1
|
Selc M, Macova R, Babelova A. Novel Strategies Enhancing Bioavailability and Therapeutical Potential of Silibinin for Treatment of Liver Disorders. Drug Des Devel Ther 2024; 18:4629-4659. [PMID: 39444787 PMCID: PMC11498047 DOI: 10.2147/dddt.s483140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Silibinin, a bioactive component found in milk thistle extract (Silybum marianum), is known to have significant therapeutic potential in the treatment of various liver diseases. It is considered a key element of silymarin, which is traditionally used to support liver function. The main mechanisms of action of silibinin are attributed to its antioxidant properties protecting liver cells from damage caused by free radicals. Experimental studies conducted in vitro and in vivo have confirmed its ability to inhibit inflammatory and fibrotic processes, as well as promote the regeneration of damaged liver tissue. Therefore, silibinin represents a promising tool for the treatment of liver diseases. Since the silibinin molecule is insoluble in water and has poor bioavailability in vivo, new perspectives on solving this problem are being sought. The two most promising approaches are the water-soluble derivative silibinin-C-2',3-dihydrogen succinate, disodium salt, and the silibinin-phosphatidylcholine complex. Both drugs are currently under evaluation in liver disease clinical trials. Nevertheless, the mechanism underlying silibinin biological activity is still elusive and its more detailed understanding would undoubtedly increase its potential in the development of effective therapeutic strategies against liver diseases. This review is focused on the therapeutic potential of silibinin and its derivates, approaches to increase the bioavailability and the benefits in the treatment of liver diseases that have been achieved so far. The review discusses the relevant in vitro and in vivo studies that investigated the protective effects of silibinin in various forms of liver damage.
Collapse
Affiliation(s)
- Michal Selc
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Radka Macova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Andrea Babelova
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
2
|
Salem MB, Mohammed DM, Hammam OA, Elzallat M. Mitigation of intrahepatic cholestasis induced by 17α-ethinylestradiol via nanoformulation of Silybum marianum L. BMC Complement Med Ther 2024; 24:51. [PMID: 38263002 PMCID: PMC10804614 DOI: 10.1186/s12906-024-04351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/13/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Cholestasis is an important predisposing factor for hepatocyte damage, liver fibrosis, primary biliary cirrhosis, and even liver failure. Silybum marianum L. (SM) plant is used in teas or eaten in some countries due to its antioxidant and hepatoprotective properties. Because of its low and poor oral bioavailability, so we improve the therapeutic activity of Silybum marianum L. extract (SM) by studying the potential effects of nanoformulation of Silybum marianium L. extract (nano-SM) on 17α-ethinylestradiol (EE)-induced intrahepatic cholestasis. METHODS Thirty female Sprague-Dawley rats were divided into 5 groups (6 rats/group). Group I: Rats were received the treatment vehicle and served as normal group. Group II:Rats were injected daily with EE (10 mg/kg) for five successive days. Group III-V: Rats were injected daily with EE (10 mg/kg) and treated with either Ursodeoxycholic acid (UDCA) (40 mg/kg), SM (100 mg/kg) and nano-SM (100 mg/kg) orally once/day throughout the trialfor five successive days, respectively. RESULTS Nano-SM greatly dampened the increase in serum levels of total and direct bilirubin, alanine aminotransaminase, aspartate aminotransaminase, and alkaline phosphatase caused by EE. Furthermore, nano-SM increased the hepatic contents of reduced glutathione (GSH) and catalase (CAT) and also upregulated the relative hepatic gene expressions of Rho-kinase (ROCK-1), myosin light chain kinase (MLCK), and myosin phosphatase target subunit (MYPT1) compared to the EE-induced group. Administration of nano-SM reduced hepatic lipid peroxidation and downregulated the relative hepatic expressions of the nuclear factor-kappa B (NF-ҡB) and interleukin-1β (IL-1β). In addition, nano-SM improved the histopathological changes induced by EE. CONCLUSION Nano-SM possessed a superior effect over SM, which can be considered an effective protective modality against EE-induced cholestatic liver injury through its antioxidant, anti-inflammatory activities, and enhancing bile acid (BA) efflux.
Collapse
Affiliation(s)
- Maha B Salem
- Pharmacology Department, Theodor Bilharz Research Institute, P.O. box 30, Warrak El-Hadar, Giza, 12411, Imbaba, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Olfat A Hammam
- Pathology Department, Theodor Bilharz Research Institute, P.O. box 30, Warrak El-Hadar, Giza, 12411, Imbaba, Egypt
| | - Mohamed Elzallat
- Immunology Department, Theodor Bilharz Research Institute, P.O. box 30, Warrak El-Hadar, Giza, 12411, Imbaba, Egypt
| |
Collapse
|
3
|
Sarveazad A, Yari A, Imani F, Fayyaz F, Mokhtare M, Babaei-Ghazani A, Yousefifard M, Sarveazad S, Assar S, Shamseddin J, Bahardoust M. The effect of Trolox on the rabbit anal sphincterotomy repair. BMC Gastroenterol 2023; 23:209. [PMID: 37337166 DOI: 10.1186/s12876-023-02842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
INTRODUCTION Fecal incontinence (FI) is caused by external anal sphincter injury. Vitamin E is a potential strategy for anal sphincter muscle repair via its antioxidant, anti-inflammatory, anti-fibrotic, and protective properties against myocyte loss. Thus, we aimed to evaluate the water-soluble form of vitamin E efficacy in repairing anal sphincter muscle defects in rabbits. METHODS Twenty-one male rabbits were equally assigned to the intact (without any intervention), control (sphincterotomy), and Trolox (sphincterotomy + Trolox administration) groups. Ninety days after sphincterotomy, the resting and squeeze pressures were evaluated by manometry, and the number of motor units in the sphincterotomy site was calculated by electromyography. Also, the amount of muscle and collagen in the injury site was investigated by Mallory's trichrome staining. RESULTS Ninety days after the intervention, the resting and squeeze pressures in the intact and Trolox groups were significantly higher than in the control group (P = 0.001). Moreover, the total collagen percentage of the sphincterotomy site was significantly lower in the Trolox group than in the control group (P = 0.002), and the total muscle percentage was significantly higher in the Trolox group compared to the control group (P = 0.001). Also, the motor unit number was higher in the Trolox group than in the control group (P = 0.001). CONCLUSION Trolox administration in the rabbit sphincterotomy model can decrease the amount of collagen and increase muscle, leading to improved anal sphincter electromyography and manometry results. Therefore, Trolox is a potential treatment strategy for FI.
Collapse
Affiliation(s)
- Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abazar Yari
- Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Farnad Imani
- Pain Research Center, Department of Anesthesiology and Pain Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farimah Fayyaz
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marjan Mokhtare
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arash Babaei-Ghazani
- Neuromusculoskeletal Research Center, Department of Physical Medicine and Rehabilitation, Iran University of Medical Sciences, Tehran, Iran
- Department of Physical Medicine and Rehabilitation, University of Montreal Health Center, Montreal, Canada
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shahriar Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Siavash Assar
- Department of Anesthesiology, kerman university of medical sciences, kerman, Iran
| | - Jebreil Shamseddin
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Shahid Chamran Boulevard, Iran.
| | - Mansour Bahardoust
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Velenjak 7th Floor, Bldg No.2 SBUMS, Arabi Ave, Tehran, 19839-63113, Iran.
| |
Collapse
|
4
|
Abstract
Liver fibrosis has a high incidence worldwide and is the common pathological basis of many chronic liver diseases. Liver fibrosis is caused by the excessive deposition of extracellular matrix and concomitant collagen accumulation in livers and can lead to the development of liver cirrhosis and even liver cancer. A large number of studies have provided evidence that liver fibrosis can be blocked or even reversed by appropriate medical interventions. However, the antifibrosis drugs with ideal clinical efficacy are still insufficient. The edible plant-derived natural compounds have been reported to exert effective antifibrotic effects with few side-effects, representing a kind of promising source for the treatment of liver fibrosis. In this article, we reviewed the current progress of the natural compounds derived from dietary plants in the treatment of liver fibrosis, including phenolic compounds (capsaicin, chlorogenic acid, curcumin, ellagic acid, epigallocatechin-3-gallate, resveratrol, sinapic acid, syringic acid, vanillic acid and vitamin E), flavonoid compounds (genistein, hesperidin, hesperetin, naringenin, naringin and quercetin), sulfur-containing compounds (S-allylcysteine, ergothioneine, lipoic acid and sulforaphane) and other compounds (betaine, caffeine, cucurbitacin B, lycopene, α-mangostin, γ-mangostin, ursolic acid, vitamin C and yangonin). The pharmacological effects and related mechanisms of these compounds in in-vivo and in-vitro models of liver fibrosis are focused.
Collapse
|
5
|
He Y, Zhang Y, Zhang J, Hu X. The Key Molecular Mechanisms of Sini Decoction Plus Ginseng Soup to Rescue Acute Liver Failure: Regulating PPARα to Reduce Hepatocyte Necroptosis? J Inflamm Res 2022; 15:4763-4784. [PMID: 36032938 PMCID: PMC9417306 DOI: 10.2147/jir.s373903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose This study aimed to investigate the improvement effect of Sini Decoction plus Ginseng Soup (SNRS) on the LPS/D-GalN-induced acute liver failure (ALF) mouse model and the molecular mechanism of the SNRS effect. Methods To study the protective effect of SNRS on ALF mice, the ICR mice were firstly divided into 4 groups: Control group (vehicle-treated), Model group (LPS/D-GalN), SNRS group (LPS/D-GalN+SNRS), and Silymarin group (LPS/D-GalN+Silymarin), the therapeutic drug was administered by gavage 48h, 24h before, and 10 min after LPS/D-GalN injection. On this basis, the peroxisome proliferator-activated receptor (PPAR) α agonist (WY14643) and inhibitor (GW6471) were added to verify whether the therapeutic mechanism of SNRS is related to its promoting effect on PPARα. The animals are grouped as follows: Control group (vehicle-treated), Model group (LPS/D-GalN+DMSO), SNRS group (LPS/D-GalN+SNRS+DMSO), Inhibitor group (LPS/D-GalN+GW6471), Agonist group (LPS/D-GalN+WY14643), and Inhibitor+SNRS group (LPS/D-GalN+GW6471+SNRS). Results The protective effect of SNRS on the ALF model is mainly reflected in the reduction of serum alanine aminotransaminase (ALT) and aspartate aminotransaminase (AST) as well as the ameliorated pathology of the liver tissue. The survival rate of ALF mice treated with SNRS was significantly increased. Further mechanism studies showed that SNRS significantly promoted the protein expression of PPARα and decreased the expression of necroptosis proteins (RIP3, MLKL, p-MLKL) in ALF mice. Reduced necroptosis resulted in decreased HMGB1 release, which in turn inhibited the activation of TLR4-JNK and NLRP3 inflammasome signaling pathways and the expression of NF-κB protein induced by LPS/D-GalN. The expression of CPT1A, a key enzyme involved in fatty acid β-oxidation, was found to be significantly up-regulated in the SNRS treated group, accompanied by an increased adenosine-triphosphate (ATP) level, which may be the relevant mechanism by which SNRS reduces necroptosis. Conclusion The potential therapeutic effect of SNRS on ALF may be through promoting the expression of PPARα and increasing the level of ATP in liver tissue, thereby inhibiting necroptosis of hepatocytes, reducing hepatocyte damage, and improving liver function.
Collapse
Affiliation(s)
- Ying He
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, People's Republic of China.,Department of College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yang Zhang
- Department of Infectious Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Junli Zhang
- Department of College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaoyu Hu
- Department of Infectious Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
6
|
Ding Y, Zhang S, Sun Z, Tong Z, Ge Y, Zhou L, Xu Q, Zhou H, Wang W. Preclinical validation of silibinin/albumin nanoparticles as an applicable system against acute liver injury. Acta Biomater 2022; 146:385-395. [PMID: 35460909 DOI: 10.1016/j.actbio.2022.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Silibinin (SIL) has been extensively studied for its therapeutic effects on various liver diseases. However, its effect on acute liver injury was limited for poor solubility and low bioavailability. Thus, we prepared SIL and bovine serum albumin (SIL/BSA) nanoparticles and further evaluated their therapeutic efficacy against acute liver injury in mouse models. METHODS SIL/BSA nanoparticles were prepared via a nanoprecipitation method. Both in vitro cell culture model and in vivo mouse models of acetaminophen (APAP) and lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced acute liver injury were used to evaluate the therapeutic effect of SIL/BSA nanoparticles and potential mechanisms. RESULTS The SIL/BSA nanoparticles with hydrophilic diameters of 90 ± 29 nm were stably suspended. SIL/BSA nanoparticles presented better biocompatibility and more liver distribution in vivo than SIL microparticles. SIL/BSA nanoparticles significantly alleviated APAP and LPS/D-GalN induced acute liver injury in mice. Similarly, SIL/BSA nanoparticles remarkably enhanced the viability of hepatocytes in vitro against both APAP and LPS/D-GalN induced hepatocyte damage. Moreover, SIL/BSA nanoparticles exhibited antioxidant effects against intracellular oxidative stress via upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant responsive element (ARE) pathway, decreasing ROS and regulating antioxidant enzyme reactivity. And the downstream of mitochondria damage and caspase 9/3 related apoptosis pathway was also inhibited CONCLUSION: SIL/BSA nanoparticles were successfully prepared to enhance the liver availability of SIL. Both in vivo and in vitro, SIL/BSA nanoparticles exerted ideal hepatoprotective and antioxidant efficacy against acute liver injury, suggesting the promising future in clinical transfer. STATEMENT OF SIGNIFICANCE In our study, we prepared small-size, stable and well-dispersed silibinin/bovine serum albumin (SIL/BSA) nanoparticles via using simple and cost-effective nanoprecipitation techniques. Their physicochemical and pharmacokinetic characteristics were analyzed. We systematically studied the hepatoprotective and antioxidant efficacy of SIL/BSA both in vivo and in vitro, using two acute liver injury models. These findings revealed that SIL/BSA nanoparticles exerted ideal hepatoprotective and antioxidant efficacy against acute liver injury, suggesting the promising future in clinical transfer.
Collapse
|
7
|
Ribeiro AM, Estevinho BN, Rocha F. The progress and application of vitamin E encapsulation – A review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Aboulhoda BE, El-Din SS, Khalifa MM, Arsanyos SF, Motawie AG, Sedeek MS, Abdelfattah GH, Abdelgalil WA. Histological, immunohistochemical, and molecular investigation on the hepatotoxic effect of potassium dichromate and the ameliorating role of Persea americana mill pulp extract. Microsc Res Tech 2021; 84:2434-2450. [PMID: 33908126 DOI: 10.1002/jemt.23798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 04/03/2021] [Accepted: 04/10/2021] [Indexed: 11/10/2022]
Abstract
The current study has been designed to assess the role of Persea americana (P. americana) pulp extract on potassium dichromate-induced hepatotoxicity in rats. P. americana pulp extract administration improved the hepatic vascular congestion, blood extravasation, inflammatory cellular infiltration, Kupffer cell hyperplasia, and nuclear changes. It also significantly ameliorated hepatic interstitial and peri-portal fibrosis and caused retrieval of the PAS-positive reaction in the liver parenchyma and around the central vein with restoration of the glycogen granules. P. americana also significantly attenuated the immunohistochemical expression of NF-kβ p65 and its downstream inflammatory cytokines IL6 and TNFα in the liver parenchyma. The antioxidant effect of P. americana was evidenced by significant modulation of the three major components of the thioredoxin (Trx) antioxidant system, the Trx, the thioredoxin reductase (TrxR), and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase along with significant increase in the level of superoxide dismutase and glutathione, and decrease in the lipid peroxidation product malondialdehyde. P. americana pulp extract also caused significant elevation of hepatic protein phosphatase 5 with subsequent down-regulation of Apoptosis signal-regulating kinase1 (ASK1) and its downstream signaling targets MAPK kinase 4 (MKK4), p38 mitogen-activated protein kinases (p38-MAPKs), the c-JUN N-terminal kinase (JNK), and the extracellular signal-regulated kinase 1/2 (ERK 1/2). Also, In conclusion, P. americana pulp extract has anti-oxidative and anti-inflammatory effects against potassium dichromate-induced hepatotoxicity.
Collapse
Affiliation(s)
- Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shimaa Saad El-Din
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Mansour Khalifa
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt.,Department of Medical Physiology, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sherif Fahmy Arsanyos
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Galal Motawie
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Gaber Hassan Abdelfattah
- Department of Anatomy and Embryology, Faculty of Medicine, Benisuef University, Bani Sweif, Egypt
| | | |
Collapse
|
9
|
Liu Z, Wang J, Zhang Y, Wu D, Li S, Jiang A, Du C, Xie G. Pterostilbene Exerts Hepatoprotective Effects through Ameliorating LPS/D-Gal-Induced Acute Liver Injury in Mice. Inflammation 2020; 44:526-535. [PMID: 33006074 DOI: 10.1007/s10753-020-01349-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 11/25/2022]
Abstract
Acute liver injury (ALI) refers to abnormalities in liver function caused by various causes and accompanied by poor prognosis and high mortality. Common predisposing factors for the disease are viral hepatitis, bacteria, alcohol, and certain hepatotoxic drugs. Inflammatory response and oxidative stress are critical for the pathogenesis of ALI. Pterostilbene (Pte), a natural polyphenol product extracted from blueberries and grapes, has been reported that exerted multiple biological activities, including antioxidative, anti-inflammatory, anti-carcinogenic, and anti-apoptotic properties. However, there is very little data showing the hepatoprotective effect of Pte on lipopolysaccharide/D-galactosamine (LPS/D-Gal)-induced ALI in mice. In this study, the possible protective effect and potential mechanisms of Pte on ALI are being investigated. It has been found that Pte markedly ameliorates LPS/D-Gal-induced inflammatory infiltration, hemorrhage, and dissociation of the hepatic cord, reducing the myeloperoxidase (MPO) activity in liver tissues and serum levels of alanine transaminase (ALT) and aspartate aminotransferase (AST) in ALI. Pte also inhibits LPS/D-Gal-induced secretion of pro-inflammatory cytokine tumor necrosis factor-a (TNF-α), interleukin 6 (IL-6), and interleukin 1β (IL-1β) in liver tissues. Furthermore, the western blot analysis reveals that LPS/D-Gal-activated nuclear factor-kappa B (NF-κB) is significantly inhibited by Pte, and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1) are upregulated by Pte. In conclusion, our results suggest that Pte exerts anti-inflammatory and antioxidative effects, which might contribute to ameliorating LPS/D-Gal-induced ALI in mice. Pte has the potential to be a preventive hepatoprotective agent.
Collapse
Affiliation(s)
- Ziyi Liu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Jingjing Wang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Yong Zhang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Di Wu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Shuangqiu Li
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Aimin Jiang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - ChongTao Du
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, People's Republic of China.
| | - Guanghong Xie
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, People's Republic of China.
| |
Collapse
|
10
|
Huang J, Bao D, Lei CT, Tang H, Zhang CY, Su H, Zhang C. Selenoprotein T protects against cisplatin-induced acute kidney injury through suppression of oxidative stress and apoptosis. FASEB J 2020; 34:11983-11996. [PMID: 32686857 DOI: 10.1096/fj.202000180rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/09/2023]
Abstract
Previously, selenoprotein T (SelT) expression was shown to be induced in nervous, endocrine, and metabolic tissues during ontogenetic and regenerative processes. However, whether SelT plays a critical role in renal diseases remains unclear. Here, we explored the role of SelT in cisplatin-induced acute kidney injury (AKI). Results revealed that SelT was highly expressed in renal tubules, but its expression was significantly reduced in cisplatin-induced AKI. Importantly, knocking down of SelT expression in kidney cells in vitro resulted in cisplatin-induced cell apoptosis, as indicated by the elevation of cleaved-PARP and Bax expression, Caspase-3 activity, and number of TUNEL-positive cells. Moreover, SelT silencing-induced reactive oxygen species (ROS) production, accompanied by a decrease in intracellular superoxide dismutase (SOD) and catalase (CAT) activity and increase in malondialdehyde (MDA) content. Notably, the protein and mRNA levels of Nox4 were increased in response to SelT downregulation. Furthermore, suppression of Nox4 expression by GKT137831 partially alleviated SelT knockdown-induced ROS generation and cell apoptosis in cisplatin-treated kidney cells. Taken together, our findings provide the first evidence that SelT protects against cisplatin-induced AKI by suppression of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Jing Huang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dian Bao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Tao Lei
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Yun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Cho YC, Vuong HL, Ha J, Lee S, Park J, Wibow AE, Cho S. Inhibition of Inflammatory Responses by Centella asiatica via Suppression of IRAK1-TAK1 in Mouse Macrophages. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1103-1120. [PMID: 32668965 DOI: 10.1142/s0192415x20500548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Centella asiatica (L.) Urb. (C. asiatica) has been widely treated for inflammation-related diseases in China for thousands of years. While C. asiatica showed relevant effects as traditional medicine, the mechanism of C. asiatica suppressing inflammation has not been thoroughly investigated. Therefore, this study was conducted to reveal the anti-inflammatory mechanism of methanol fraction from C. asiatica (MCA) at the molecular level in murine macrophages. Levels of inflammation-related mediators were observed with treatment of MCA. MCA significantly suppressed nitric oxide production and iNOS expression in RAW 264.7 macrophages. Prostaglandin E2 production was alleviated by MCA via the downregulation of cyclooxygenase-2. MCA treatment also reduced pro-inflammatory tumor necrosis factor-[Formula: see text] and interleukin (IL)-6 levels. LPS/D-GalN-induced acute hepatitis in mouse was alleviated by MCA treatment. In addition, MCA decreased the phosphorylation of inhibitory [Formula: see text]B[Formula: see text] (I[Formula: see text]B[Formula: see text]) at Ser32/36 and thereby blocked I[Formula: see text]B[Formula: see text] degradation. TXY motif phosphorylation in the activation loops of mitogen-activated protein kinases (MAPKs) was also suppressed by MCA treatment. Further investigation revealed that MCA inhibited transforming growth factor-[Formula: see text]-activated kinase 1 (TAK1) phosphorylation and IL-1 receptor-associated kinase (IRAK1) degradation, the upstream kinases activating nuclear factor [Formula: see text]B and MAPKs. Taken together, MCA exhibited anti-inflammatory properties via the downregulation of IRAK1-TAK1 signaling pathways.
Collapse
Affiliation(s)
- Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Huong Lan Vuong
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jain Ha
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sewoong Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jiyoung Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Agung Eru Wibow
- Center for Pharmaceutical and Medical Technology, Deputy for Agroindustrial Technology and Biotechnology, The Agency for the Assessment and Application of Technology (BPPT), Jakarta 10340, Indonesia
| | - Sayeon Cho
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
12
|
Li YL, Chen X, Niu SQ, Zhou HY, Li QS. Protective Antioxidant Effects of Amentoflavone and Total Flavonoids from Hedyotis diffusa on H 2 O 2 -Induced HL-O2 Cells through ASK1/p38 MAPK Pathway. Chem Biodivers 2020; 17:e2000251. [PMID: 32342591 DOI: 10.1002/cbdv.202000251] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Abstract
In this study, total flavonoids and total triterpenoid acid were extracted with ethyl acetate from Hedyotis diffusa Willd, and hepatoprotective activities of them and five compounds from total flavonoids against H2 O2 induced hepatocyte damage on HL-02 cells were determined. In particular, amentoflavone and total flavonoids had influence on the leakage of ALT, AST, LDH, the activities of SOD and the content of MDA. They effectively reduced the loss of MMP, the release of Cyt C, and then inhibited activation of caspase-3/caspase-9 cascade in hepatotoxic cells. The contents of ROS were significantly reduced to inhibit p38 in amentoflavone and flavonoids groups which decreased ASK1 and p-p38 levels through increasing thioredoxin Trx1 and reductase TrxR1. These results suggesting that the antioxidant protection of amentoflavone and flavonoids might be reducing ROS to inhibit the H2 O2 -induced upstream of pathway via increasing levels of Trx1 and TrxR1, which were pivotal in blocking the down streaming effectors of ASK1/p38 MAPK pathway and alleviating hepatotoxicity.
Collapse
Affiliation(s)
- Yun-Lan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, P. R. China.,Shanxi University of Chinese Medicine, Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Jinzhong, 030619, P. R. China
| | - Xi Chen
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Si-Qing Niu
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Hong-Yan Zhou
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Qing-Shan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, P. R. China.,Shanxi University of Chinese Medicine, Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Jinzhong, 030619, P. R. China
| |
Collapse
|
13
|
Ma X, Jiang Y, Zhang W, Wang J, Wang R, Wang L, Wei S, Wen J, Li H, Zhao Y. Natural products for the prevention and treatment of cholestasis: A review. Phytother Res 2020; 34:1291-1309. [PMID: 32026542 DOI: 10.1002/ptr.6621] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/26/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
Cholestasis is a common manifestation of decreased bile flow in various liver diseases. It results in fibrosis and even cirrhosis without proper treatment. It is believed that a wide range of factors, including transporter dysfunction, oxidative stress, inflammatory damage, and immune disruption, can cause cholestasis. In recent years, natural products have drawn much attention for specific multiple-target activities in diseases. Many attempts have been made to investigate the anticholestatic effects of natural products with advanced technology. This review summarizes recent studies on the biological activities and mechanisms of recognized compounds for cholestasis treatment. Natural products, including various flavonoids, phenols, acids, quinones, saponins, alkaloids, glycosides, and so on, function as comprehensive regulators via ameliorating oxidative stress, inflammation, and apoptosis, restoring bile acid balance with hepatic transporters, and adjusting immune disruption. Moreover, in this progress, nuclear factor erythroid 2-related factor 2, reactive oxygen species production, heme oxygenase-1, NF-κB, cholesterol 7 alpha-hydroxylase, and farnesoid X receptors are thought as main targets for the activity of natural products. Therefore, this review presents the detailed mechanisms that include multiple targets and diverse signalling pathways. Natural products are the valuable when seeking novel therapeutic agents to treat cholestatic liver diseases.
Collapse
Affiliation(s)
- Xiao Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinxiao Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiabo Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ruilin Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Lifu Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shizhang Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
14
|
Peluso I, Yarla NS, Ambra R, Pastore G, Perry G. MAPK signalling pathway in cancers: Olive products as cancer preventive and therapeutic agents. Semin Cancer Biol 2019; 56:185-195. [DOI: 10.1016/j.semcancer.2017.09.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 12/11/2022]
|
15
|
Konerman MA, Jones JC, Harrison SA. Pharmacotherapy for NASH: Current and emerging. J Hepatol 2018; 68:362-375. [PMID: 29122694 DOI: 10.1016/j.jhep.2017.10.015] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most prominent forms of chronic liver disease worldwide, reflecting the epidemic of global obesity. Those with the progressive variant of NAFLD, non-alcoholic steatohepatitis (NASH), are at significantly increased risk of multisystem morbidity and mortality. However, there are currently no approved pharmacologic therapies for NASH. Given the disease burden, there is an important unmet need for pharmacologic treatment options for this patient population. The underlying pathophysiologic mechanisms that contribute to the development and progression of NAFLD and NASH are complex and reflected by the myriad of therapies, with different targets, currently under investigation. In broad strokes, drug development has focused on modulation of metabolic pathways, inflammatory cascades, and/or mechanisms impacting fibrosis. Although much progress has been made in enhancing our understanding of NAFLD pathogenesis, development of pharmacologic treatments has been hindered by challenges in clinical trial enrollment and complexities in clinical trial design. The compounds in phase IIa have provided promising results in terms of potential benefits on various aspects of histopathology. Agents in later stages of development have shown fairly modest results in terms of reduction of hepatic steatosis, necroinflammation and fibrosis. If longer term safety and efficacy are established among heterogeneous cohorts, these medications may help mitigate potential morbidity and mortality for this burgeoning patient population.
Collapse
Affiliation(s)
- Monica A Konerman
- University of Michigan, Department of Internal Medicine, Division of Gastroenterology and Hepatology, Ann Arbor, MI, USA
| | | | - Stephen A Harrison
- University of Oxford, Radcliffe Department of Medicine, Oxford, United Kingdom.
| |
Collapse
|
16
|
Alqudah MA, Al-Ashwal FY, Alzoubi KH, Alkhatatbeh M, Khabour O. Vitamin E protects human lymphocytes from genotoxicity induced by oxaliplatin. Drug Chem Toxicol 2017; 41:281-286. [DOI: 10.1080/01480545.2017.1384835] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mohammad A.Y. Alqudah
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Fahmi Y. Al-Ashwal
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H. Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Alkhatatbeh
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
17
|
Mâncio RD, Hermes TDA, Macedo AB, Mizobuti DS, Valduga AH, Rupcic IF, Minatel E. Vitamin E treatment decreases muscle injury in mdx mice. Nutrition 2017; 43-44:39-46. [DOI: 10.1016/j.nut.2017.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 01/19/2023]
|
18
|
Lv H, Qi Z, Wang S, Feng H, Deng X, Ci X. Asiatic Acid Exhibits Anti-inflammatory and Antioxidant Activities against Lipopolysaccharide and d-Galactosamine-Induced Fulminant Hepatic Failure. Front Immunol 2017; 8:785. [PMID: 28736552 PMCID: PMC5500632 DOI: 10.3389/fimmu.2017.00785] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/21/2017] [Indexed: 01/17/2023] Open
Abstract
Inflammation and oxidative stress are essential for the pathogenesis of fulminant hepatic failure (FHF). Asiatic acid (AA), which is a pentacyclic triterpene that widely occurs in various vegetables and fruits, has been reported to possess antioxidant and anti-inflammatory properties. In this study, we investigated the protective effects of AA against lipopolysaccharide (LPS) and d-galactosamine (GalN)-induced FHF and the underlying molecular mechanisms. Our findings suggested that AA treatment effectively protected against LPS/d-GalN-induced FHF by lessening the lethality; decreasing the alanine transaminase and aspartate aminotransferase levels, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α production, malondialdehyde formation, myeloperoxidase level and reactive oxygen species generation (i.e., H2O2, NO, and O2−), and increasing the glutathione and superoxide dismutase contents. Moreover, AA treatment significantly inhibited mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathway activation via the partial induction of programmed cell death 4 (PDCD4) protein expressions, which are involved in inflammatory responses. Furthermore, AA treatment dramatically induced the expression of the glutamate-cysteine ligase modifier subunit, the glutamate-cysteine ligase catalytic subunit, heme oxygenase-1, and NAD (P) H: quinoneoxidoreductase 1 (NQO1), which are largely dependent on activation of the nuclear factor-erythroid 2-related factor 2 (Nrf2) through the induction of AMP-activated protein kinase (AMPK) and glycogen synthase kinase-3β (GSK3β) phosphorylation. Accordingly, AA exhibited protective roles against LPS/d-GalN-induced FHF by inhibiting oxidative stress and inflammation. The underlying mechanism may be associated with the inhibition of MAPK and NF-κB activation via the partial induction of PDCD4 and upregulation of Nrf2 in an AMPK/GSK3β pathway activation-dependent manner.
Collapse
Affiliation(s)
- Hongming Lv
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhimin Qi
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Sisi Wang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Haihua Feng
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinxin Ci
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Tian L, Li W, Wang T. Therapeutic effects of silibinin on LPS-induced acute lung injury by inhibiting NLRP3 and NF-κB signaling pathways. Microb Pathog 2017; 108:104-108. [PMID: 28483599 DOI: 10.1016/j.micpath.2017.05.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 02/04/2023]
Abstract
Silibinin, a natural product extracted from Silybum marianum (milk thistle), has been reported to have anti-inflammatory effect. The aim of this study was to explore the therapeutic effects and potential mechanisms of silibinin on lipopolysaccharide (LPS)-stimulated inflammatory responses in acute lung injury (ALI). Male BALB/c mice were conditioned with silibinin 1 h after intranasal instillation of LPS. After 12 h, the myeloperoxidase (MPO) level in lung tissues, the wet/dry (W/D) ratio, inflammatory cytokines in the bronchoalveolar lavage fluid (BALF), and histopathological examination of lung were detected. Our results showed that silibinin inhibited LPS-induced histopathological changes and MPO activity, as well as the wet/dry (W/D) ratio in the lung tissues. Furthermore, silibinin significantly inhibited LPS-induced inflammatory cytokines production in the BALF. In addition, silibinin suppressed LPS-induced NF-κB activation and the expression of NLRP3 inflammasome. These results indicate that silibinin exerts its anti-inflammatory effect by inhibiting NF-κB and NLRP3 signaling pathways.
Collapse
Affiliation(s)
- Lin Tian
- Department of Respirology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China
| | - Weimin Li
- Encephalopathy Treatment Area, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China
| | - Tan Wang
- Department of Respirology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China.
| |
Collapse
|
20
|
Song J, Pan W, Sun Y, Han J, Shi W, Liao W. Aspergillus fumigatus-induced early inflammatory response in pulmonary microvascular endothelial cells: Role of p38 MAPK and inhibition by silibinin. Int Immunopharmacol 2017; 49:195-202. [PMID: 28601021 DOI: 10.1016/j.intimp.2017.05.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 05/04/2017] [Accepted: 05/31/2017] [Indexed: 12/17/2022]
Abstract
Human invasive pulmonary aspergillosis (IPA) is a serious infectious disease mainly caused by Aspergillus fumigatus (A. fumigatus). Pulmonary microvascular endothelial cells (PMVECs) are important ones in the human lung tissue. However, it remains unclear about the role of PMVECs in IPA. In the present study, we cocultured PMVECs with A. fumigatus. We observed that A. fumigatus induced dose- and time-dependent increases of interleukin 6 (IL-6), interleukin 1β (IL-1β) and intercellular adhesion molecule 1 (ICAM-1) concentration in the cultures. Significant increases in IL-6, IL-1β, E-selectin, and ICAM-1 mRNA expression were also observed in the cultures treated with A. fumigatus. While preincubation with SB203580 (10μM) did not cause significant changes in IL-6, IL-1β and ICAM-1 concentration in the cocultures, significant IL-6, IL-1β and ICAM-1 concentration decreases were observed in the cocultures preincubated with SB203580 (20μM). Neither SP600125 (10-20μM) nor PD98059 (10-20μM) caused significant changes in IL-6, IL-1β and ICAM-1 concentration in the cocultures. PCR results also showed that SB203580 (20μM) (neither SP600125 (20μM) nor PD98059 (20μM)) preincubation significantly decreased IL-6, IL-1β, E-selectin and ICAM-1 mRNA expression in the cocultures. In addition, significant p38 MAPK phosphorylation increase was observed in the PMVECs cultures treated with A. fumigatus. Furthermore, silibinin pre-treatment and post-treatment were observed to significantly down-regulate mRNA and protein expression of proinflammatory factors and adhesion molecules in the cocultures. Finally, we observed that silibinin significantly inhibited A. fumigatus-induced p38 MAPK activation in PMVECs. Our results indicated that PMVECs might participate in IPA early inflammation which is mediated by p38 MAPK. Silibinin may inhibit A. fumigatus-induced inflammation in PMVECs through p38 MAPK.
Collapse
Affiliation(s)
- Jun Song
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
| | - Yue Sun
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jing Han
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Weimin Shi
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China.
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China.
| |
Collapse
|
21
|
Nonalcoholic fatty liver disease impairs the cytochrome P-450-dependent metabolism of α-tocopherol (vitamin E). J Nutr Biochem 2017. [PMID: 28628909 DOI: 10.1016/j.jnutbio.2017.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study aims to investigate in in vivo and in vitro models of nonalcoholic fatty liver disease (NAFLD) the enzymatic metabolism of α-tocopherol (vitamin E) and its relationship to vitamin E-responsive genes with key role in the lipid metabolism and detoxification of the liver. The experimental models included mice fed a high-fat diet combined or not with fructose (HFD+F) and HepG2 human hepatocarcinoma cells treated with the lipogenic agents palmitate, oleate or fructose. CYP4F2 protein, a cytochrome P-450 isoform with proposed α-tocopherol ω-hydroxylase activity, decreased in HFD and even more in HFD+F mice liver; this finding was associated with increased hepatic levels of α-tocopherol and decreased formation of the corresponding long-chain metabolites α-13-hydroxy and α-13-carboxy chromanols. A decreased expression was also observed for PPAR-γ and SREBP-1 proteins, two vitamin E-responsive genes with key role in lipid metabolism and CYP4F2 gene regulation. A transient activation of CYP4F2 gene followed by a repression response was observed in HepG2 cells during the exposure to increasing levels of the lipogenic and cytotoxic agent palmitic acid; such gene repression effect was further exacerbated by the co-treatment with oleic acid and α-tocopherol and was also observed for PPAR-γ and the SREBP isoforms 1 and 2. Such gene response was associated with increased uptake and ω-hydroxylation of α-tocopherol, which suggests a minor role of CYP4F2 in the enzymatic metabolism of vitamin E in HepG2 cells. In conclusion, the liver metabolism and gene response of α-tocopherol are impaired in experimental NAFLD.
Collapse
|
22
|
CYP4F2 repression and a modified alpha-tocopherol (vitamin E) metabolism are two independent consequences of ethanol toxicity in human hepatocytes. Toxicol In Vitro 2017; 40:124-133. [DOI: 10.1016/j.tiv.2016.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/20/2016] [Accepted: 12/29/2016] [Indexed: 11/20/2022]
|
23
|
Galli F, Azzi A, Birringer M, Cook-Mills JM, Eggersdorfer M, Frank J, Cruciani G, Lorkowski S, Özer NK. Vitamin E: Emerging aspects and new directions. Free Radic Biol Med 2017; 102:16-36. [PMID: 27816611 DOI: 10.1016/j.freeradbiomed.2016.09.017] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/11/2016] [Accepted: 09/22/2016] [Indexed: 12/30/2022]
Abstract
The discovery of vitamin E will have its 100th anniversary in 2022, but we still have more questions than answers regarding the biological functions and the essentiality of vitamin E for human health. Discovered as a factor essential for rat fertility and soon after characterized for its properties of fat-soluble antioxidant, vitamin E was identified to have signaling and gene regulation effects in the 1980s. In the same years the cytochrome P-450 dependent metabolism of vitamin E was characterized and a first series of studies on short-chain carboxyethyl metabolites in the 1990s paved the way to the hypothesis of a biological role for this metabolism alternative to vitamin E catabolism. In the last decade other physiological metabolites of vitamin E have been identified, such as α-tocopheryl phosphate and the long-chain metabolites formed by the ω-hydroxylase activity of cytochrome P-450. Recent findings are consistent with gene regulation and homeostatic roles of these metabolites in different experimental models, such as inflammatory, neuronal and hepatic cells, and in vivo in animal models of acute inflammation. Molecular mechanisms underlying these responses are under investigation in several laboratories and side-glances to research on other fat soluble vitamins may help to move faster in this direction. Other emerging aspects presented in this review paper include novel insights on the mechanisms of reduction of the cardiovascular risk, immunomodulation and antiallergic effects, neuroprotection properties in models of glutamate excitotoxicity and spino-cerebellar damage, hepatoprotection and prevention of liver toxicity by different causes and even therapeutic applications in non-alcoholic steatohepatitis. We here discuss these topics with the aim of stimulating the interest of the scientific community and further research activities that may help to celebrate this anniversary of vitamin E with an in-depth knowledge of its action as vitamin.
Collapse
Affiliation(s)
- Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Laboratory of Clinical Biochemistry and Nutrition, Via del Giochetto, 06126 Perugia, Italy.
| | - Angelo Azzi
- USDA-HNRCA at Tufts University, 711 Washington St., Boston, MA 02111, United States.
| | - Marc Birringer
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Leipziger Straße 123, 36037 Fulda, Germany.
| | - Joan M Cook-Mills
- Allergy/Immunology Division, Northwestern University, 240 E Huron, Chicago, IL 60611, United States.
| | | | - Jan Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany.
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy.
| | - Stefan Lorkowski
- Institute of Nutrition, Friedrich Schiller University Jena, Dornburger Str. 25, 07743 Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany.
| | - Nesrin Kartal Özer
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
24
|
Nephroprotective Effects of N-Acetylcysteine Amide against Contrast-Induced Nephropathy through Upregulating Thioredoxin-1, Inhibiting ASK1/p38MAPK Pathway, and Suppressing Oxidative Stress and Apoptosis in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8715185. [PMID: 28105252 PMCID: PMC5220479 DOI: 10.1155/2016/8715185] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/30/2016] [Indexed: 12/15/2022]
Abstract
Contrast-induced nephropathy (CIN) is a leading cause of hospital-acquired acute kidney injury (AKI) due to apoptosis induced in renal tubular cells. Our previous study demonstrated the novel N-acetylcysteine amide (NACA); the amide form of N-acetyl cysteine (NAC) prevented renal tubular cells from contrast-induced apoptosis through inhibiting p38 MAPK pathway in vitro. In the present study, we aimed to compare the efficacies of NACA and NAC in preventing CIN in a well-established rat model and investigate whether thioredoxin-1 (Trx1) and apoptosis signal-regulating kinase 1 (ASK1) act as the potential activator for p38 MAPK. NACA significantly attenuated elevations of serum creatinine, blood urea nitrogen, and biomarkers of AKI. At equimolar concentration, NACA was more effective than NAC in reducing histological changes of renal tubular injuries. NACA attenuated activation of p38 MAPK signal, reduced oxidative stress, and diminished apoptosis. Furthermore, we demonstrated that contrast exposure resulted in Trx1 downregulation and increased ASK1/p38 MAPK phosphorylation, which could be reversed by NACA and NAC. To our knowledge, this is the first report that Trx1 and ASK1 are involved in CIN. Our study highlights a renal protective role of NACA against CIN through modulating Trx1 and ASK1/p38 MAPK pathway to result in the inhibition of apoptosis among renal cells.
Collapse
|