK0660 at the dose sufficient to block PPARδ. However, metformin at the dose enough to activate adenosine monophosphate-activated protein kinase failed to produce similar action as telmisartan. Thus, mediation of adenosine monophosphate-activated protein kinase in this action of telmisartan can be rule out. Moreover, telmisartan reversed the expressions of PPARδ in rats with SCI. CONCLUSION The obtained data suggest that telmisartan can improve the damage of SCI in rats through an increase in PPARδ expression. Thus, telmisartan is useful to be developed as an agent in the therapy of SCI.
Collapse
Affiliation(s)
- Chien-Min Lin
- Department of Neurosurgery, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| | - Jo-Ting Tsai
- Department of Radiation Oncology, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| | - Chen Kuei Chang
- Department of Neurosurgery, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| | - Juei-Tang Cheng
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan City, Taiwan
| | - Jia-Wei Lin
- Department of Neurosurgery, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| |
Collapse
|
22
|
Barutta F, Bruno G, Grimaldi S, Gruden G. Inflammation in diabetic nephropathy: moving toward clinical biomarkers and targets for treatment. Endocrine 2015; 48:730-42. [PMID: 25273317 DOI: 10.1007/s12020-014-0437-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/21/2014] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN) is a leading cause of end stage renal failure and there is an urgent need to identify new clinical biomarkers and targets for treatment to effectively prevent and slow the progression of the complication. Many lines of evidence show that inflammation is a cardinal pathogenetic mechanism in DN. Studies in animal models of experimental diabetes have demonstrated that there is a low-grade inflammation in the diabetic kidney. Both pharmacological and genetic strategies targeting inflammatory molecules have been shown to be beneficial in experimental DN. In vitro studies have cast light on the cellular mechanisms whereby diabetes triggers inflammation and in turn inflammation magnifies the kidney injury. Translation of this basic science knowledge into potential practical clinical applications is matter of great interest for researchers today. This review focuses on key pro-inflammatory systems implicated in the development of DN: the tumor necrosis factor(TNF)-α/TNF-α receptor system, the monocyte chemoattractant protein-1/CC-chemokine receptor-2 system, and the Endocannabinoid system that have been selected as they appear particularly promising for future clinical applications.
Collapse
Affiliation(s)
- Federica Barutta
- Department of Medical Sciences, University of Turin, C/so AM Dogliotti 14, Turin, Italy
| | | | | | | |
Collapse
|
23
|
Kimura H, Mikami D, Kamiyama K, Sugimoto H, Kasuno K, Takahashi N, Yoshida H, Iwano M. Telmisartan, a possible PPAR-δ agonist, reduces TNF-α-stimulated VEGF-C production by inhibiting the p38MAPK/HSP27 pathway in human proximal renal tubular cells. Biochem Biophys Res Commun 2014; 454:320-7. [PMID: 25450396 DOI: 10.1016/j.bbrc.2014.10.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 10/15/2014] [Indexed: 12/17/2022]
Abstract
Vascular endothelial growth factor-C (VEGF-C) is a main inducer of inflammation-associated lymphangiogenesis in various inflammatory disorders including chronic progressive kidney diseases, for which angiotensin II receptor type 1 blockers (ARBs) are widely used as the main treatment. Although proximal renal tubular cells may affect the formation of lymphatic vessels in the interstitial area by producing VEGF-C, the molecular mechanisms of VEGF-C production and its manipulation by ARB have not yet been examined in human proximal renal tubular epithelial cells (HPTECs). In the present study, TNF-α dose-dependently induced the production of VEGF-C in HPTECs. The TNF-α-induced production of VEGF-C was mediated by the phosphorylation of p38MAPK and HSP27, but not by that of ERK or NFkB. Telmisartan, an ARB that can activate the peroxisome proliferator-activated receptor (PPAR), served as a PPAR-δ activator and reduced the TNF-α-stimulated production of VEGF-C. This reduction was partially attributed to a PPAR-δ-dependent decrease in p38MAPK phosphorylation. Our results indicate that TNF-α induced the production of VEGF-C in HPTECs by activating p38MAPK/HSP27, and this was partially inhibited by telmisartan in a PPAR-δ dependent manner. These results provide a novel insight into inflammation-associated lymphangiogenesis.
Collapse
Affiliation(s)
- Hideki Kimura
- Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui, Japan.
| | - Daisuke Mikami
- Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kazuko Kamiyama
- Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hidehiro Sugimoto
- Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui, Japan
| | - Kenji Kasuno
- Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Naoki Takahashi
- Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Haruyoshi Yoshida
- Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Division of Nephrology, Obama Municipal Hospital, Obama, Fukui, Japan
| | - Masayuki Iwano
- Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
24
|
Two soluble isoforms of receptors for advanced glycation end products (RAGE) in carotid atherosclerosis: the difference of soluble and endogenous secretory RAGE. J Stroke Cerebrovasc Dis 2014; 23:2540-2546. [PMID: 25282185 DOI: 10.1016/j.jstrokecerebrovasdis.2014.05.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/26/2014] [Accepted: 05/29/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Advanced glycation end products (AGEs) promote atherosclerosis through binding to their receptor, RAGE. Since soluble RAGE (sRAGE) and endogenous secretory RAGE (esRAGE) may suppress AGEs-RAGE signaling, we examined the usefulness of sRAGE and esRAGE as biomarkers of early-stage atherosclerosis. METHODS Serum sRAGE and esRAGE levels were measured in 284 subjects with no history of atherothrombotic diseases. The subjects were divided into high-sRAGE and low-sRAGE groups and high-esRAGE and low-esRAGE groups based on respective median values. We investigated the relationships between these parameters and the following factors: number of metabolic components, maximum intima-media thickness of the common carotid artery (IMT Cmax), carotid plaque calcification, and asymptomatic cerebral white matter lesions. RESULTS The low-sRAGE and low-esRAGE groups exhibited significantly more components of metabolic syndrome than the high-sRAGE and high-esRAGE groups, respectively. IMT Cmax was significantly higher in the low-sRAGE and low-esRAGE groups. Low-sRAGE levels were significantly associated with carotid plaque calcification. Multiple linear regression analysis identified body mass index (BMI), age, and high-sensitivity C-reactive protein as determinants of sRAGE, whereas only BMI was identified as a determinant of esRAGE. CONCLUSIONS We demonstrated that sRAGE and esRAGE are associated with atherosclerotic risk factors in early-stage atherosclerosis, suggesting that their levels evolve in correlation with those of metabolic components and inflammation. Interestingly, low-sRAGE and esRAGE levels are associated with high IMT Cmax, but only low-sRAGE levels were associated with carotid plaque calcification. Thus, sRAGE and esRAGE may reflect different aspects of atherosclerosis in its early stage.
Collapse
|
25
|
Koh EJ, Yoon SJ, Lee SM. Losartan protects liver against ischaemia/reperfusion injury through PPAR-γ activation and receptor for advanced glycation end-products down-regulation. Br J Pharmacol 2014; 169:1404-16. [PMID: 23647130 DOI: 10.1111/bph.12229] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 04/08/2013] [Accepted: 04/15/2013] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE PPAR-γ has been reported to be a protective regulator in ischaemia/reperfusion (I/R) injury. The receptor for advanced glycation end-products (RAGE) plays a major role in the innate immune response, and its expression is associated with PPAR-γ activation. Several angiotensin receptor blockers possess partial agonist activities towards PPAR-γ. Therefore, this study investigated the action of losartan, particularly with regard to PPAR-γ activation and RAGE signalling pathways during hepatic I/R. EXPERIMENTAL APPROACH Mice were subjected to 60 min of ischaemia followed by 6 h of reperfusion. Losartan (0.1, 1, 3 and 10 mg · kg⁻¹) was administered 1 h prior to ischaemia and immediately before reperfusion. GW9662, a PPAR-γ antagonist, was administered 30 min prior to first pretreatment with losartan. KEY RESULTS Losartan enhanced the DNA-binding activity of PPAR-γ in I/R. Losartan attenuated the increased serum alanine aminotransferase activity, TNF-α and IL-6 levels, and nuclear concentrations of NF-κB in I/R. GW9662 reversed these beneficial effects. Losartan caused a decrease in apoptosis as assessed by TUNEL assay, in release of cytochrome c and in cleavage of caspase-3, and these effects were abolished by GW9662 administration. Losartan attenuated not only I/R-induced RAGE overexpression, but also its downstream early growth response protein-1-dependent macrophage inflammatory protein 2 level; phosphorylation of p38, ERK and JNK; and subsequent c-Jun phosphorylation. GW9662 reversed these effects of losartan administration. CONCLUSIONS AND IMPLICATIONS Our findings suggest that losartan ameliorates I/R-induced liver damage through PPAR-γ activation and down-regulation of the RAGE signalling pathway.
Collapse
Affiliation(s)
- Eun-Ji Koh
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | | | | |
Collapse
|
26
|
Wu J, Lin H, Liu D, Liu J, Wang N, Mei X, Sun J, Yang G, Zhang X. The protective effect of telmisartan in Type 2 diabetes rat kidneys is related to the downregulation of thioredoxin-interacting protein. J Endocrinol Invest 2013; 36:453-9. [PMID: 23211392 DOI: 10.3275/8764] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Thioredoxin-interacting protein (Txnip), an inhibitor of thioredoxin (Trx), increases in diabetic nephropathy and promotes oxidative stress. The angiotensin II (Ang II) receptor blocker telmisartan may protect renal function in diabetic models and patients via multiple effects including antioxidation. However, its mechanism has not been fully elucidated, and its relationship to Txnip remains unclear. AIM This study aimed to investigate whether telmisartan ameliorates oxidative stress by regulating Txnip and Trx expression in Type 2 diabetic rat kidneys and explore the possible relationship between renoprotection by telmisartan and Txnip. METHODS Twenty-one rats were equally divided into control (C), streptozotocin-induced diabetic (D), and telmisartan- treated diabetic (T) groups. Txnip and Trx expression in rat kidneys was analyzed by immunohistochemistry, RTPCR, and western blot. Peroxisome proliferator-activated receptor- γ (PPARγ), NADPH oxidase activity, and parameters of renal function and oxidative stress were also measured. RESULTS Trx and PPARγ were significantly decreased, and Txnip expression and NADPH oxidase activity markedly increased, in the D and T groups compared to the C group. After telmisartan treatment, Trx and PPARγ were upregulated, while Txnip expression and NADPH oxidase activity were downregulated. Parameters of renal function and oxidative stress were improved by telmisartan. CONCLUSION Telmisartan ameliorates oxidative stress and protects renal function in Type 2 diabetic rat kidneys. The downregulation of Txnip by telmisartan may be associated with PPARγ activation.
Collapse
Affiliation(s)
- J Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Noda K, Hosoya M, Nakajima S, Ohashi J, Fukumoto Y, Shimokawa H. Anti-atherogenic effects of the combination therapy with olmesartan and azelnidipine in diabetic apolipoprotein E-deficient mice. TOHOKU J EXP MED 2013; 228:305-15. [PMID: 23124103 DOI: 10.1620/tjem.228.305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many studies have aimed to identify anti-atherogenic agents in cardiovascular medicine. We have recently demonstrated that the combination therapy with olmesartan (OLM), an angiotensin II receptor blocker, and azelnidipine (AZL), a dihydroprydine calcium-channel blocker, improves endothelial function in diabetic Apolipoprotein-deficient (ApoE(-/-)) mice. In the present study, we examined whether this combination therapy also inhibits atherosclerosis in mice. We used male control and streptozocin-induced diabetic ApoE(-/-) mice. Diabetic ApoE(-/-) mice were orally treated for 5 weeks with vehicle (Untreated), OLM (30 mg/kg/day), AZL (10 mg/kg/day), their combination (OLM+AZL), or hydralazine (HYD, 5 mg/kg/day) as an antihypertensive control. At 5 weeks, systolic blood pressure was significantly elevated in Untreated but was normalized in OLM+AZL and HYD. The atherosclerosis area in the thoracic aorta, perivascular fibrosis and medial thickness of the coronary arteries were increased in Untreated and were ameliorated in OLM+AZL but not in HYD. Staining with a fluorescent probe dihydroethidium showed that production of reactive oxygen species was increased in Untreated, and ameliorated in OLM+AZL. Consistent with these findings, macrophage infiltration in the kidney and the expression of receptor for advanced glycation end-products in the heart, kidney and liver were increased in Untreated and were all ameliorated in OLM+AZL, associated with up-regulation of endothelial NO syntheses (eNOS). In conclusion, the combination therapy with OLM and AZL exerts anti-atherogenic effect in diabetic ApoE(-/-) mice through suppression of oxidative stress and activation of eNOS, independent of its blood pressure-lowering effects. Clinically, this combination therapy may be useful for patients with hypertension, hyperlipidemia and diabetes.
Collapse
Affiliation(s)
- Kazuki Noda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Michel MC, Foster C, Brunner HR, Liu L. A systematic comparison of the properties of clinically used angiotensin II type 1 receptor antagonists. Pharmacol Rev 2013; 65:809-48. [PMID: 23487168 DOI: 10.1124/pr.112.007278] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Angiotensin II type 1 receptor antagonists (ARBs) have become an important drug class in the treatment of hypertension and heart failure and the protection from diabetic nephropathy. Eight ARBs are clinically available [azilsartan, candesartan, eprosartan, irbesartan, losartan, olmesartan, telmisartan, valsartan]. Azilsartan (in some countries), candesartan, and olmesartan are orally administered as prodrugs, whereas the blocking action of some is mediated through active metabolites. On the basis of their chemical structures, ARBs use different binding pockets in the receptor, which are associated with differences in dissociation times and, in most cases, apparently insurmountable antagonism. The physicochemical differences between ARBs also manifest in different tissue penetration, including passage through the blood-brain barrier. Differences in binding mode and tissue penetration are also associated with differences in pharmacokinetic profile, particularly duration of action. Although generally highly specific for angiotensin II type 1 receptors, some ARBs, particularly telmisartan, are partial agonists at peroxisome proliferator-activated receptor-γ. All of these properties are comprehensively reviewed in this article. Although there is general consensus that a continuous receptor blockade over a 24-hour period is desirable, the clinical relevance of other pharmacological differences between individual ARBs remains to be assessed.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Clinical Development & Medical Affairs, Boehringer Ingelheim, 55216 Ingelheim, Germany.
| | | | | | | |
Collapse
|
29
|
Abstract
Insulin resistance affects the vascular endothelium, and contributes to systemic insulin resistance by directly impairing the actions of insulin to redistribute blood flow as part of its normal actions driving muscle glucose uptake. Impaired vascular function is a component of the insulin resistance syndrome, and is a feature of type 2 diabetes. On this basis, the vascular endothelium has emerged as a therapeutic target where the intent is to improve systemic metabolic state by improving vascular function. We review the available literature presenting studies in humans, evaluating the effects of metabolically targeted and vascular targeted therapies on insulin action and systemic metabolism. Therapies that improve systemic insulin resistance exert strong concurrent effects to improve vascular function and vascular insulin action. RAS-acting agents and statins have widely recognized beneficial effects on vascular function but have not uniformly produced the hoped-for metabolic benefits. These observations support the notion that systemic metabolic benefits can arise from therapies targeted at the endothelium, but improving vascular insulin action does not result from all treatments that improve endothelium-dependent vasodilation. A better understanding of the mechanisms of insulin's actions in the vascular wall will advance our understanding of the specificity of these responses, and allow us to better target the vasculature for metabolic benefits.
Collapse
Affiliation(s)
- Kieren J Mather
- Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
30
|
Panee J. Monocyte Chemoattractant Protein 1 (MCP-1) in obesity and diabetes. Cytokine 2012; 60:1-12. [PMID: 22766373 DOI: 10.1016/j.cyto.2012.06.018] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/30/2012] [Accepted: 06/04/2012] [Indexed: 12/23/2022]
Abstract
Monocyte Chemoattractant Protein-1 (MCP-1) is the first discovered and most extensively studied CC chemokine, and the amount of studies on its role in the etiologies of obesity- and diabetes-related diseases have increased exponentially during the past two decades. This review attempted to provide a panoramic perspective of the history, regulatory mechanisms, functions, and therapeutic strategies of this chemokine. The highlights of this review include the roles of MCP-1 in the development of obesity, diabetes, cardiovascular diseases, insulitis, diabetic nephropathy, and diabetic retinopathy. Therapies that specifically or non-specifically inhibit MCP-1 overproduction have been summarized.
Collapse
Affiliation(s)
- Jun Panee
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street BSB 222, Honolulu, HI 96813, USA.
| |
Collapse
|
31
|
PPARγ as a therapeutic target in diabetic nephropathy and other renal diseases. Curr Opin Nephrol Hypertens 2012; 21:97-105. [PMID: 22143250 DOI: 10.1097/mnh.0b013e32834de526] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear transcription factor that regulates many important physiological processes including glucose and lipid metabolism, energy homeostasis, cell proliferation, inflammation, immunity and reproduction. The current review aims to summarize and discuss recent findings evaluating the protective effects of PPARγ against kidney diseases with a focus on diabetic nephropathy. We will also delineate the potential underlying mechanisms. RECENT FINDINGS PPARγ plays important roles in renal physiology and pathophysiology. Agonists of PPARγ exert protective effects against various kidney diseases including diabetic nephropathy, ischemic renal injury, IgA nephropathy, chemotherapy-associated kidney damage, polycystic kidney diseases and age-related kidney diseases via both systemic and renal actions. SUMMARY PPARγ agonists are effective in delaying and even preventing the progression of many renal diseases, especially diabetic nephropathy. PPARγ may represent a promising target for the treatment of renal diseases.
Collapse
|
32
|
Microalbuminuria and sRAGE in high-risk hypertensive patients treated with nifedipine/telmisartan combination treatment: a substudy of TALENT. Mediators Inflamm 2012; 2012:874149. [PMID: 22474401 PMCID: PMC3306936 DOI: 10.1155/2012/874149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/15/2011] [Accepted: 11/24/2011] [Indexed: 01/17/2023] Open
Abstract
Some antihypertensive drugs have also renoprotective and anti-inflammatory properties that go beyond their effect on blood pressure. It has been suggested that microalbuminuria and glomerular filtration rate (GFR) are associated with circulating levels of the soluble form of the receptor, sRAGE (soluble receptor for advanced glycation ends-products). In the present analysis, we used data from the TALENT study to evaluate soluble receptor for advanced glycation end-products (sRAGE) plasma levels in patients with hypertension and high-cardiovascular risk-treated nifedipine and telmisartan in combination. Treatment with nifedipine-telmisartan significantly decreased mean systolic and diastolic ambulatory blood pressure and resulted in a significant increase in sRAGE plasma concentrations after 24 weeks of therapy. We concluded that in hypertensive patients with early-stage renal disease, sRAGE concentrations are not influenced by either microalbuminuria or GFR. Long-term treatment with a combination of nifedipine-telmisartan may have a beneficial effect increasing sRAGE plasma levels, thus exerting an atheroprotective and anti-inflammatory activity.
Collapse
|
33
|
Yamagishi SI, Maeda S, Matsui T, Ueda S, Fukami K, Okuda S. Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes. Biochim Biophys Acta Gen Subj 2011; 1820:663-71. [PMID: 21440603 DOI: 10.1016/j.bbagen.2011.03.014] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 03/21/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND A non-enzymatic reaction between reducing sugars and amino groups of proteins, lipids and nucleic acids contributes to the aging of macromolecules, whose process has been known to progress at an accelerated rate under hyperglycemic and/or oxidative stress conditions. Over a course of days to weeks, early glycation products undergo further reactions such as rearrangements and dehydration to become irreversibly cross-linked, fluorescent protein derivatives termed advanced glycation end products (AGEs). SCOPE OF REVIEW In this paper, we review the role of AGE-oxidative stress axis and its therapeutic interventions in vascular complications in diabetes. MAJOR CONCLUSIONS AGEs elicit oxidative stress generation and subsequently cause inflammatory and thrombogenic reactions in various types of cells via interaction with a receptor for AGEs (RAGE), thereby being involved in vascular complications in diabetes. In addition, mitochondrial superoxide generation has been shown to play an important role in the formation and accumulation of AGEs under diabetic conditions. Further, we have recently found that a pathophysiological crosstalk between AGE-RAGE axis and renin-angiotensin system (RAS) could contribute to the progression of vascular damage in diabetes. GENERAL SIGNIFICANCE These observations suggest that inhibition of AGE-RAGE-oxidative stress axis or blockade of its interaction with RAS is a novel therapeutic strategy for preventing vascular complications in diabetes.
Collapse
Affiliation(s)
- Sho-ichi Yamagishi
- Department of Pathophysiology, Kurume University School of Medicine, Kurume, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Modulation of advanced glycation end products by candesartan in patients with diabetic kidney disease--a dose-response relationship study. Am J Ther 2011; 17:553-8. [PMID: 19829095 DOI: 10.1097/mjt.0b013e3181b96c27] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Advanced glycation end products (AGEs) are proinflammatory mediators implicated in the pathogenesis of diabetic kidney disease (DKD). In this study, dose-dependent effects of angiotensin receptor blockade on urinary AGEs were evaluated in patients with DKD. Patients with type 2 diabetes and proteinuria ≥500 mg/d (n = 11) were compared with diabetic controls without DKD (n = 10) and normal controls (n = 11). After a 2-week washout period, DKD participants were treated with candesartan doses progressively increasing from 8, 16, 32, to 64 mg/d every 3 weeks for a total of 12 weeks. Other antihypertensive agents were adjusted to maintain stable blood pressure. At baseline and after each dosing period, blood pressure measurements and 24-hour urine collections were obtained. Urinary carboxymethyl lysine, an AGE biomarker, was reduced over the 12-week dose escalation protocol (r = 0.38, P = 0.01) in DKD participants. Creatinine clearance increased slightly, but albuminuria was unaffected by candesartan administration. Baseline urinary transforming growth factor-β₁ excretion was lower in DKD participants than in controls and did not change during the study period. Reducing kidney exposure to AGEs may be a mechanism of protection by angiotensin receptor blockade in DKD. AGEs may also impact the diabetic kidney through mechanisms independent of transforming growth factor-β₁.
Collapse
|
35
|
Lepenies J, Hewison M, Stewart PM, Quinkler M. Renal PPARγ mRNA expression increases with impairment of renal function in patients with chronic kidney disease. Nephrology (Carlton) 2011; 15:683-91. [PMID: 21040163 DOI: 10.1111/j.1440-1797.2010.01339.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AIM Peroxisome proliferator-activated receptor gamma (PPARγ) is generally accepted as renoprotective factor in type 2 diabetes mellitus, and PPARγ agonists have been reported to reduce albuminuria. However, little is known about renal PPARγ expression in chronic kidney disease, and especially human data are scarce. We hypothesized that renal PPARγ expression is associated with extent of proteinuria, kidney function, histological diagnosis and inflammatory mediators. Therefore, we investigated PPARγ mRNA expression in human kidney biopsies. METHODS We quantified PPARγ mRNA as well as the expression of macrophage chemoattractant protein-1, transforming growth factor beta-1 and interleukin-6 in 64 human kidney biopsies from patients with chronic kidney disease and mild-to-marked proteinuria of diverse aetiology. We measured renal function, and macrophage invasion was quantified by CD68 and vascularization by CD34 immunostaining. RESULTS PPARγ mRNA expression correlated inversely with renal function. Higher blood pressure levels were associated with higher PPARγ expression levels. PPARγ mRNA expression correlated significantly (P<0.001) with macrophage chemoattractant protein-1 mRNA expression and showed a negative trend with transforming growth factor beta-1 mRNA expression. No differences in PPARγ expression were detected with regard to extent of proteinuria, histological diagnosis, macrophage invasion, interleukin-6 expression, and age or body mass index. CONCLUSIONS PPARγ expression increases with loss of renal function and may be an important factor in maintaining normal renal function serving as a key protective mechanism to renal injury.
Collapse
Affiliation(s)
- Julia Lepenies
- KfH Dialysis Center Bismarckstrasse, Clinical Endocrinology, Charite Campus Mitte, Charite University Medicine Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
36
|
Yamagishi SI, Matsui T. Advanced glycation end products, oxidative stress and diabetic nephropathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010. [PMID: 20716934 PMCID: PMC2952094 DOI: 10.4161/oxim.3.2.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
About 246 million people worldwide had diabetes in 2007. The global figure of people with diabetes is projected to increase to 370 million in 2030. As the prevalence of diabetes has risen to epidemic proportions worldwide, diabetic nephropathy has become one of the most challenging health problems. Therapeutic options such as strict blood glucose and blood pressure controls are effective for preventing diabetic nephropathy, but are far from satisfactory, and the number of diabetic patients on end-stage renal disease is still increasing. Therefore, a novel therapeutic strategy that could halt the progression of diabetic nephropathy should be developed. There is accumulating evidence that advanced glycation end products (AGEs), senescent macroprotein derivatives formed at an accelerated rate under diabetes, play a role in diabetic nephropathy via oxidative stress generation. In this paper, we review the pathophysiological role of AGEs and their receptor (RAGE)-oxidative stress system in diabetic nephropathy.
Collapse
Affiliation(s)
- Sho-Ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan.
| | | |
Collapse
|
37
|
Washida K, Ihara M, Nishio K, Fujita Y, Maki T, Yamada M, Takahashi J, Wu X, Kihara T, Ito H, Tomimoto H, Takahashi R. Nonhypotensive Dose of Telmisartan Attenuates Cognitive Impairment Partially Due to Peroxisome Proliferator-Activated Receptor-γ Activation in Mice With Chronic Cerebral Hypoperfusion. Stroke 2010; 41:1798-806. [DOI: 10.1161/strokeaha.110.583948] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kazuo Washida
- From the Department of Neurology (K.W., M.I., K.N., Y.F., T.M., M.Y., H.I., R.T.), Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan; the Department of Neurology (H.T.), Graduate School of Medicine, Mie University, Tsu, Japan; the Department of Biological Repair (J.T.), Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan; and the Department of Neuroscience for Drug Discovery Research (X.W., T.K.), Kyoto University, Kyoto, Japan
| | - Masafumi Ihara
- From the Department of Neurology (K.W., M.I., K.N., Y.F., T.M., M.Y., H.I., R.T.), Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan; the Department of Neurology (H.T.), Graduate School of Medicine, Mie University, Tsu, Japan; the Department of Biological Repair (J.T.), Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan; and the Department of Neuroscience for Drug Discovery Research (X.W., T.K.), Kyoto University, Kyoto, Japan
| | - Keiko Nishio
- From the Department of Neurology (K.W., M.I., K.N., Y.F., T.M., M.Y., H.I., R.T.), Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan; the Department of Neurology (H.T.), Graduate School of Medicine, Mie University, Tsu, Japan; the Department of Biological Repair (J.T.), Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan; and the Department of Neuroscience for Drug Discovery Research (X.W., T.K.), Kyoto University, Kyoto, Japan
| | - Youshi Fujita
- From the Department of Neurology (K.W., M.I., K.N., Y.F., T.M., M.Y., H.I., R.T.), Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan; the Department of Neurology (H.T.), Graduate School of Medicine, Mie University, Tsu, Japan; the Department of Biological Repair (J.T.), Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan; and the Department of Neuroscience for Drug Discovery Research (X.W., T.K.), Kyoto University, Kyoto, Japan
| | - Takakuni Maki
- From the Department of Neurology (K.W., M.I., K.N., Y.F., T.M., M.Y., H.I., R.T.), Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan; the Department of Neurology (H.T.), Graduate School of Medicine, Mie University, Tsu, Japan; the Department of Biological Repair (J.T.), Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan; and the Department of Neuroscience for Drug Discovery Research (X.W., T.K.), Kyoto University, Kyoto, Japan
| | - Mahito Yamada
- From the Department of Neurology (K.W., M.I., K.N., Y.F., T.M., M.Y., H.I., R.T.), Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan; the Department of Neurology (H.T.), Graduate School of Medicine, Mie University, Tsu, Japan; the Department of Biological Repair (J.T.), Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan; and the Department of Neuroscience for Drug Discovery Research (X.W., T.K.), Kyoto University, Kyoto, Japan
| | - Jun Takahashi
- From the Department of Neurology (K.W., M.I., K.N., Y.F., T.M., M.Y., H.I., R.T.), Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan; the Department of Neurology (H.T.), Graduate School of Medicine, Mie University, Tsu, Japan; the Department of Biological Repair (J.T.), Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan; and the Department of Neuroscience for Drug Discovery Research (X.W., T.K.), Kyoto University, Kyoto, Japan
| | - Xiaofeng Wu
- From the Department of Neurology (K.W., M.I., K.N., Y.F., T.M., M.Y., H.I., R.T.), Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan; the Department of Neurology (H.T.), Graduate School of Medicine, Mie University, Tsu, Japan; the Department of Biological Repair (J.T.), Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan; and the Department of Neuroscience for Drug Discovery Research (X.W., T.K.), Kyoto University, Kyoto, Japan
| | - Takeshi Kihara
- From the Department of Neurology (K.W., M.I., K.N., Y.F., T.M., M.Y., H.I., R.T.), Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan; the Department of Neurology (H.T.), Graduate School of Medicine, Mie University, Tsu, Japan; the Department of Biological Repair (J.T.), Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan; and the Department of Neuroscience for Drug Discovery Research (X.W., T.K.), Kyoto University, Kyoto, Japan
| | - Hidefumi Ito
- From the Department of Neurology (K.W., M.I., K.N., Y.F., T.M., M.Y., H.I., R.T.), Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan; the Department of Neurology (H.T.), Graduate School of Medicine, Mie University, Tsu, Japan; the Department of Biological Repair (J.T.), Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan; and the Department of Neuroscience for Drug Discovery Research (X.W., T.K.), Kyoto University, Kyoto, Japan
| | - Hidekazu Tomimoto
- From the Department of Neurology (K.W., M.I., K.N., Y.F., T.M., M.Y., H.I., R.T.), Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan; the Department of Neurology (H.T.), Graduate School of Medicine, Mie University, Tsu, Japan; the Department of Biological Repair (J.T.), Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan; and the Department of Neuroscience for Drug Discovery Research (X.W., T.K.), Kyoto University, Kyoto, Japan
| | - Ryosuke Takahashi
- From the Department of Neurology (K.W., M.I., K.N., Y.F., T.M., M.Y., H.I., R.T.), Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan; the Department of Neurology (H.T.), Graduate School of Medicine, Mie University, Tsu, Japan; the Department of Biological Repair (J.T.), Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan; and the Department of Neuroscience for Drug Discovery Research (X.W., T.K.), Kyoto University, Kyoto, Japan
| |
Collapse
|
38
|
Involvement of TAGE-RAGE System in the Pathogenesis of Diabetic Retinopathy. J Ophthalmol 2010; 2010:170393. [PMID: 20652047 PMCID: PMC2905918 DOI: 10.1155/2010/170393] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 03/29/2010] [Indexed: 02/07/2023] Open
Abstract
Diabetic complications are a leading cause of acquired blindness, end-stage renal failure, and accelerated atherosclerosis, which are associated with the disabilities and high mortality rates seen in diabetic patients. Continuous hyperglycemia is involved in the pathogenesis of diabetic micro- and macrovascular complications via various metabolic pathways, and numerous hyperglycemia-induced metabolic and hemodynamic conditions exist, including increased generation of various types of advanced glycation end-products (AGEs). Recently, we demonstrated that glyceraldehyde-derived AGEs, the predominant structure of toxic AGEs (TAGE), play an important role in the pathogenesis of angiopathy in diabetic patients. Moreover, recent evidence suggests that the interaction of TAGE with the receptor for AGEs (RAGE) elicits oxidative stress generation in numerous types of cells, all of which may contribute to the pathological changes observed in diabetic complications. In this paper, we discuss the pathophysiological role of the TAGE-RAGE system in the development and progression of diabetic retinopathy.
Collapse
|
39
|
Rőszer T, Ricote M. PPARs in the Renal Regulation of Systemic Blood Pressure. PPAR Res 2010; 2010:698730. [PMID: 20613959 PMCID: PMC2896854 DOI: 10.1155/2010/698730] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 02/24/2010] [Accepted: 03/31/2010] [Indexed: 01/02/2023] Open
Abstract
Recent research has revealed roles for the peroxisome proliferator activated receptor (PPAR) family of transcription factors in blood pressure regulation, expanding the possible therapeutic use of PPAR ligands. PPARalpha and PPARgamma modulate the renin-angiotensin-aldosterone system (RAAS), a major regulator of systemic blood pressure and interstitial fluid volume by transcriptional control of renin, angiotensinogen, angiotensin converting enzyme (ACE) and angiotensin II receptor 1 (AT-R1). Blockade of RAAS is an important therapeutic target in hypertension management and attenuates microvascular damage, glomerular inflammation and left ventricular hypertrophy in hypertensive patients and also show antidiabetic effects. The mechanisms underlying the benefits of RAAS inhibition appear to involve PPARgamma-regulated pathways. This review summarizes current knowledge on the role of PPARs in the transcriptional control of the RAAS and the possible use of PPAR ligands in the treatment of RAAS dependent hypertension.
Collapse
Affiliation(s)
- Tamás Rőszer
- Department of Regenerative Cardiology, Spanish National Cardiovascular Research Center (CNIC), 28029 Madrid, Spain
| | - Mercedes Ricote
- Department of Regenerative Cardiology, Spanish National Cardiovascular Research Center (CNIC), 28029 Madrid, Spain
| |
Collapse
|
40
|
|
41
|
Yamagishi SI, Matsui T. Advanced glycation end products, oxidative stress and diabetic nephropathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:101-8. [PMID: 20716934 PMCID: PMC2952094 DOI: 10.4161/oxim.3.2.11148] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 01/07/2010] [Accepted: 01/07/2010] [Indexed: 12/28/2022]
Abstract
About 246 million people worldwide have diabetes in 2007. The global figure of people with diabetes is projected to increase to 370 million in 2030. As the prevalence of diabetes has risen to epidemic proportions worldwide, diabetic nephropathy has become one of the most challenging health problems. Therapeutic options such as strict blood glucose and blood pressure controls are effective for preventing diabetic nephropathy, but are far from satisfactory, and the number of diabetic patients on end-stage renal disease is still increasing. Therefore, a novel therapeutic strategy that could halt the progression of diabetic nephropathy should be developed. There is accumulating evidence that advanced glycation end products (AGEs), senescent macroprotein derivatives formed at an accelerated rate under diabetes, play a role in diabetic nephropathy via oxidative stress generation. In this paper, we review the pathophysiological role of AGEs and their receptor (RAGE)-oxidative stress system in diabetic nephropathy.
Collapse
Affiliation(s)
- Sho-Ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan.
| | | |
Collapse
|
42
|
Irbesartan inhibits advanced glycation end product (AGE)-induced proximal tubular cell injury in vitro by suppressing receptor for AGEs (RAGE) expression. Pharmacol Res 2010; 61:34-9. [PMID: 19635564 DOI: 10.1016/j.phrs.2009.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/20/2009] [Accepted: 07/20/2009] [Indexed: 01/13/2023]
Abstract
Renin-angiotensin system (RAS) plays a central role in the development and progression of diabetic nephropathy. Further, there is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) axis also contributes to diabetic nephropathy. However, the pathophysiological crosstalk between the RAS and AGE-RAGE system in tubular cell injury, which is more important than glomerulopathy in terms of renal prognosis in diabetic nephropathy, remains unknown. In this study, we examined whether and how irbesartan, an angiotensin II type 1 receptor blocker (ARB), inhibited the AGE-induced tubular cell apotptosis and damage in vitro. Gene expression was analyzed by quantitative real-time reverse transcription-polymerase chain reactions. Intracellular formation of reactive oxygen species (ROS) was measured with dihydroethidium staining. Apoptosis levels were evaluated for DNA fragments with an enzyme-linked immunosorbent assay kit and for caspase-3 activity. Irbesartan inhibited the AGE-induced up-regulation of RAGE mRNA levels and subsequently reduced ROS generation in human proximal tubular cells. AGEs induced apoptosis and increased inflammatory, thrombogenic and fibrogenic gene expressions in tubular cells, which were also blocked by the treatment with irbesartan. Our present data suggest that there exists a crosstalk between the RAS and AGE-RAGE system in tubular cell apoptosis and damage. Blockade of the RAS by irbesartan may play a protective role against tubular injury in diabetes by attenuating the deleterious effects of AGEs via down-regulation of RAGE.
Collapse
|
43
|
Ohbayashi H, Minatoguchi S, Aoyama T, Fujiwara H. Open-label, Randomized Crossover Study Between Telmisartan and Valsartan on Improving Insulin Resistance and Adipocytokines in Nondiabetic Patients with Mild Hypertension. J Rural Med 2010; 5:165-74. [PMID: 25649195 PMCID: PMC4309358 DOI: 10.2185/jrm.5.165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: The comparative effect of telmisartan and valsartan upon insulin
resistance and adipocytokines in nondiabetic patients with mild hypertension is
unclear. Methods: Fifty nondiabetic patients with untreated mild hypertension were
randomly assigned to telmisartan (40 mg/day) and valsartan (80 mg/day) groups and were
switched in a crossover manner at 3-month intervals. Serum leptin, adiponectin, hsCRP and
the HOMA-R were measured before and at 3 months during each treatment period. Results: The HOMA-R significantly improved over the 3 months in the high
insulin resistance group (HOMA-R>/=2.5) during the telmisartan treatment period
(p=0.042), but not during the valsartan period. Both telmisartan and valsartan
significantly decreased serum leptin levels in each female group during each treatment
period (p<0.001 and p<0.001, respectively), but not in the male groups. Serum
adiponectin did not increase in either treatment group. Serum hsCRP levels also
significantly decreased in the high hsCRP subjects (>/=0.1) of both treatment groups
(p=0.044 and p=0.015, respectively). Conclusions: Telmisartan significantly improved insulin resistance, possibly
through the effect on PPAR-gamma, while both telmisartan and valsartan significantly
decreased serum leptin levels in female groups and hsCRP in both genders, suggesting no
significantly different effects on adipocytokines by either drug in nondiabetic patients
with mild hypertension.
Collapse
Affiliation(s)
- Hiroyuki Ohbayashi
- Department of Internal Medicine, JA Gifu Tohno-Kousei Hospital
- Second Department of Internal Medicine, Gifu University School of Medicine
| | - Shinya Minatoguchi
- Second Department of Internal Medicine, Gifu University School of Medicine
| | - Takuma Aoyama
- Second Department of Internal Medicine, Gifu University School of Medicine
| | - Hisayoshi Fujiwara
- Second Department of Internal Medicine, Gifu University School of Medicine
- Department of Internal Medicine, Hyogo Prefectural Amagasaki Hospital
| |
Collapse
|
44
|
Negre-Salvayre A, Salvayre R, Augé N, Pamplona R, Portero-Otín M. Hyperglycemia and glycation in diabetic complications. Antioxid Redox Signal 2009; 11:3071-109. [PMID: 19489690 DOI: 10.1089/ars.2009.2484] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a multifactorial disease, classically influenced by genetic determinants of individual susceptibility and by environmental accelerating factors, such as lifestyle. It is considered a major health concern,as its incidence is increasing at an alarming rate, and the high invalidating effects of its long-term complications affect macro- and microvasculature, heart, kidney, eye, and nerves. Increasing evidence indicates that hyperglycemia is the initiating cause of the tissue damage occurring in diabetes, either through repeated acute changes in cellular glucose metabolism, or through the long-term accumulation of glycated biomolecules and advanced glycation end products (AGEs). AGEs represent a heterogeneous group of chemical products resulting from a nonenzymatic reaction between reducing sugars and proteins, lipids, nucleic acids, or a combination of these.The glycation process (glucose fixation) affects circulating proteins (serum albumin, lipoprotein, insulin, hemoglobin),whereas the formation of AGEs implicates reactive intermediates such as methylglyoxal. AGEs form cross-links on long-lived extracellular matrix proteins or react with their specific receptor RAGE, resulting inoxidative stress and proinflammatory signaling implicated in endothelium dysfunction, arterial stiffening, and microvascular complications. This review summarizes the mechanism of glycation and of AGEs formation and the role of hyperglycemia, AGEs, and oxidative stress in the pathophysiology of diabetic complications.
Collapse
|
45
|
Association between the RAGE G82S polymorphism and Alzheimer’s disease. J Neural Transm (Vienna) 2009; 117:97-104. [DOI: 10.1007/s00702-009-0334-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
|
46
|
Regulation of advanced glycation end product (AGE)-receptor (RAGE) system by PPAR-gamma agonists and its implication in cardiovascular disease. Pharmacol Res 2009; 60:174-8. [DOI: 10.1016/j.phrs.2009.01.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 01/19/2009] [Accepted: 01/19/2009] [Indexed: 11/19/2022]
|
47
|
Influence of the Pro12Ala polymorphism of PPAR-gamma on age at onset and sRAGE levels in Alzheimer's disease. Brain Res 2009; 1291:133-9. [PMID: 19631630 DOI: 10.1016/j.brainres.2009.07.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/09/2009] [Accepted: 07/13/2009] [Indexed: 12/31/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) has been described to have a role in the modulation of various genes involved in Abeta homeostasis, inflammation, and energy metabolism, making it a candidate gene for risk of Alzheimer's disease (AD). A functional polymorphism in exon 2 of the PPAR-gamma gene has been related to AD, but the effects are inconsistent across studies. To determine the role of PPAR-gamma in genetic susceptibility to AD in a representative Chinese sample, we genotyped 362 AD patients and 370 healthy controls for PPAR-gamma Pro12Ala polymorphism by polymerase chain reaction-restriction fragment length polymorphism method. We also examined the potential impact of this polymorphism on plasma level of soluble receptor for advanced glycation end products (sRAGE), a decoy receptor whose reduction has been associated with a higher risk of AD. Our results suggest that PPAR-gamma Pro12Ala polymorphism was not associated with an increased risk of AD in the overall sample. Stratification analysis revealed that the PPAR-gamma Pro/Ala genotype may be associated with the development of early-onset AD in the individuals without APOE epsilon4 allele (OR=3.76, 95% CI=1.10-12.84; p=0.03), but this association became insignificant after Bonferroni correction (p (corr)=0.10). Moreover, in the subgroup of APOE epsilon4 noncarriers, Kaplan-Meier survival analyses indicated that AD patients with the Pro/Ala genotype presented with disease onset 4.6 years earlier than carriers of Pro/Pro genotype. Further investigation revealed that AD patients carrying Pro/Ala genotype had significantly lower plasma sRAGE levels than patients with Pro/Pro genotype. These findings suggest that the functional PPAR-gamma Pro12Ala polymorphism may modify the age at onset of AD.
Collapse
|
48
|
Bibliography. Current world literature. Nutrition and metabolism. Curr Opin Lipidol 2009; 20:63-72. [PMID: 19106709 DOI: 10.1097/mol.0b013e32832402a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
49
|
Yamagishi SI, Nakamura K, Matsui T, Ueda S, Fukami K, Okuda S. Agents that block advanced glycation end product (AGE)-RAGE (receptor for AGEs)-oxidative stress system: a novel therapeutic strategy for diabetic vascular complications. Expert Opin Investig Drugs 2008; 17:983-96. [DOI: 10.1517/13543784.17.7.983] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Sho-ichi Yamagishi
- Kurume University School of Medicine, Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume, 67 Asahi-machi, Kurume 830-0011, Japan ;
| | - Kazuo Nakamura
- Kurume University School of Medicine, Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume, 67 Asahi-machi, Kurume 830-0011, Japan ;
| | - Takanori Matsui
- Kurume University School of Medicine, Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume, 67 Asahi-machi, Kurume 830-0011, Japan ;
| | - Seiji Ueda
- Kurume University School of Medicine, Department of Medicine, Division of Nephrology, Kurume, Japan
| | - Kei Fukami
- Kurume University School of Medicine, Department of Medicine, Division of Nephrology, Kurume, Japan
| | - Seiya Okuda
- Kurume University School of Medicine, Department of Medicine, Division of Nephrology, Kurume, Japan
| |
Collapse
|
50
|
Yamagishi SI, Nakamura K, Matsui T, Ueda S, Noda Y, Imaizumi T. Inhibitors of advanced glycation end products (AGEs): potential utility for the treatment of cardiovascular disease. Cardiovasc Ther 2008; 26:50-8. [PMID: 18466420 DOI: 10.1111/j.1527-3466.2007.00038.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Accelerated atherosclerosis and microvascular complications are the leading causes of coronary heart disease, stroke, blindness, and end-stage renal failure, which could account for disabilities and high mortality rates in patients with diabetes. Recent clinical studies have substantiated the concept of "hyperglycemic memory" in the pathogenesis of cardiovascular disease (CVD) in diabetes. Indeed, the Diabetes Control and Complications Trial-Epidemiology of Diabetes Interventions and Complications (DCCT-EDIC) Research, has revealed that intensive therapy during the DCCT reduces the risk of cardiovascular events by about 50% in type 1 diabetic patients 11 years after the end of the trial. Among various biochemical pathways activated under diabetic conditions, the process of formation and accumulation of advanced glycation end products (AGEs) and their mode of action are most compatible with the theory "hyperglycemic memory." Further, there is a growing body of evidence that AGEs play an important role in CVD in diabetes. These observations suggest that the inhibition of AGEs formation may be a promising target for therapeutic intervention in diabetic vascular complications. Therefore, in this article, we review several agents with inhibitory effects on AGEs formation and their therapeutic implications in CVD in diabetes.
Collapse
Affiliation(s)
- Sho-ichi Yamagishi
- Department of Medicine, Kurume University School of Medicine, Kurume, Japan.
| | | | | | | | | | | |
Collapse
|