1
|
He L, Lin C, Zhuang L, Sun Y, Li Y, Ye Z. Targeting Hepatocellular Carcinoma: Schisandrin A Triggers Mitochondrial Disruption and Ferroptosis. Chem Biol Drug Des 2024; 104:e70010. [PMID: 39668608 PMCID: PMC11638659 DOI: 10.1111/cbdd.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/26/2024] [Accepted: 09/18/2024] [Indexed: 12/14/2024]
Abstract
The main focus of this research was to examine SchA's role in the hepatocellular carcinoma (HCC) development. LO2 and Huh7 cell viability were assessed using the MTT assay. The experiments included flow cytometry, colony formation, transwell, wound healing, and immunofluorescence assays to evaluate apoptosis levels, cells colony-forming ability, ROS levels, invasion and migration ability, and mitochondrial membrane potential. Biochemical kits was utilized for checking the ATP, mitochondrial DNA, MDA, GSH, and Fe2+ levels in the Huh7 cells, and western blot for measuring the ferroptosis and AMPK/mTOR related-protein expression levels. The MTT assay demonstrated that SchA significantly reduced the vitality of Huh7 cells ranging from 10 to 50 μM, whereas it exhibited no discernible impact on LO2 cells. Additionally, SchA significantly inhibited colony-forming ability, invasion ability, and migration ability within the concentration range of 10 to 50 μM, with a reduction of 68% in colony formation at 50 μM. SchA also induced apoptosis in a dose-dependent manner. Moreover, SchA was observed to significantly elevate ROS levels dose-dependently, down-regulate mitochondrial membrane potential (JC-1) at 20 and 50 μM, and reduce the levels of ATP and mtDNA dose-dependently. Various concentrations of SchA resulted in a notable elevation in MDA and Fe2+ levels as well as ACSL4 protein expression, accompanied by a reduction in GSH level and the protein expression of GPX4 and SLC7A11. Furthermore, SchA induced the activation of the AMPK/mTOR pathway in Huh7 cells, as evidenced by the increased phosphorylation level of AMPK and decreased phosphorylation level of mTOR. SchA might inhibit the progress of HCC through mitochondrial ferroptosis and dysfunction mediated by AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Lin‐wei He
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Chang‐jie Lin
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Lin‐jun Zhuang
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Yi‐hui Sun
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Ye‐cheng Li
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Zhen‐yu Ye
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| |
Collapse
|
2
|
Fan B, Zhang Y, Zhou L, Xie Z, Liu J, Zhang C, Dou C. LYRM2 Promotes the Growth and Metastasis of Hepatocellular Carcinoma via Enhancing HIF-1α-Dependent Glucose Metabolic Reprogramming. J Cell Mol Med 2024; 28:e70241. [PMID: 39661026 PMCID: PMC11633053 DOI: 10.1111/jcmm.70241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a foetal malignancy with dismal overall survival. The molecular mechanism underlying the progression of HCC remain largely unknown. LYR motif containing 2 (LYRM2) has been identified as an oncogene in colorectal cancer; however, its expression, functions and molecular mechanism in the context of HCC has not been investigated. Data derived from The Cancer Gemome Atlas, along with findings from our patients' cohort, indicate that LYRM2 expression is elevated in HCC tissues and correlates with adverse clinicopathological features and prognosis in HCC patients. Subsequent research into the biological functions of LYRM2 has revealed that it promotes the proliferation, migration, invasion and epithelial-mesenchymal transition of HCC cells, both in vitro and in vivo. Mechanistic insights have shown that LYRM2 interacts with HIF-1α, enhancing the protein stability of HIF-1α, which in turn increases cellular glycolysis and inhibits mitochondrial respiration. Moreover, the glucose metabolic reprogramming mediated by LYRM2 is implicated in its role in promoting HCC growth and metastasis. Collectively, this study identifies that LYRM2 as a novel oncogenic protein in HCC and elucidates its contribution to HCC progression through enhancing HIF-1α-dependent glucose metabolic reprogramming.
Collapse
Affiliation(s)
- Bingfu Fan
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
- Graduate School of Bengbu Medical CollegeBengbuChina
| | - Yueqin Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Lu Zhou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Zhongchun Xie
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
- Graduate School of Bengbu Medical CollegeBengbuChina
| | - Jie Liu
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Chengwu Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Changwei Dou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| |
Collapse
|
3
|
Fazal Ul Haq M, Hussain MZ, Haris MS, Kayani MA, Mahjabeen I. Genetic variants in mitochondrial sirtuins associated with brain tumor risk: a case-control study. Future Oncol 2024:1-12. [PMID: 39560005 DOI: 10.1080/14796694.2024.2429948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Previous studies on brain tumors have been performed on the nuclear genome, but limited studies have been reported on the mitochondrial genome. The mitochondrial sirtuin (SIRT3/SIRT4/SIRT5) has been mutated in different cancers. Limited studies have been performed on brain tumors. Isocitrate dehydrogenase (IDH) is an important marker, and polymorphism in the IDH gene has been reported to differentiate the brain tumor subtypes. AIM The present study was designed to screen mitochondrial sirtuins and IDH polymorphisms in brain tumor patients. METHODOLOGY One thousand blood samples were collected (500 brain tumor patients and 500 controls). Two SNPs for each gene SIRT3 (rs12226697, rs570591), SIRT4 (rs184496260, 1925909), SIRT5 (rs2841522, rs2841523), and one SNP for IDH (rs11554137) was screened using Tetra-ARMS PCR. RESULTS Logistic regression showed that the mutant genotype of selected SNPs was associated with increased disease incidence compared to wild type. Haplotype analysis and linkage disequilibrium (LD) showed a strong LD in brain tumor patients. Kaplan-Meier analysis showed that mutant allele frequency was found to be associated with a significant decrease in the survival of brain tumor patients. CONCLUSION The present study showed that the mutant allele of selected mitochondrial sirtuins' SNP was associated with increased brain tumor risk.
Collapse
Affiliation(s)
- Maria Fazal Ul Haq
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Muhammad Shahbaz Haris
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Ishrat Mahjabeen
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
4
|
Yue Q, Zhang M, Jiang W, Gao L, Ye R, Hong J, Li Y. Prognostic value of FDX1, the cuprotosis key gene, and its prediction models across imaging modalities and histology. BMC Cancer 2024; 24:1381. [PMID: 39528953 PMCID: PMC11552402 DOI: 10.1186/s12885-024-13149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Cuprotosis has been identified as a novel way of cell death. The key regulator ferredoxin 1 (FDX1) was explored via pan-cancer analysis, and its prediction models were proposed across seven malignancies and two imaging modalities. METHODS The prognostic value of FDX1 was explored via 1654 cases of 33 types of cancer in the Cancer Genome Atlas database. The MRI cohort of hepatocellular carcinoma in the First Affiliated Hospital of Fujian Medical University, and CT and MRI images from the Cancer Imaging Archive, REMBRANDT and Duke databases were exploited to formulate radiomic models to predict FDX1 expression. After segmentation of volumes of interest and feature extraction, the recursive feature elimination algorithm was used to screen features, logistic regression was used to model features, immunohistochemistry staining with FDX1 antibody was performed to test the radiomic model. RESULTS FDX1 was found to be prognostic in various types of cancer. The area under the receiver operating characteristic curve of radiomic models to predict FDX1 expression reached 0.825 (95% CI = 0.739-0.911). Cross-tissue compatibility was confirmed in pan-cancer validation and test cohorts. Mechanistically, the radiomic score was significantly correlated with various immunosuppressive genes and gene mutations. The radiomic score was also found to be an independent prognostic factor, making it a potentially actionable biomarker in the clinical setting. CONCLUSIONS The expression of FDX1 could be non-invasively predicted via radiomics. The radiomic patterns with biological and clinical relevance across histology and modalities could have a broad impact on a larger population of patients.
Collapse
Affiliation(s)
- Qiuyuan Yue
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Department of Radiology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350004, China
| | - Mingwei Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China
| | - Wenying Jiang
- Department of Breast Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Lanmei Gao
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Rongping Ye
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350212, China
| | - Jinsheng Hong
- Department of Radiotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China.
| | - Yueming Li
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
5
|
Chen C, Xie Y, Qian S. Multifaceted role of GCN2 in tumor adaptation and therapeutic targeting. Transl Oncol 2024; 49:102096. [PMID: 39178574 PMCID: PMC11388189 DOI: 10.1016/j.tranon.2024.102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/26/2024] Open
Abstract
Tumor cells voraciously consume nutrients from their environment to facilitate rapid proliferation, necessitating effective strategies to manage nutrient scarcity during tumor growth and progression. A pivotal regulatory mechanism in this context is the Integrated Stress Response (ISR), which ensures cellular homeostasis under conditions such as endoplasmic reticulum stress, the unfolded protein response, and nutrient deprivation. Within the ISR framework, the kinase GCN2 is critical, orchestrating a myriad of cellular processes including the inhibition of protein synthesis, the enhancement of amino acid transport, autophagy initiation, and angiogenesis. These processes collectively enable tumor survival and adaptation under nutrient-limited conditions. Furthermore, GCN2-mediated pathways may induce apoptosis, a property exploited by specific therapeutic agents. Leveraging extensive datasets from TCGA, GEO, and GTEx projects, we conducted a pan-cancer analysis to investigate the prognostic significance of GCN2 expression across diverse cancer types. Our analysis indicates that GCN2 expression significantly varies and correlates with both adverse and favorable prognoses depending on the type of cancer, illustrating its complex role in tumorigenesis. Importantly, GCN2 also modulates the tumor immune microenvironment, influencing immune checkpoint expression and the functionality of immune cells, thereby affecting immunotherapy outcomes. This study highlights the potential of targeting GCN2 with specific inhibitors, as evidenced by their efficacy in preclinical models to augment treatment responses and combat resistance in oncology. These findings advocate for a deeper exploration of GCN2's multifaceted roles, which could pave the way for novel targeted therapies in cancer treatment, aiming to improve clinical outcomes.
Collapse
Affiliation(s)
- Can Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Westlake University, School of Medicine, Hangzhou, China; Zhejiang University, School of Medicine, Hangzhou, China
| | - Yaping Xie
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Westlake University, School of Medicine, Hangzhou, China; Zhejiang University, School of Medicine, Hangzhou, China.
| | - Shenxian Qian
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Westlake University, School of Medicine, Hangzhou, China; Zhejiang University, School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Yunyun Z, Guihu W, An J. Explore the expression of mitochondria-related genes to construct prognostic risk model for ovarian cancer and validate it, so as to provide optimized treatment for ovarian cancer. Front Immunol 2024; 15:1458264. [PMID: 39478854 PMCID: PMC11521951 DOI: 10.3389/fimmu.2024.1458264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/17/2024] [Indexed: 11/02/2024] Open
Abstract
Background The use of gene development data from public database has become a new starting point to explore mitochondrial related gene expression and construct a prognostic prediction model of ovarian cancer. Methods Data were obtained from the TCGA and ICGC databases, and the intersection with mitochondrial genes was used to obtain the differentially expressed genes. q-PCR, Cox proportional risk regression, minimal absolute contraction and selection operator regression analysis were performed to construct the prognostic risk model, and ROC curve was used to evaluate the model for centralized verification. The association between risk scores and clinical features, tumor mutation load, immune cell infiltration, macrophage activation analysis, immunotherapy, and chemosensitivity was further evaluated. Results A prognostic risk score model for ovarian cancer patients was constructed based on 12 differentially expressed genes. The score was highly correlated with ovarian cancer macrophage infiltration and was a good predictor of the response to immunotherapy. M1 and M2 macrophages in the ovarian tissue in the OV group were significantly activated, providing a reference for the study of the polarity change of tumor-related macrophages for the prognosis and treatment of ovarian cancer. In terms of drug sensitivity, the high-risk group was more sensitive to vinblastine, Acetalax, VX-11e, and PD-0325901, while the low-risk group was more sensitive to Sabutoclax, SB-505124, cisplatin, and erlotinib. Conclusion The prognostic risk model of ovarian cancer associated to mitochondrial genes built on the basis of public database better evaluated the prognosis of ovarian cancer patients and guided individual treatment.
Collapse
Affiliation(s)
- Zheng Yunyun
- Department of Hepatobiliary Pancreas Surgery and Liver Transplantation, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of AFM (Air Force Medical University), Xi’an, Shaanxi, China
| | - Wang Guihu
- Department of Hepatobiliary Pancreas Surgery and Liver Transplantation, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Jiang An
- Department of Hepatobiliary Pancreas Surgery and Liver Transplantation, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
7
|
Salimi A, Asgari B, Khezri S, Pourgholi M, Haddadi S. Hesperidin as a bioactive compound in citrus fruits reduces N-ethyl-N-nitrosourea-induced mortality and toxicity in mice: as a model for chronic lymphocytic leukemia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03531-8. [PMID: 39400715 DOI: 10.1007/s00210-024-03531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
The current study is aimed at determining the preventive effects of hesperidin against death, weight changes, cellular damage, and oxidative stress in mice induced by n-ethyl-n-nitrosourea as a chronic lymphocytic leukemia (CLL) model. Female mice were pretreated with hesperidin (20 mg/kg, intraperitoneally, daily for 30 days). Next, the animals received a single intraperitoneal injection of 80 mg/kg ENU on the 30th. Changes in weight and mortality were monitored for 120 days, and then the animals were sacrificed and parameters such as reactive oxygen species (ROS), mitochondrial dysfunction, lysosomal membrane integrity, oxidized/reduced glutathione (GSH/GSSG), and malondialdehyde (MDA) were analyzed in isolated lymphocytes. Hesperidin significantly increases the survival of mice up to 86% and delay in death time and prevents weight changes after exposure to ENU. Also, hesperidin improved cellular toxicity parameters such as ROS formation, MMP collapse, lysosomal membrane destabilization, and lipid peroxidation in isolated lymphocytes. These results promisingly showed that pretreatment with hesperidin increases delay in death time and reduces mortality cellular toxicities consistent with the carcinogenicity of alkylating compounds. This study confirms that the consumption of hesperidin and citrus most likely inhibits alkylating agents-induced carcinogenicity and toxicity.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Bahare Asgari
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahshad Pourgholi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shadi Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
8
|
Jiang C, Wu W, Jiang X, Qian K. Integrative multi-omics analysis unveils the connection between transcriptomic characteristics associated with mitochondria and the tumor immune microenvironment in lower-grade gliomas. Sci Rep 2024; 14:23675. [PMID: 39390013 PMCID: PMC11467307 DOI: 10.1038/s41598-024-74281-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Lower-grade gliomas (LGGs) exhibit diverse clinical behaviors and varying immune infiltration levels. Mitochondria have been implicated in numerous cancer pathogenesis and development, including LGGs. However, the precise biological functions of mitochondrial genes in shaping the immune landscape and the prognostic significance of LGGs remain elusive. Utilizing the Mito-Carta3.0 database, we curated a total of 1136 genes implicated in mitochondrial functions. By leveraging the expression profiles of 1136 genes related to mitochondria, we successfully categorized LGGs into four distinctive mitochondria-related transcriptome (MRT) subtypes. Our thorough analysis conclusively demonstrated that these subtypes exhibited marked disparities. To enable a personalized and integrated evaluation of LGG patients, we developed a prognostic signature known as MRT-related prognostic signature (MTRS). MTRS demonstrated correlation with mitochondria-related transcriptome (MRT) subtypes, allowing the assessment of patients' prognosis and immune microenvironment. We conducted a detailed exploration of the single-cell distribution of MTRS in lower-grade gliomas and verified the core genes of MTRS within the spatial transcriptome of these tumors. Furthermore, our study pinpointed MGME1 as the pivotal gene in the model, functioning as an oncogene that exerts influence on cell proliferation and migration capabilities. Our research highlights the importance of mitochondrial transcriptomic features in LGGs, offering paths for tailored therapies.
Collapse
Affiliation(s)
- Cheng Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Wenjie Wu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Kang Qian
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
9
|
Ali-El-Dein B, Abdelgawad M, Tarek M, Abdel-Rahim M, Elkady ME, Saleh HH, Zakaria MM, Tarabay HH, Laymon M, Mosbah A, Stenzl A. Bladder cancer associated with elevated heavy metals: Investigation of probable carcinogenic pathways through mitochondrial dysfunction, oxidative stress and mitogen-activated protein kinase. Urol Oncol 2024:S1078-1439(24)00650-1. [PMID: 39379209 DOI: 10.1016/j.urolonc.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
OBJECTIVE Carcinogenic mechanisms of heavy metals/ trace elements (HMTE) in bladder cancer (BC) are exactly unknown. Mitochondrial dysfunction (MD), oxidative stress (OS), and mitogen-activated protein kinases (MAPK) are probable carcinogenic mechanisms. The purpose is to investigate probable carcinogenic pathways of HMTE in BC using six MD genes, seven OS markers, and p38-MAPK. METHODS Study included 125 BC/radical cystectomy (RC) patients between October 2020 and October 2022, and 72 controls. Exclusion criteria included previous neoplasm, chemo- or radiotherapy. Two samples (cancer/noncancer) were taken from RC specimens. Tissues/plasma/urine cadmium (Cd), lead (Pb), cobalt (Co), nickel (Ni), strontium (Sr), aluminium (Al), zinc (Zn), boron (B) were measured by ICP-OES. Tissue MD genes (mt-CO3, mt-CYB, mt-ATP 6, mt-ATP8, mt-CO1, mt-ND1), and serum OS markers (8-OHdG, MDA, 3-NT, AGEs, AOPP, ROS, SOD2), p38-MAPK were assessed by RT-PCR, and ELISA, respectively. RESULTS BC and adjacent tissue showed higher (Al, Co, Pb, Ni, Zn, Cd,Sr), lower B concentrations, compared to controls. High tissue concentrations (Cd, Co, Pb, Ni, Sr) were associated with higher MD genes, OS, MAPK and lower SOD2 levels. The same differences were greater in 41 patients with concomitant elevation of two or more HMTE. Noninclusion of BC-related oncogenes (e.g. RAS) is a limitation. CONCLUSIONS Evidence suggests that high BC tissue (Cd, Co, Pb, Ni, Si) concentrations are associated with over-expressed MD genes, OS, p38-MAPK and low SOD2. These findings provide important understanding keys of probable carcinogenic pathways in BC associated with HMTE. So, efforts should be performed to minimize and counteract exposure to toxic HMTE.
Collapse
Affiliation(s)
- Bedeir Ali-El-Dein
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | - Mohamed Tarek
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mona Abdel-Rahim
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Manar E Elkady
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hazem H Saleh
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mahmoud M Zakaria
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Heba H Tarabay
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mahmoud Laymon
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed Mosbah
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Arnolf Stenzl
- Department of Urology, University of Tuebingen Medical School, Tuebingen, Germany
| |
Collapse
|
10
|
Libring S, Berestesky ED, Reinhart-King CA. The movement of mitochondria in breast cancer: internal motility and intercellular transfer of mitochondria. Clin Exp Metastasis 2024; 41:567-587. [PMID: 38489056 PMCID: PMC11499424 DOI: 10.1007/s10585-024-10269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/18/2024] [Indexed: 03/17/2024]
Abstract
As a major energy source for cells, mitochondria are involved in cell growth and proliferation, as well as migration, cell fate decisions, and many other aspects of cellular function. Once thought to be irreparably defective, mitochondrial function in cancer cells has found renewed interest, from suggested potential clinical biomarkers to mitochondria-targeting therapies. Here, we will focus on the effect of mitochondria movement on breast cancer progression. Mitochondria move both within the cell, such as to localize to areas of high energetic need, and between cells, where cells within the stroma have been shown to donate their mitochondria to breast cancer cells via multiple methods including tunneling nanotubes. The donation of mitochondria has been seen to increase the aggressiveness and chemoresistance of breast cancer cells, which has increased recent efforts to uncover the mechanisms of mitochondrial transfer. As metabolism and energetics are gaining attention as clinical targets, a better understanding of mitochondrial function and implications in cancer are required for developing effective, targeted therapeutics for cancer patients.
Collapse
Affiliation(s)
- Sarah Libring
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA
| | - Emily D Berestesky
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA
| | - Cynthia A Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA.
| |
Collapse
|
11
|
Sharma A, Virmani T, Kumar G, Sharma A, Virmani R, Gugulothu D, Singh K, Misra SK, Pathak K, Chitranshi N, Coutinho HDM, Jain D. Mitochondrial signaling pathways and their role in cancer drug resistance. Cell Signal 2024; 122:111329. [PMID: 39098704 DOI: 10.1016/j.cellsig.2024.111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Mitochondria, traditionally known as cellular powerhouses, now emerge as critical signaling centers influencing cancer progression and drug resistance. The review highlights the role that apoptotic signaling, DNA mutations, mitochondrial dynamics and metabolism play in the development of resistance mechanisms and the advancement of cancer. Targeted approaches are discussed, with an emphasis on managing mitophagy, fusion, and fission of the mitochondria to make resistant cancer cells more susceptible to traditional treatments. Additionally, metabolic reprogramming can be used to effectively target metabolic enzymes such GLUT1, HKII, PDK, and PKM2 in order to avoid resistance mechanisms. Although there are potential possibilities for therapy, the complex structure of mitochondria and their subtle role in tumor development hamper clinical translation. Novel targeted medicines are put forth, providing fresh insights on combating drug resistance in cancer. The study also emphasizes the significance of glutamine metabolism, mitochondrial respiratory complexes, and apoptotic pathways as potential targets to improve treatment effectiveness against drug-resistant cancers. Combining complementary and nanoparticle-based techniques to target mitochondria has demonstrated encouraging results in the treatment of cancer, opening doors to reduce resistance and enable individualized treatment plans catered to the unique characteristics of each patient. Suggesting innovative approaches such as drug repositioning and mitochondrial drug delivery to enhance the efficacy of mitochondria-targeting therapies, presenting a pathway for advancements in cancer treatment. This thorough investigation is a major step forward in the treatment of cancer and has the potential to influence clinical practice and enhance patient outcomes.
Collapse
Affiliation(s)
- Ashwani Sharma
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India.
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India.
| | - Anjali Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Reshu Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India.
| | - Dalapathi Gugulothu
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Shashi Kiran Misra
- School of Pharmaceutical Sciences, CSJM University Kanpur, Kanpur 208024, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India
| | - Nitin Chitranshi
- Macquarie Medical School, Macquarie University, New South Wales, Australia; School of Science and Technology, the University of New England, Armidale, New South Wales, Australia.
| | | | - Divya Jain
- Department of Microbiology, School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
12
|
Karakuyu NF, Özseven A, Akın SE, Çamaş HE, Özmen Ö, Cengiz Ç. L-carnitine protects the lung from radiation-induced damage in rats via the AMPK/SIRT1/TGF-1ß pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8043-8051. [PMID: 38775850 PMCID: PMC11449952 DOI: 10.1007/s00210-024-03157-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/10/2024] [Indexed: 10/04/2024]
Abstract
Radiotherapy (RAD) is a common cancer treatment method, but it can have unintended lung side effects. L-carnitine (LCAR) is an amino acid with antioxidant and anti-inflammatory properties. This study aims to demonstrate the effects of LCAR against radiation-induced acute lung injury and to elucidate its possible protective molecular mechanisms. A total of 32 Wistar albino rats were separated into four groups: control, RAD (10 Gy once on 1st day), RAD + LCAR (intraperitoneally, 200 mg/kg/d, for 10 days), and LCAR. At the end of the experiment, the rats were euthanized, and the lung tissues were collected for histopathological, immunohistochemical, biochemical, and genetic analysis. Emphysema, pronounced hyperemia, increased total oxidant status, and increased caspase-3 and TNF-α immunostainings were all seen in the lung tissues of the RAD group. LCAR treatment reduced these negative effects. In addition, AMPK and SIRT1 gene expressions increased in the RAD + LCAR group compared to the RAD group, while TGF-1ß gene expression decreased. While RAD caused major damage to the lungs of rats, LCAR application reduced this damage through antioxidant, anti-inflammatory, and anti-apoptotic mechanisms. Specifically, LCAR reduced fibrosis while attenuating RAD-induced inflammation and oxidative stress via the AMPK/SIRT1/TGF-1ß pathway. Therefore, LCAR can be considered a supplement to reduce complications associated with RAD.
Collapse
Affiliation(s)
- Nasıf Fatih Karakuyu
- Department of Pharmacology, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey.
| | - Alper Özseven
- Department of Radiation Oncology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Süleyman Emre Akın
- Department of Thoracic Surgery, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Hasan Ekrem Çamaş
- Department of Thoracic Surgery, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Özlem Özmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Çağla Cengiz
- Undergraduate Student, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
13
|
Shu M, Wang J, Xu Z, Lu T, He Y, Li R, Zhong G, Yan Y, Zhang Y, Chu X, Ke J. Targeting nanoplatform synergistic glutathione depletion-enhanced chemodynamic, microwave dynamic, and selective-microwave thermal to treat lung cancer bone metastasis. Bioact Mater 2024; 39:544-561. [PMID: 38883314 PMCID: PMC11179176 DOI: 10.1016/j.bioactmat.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 06/18/2024] Open
Abstract
Once bone metastasis occurs in lung cancer, the efficiency of treatment can be greatly reduced. Current mainstream treatments are focused on inhibiting cancer cell growth and preventing bone destruction. Microwave ablation (MWA) has been used to treat bone tumors. However, MWA may damage the surrounding normal tissues. Therefore, it could be beneficial to develop a nanocarrier combined with microwave to treat bone metastasis. Herein, a microwave-responsive nanoplatform (MgFe2O4@ZOL) was constructed. MgFe2O4@ZOL NPs release the cargos of Fe3+, Mg2+ and zoledronic acid (ZOL) in the acidic tumor microenvironment (TME). Fe3+ can deplete intracellular glutathione (GSH) and catalyze H2O2 to generate •OH, resulting in chemodynamic therapy (CDT). In addition, the microwave can significantly enhance the production of reactive oxygen species (ROS), thereby enabling the effective implementation of microwave dynamic therapy (MDT). Moreover, Mg2+ and ZOL promote osteoblast differentiation. In addition, MgFe2O4@ZOL NPs could target and selectively heat tumor tissue and enhance the effect of microwave thermal therapy (MTT). Both in vitro and in vivo experiments revealed that synergistic targeting, GSH depletion-enhanced CDT, MDT, and selective MTT exhibited significant antitumor efficacy and bone repair. This multimodal combination therapy provides a promising strategy for the treatment of bone metastasis in lung cancer patients.
Collapse
Affiliation(s)
- Man Shu
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Department of Orthopaedics, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Jingguang Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ziyang Xu
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Teliang Lu
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Yue He
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Renshan Li
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Guoqing Zhong
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Yunbo Yan
- Department of Internal Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yu Zhang
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Xiao Chu
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Jin Ke
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| |
Collapse
|
14
|
Lee HT, Lin CS, Liu CY, Chen P, Tsai CY, Wei YH. Mitochondrial Plasticity and Glucose Metabolic Alterations in Human Cancer under Oxidative Stress-From Viewpoints of Chronic Inflammation and Neutrophil Extracellular Traps (NETs). Int J Mol Sci 2024; 25:9458. [PMID: 39273403 PMCID: PMC11395599 DOI: 10.3390/ijms25179458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Oxidative stress elicited by reactive oxygen species (ROS) and chronic inflammation are involved both in deterring and the generation/progression of human cancers. Exogenous ROS can injure mitochondria and induce them to generate more endogenous mitochondrial ROS to further perpetuate the deteriorating condition in the affected cells. Dysfunction of these cancer mitochondria may possibly be offset by the Warburg effect, which is characterized by amplified glycolysis and metabolic reprogramming. ROS from neutrophil extracellular traps (NETs) are an essential element for neutrophils to defend against invading pathogens or to kill cancer cells. A chronic inflammation typically includes consecutive NET activation and tissue damage, as well as tissue repair, and together with NETs, ROS would participate in both the destruction and progression of cancers. This review discusses human mitochondrial plasticity and the glucose metabolic reprogramming of cancer cells confronting oxidative stress by the means of chronic inflammation and neutrophil extracellular traps (NETs).
Collapse
Affiliation(s)
- Hui-Ting Lee
- Division of Allergy, Immunology & Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei 104, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
| | - Chen-Sung Lin
- Division of Thoracic Surgery, Department of Surgery, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Center for General Education, Kainan University, Taoyuan City 338, Taiwan
| | - Chao-Yu Liu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Po Chen
- Cancer Free Biotech, Taipei 114, Taiwan
| | - Chang-Youh Tsai
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Clinical Trial Center, Division of Immunology & Rheumatology, Fu Jen Catholic University Hospital, New Taipei City 243, Taiwan
- Faculty of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yau-Huei Wei
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| |
Collapse
|
15
|
Sazonova MA, Kirichenko TV, Ryzhkova AI, Sazonova MD, Doroschuk NA, Omelchenko AV, Nikiforov NG, Ragino YI, Postnov AY. Variability of Mitochondrial DNA Heteroplasmy: Association with Asymptomatic Carotid Atherosclerosis. Biomedicines 2024; 12:1868. [PMID: 39200332 PMCID: PMC11351276 DOI: 10.3390/biomedicines12081868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Background and Objectives: Atherosclerosis is one of the main reasons for cardiovascular disease development. This study aimed to analyze the association of mtDNA mutations and atherosclerotic plaques in carotid arteries of patients with atherosclerosis and conditionally healthy study participants from the Novosibirsk region. Methods: PCR fragments of DNA containing the regions of 10 investigated mtDNA mutations were pyrosequenced. The heteroplasmy levels of mtDNA mutations were analyzed using a quantitative method based on pyrosequencing technology developed by M. A. Sazonova and colleagues. Results: In the analysis of samples of patients with atherosclerotic plaques of the carotid arteries and conditionally healthy study participants from the Novosibirsk region, four proatherogenic mutations in the mitochondrial genome (m.5178C>A, m.652delG, m.12315G>A and m.3256C>T) and three antiatherogenic mutations in mtDNA (m.13513G>A, m.652insG, and m.14846G>A) were detected. A west-east gradient was found in the distribution of the mtDNA mutations m.5178C>A, m.3256C>T, m.652insG, and m.13513G>A. Conclusions: Therefore, four proatherogenic mutations in the mitochondrial genome (m.5178C>A, m.652delG, m.12315G>A, and m.3256C>T) and three antiatherogenic mutations in mtDNA (m.13513G>A, m.652insG, and m.14846G>A) were detected in patients with atherosclerotic plaques in their carotid arteries from the Novosibirsk region.
Collapse
Affiliation(s)
- Margarita A. Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, Chazov National Medical Research Center of Cardiology, 15a, 3rd Cherepkovskaya Str., Moscow 121552, Russia;
| | - Tatiana V. Kirichenko
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow 117418, Russia; (T.V.K.); (N.G.N.)
| | - Anastasia I. Ryzhkova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
| | - Marina D. Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
| | - Natalya A. Doroschuk
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
| | - Andrey V. Omelchenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
| | - Nikita G. Nikiforov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow 117418, Russia; (T.V.K.); (N.G.N.)
| | - Yulia I. Ragino
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630089, Russia;
| | - Anton Yu. Postnov
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, Chazov National Medical Research Center of Cardiology, 15a, 3rd Cherepkovskaya Str., Moscow 121552, Russia;
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow 117418, Russia; (T.V.K.); (N.G.N.)
| |
Collapse
|
16
|
Arjmand S, Ilaghi M, Sisakht AK, Guldager MB, Wegener G, Landau AM, Gjedde A. Regulation of mitochondrial dysfunction by estrogens and estrogen receptors in Alzheimer's disease: A focused review. Basic Clin Pharmacol Toxicol 2024; 135:115-132. [PMID: 38801027 DOI: 10.1111/bcpt.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that primarily manifests itself by progressive memory loss and cognitive decline, thus significantly affecting memory functions and quality of life. In this review, we proceed from the understanding that the canonical amyloid-β hypothesis, while significant, has faced setbacks, highlighting the need to adopt a broader perspective considering the intricate interplay of diverse pathological pathways for effective AD treatments. Sex differences in AD offer valuable insights into a better understanding of its pathophysiology. Fluctuation of the levels of ovarian sex hormones during perimenopause is associated with changes in glucose metabolism, as a possible window of opportunity to further understand the roles of sex steroid hormones and their associated receptors in the pathophysiology of AD. We review these dimensions, emphasizing the potential of estrogen receptors (ERs) to reveal mitochondrial functions in the search for further research and therapeutic strategies for AD pharmacotherapy. Understanding and addressing the intricate interactions of mitochondrial dysfunction and ERs potentially pave the way for more effective approaches to AD therapy.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mehran Ilaghi
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Karimi Sisakht
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Matti Bock Guldager
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Alkhilaiwi FA. Red Sea Sponge Extract Callyspongia siphonella and its Metabolites Induced Anticancer Activity in 2D and 3D Culture of Colon Cancer Cells. Asian Pac J Cancer Prev 2024; 25:2869-2876. [PMID: 39205585 PMCID: PMC11495439 DOI: 10.31557/apjcp.2024.25.8.2869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Indexed: 09/04/2024] Open
Abstract
Colorectal Cancer (CRC) significantly contributes to global cancer-related mortality and morbidity. Callyspongia siphonella (Callyspongia sp.), a Red Sea sponge, has shown promising activity as an anticancer extract and a source of anticancer-active compounds. This study sought to determine the effects of Callyspongia siphonella and its metabolites on HCT-116 colon cancer cells. Cell viability assays showed that Callyspongia sp. inhibited in a dose-dependent manner, the growth of HCT-116 cell lines with IC50 values of 64.8±17 ug/ml on 2D culture and 141.1±6.8 ug/ml on 3D culture. The purified compounds Sipholenol-A and Sipholenone-A have an IC50 of 48.9±2.2 uM and 47.1±1.2 uM respectively. Following Callyspongia sp. treatment of HCT-116, cell cycle analysis showed arrest at G2/M.flow cytometry analysis showed an increase in total apoptosis due to Callyspongia sp treatment. Moreover, mitochondria membrane potential has been reported to be depolarized due to Callyspongia sp. which is an extra sign of apoptosis. Further investigations are needed to explain the particular underlying mechanisms of Callyspongia sp. extract and its metabolites Sipholenol-A and Sipholenone-A to explore their therapeutic potential in treating colon cancer.
Collapse
Affiliation(s)
- Faris A. Alkhilaiwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
18
|
Hou W, Chen J, Wang Y. MRPL35 Induces Proliferation, Invasion, and Glutamine Metabolism in NSCLC Cells by Upregulating SLC7A5 Expression. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13799. [PMID: 38987867 PMCID: PMC11236733 DOI: 10.1111/crj.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Mitochondrial ribosomal protein L35 (MRPL35) has been reported to contribute to the growth of non-small cell lung cancer (NSCLC) cells. However, the functions and mechanisms of MRPL35 on glutamine metabolism in NSCLC remain unclear. METHODS The detection of mRNA and protein of MRPL35, ubiquitin-specific protease 39 (USP39), and solute carrier family 7 member 5 (SLC7A5) was conducted using qRT-PCR and western blotting. Cell proliferation, apoptosis, and invasion were evaluated using the MTT assay, EdU assay, flow cytometry, and transwell assay, respectively. Glutamine metabolism was analyzed by detecting glutamine consumption, α-ketoglutarate level, and glutamate production. Cellular ubiquitination analyzed the deubiquitination effect of USP39 on MRPL35. An animal experiment was conducted for in vivo analysis. RESULTS MRPL35 was highly expressed in NSCLC tissues and cell lines, and high MRPL35 expression predicted poor outcome in NSCLC patients. In vitro analyses suggested that MRPL35 knockdown suppressed NSCLC cell proliferation, invasion, and glutamine metabolism. Moreover, MRPL35 silencing hindered tumor growth in vivo. Mechanistically, USP39 stabilized MRPL35 expression by deubiquitination and then promoted NSCLC cell proliferation, invasion, and glutamine metabolism. In addition, MRPL35 positively affected SLC7A5 expression in NSCLC cells in vitro and in vivo. Moreover, the anticancer effects of MRPL35 silencing could be rescued by SLC7A5 overexpression in NSCLC cells. CONCLUSION MRPL35 expression was stabilized by USP39-induced deubiquitination in NSCLC cells, and knockdown of MRPL35 suppressed NSCLC cell proliferation, invasion, and glutamine metabolism in vitro and impeded tumor growth in vivo by upregulating SLC7A5, providing a promising therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Wei Hou
- Respiratory DepartmentShaanxi Provincial Nuclear Industry 215 HospitalXianyangChina
| | - Juan Chen
- Respiratory DepartmentShaanxi Provincial Nuclear Industry 215 HospitalXianyangChina
| | - Yaoyuan Wang
- Respiratory DepartmentShaanxi Provincial Nuclear Industry 215 HospitalXianyangChina
| |
Collapse
|
19
|
Lin G, Zhan F, Jin L, Liu G, Wei W. The association between methylmalonic acid, a biomarker of mitochondrial dysfunction, and risk of prostate cancer. Int Urol Nephrol 2024; 56:1879-1885. [PMID: 38280131 DOI: 10.1007/s11255-024-03944-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND The aim of the study was to investigate the association between methylmalonic acid (MMA), a biomarker of mitochondrial dysfunction, and the risk of prostate cancer (PCa). METHODS AND MATERIALS The relevant data were collected from the National Health and Nutrition Examination Survey (NHANES). Weighted univariable and multivariable logistic regression analyses were performed to investigate the association between MMA and risk of PCa. A stratified analysis was also carried out. The dose-response relationship was elucidated by conducting a restricted cubic spline function. RESULTS A total of 2451 participants were included, of which 95 were PCa participants. The fully-adjusted model 2 constructed by weighted multivariable logistic regression analysis showed that the risk of PCa decreased by 53% when every MMA unit was added [OR: 0.47 (0.22-1.00), P = 0.049]. And a decrease in PCa risk was associated with a higher MMA level in MMA subgroups [OR: 0.34 (0.15-0.82), P = 0.02]. The results from a stratified analysis showed that participants in subgroups of other race, BMI (> 30 kg/m2), smoking (former and now), and hypertension (yes), an increase in every MMA unit was linked to a decrease in PCa risk. MMA and the risk of PCa were negatively correlated in a linear manner. CONCLUSION It was discovered in the study that an increase in MMA level is connected to a decrease in PCa risk. The serum MMA level may be helpful in assessing PCa risk.
Collapse
Affiliation(s)
- Gaoteng Lin
- Department of Urology, The 900th, Hospital of Joint Logistic Support Force, Fuzhou, China
| | - Fangfang Zhan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, Fujian, China
- Department of Rehabilitation Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Lianchao Jin
- Department of Urology, Beijing Geriatric Hospital, Beijing, 100095, China
| | - Guizhong Liu
- Department of Urology, Tianjin Jinnan Hospital/Tianjin University Jinnan Hospital, Tianjin, 300350, China
| | - Wanqing Wei
- Department of Urology, Lianshui People's Hospital of Kangda College Affiliated to Nanjing Medical University, Huai'an, 223400, Jiangsu, China.
| |
Collapse
|
20
|
Swart DH, de Haan M, Stevens J, Henning RH, Adel S, van der Graaf AC, Ulu N, Touw DJ, Krenning G. Safety, tolerability and toxicokinetics of the novel mitochondrial drug SUL-138 administered orally to rat and minipig. Toxicol Rep 2024; 12:345-355. [PMID: 38560508 PMCID: PMC10981007 DOI: 10.1016/j.toxrep.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Noncommunicable Chronic Diseases (NCD) are a socioeconomic burden and considered one of the major health challenges for coming decades. Mitochondrial dysfunction has been implicated mechanistically in their pathophysiology. Therefore, targeting mitochondria holds great promise to improve clinical outcomes in NCDs. SUL-138, an orally bioavailable small molecule efficacious from 0.5 mg/kg, improves mitochondrial function during disease in several preclinical animal models. As preparation for a First-in-Human (FIH) trial, SUL-138 was investigated in 30-day GLP repeated dose toxicity studies in rat and minipig, selected based on their comparability with human metabolism, to determine toxicokinetics, potential toxicity and its reversibility. Rats were allocated to either vehicle, 27, 136 or 682 mg/kg SUL-138 dose groups and minipigs were allocated to either vehicle, 16, 82 or 409 mg/kg. Treatment occurred orally for 30 days followed by a recovery period of 14 days. During these studies clinical observations, toxicokinetic, clinical pathology, necropsy and histopathology evaluations were performed. There was significant systemic exposure to SUL-138 and toxicokinetics was characterized by a rapid absorption and elimination. In the rat, toxicokinetics was dose-proportional and AUC0-tlast ratios in both species indicated that SUL-138 does not accumulate in vivo. No treatment-related adverse effects were observed for dose levels up to 136 and 82 mg/kg/day in rat and minipig respectively. In conclusion, these preclinical studies demonstrate that SUL-138 is well tolerated after repeated administration in rat and minipig, with NOAELs of 136 and 82 mg/kg/day, respectively.
Collapse
Affiliation(s)
- Daniël H. Swart
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen 9713GZ, the Netherlands
- Sulfateq B.V., Admiraal de Ruyterlaan 5, Groningen 9726GN, the Netherlands
| | - Martin de Haan
- Sulfateq B.V., Admiraal de Ruyterlaan 5, Groningen 9726GN, the Netherlands
- Madeha Management & Consultancy B.V., Eilandseweg 10, Nederhorst den Berg 1394JE, the Netherlands
| | - Jasper Stevens
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen 9713GZ, the Netherlands
| | - Rob H. Henning
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen 9713GZ, the Netherlands
| | - Sovan Adel
- Sulfateq B.V., Admiraal de Ruyterlaan 5, Groningen 9726GN, the Netherlands
| | | | - Nadir Ulu
- Gen İlaç ve Sağlık Ürünleri A.Ş., Mustafa Kemal Mahallesi, 2119.Cad. No:3, Çankaya, Ankara 06520, Turkey
| | - Daan J. Touw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen 9713GZ, the Netherlands
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713GZ, the Netherlands
| | - Guido Krenning
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen 9713GZ, the Netherlands
- Sulfateq B.V., Admiraal de Ruyterlaan 5, Groningen 9726GN, the Netherlands
| |
Collapse
|
21
|
Wu Q, Wang Z, Chen S, She X, Zhu S, Li P, Liu L, Zhao C, Li K, Liu A, Huang C, Chen Y, Hu F, Wang G, Hu J. USP26 promotes colorectal cancer tumorigenesis by restraining PRKN-mediated mitophagy. Oncogene 2024; 43:1581-1593. [PMID: 38565942 DOI: 10.1038/s41388-024-03009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Deubiquitinating enzymes (DUBs) are promising targets for cancer therapy because of their pivotal roles in various physiological and pathological processes. Among these, ubiquitin-specific peptidase 26 (USP26) is a protease with crucial regulatory functions. Our study sheds light on the upregulation of USP26 in colorectal cancer (CRC), in which its increased expression correlates with an unfavorable prognosis. Herein, we evidenced the role of USP26 in promoting CRC tumorigenesis in a parkin RBR E3 ubiquitin-protein ligase (PRKN) protein-dependent manner. Our investigation revealed that USP26 directly interacted with PRKN protein, facilitating its deubiquitination, and subsequently reducing its activity. Additionally, we identified the K129 site on PRKN as a specific target for USP26-mediated deubiquitination. Our research highlights that a K-to-R mutation at the site on PRKN diminishes its potential for activation and ability to mediate mitophagy. In summary, our findings underscore the significance of USP26-mediated deubiquitination in restraining the activation of the PRKN-mediated mitophagy pathway, ultimately driving CRC tumorigenesis. This study not only elucidated the multifaceted role of USP26 in CRC but also introduced a promising avenue for therapeutic exploration through the development of small molecule inhibitors targeting USP26. This strategy holds promise as a novel therapeutic approach for CRC.
Collapse
Affiliation(s)
- Qi Wu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhihong Wang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Siqi Chen
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaowei She
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shengyu Zhu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pengcheng Li
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lang Liu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chongchong Zhao
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Kangdi Li
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Anyi Liu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Changsheng Huang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yaqi Chen
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fuqing Hu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guihua Wang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Junbo Hu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
22
|
Ichegiri A, Kodolikar K, Bagade V, Selukar M, Dey T. Mitochondria: A source of potential biomarkers for non-communicable diseases. Adv Clin Chem 2024; 121:334-365. [PMID: 38797544 DOI: 10.1016/bs.acc.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mitochondria, as an endosymbiont of eukaryotic cells, controls multiple cellular activities, including respiration, reactive oxygen species production, fatty acid synthesis, and death. Though the majority of functional mitochondrial proteins are translated through a nucleus-controlled process, very few of them (∼10%) are translated within mitochondria through their own machinery. Germline and somatic mutations in mitochondrial and nuclear DNA significantly impact mitochondrial homeostasis and function. Such modifications disturbing mitochondrial biogenesis, metabolism, or mitophagy eventually resulted in cellular pathophysiology. In this chapter, we discussed the impact of mitochondria and its dysfunction on several non-communicable diseases like cancer, diabetes, neurodegenerative, and cardiovascular problems. Mitochondrial dysfunction and its outcome could be screened by currently available omics-based techniques, flow cytometry, and high-resolution imaging. Such characterization could be evaluated as potential biomarkers to assess the disease burden and prognosis.
Collapse
Affiliation(s)
- Amulya Ichegiri
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Kshitij Kodolikar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Vaibhavi Bagade
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Mrunal Selukar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Tuli Dey
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
23
|
Wang X, Memon AA, Hedelius A, Grundberg A, Sundquist J, Sundquist K. Circulating mitochondrial long non-coding 7S RNA in primary health care patients with depression/anxiety. J Affect Disord 2024; 349:101-106. [PMID: 38163568 DOI: 10.1016/j.jad.2023.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/27/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The significant role of long non-coding 7S RNA in controlling mitochondrial transcription highlights its importance in mitochondrial function. Considering the suggested connection between mitochondrial dysfunction and the onset of mental disorders, this study aimed to explore the potential involvement of 7S RNA in the context of depression/anxiety. RESULTS A total of 181 patients in primary health care (age 20-64 years) with depression/anxiety and 59 healthy controls were included in the study. 7S RNA was measured using quantitative real-time PCR in plasma samples collected before (baseline) and after 8 weeks of treatment (mindfulness or cognitive-based behavioral therapy). Upon adjustment for age and sex, the baseline plasma levels of 7S RNA were significantly higher in patients than in healthy controls (p < 0.001). Notably, post-treatment, there was a significant reduction in 7S RNA levels (p = 0.03). These changes in 7S RNA were related to the treatment response, as indicated by HADS-D (Hospital Anxiety and Depression Scale) scores (ß = -0.04, p = 0.04), even after accounting for baseline scores and other cofounders. CONCLUSION The findings of this study indicate an association between plasma 7S RNA levels and depression/anxiety, as well as treatment response. While further confirmatory analyses are necessary, plasma 7S RNA holds promise as a potential predictive biomarker for both depression/anxiety and the treatment response within these disorders.
Collapse
Affiliation(s)
- Xiao Wang
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden.
| | - Ashfaque A Memon
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden
| | - Anna Hedelius
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden
| | - Anton Grundberg
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden; Department of Family Medicine and Community Health, Department of Population Health Science and Policy Icahn School of Medicine at Mount Sinai, New York, USA; Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Japan
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden; Department of Family Medicine and Community Health, Department of Population Health Science and Policy Icahn School of Medicine at Mount Sinai, New York, USA; Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Japan
| |
Collapse
|
24
|
Afsar A, Zhang L. Putative Molecular Mechanisms Underpinning the Inverse Roles of Mitochondrial Respiration and Heme Function in Lung Cancer and Alzheimer's Disease. BIOLOGY 2024; 13:185. [PMID: 38534454 DOI: 10.3390/biology13030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mitochondria are the powerhouse of the cell. Mitochondria serve as the major source of oxidative stress. Impaired mitochondria produce less adenosine triphosphate (ATP) but generate more reactive oxygen species (ROS), which could be a major factor in the oxidative imbalance observed in Alzheimer's disease (AD). Well-balanced mitochondrial respiration is important for the proper functioning of cells and human health. Indeed, recent research has shown that elevated mitochondrial respiration underlies the development and therapy resistance of many types of cancer, whereas diminished mitochondrial respiration is linked to the pathogenesis of AD. Mitochondria govern several activities that are known to be changed in lung cancer, the largest cause of cancer-related mortality worldwide. Because of the significant dependence of lung cancer cells on mitochondrial respiration, numerous studies demonstrated that blocking mitochondrial activity is a potent strategy to treat lung cancer. Heme is a central factor in mitochondrial respiration/oxidative phosphorylation (OXPHOS), and its association with cancer is the subject of increased research in recent years. In neural cells, heme is a key component in mitochondrial respiration and the production of ATP. Here, we review the role of impaired heme metabolism in the etiology of AD. We discuss the numerous mitochondrial effects that may contribute to AD and cancer. In addition to emphasizing the significance of heme in the development of both AD and cancer, this review also identifies some possible biological connections between the development of the two diseases. This review explores shared biological mechanisms (Pin1, Wnt, and p53 signaling) in cancer and AD. In cancer, these mechanisms drive cell proliferation and tumorigenic functions, while in AD, they lead to cell death. Understanding these mechanisms may help advance treatments for both conditions. This review discusses precise information regarding common risk factors, such as aging, obesity, diabetes, and tobacco usage.
Collapse
Affiliation(s)
- Atefeh Afsar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
25
|
Wang SF, Chang YL, Liu TY, Huang KH, Fang WL, Li AFY, Yeh TS, Hung GY, Lee HC. Mitochondrial dysfunction decreases cisplatin sensitivity in gastric cancer cells through upregulation of integrated stress response and mitokine GDF15. FEBS J 2024; 291:1131-1150. [PMID: 37935441 DOI: 10.1111/febs.16992] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/18/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Gastric neoplasm is a high-mortality cancer worldwide. Chemoresistance is the obstacle against gastric cancer treatment. Mitochondrial dysfunction has been observed to promote malignant progression. However, the underlying mechanism is still unclear. The mitokine growth differentiation factor 15 (GDF15) is a significant biomarker for mitochondrial disorder and is activated by the integrated stress response (ISR) pathway. The serum level of GDF15 was found to be correlated with the poor prognosis of gastric cancer patients. In this study, we found that high GDF15 protein expression might increase disease recurrence in adjuvant chemotherapy-treated gastric cancer patients. Moreover, treatment with mitochondrial inhibitors, especially oligomycin (a complex V inhibitor) and salubrinal (an ISR activator), respectively, was found to upregulate GDF15 and enhance cisplatin insensitivity of human gastric cancer cells. Mechanistically, it was found that the activating transcription factor 4-C/EBP homologous protein pathway has a crucial function in the heightened manifestation of GDF15. In addition, reactive oxygen species-activated general control nonderepressible 2 mediates the oligomycin-induced ISR, and upregulates GDF15. The GDF15-glial cell-derived neurotrophic factor family receptor a-like-ISR-cystine/glutamate transporter-enhanced glutathione production was found to be involved in cisplatin resistance. These results suggest that mitochondrial dysfunction might enhance cisplatin insensitivity through GDF15 upregulation, and targeting mitokine GDF15-ISR regulation might be a strategy against cisplatin resistance of gastric cancer.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, Taiwan
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taiwan
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuh-Lih Chang
- Department of Pharmacy, Taipei Veterans General Hospital, Taiwan
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Yu Liu
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuo-Hung Huang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taiwan
- Department of Surgery, Gastric Cancer Medical Center, Taipei Veterans General Hospital, Taiwan
| | - Wen-Liang Fang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taiwan
- Department of Surgery, Gastric Cancer Medical Center, Taipei Veterans General Hospital, Taiwan
| | - Anna Fen-Yau Li
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Anatomical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Tien-Shun Yeh
- Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Giun-Yi Hung
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taiwan
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
26
|
Wang M, Lan S, Zhang W, Jin Q, Du H, Sun X, He L, Meng X, Su L, Liu G. Anti-Cancer Potency of Copper-Doped Carbon Quantum Dots Against Breast Cancer Progression. Int J Nanomedicine 2024; 19:1985-2004. [PMID: 38435754 PMCID: PMC10908338 DOI: 10.2147/ijn.s449887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction The anti-cancer potency of copper-doped carbon quantum dots (Cu-CDs) against breast cancer progression needs more detailed investigations. Methods With urea and ethylene glycol applied as carbon sources and copper sulfate used as a reactive dopant, Cu-CDs were synthesized in the current study by a one-step hydrothermal synthesis method, followed by the characterization and biocompatibility evaluations of Cu-CDs. Subsequently, the anti-cancer potency of Cu-CDs against breast cancer progression was confirmed by these biochemical, molecular, and transcriptomic assessments, including viability, proliferation, migration, invasion, adhesion, clonogenicity, cell cycle distribution, apoptosis, redox homeostasis, and transcriptomic assays of MDA-MB-231 cells. Results The biocompatibility of Cu-CDs was confirmed based on the non-significant changes in the pathological and physiological parameters in the Cu-CDs treated mice, as well as the noncytotoxic effect of Cu-CDs on normal cells. Moreover, the Cu-CDs treatments not only decreased the viability, proliferation, migration, invasion, adhesion, and clonogenicity of MDA-MB-231 cells but also induced the redox imbalance, cell cycle arrest, and apoptosis of MDA-MB-231 cells via ameliorating the mitochondrial dysfunctions and regulating the MAPK signaling pathway. Conclusion Our findings confirmed the biosafety and excellent anti-cancer potency of Cu-CDs against breast cancer progression by tapping into mechanisms that disrupt malignant behaviors and oxidative homeostasis of breast cancer cells.
Collapse
Affiliation(s)
- Mengqi Wang
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Shuting Lan
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Wenqi Zhang
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Qin Jin
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Hua Du
- Department of Pathology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Xiaomei Sun
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Lijun He
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Xiangyun Meng
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Liya Su
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| |
Collapse
|
27
|
Choudhury C, Gill MK, McAleese CE, Butcher NJ, Ngo ST, Steyn FJ, Minchin RF. The Arylamine N-Acetyltransferases as Therapeutic Targets in Metabolic Diseases Associated with Mitochondrial Dysfunction. Pharmacol Rev 2024; 76:300-320. [PMID: 38351074 DOI: 10.1124/pharmrev.123.000835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 02/16/2024] Open
Abstract
In humans, there are two arylamine N-acetyltransferase genes that encode functional enzymes (NAT1 and NAT2) as well as one pseudogene, all of which are located together on chromosome 8. Although they were first identified by their role in the acetylation of drugs and other xenobiotics, recent studies have shown strong associations for both enzymes in a variety of diseases, including cancer, cardiovascular disease, and diabetes. There is growing evidence that this association may be causal. Consistently, NAT1 and NAT2 are shown to be required for healthy mitochondria. This review discusses the current literature on the role of both NAT1 and NAT2 in mitochondrial bioenergetics. It will attempt to relate our understanding of the evolution of the two genes with biologic function and then present evidence that several major metabolic diseases are influenced by NAT1 and NAT2. Finally, it will discuss current and future approaches to inhibit or enhance NAT1 and NAT2 activity/expression using small-molecule drugs. SIGNIFICANCE STATEMENT: The arylamine N-acetyltransferases (NATs) NAT1 and NAT2 share common features in their associations with mitochondrial bioenergetics. This review discusses mitochondrial function as it relates to health and disease, and the importance of NAT in mitochondrial function and dysfunction. It also compares NAT1 and NAT2 to highlight their functional similarities and differences. Both NAT1 and NAT2 are potential drug targets for diseases where mitochondrial dysfunction is a hallmark of onset and progression.
Collapse
Affiliation(s)
- Chandra Choudhury
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Melinder K Gill
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Courtney E McAleese
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Neville J Butcher
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Shyuan T Ngo
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Frederik J Steyn
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| |
Collapse
|
28
|
Liang Y, Zhang X, Peng J, Liu J, Chen H, Guo S. Vitamin D-mediated tsRNA-07804 triggers mitochondrial dysfunction and suppresses non-small cell lung cancer progression by targeting CRKL. J Cancer Res Clin Oncol 2024; 150:51. [PMID: 38289488 PMCID: PMC10827823 DOI: 10.1007/s00432-023-05586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024]
Abstract
OBJECTIVE tRNA-derived small RNAs (tsRNAs) are novel non-coding RNAs with various functions in multiple cancers. Nevertheless, whether vitamin D executes its function in mitochondrial dysfunction and non-small cell lung cancer (NSCLC) progression through tsRNAs remains obscure. METHODS Differentially expressed tsRNAs between control and vitamin D-treated H1299 cells were acquired by small RNA sequencing. Cell and animal experiments were implemented to elucidate the impacts of vitamin D and tsRNA on mitochondrial dysfunction and NSCLC progression. Dual-luciferase reporter assay, quantitative real-time PCR, western blot and recovery experiments were applied to determine the mechanism of tsRNA in NSCLC. RESULTS We discovered that vitamin D receptor resulted in decreased mitochondrial-related functions and vitamin D caused mitochondrial dysfunction of NSCLC cells. tsRNA-07804 was remarkably upregulated in vitamin D-treated H1299 cells. Functional experiments indicated that vitamin D led to mitochondrial dysfunction, repressed the proliferation, migration, invasion, and promoted apoptosis of H1299 cells via regulating tsRNA-07804. Mechanistically, tsRNA-07804 induced mitochondrial dysfunction and inhibited the malignancy of H1299 cells by suppressing CRKL expression. In vivo experiments showed that vitamin D inhibited the tumor growth in NSCLC by increasing tsRNA-07804 expression. Moreover, clinical sample analysis unveiled that tsRNA-07804 had a negative correlation with CRKL. CONCLUSIONS In conclusion, our study proved that vitamin D induced mitochondrial dysfunction and suppressed the progression of NSCLC through the tsRNA-07804/CRKL axis. Overall, these results unveiled that tsRNA-07804 might act as a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yonggang Liang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiaoqiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jinhua Peng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jing Liu
- Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - He Chen
- Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Shanxian Guo
- Thoracic Oncology Department, Jiangxi Cancer Hospital, Jiangxi Clinical Research Center for Cancer, 519 Beijing East Road, Nanchang, 330029, China.
- JXHC Key Laboratory of Tumor Microenvironment and Immunoregulation, Jiangxi Cancer Hospital, Nanchang, China.
| |
Collapse
|
29
|
Bosso M, Haddad D, Al Madhoun A, Al-Mulla F. Targeting the Metabolic Paradigms in Cancer and Diabetes. Biomedicines 2024; 12:211. [PMID: 38255314 PMCID: PMC10813379 DOI: 10.3390/biomedicines12010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dysregulated metabolic dynamics are evident in both cancer and diabetes, with metabolic alterations representing a facet of the myriad changes observed in these conditions. This review delves into the commonalities in metabolism between cancer and type 2 diabetes (T2D), focusing specifically on the contrasting roles of oxidative phosphorylation (OXPHOS) and glycolysis as primary energy-generating pathways within cells. Building on earlier research, we explore how a shift towards one pathway over the other serves as a foundational aspect in the development of cancer and T2D. Unlike previous reviews, we posit that this shift may occur in seemingly opposing yet complementary directions, akin to the Yin and Yang concept. These metabolic fluctuations reveal an intricate network of underlying defective signaling pathways, orchestrating the pathogenesis and progression of each disease. The Warburg phenomenon, characterized by the prevalence of aerobic glycolysis over minimal to no OXPHOS, emerges as the predominant metabolic phenotype in cancer. Conversely, in T2D, the prevailing metabolic paradigm has traditionally been perceived in terms of discrete irregularities rather than an OXPHOS-to-glycolysis shift. Throughout T2D pathogenesis, OXPHOS remains consistently heightened due to chronic hyperglycemia or hyperinsulinemia. In advanced insulin resistance and T2D, the metabolic landscape becomes more complex, featuring differential tissue-specific alterations that affect OXPHOS. Recent findings suggest that addressing the metabolic imbalance in both cancer and diabetes could offer an effective treatment strategy. Numerous pharmaceutical and nutritional modalities exhibiting therapeutic effects in both conditions ultimately modulate the OXPHOS-glycolysis axis. Noteworthy nutritional adjuncts, such as alpha-lipoic acid, flavonoids, and glutamine, demonstrate the ability to reprogram metabolism, exerting anti-tumor and anti-diabetic effects. Similarly, pharmacological agents like metformin exhibit therapeutic efficacy in both T2D and cancer. This review discusses the molecular mechanisms underlying these metabolic shifts and explores promising therapeutic strategies aimed at reversing the metabolic imbalance in both disease scenarios.
Collapse
Affiliation(s)
- Mira Bosso
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| |
Collapse
|
30
|
Blatkiewicz M, Szyszka M, Olechnowicz A, Kamiński K, Jopek K, Komarowska H, Tyczewska M, Klimont A, Wierzbicki T, Karczewski M, Ruchała M, Rucinski M. Impaired Expression of Humanin during Adrenocortical Carcinoma. Int J Mol Sci 2024; 25:1038. [PMID: 38256114 PMCID: PMC10816135 DOI: 10.3390/ijms25021038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The discovery of mitochondria-derived peptides (MDPs) has provided a new perspective on mitochondrial function. MDPs encoded by mitochondrial DNA (mtDNA) can act as hormone-like peptides, influencing cell survival and proliferation. Among these peptides, humanin has been identified as a crucial factor for maintaining cell survival and preventing cell death under various conditions. Adrenocortical carcinoma (ACC) is a rare and aggressive malignancy that results from adrenal hormone dysfunction. This study aimed to investigate humanin expression in the adrenal tissue and serum of patients with ACC. For the first time, our study revealed significant reduction in the mRNA expression of humanin in patients with ACC compared to healthy controls. However, no significant changes were observed in the serum humanin levels. Interestingly, we identified a positive correlation between patient age and serum humanin levels and a negative correlation between tumor size and LDL levels. While the impaired expression of humanin in patients with ACC may be attributed to mitochondrial dysfunction, an alternative explanation could be related to diminished mitochondrial copy number. Further investigations are warranted to elucidate the intricate relationship among humanin, mitochondrial function, and ACC pathology.
Collapse
Affiliation(s)
- Małgorzata Blatkiewicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.S.); (K.J.); (M.R.)
| | - Marta Szyszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.S.); (K.J.); (M.R.)
| | - Anna Olechnowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.S.); (K.J.); (M.R.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Kacper Kamiński
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.S.); (K.J.); (M.R.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.S.); (K.J.); (M.R.)
| | - Hanna Komarowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-356 Poznan, Poland; (H.K.); (A.K.); (M.R.)
| | - Marianna Tyczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.S.); (K.J.); (M.R.)
- Department of Anatomy and Histology, University of Zielona Góra, Licealna Street 9, 65-417 Zielona Góra, Poland
| | - Anna Klimont
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-356 Poznan, Poland; (H.K.); (A.K.); (M.R.)
| | - Tomasz Wierzbicki
- Department of General, Endocrinological and Gastroenterological Surgery, Poznan University of Medical Sciences, 60-355 Poznan, Poland;
| | - Marek Karczewski
- Department of General and Transplantation Surgery, Poznan University of Medical Sciences, 60-356 Poznan, Poland;
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-356 Poznan, Poland; (H.K.); (A.K.); (M.R.)
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.S.); (K.J.); (M.R.)
| |
Collapse
|
31
|
Mitchelson KAJ, O’Connell F, O’Sullivan J, Roche HM. Obesity, Dietary Fats, and Gastrointestinal Cancer Risk-Potential Mechanisms Relating to Lipid Metabolism and Inflammation. Metabolites 2024; 14:42. [PMID: 38248845 PMCID: PMC10821017 DOI: 10.3390/metabo14010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Obesity is a major driving factor in the incidence, progression, and poor treatment response in gastrointestinal cancers. Herein, we conducted a comprehensive analysis of the impact of obesity and its resulting metabolic perturbations across four gastrointestinal cancer types, namely, oesophageal, gastric, liver, and colorectal cancer. Importantly, not all obese phenotypes are equal. Obese adipose tissue heterogeneity depends on the location, structure, cellular profile (including resident immune cell populations), and dietary fatty acid intake. We discuss whether adipose heterogeneity impacts the tumorigenic environment. Dietary fat quality, in particular saturated fatty acids, promotes a hypertrophic, pro-inflammatory adipose profile, in contrast to monounsaturated fatty acids, resulting in a hyperplastic, less inflammatory adipose phenotype. The purpose of this review is to examine the impact of obesity, including dietary fat quality, on adipose tissue biology and oncogenesis, specifically focusing on lipid metabolism and inflammatory mechanisms. This is achieved with a particular focus on gastrointestinal cancers as exemplar models of obesity-associated cancers.
Collapse
Affiliation(s)
- Kathleen A. J. Mitchelson
- Nutrigenomics Research Group, UCD Conway Institute, UCD Institute of Food and Health, and School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 H1W8 Dublin, Ireland
| | - Fiona O’Connell
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Jacintha O’Sullivan
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Helen M. Roche
- Nutrigenomics Research Group, UCD Conway Institute, UCD Institute of Food and Health, and School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 H1W8 Dublin, Ireland
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5DL, UK
| |
Collapse
|
32
|
Zhao C, Chen L, Jin Z, Liu H, Ma C, Zhou H, Xu L, Zhou S, Shi Y, Li W, Chen Y, Dou C, Wang X. Knockdown of MRPL35 promotes cell apoptosis and inhibits cell proliferation in non-small-cell lung cancer. BMC Pulm Med 2023; 23:507. [PMID: 38093266 PMCID: PMC10720070 DOI: 10.1186/s12890-023-02677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/26/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a major pathological type of lung cancer. However, its pathogenesis remains largely unclear. MRPL35 is a regulatory subunit of the mitoribosome, which can regulate the assembly of cytochrome c oxidases and plays an important role in the occurrence of NSCLC. METHODS The expression of MRPL35 in NSCLC was detected by tissue microarray and immunohistochemistry. H1299 cells were infected with lentivirus to knockdown MRPL35, and the cells were subjected to crystal violet staining to assess the results of colony formation assays. A549 cells were infected by lentiviral particles-expressing shMRPL35 or shControl, and then subcutaneously injected into nude mice. Tumorigenesis in mice was detected by in vivo imaging. The potential pathway of MRPL35 in NSCLC was assessed by Western blotting. RESULTS MRPL35 was over-expressed in NSCLC tissue compared to para-cancerous and normal tissues. Knockdown of MRPL35 suppressed cell proliferation and decreased NSCLC progression both in vitro and in vivo. The possible molecular mechanisms were also clarified, which indicated that MRPL35 could be involved in cell apoptosis and proliferation by modulating the expression levels of CDK1, BIRC5, CHEK1, STMN1 and MCM2. Knockdown of MRPL35 activated p53 signaling pathway and inhibited cell cycle regulation. CONCLUSIONS The oncogenic role of MRPL35 in NSCLC was potentially mediated through the cell cycle regulatory genes such as BIRC5, STMN1, CDK1, CHEK1 and MCM2, as well as activation of P53 signaling pathway.
Collapse
Affiliation(s)
- Chengling Zhao
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Lei Chen
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Zhixin Jin
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Haitao Liu
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Chao Ma
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Hangtian Zhou
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Lingling Xu
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Sihui Zhou
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Yan Shi
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Wei Li
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Yuqing Chen
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Chengli Dou
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China.
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China.
- Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China.
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China.
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China.
- Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China.
| |
Collapse
|
33
|
Fähnrich A, Stephan I, Hirose M, Haarich F, Awadelkareem MA, Ibrahim S, Busch H, Wohlers I. North and East African mitochondrial genetic variation needs further characterization towards precision medicine. J Adv Res 2023; 54:59-76. [PMID: 36736695 PMCID: PMC10703728 DOI: 10.1016/j.jare.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Mitochondria are maternally inherited cell organelles with their own genome, and perform various functions in eukaryotic cells such as energy production and cellular homeostasis. Due to their inheritance and manifold biological roles in health and disease, mitochondrial genetics serves a dual purpose of tracing the history as well as disease susceptibility of human populations across the globe. This work requires a comprehensive catalogue of commonly observed genetic variations in the mitochondrial DNAs for all regions throughout the world. So far, however, certain regions, such as North and East Africa have been understudied. OBJECTIVES To address this shortcoming, we have created the most comprehensive quality-controlled North and East African mitochondrial data set to date and use it for characterizing mitochondrial genetic variation in this region. METHODS We compiled 11 published cohorts with novel data for mitochondrial genomes from 159 Sudanese individuals. We combined these 641 mitochondrial sequences with sequences from the 1000 Genomes (n = 2504) and the Human Genome Diversity Project (n = 828) and used the tool haplocheck for extensive quality control and detection of in-sample contamination, as well as Nanopore long read sequencing for haplogroup validation of 18 samples. RESULTS Using a subset of high-coverage mitochondrial sequences, we predict 15 potentially novel haplogroups in North and East African subjects and observe likely phylogenetic deviations from the established PhyloTree reference for haplogroups L0a1 and L2a1. CONCLUSION Our findings demonstrate common hitherto unexplored variants in mitochondrial genomes of North and East Africa that lead to novel phylogenetic relationships between haplogroups present in these regions. These observations call for further in-depth population genetic studies in that region to enable the prospective use of mitochondrial genetic variation for precision medicine.
Collapse
Affiliation(s)
- Anke Fähnrich
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Isabel Stephan
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Misa Hirose
- Genetics Division, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Franziska Haarich
- Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, and University Heart Center, Lübeck, Lübeck, Germany
| | - Mosab Ali Awadelkareem
- Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Saleh Ibrahim
- Genetics Division, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; Khalifa University, Abu Dhabi, United Arab Emirates
| | - Hauke Busch
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Inken Wohlers
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; Biomedical Data Science, Research Center Borstel, 23845 Borstel, Germany.
| |
Collapse
|
34
|
Marumo T, Maduka CV, Ural E, Apu EH, Chung SJ, Tanabe K, van den Berg NS, Zhou Q, Martin BA, Miura T, Rosenthal EL, Shibahara T, Contag CH. Flavinated SDHA underlies the change in intrinsic optical properties of oral cancers. Commun Biol 2023; 6:1134. [PMID: 37945749 PMCID: PMC10636189 DOI: 10.1038/s42003-023-05510-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
The molecular basis of reduced autofluorescence in oral squamous cell carcinoma (OSCC) cells relative to normal cells has been speculated to be due to lower levels of free flavin adenine dinucleotide (FAD). This speculation, along with differences in the intrinsic optical properties of extracellular collagen, lies at the foundation of the design of currently-used clinical optical detection devices. Here, we report that free FAD levels may not account for differences in autofluorescence of OSCC cells, but that the differences relate to FAD as a co-factor for flavination. Autofluorescence from a 70 kDa flavoprotein, succinate dehydrogenase A (SDHA), was found to be responsible for changes in optical properties within the FAD spectral region, with lower levels of flavinated SDHA in OSCC cells. Since flavinated SDHA is required for functional complexation with succinate dehydrogenase B (SDHB), decreased SDHB levels were observed in human OSCC tissue relative to normal tissues. Accordingly, the metabolism of OSCC cells was found to be significantly altered relative to normal cells, revealing vulnerabilities for both diagnosis and targeted therapy. Optimizing non-invasive tools based on optical and metabolic signatures of cancers will enable more precise and early diagnosis leading to improved outcomes in patients.
Collapse
Affiliation(s)
- Tomoko Marumo
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Chima V Maduka
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Comparative Medicine & Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80303, USA
| | - Evran Ural
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Ehsanul Hoque Apu
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Seock-Jin Chung
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Koji Tanabe
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Nynke S van den Berg
- Department of Otolaryngology - Division of Head and Neck Surgery, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, 94305, USA
| | - Quan Zhou
- Department of Otolaryngology - Division of Head and Neck Surgery, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, 94305, USA
| | - Brock A Martin
- Department of Pathology, Stanford University School of Medicine, 3100 Pasteur Drive, Stanford, CA, 94305, USA
| | - Tadashi Miura
- Oral Health Science Center, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Eben L Rosenthal
- Department of Otolaryngology - Division of Head and Neck Surgery, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, 94305, USA
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN, 37232, USA
| | - Takahiko Shibahara
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Christopher H Contag
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
35
|
Liu H, Wu X, Yang T, Wang C, Huang F, Xu Y, Peng J. NARFL deficiency caused mitochondrial dysfunction in lung cancer cells by HIF-1α-DNMT1 axis. Sci Rep 2023; 13:17176. [PMID: 37821486 PMCID: PMC10567771 DOI: 10.1038/s41598-023-44418-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023] Open
Abstract
NARFL was reported to be a component of cytosolic iron-sulfur cluster assembly pathway and a causative gene of the diffused pulmonary arteriovenous malformations (dPAVMs). NARFL knockout dramatically impaired mitochondrial integrity in mice, which might promote mitochondrial dysfunction and lead to worse survival rate of lung cancer. However, the underlying molecular mechanism of NARFL deficiency in non-small cell lung cancer (NSCLC) is unknown. Knockdown assay was performed in A549 and H1299 cells. The protein levels of HIF-1α and DNMT1 were measured, and then Complex I activity, mtDNA copy numbers and mRNA levels of mtND genes were determined. Cisplatin resistance and cell proliferation were conducted using CCK8 assay. Cell migration and invasion were detected using wound heal assay and transwell assay. Survival analysis of lung cancer patients and KM plotter database were used for evaluating the potential value of NARFL deficiency. NARFL protein was expressed in two cell lines and knockdown assay significantly reduced its levels. Knockdown NARFL increased the protein levels of HIF-1α and DNMT1, and downregulated the mRNA levels of ND genes, mitochondrial Complex I activity, mtDNA copy number, and ATP levels. The mitochondrial dysfunction caused by NARFL deficiency were ameliorated by siHIF-1α and DNMT1 inhibitor. Knockdown NARFL increased the drug resistance and cell migration, and siHIF-1α reversed this effect. Moreover, NSCLC patients with NARFL deficiency had a poor survival rate using a tissue array and KM plotter database, and it would be a target for cancer prognosis and treatment. NARFL deficiency caused dysregulation of energy metabolism in lung cancer cells via HIF-1α-DNMT1 axis, which promoted drug resistance and cell migration. It provided a potential target for treatment and prognosis of lung cancer.
Collapse
Affiliation(s)
- Hongzhou Liu
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, 610500, Sichuan Province, People's Republic of China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26# Shengli Road, Wuhan, 430014, Hubei Province, People's Republic of China
- Department of Clinical Laboratory, The Third People's Hospital of Chengdu, 82# Qinglong Street, Chengdu, 610014, Sichuan Province, People's Republic of China
| | - Xueqin Wu
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, 610500, Sichuan Province, People's Republic of China
| | - Tianrong Yang
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, 610500, Sichuan Province, People's Republic of China
| | - Chen Wang
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Fei Huang
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, 610500, Sichuan Province, People's Republic of China
| | - Ying Xu
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, 610500, Sichuan Province, People's Republic of China.
| | - Jie Peng
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, 610500, Sichuan Province, People's Republic of China.
| |
Collapse
|
36
|
Rey-Serra C, Tituaña J, Lin T, Herrero JI, Miguel V, Barbas C, Meseguer A, Ramos R, Chaix A, Panda S, Lamas S. Reciprocal regulation between the molecular clock and kidney injury. Life Sci Alliance 2023; 6:e202201886. [PMID: 37487638 PMCID: PMC10366531 DOI: 10.26508/lsa.202201886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023] Open
Abstract
Tubulointerstitial fibrosis is the common pathological substrate for many etiologies leading to chronic kidney disease. Although perturbations in the circadian rhythm have been associated with renal disease, the role of the molecular clock in the pathogenesis of fibrosis remains incompletely understood. We investigated the relationship between the molecular clock and renal damage in experimental models of injury and fibrosis (unilateral ureteral obstruction, folic acid, and adenine nephrotoxicity), using genetically modified mice with selective deficiencies of the clock components Bmal1, Clock, and Cry We found that the molecular clock pathway was enriched in damaged tubular epithelial cells with marked metabolic alterations. In human tubular epithelial cells, TGFβ significantly altered the expression of clock components. Although Clock played a role in the macrophage-mediated inflammatory response, the combined absence of Cry1 and Cry2 was critical for the recruitment of neutrophils, correlating with a worsening of fibrosis and with a major shift in the expression of metabolism-related genes. These results support that renal damage disrupts the kidney peripheral molecular clock, which in turn promotes metabolic derangement linked to inflammatory and fibrotic responses.
Collapse
Affiliation(s)
- Carlos Rey-Serra
- Program of Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Jessica Tituaña
- Program of Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Terry Lin
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - J Ignacio Herrero
- Program of Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Verónica Miguel
- Program of Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Anna Meseguer
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR)-CIBBIM Nanomedicine, Barcelona, Spain
| | - Ricardo Ramos
- Genomic Facility, Fundación Parque Científico de Madrid, Madrid, Spain
| | - Amandine Chaix
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| |
Collapse
|
37
|
Bhattacharya D, Slavin MB, Hood DA. Muscle mitochondrial transplantation can rescue and maintain cellular homeostasis. Am J Physiol Cell Physiol 2023; 325:C862-C884. [PMID: 37575060 DOI: 10.1152/ajpcell.00212.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
Mitochondria control cellular functions through their metabolic role. Recent research that has gained considerable attention is their ability to transfer between cells. This has the potential of improving cellular functions in pathological or energy-deficit conditions, but little is known about the role of mitochondrial transfer in sustaining cellular homeostasis. Few studies have investigated the potential of skeletal muscle as a source of healthy mitochondria that can be transferred to other cell types. Thus, we isolated intermyofibrillar mitochondria from murine skeletal muscle and incubated them with host cells. We observed dose- and time-dependent increases in mitochondrial incorporation into myoblasts. This resulted in elongated mitochondrial networks and an enhancement of bioenergetic profile of the host cells. Mitochondrial donation also rejuvenated the functional capacities of the myoblasts when respiration efficiency and lysosomal function were inhibited by complex I inhibitor rotenone and bafilomycin A, respectively. Mitochondrial transfer was accomplished via tunneling nanotubes, extracellular vesicles, gap junctions, and by macropinocytosis internalization. Murine muscle mitochondria were also effectively transferred to human fibroblast cells having mitochondrial DNA mutations, resulting in augmented mitochondrial dynamics and metabolic functions. This improved cell function by diminishing reactive oxygen species (ROS) emission in the diseased cells. Our findings suggest that mitochondria from donor skeletal muscle can be integrated in both healthy and functionally compromised host cells leading to mitochondrial structural refinement and respiratory boost. This mitochondrial trafficking and bioenergetic reprogramming to maintain and revitalize tissue homeostasis could be a useful therapeutic strategy in treating diseases.NEW & NOTEWORTHY In our study, we have shown the potential of mouse skeletal muscle intermyofibrillar mitochondria to be transplanted in myoblasts and human fibroblast cells having mitochondrial DNA mutations. This resulted in an augmentation of mitochondrial dynamics and enhancement of bioenergetic profile in the host cells. Our findings suggest that mitochondria from donor skeletal muscle can be integrated into both healthy and functionally compromised host cells leading to mitochondrial structural refinement and respiratory boost.
Collapse
Affiliation(s)
- Debasmita Bhattacharya
- Muscle Health Research Center, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Mikhaela B Slavin
- Muscle Health Research Center, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - David A Hood
- Muscle Health Research Center, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Simón L, Arazo-Rusindo M, Quest AFG, Mariotti-Celis MS. Phlorotannins: Novel Orally Administrated Bioactive Compounds That Induce Mitochondrial Dysfunction and Oxidative Stress in Cancer. Antioxidants (Basel) 2023; 12:1734. [PMID: 37760037 PMCID: PMC10525198 DOI: 10.3390/antiox12091734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondrial dysfunction is an interesting therapeutic target to help reduce cancer deaths, and the use of bioactive compounds has emerged as a novel and safe approach to solve this problem. Here, we discuss the information available related to phlorotannins, a type of polyphenol present in brown seaweeds that reportedly functions as antioxidants/pro-oxidants and anti-inflammatory and anti-tumorigenic agents. Specifically, available evidence indicates that dieckol and phloroglucinol promote mitochondrial membrane depolarization and mitochondria-dependent apoptosis. Phlorotannins also reduce pro-tumorigenic, -inflammatory, and -angiogenic signaling mechanisms involving RAS/MAPK/ERK, PI3K/Akt/mTOR, NF-κB, and VEGF. In doing so, they inhibit pathways that favor cancer development and progression. Unfortunately, these compounds are rather labile and, therefore, this review also summarizes approaches permitting the encapsulation of bioactive compounds, like phlorotannins, and their subsequent oral administration as novel and non-invasive therapeutic alternatives for cancer treatment.
Collapse
Affiliation(s)
- Layla Simón
- Nutrition and Dietetic School, Facultad de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile;
| | - Migdalia Arazo-Rusindo
- Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Andrew F. G. Quest
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | | |
Collapse
|
39
|
Wang W, Xu X, Zhao L, Ye K, Wang S, Lin C. 3,5-diCQA suppresses colorectal cancer cell growth through ROS/AMPK/mTOR mediated mitochondrial dysfunction and ferroptosis. Cell Cycle 2023; 22:1951-1968. [PMID: 37902223 PMCID: PMC10761099 DOI: 10.1080/15384101.2023.2247248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/12/2023] [Accepted: 06/29/2023] [Indexed: 10/31/2023] Open
Abstract
3,5-diCQA has been shown to have anti-tumor effect by decreasing cancer cell growth. However, the molecular mechanism by which 3,5-diCQA impacts colorectal cancer (CRC) cells is unknown. This study discovered that 3,5-diCQA had a suppressive effect on CRC cells, mainly in the inhibition of proliferation, migration, and the enhancement of apoptosis in HCT116 and SW480 cells. Additionally, 3,5-diCQA was found to cause cell cycle arrest in CRC cells. Meanwhile, we found that 3,5-diCQA activates the AMPK pathway through the generation of ROS, mediates mitochondrial damage, and reduces mitochondrial aerobic glycolysis and oxidative phosphorylation levels. 3,5-diCQA promoted oxidative damage and ferroptosis in CRC cells. Hence, we added ROS inhibitor NAC and found that the NAC reversed the effects of 3,5-diCQA on proliferation, apoptosis, ROS generation, and ferroptosis in CRC cells. Moreover, 3,5-diCQA was also shown to suppress the development of CRC tumor in a tumor-forming model of nude mice. In conclusion, we found that 3,5-diCQA enhances the oxidative damage and ferroptosis while reducing proliferation and migration of CRC cells, depending on mitochondrial dysfunction caused by the ROS/AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Weibing Wang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingwei Xu
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Long Zhao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kailun Ye
- Department of Anorectal surgery, Tonglu County First People’s Hospital, Hangzhou, China
| | - Saisai Wang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caizhao Lin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
40
|
Hekım MG, Ozcan S, Yur M, Yıldırım N, Ozcan M. Exploring the potential of humanin as a biomarker for early breast cancer detection: a study of serum levels and diagnostic performance. Biomarkers 2023; 28:555-561. [PMID: 37552125 DOI: 10.1080/1354750x.2023.2246700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/06/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION Breast cancer is a leading cause of cancer death in women worldwide, and early detection is crucial for effective treatment. Mitochondrial dysfunction has been linked to cancer development and progression. Humanin, a mitochondrial-derived peptide, has been shown to have cytoprotective effects and may be involved in breast cancer development. In this study, we aimed to investigate the potential of humanin as a biomarker for breast cancer. METHODS We recruited 45 female patients diagnosed with primary invasive ductal breast cancer and 45 healthy volunteers. Serum humanin levels were measured using ELISA, and other cancer markers were measured using an Advia Centaur Immunology Analyser. RESULTS Our results showed that serum humanin levels were significantly higher in breast cancer patients than in healthy controls (p = 0.008). ROC curve analysis indicated that humanin could effectively discriminate between patients and healthy individuals, with a sensitivity of 62.5% and a specificity of 77.5%. CONCLUSION This suggests that humanin may be a potential new biomarker for breast cancer screening and early detection. Further research is needed to fully understand the relationship between humanin and breast cancer and to develop new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Sibel Ozcan
- Department of Anaesthesiology and Reanimation, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Mesut Yur
- Department of Surgical Oncology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Nilgun Yıldırım
- Department of Medical Oncology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Mete Ozcan
- Department of Biophysics, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
41
|
Marumo T, Maduka CV, Ural E, Apu EH, Chung SJ, van den Berg NS, Zhou Q, Martin BA, Rosenthal EL, Shibahara T, Contag CH. Flavinated SDHA Underlies the Change in Intrinsic Optical Properties of Oral Cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.30.551184. [PMID: 37577521 PMCID: PMC10418065 DOI: 10.1101/2023.07.30.551184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The molecular basis of reduced autofluorescence in oral squamous cell carcinoma (OSCC) cells relative to normal cells has been speculated to be due to lower levels of free flavin adenine dinucleotide (FAD). This speculation, along with differences in the intrinsic optical properties of extracellular collagen, lie at the foundation of the design of currently-used clinical optical detection devices. Here, we report that free FAD levels may not account for differences in autofluorescence of OSCC cells, but that the differences relate to FAD as a co-factor for flavination. Autofluorescence from a 70 kDa flavoprotein, succinate dehydrogenase A (SDHA), was found to be responsible for changes in optical properties within the FAD spectral region with lower levels of flavinated SDHA in OSCC cells. Since flavinated SDHA is required for functional complexation with succinate dehydrogenase B (SDHB), decreased SDHB levels were observed in human OSCC tissue relative to normal tissues. Accordingly, the metabolism of OSCC cells was found to be significantly altered relative to normal cells, revealing vulnerabilities for both diagnosis and targeted therapy. Optimizing non-invasive tools based on optical and metabolic signatures of cancers will enable more precise and early diagnosis leading to improved outcomes in patients.
Collapse
Affiliation(s)
- Tomoko Marumo
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Chima V. Maduka
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
- Comparative Medicine & Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Evran Ural
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Ehsanul Hoque Apu
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
- Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Seock-Jin Chung
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Nynke S. van den Berg
- Department of Otolaryngology – Division of Head and Neck Surgery, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA
| | - Quan Zhou
- Department of Otolaryngology – Division of Head and Neck Surgery, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA
| | - Brock A. Martin
- Department of Pathology, Stanford University School of Medicine, 3100 Pasteur Drive, Stanford, CA 94305, USA
| | - Eben L. Rosenthal
- Department of Otolaryngology – Division of Head and Neck Surgery, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA
- Department of Otolaryngology – Head and Neck Surgery, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37232
| | - Takahiko Shibahara
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Christopher H. Contag
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
42
|
Wang SF, Tseng LM, Lee HC. Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci 2023; 30:61. [PMID: 37525297 PMCID: PMC10392014 DOI: 10.1186/s12929-023-00956-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Dysregulating cellular metabolism is one of the emerging cancer hallmarks. Mitochondria are essential organelles responsible for numerous physiologic processes, such as energy production, cellular metabolism, apoptosis, and calcium and redox homeostasis. Although the "Warburg effect," in which cancer cells prefer aerobic glycolysis even under normal oxygen circumstances, was proposed a century ago, how mitochondrial dysfunction contributes to cancer progression is still unclear. This review discusses recent progress in the alterations of mitochondrial DNA (mtDNA) and mitochondrial dynamics in cancer malignant progression. Moreover, we integrate the possible regulatory mechanism of mitochondrial dysfunction-mediated mitochondrial retrograde signaling pathways, including mitochondrion-derived molecules (reactive oxygen species, calcium, oncometabolites, and mtDNA) and mitochondrial stress response pathways (mitochondrial unfolded protein response and integrated stress response) in cancer progression and provide the possible therapeutic targets. Furthermore, we discuss recent findings on the role of mitochondria in the immune regulatory function of immune cells and reveal the impact of the tumor microenvironment and metabolism remodeling on cancer immunity. Targeting the mitochondria and metabolism might improve cancer immunotherapy. These findings suggest that targeting mitochondrial retrograde signaling in cancer malignancy and modulating metabolism and mitochondria in cancer immunity might be promising treatment strategies for cancer patients and provide precise and personalized medicine against cancer.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 112, Taiwan
- School of Pharmacy, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist., Taipei, 110, Taiwan
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan
| | - Ling-Ming Tseng
- Division of General Surgery, Department of Surgery, Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 112, Taiwan
- Department of Surgery, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan.
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan.
| |
Collapse
|
43
|
Lucchesi CA, Vasilatis DM, Mantrala S, Chandrasekar T, Mudryj M, Ghosh PM. Pesticides and Bladder Cancer: Mechanisms Leading to Anti-Cancer Drug Chemoresistance and New Chemosensitization Strategies. Int J Mol Sci 2023; 24:11395. [PMID: 37511154 PMCID: PMC10380322 DOI: 10.3390/ijms241411395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Multiple risk factors have been associated with bladder cancer. This review focuses on pesticide exposure, as it is not currently known whether agricultural products have a direct or indirect effect on bladder cancer, despite recent reports demonstrating a strong correlation. While it is known that pesticide exposure is associated with an increased risk of bladder cancer in humans and dogs, the mechanism(s) by which specific pesticides cause bladder cancer initiation or progression is unknown. In this narrative review, we discuss what is currently known about pesticide exposure and the link to bladder cancer. This review highlights multiple pathways modulated by pesticide exposure with direct links to bladder cancer oncogenesis/metastasis (MMP-2, TGF-β, STAT3) and chemoresistance (drug efflux, DNA repair, and apoptosis resistance) and potential therapeutic tactics to counter these pesticide-induced affects.
Collapse
Affiliation(s)
- Christopher A. Lucchesi
- VA Northern California Health Care System, Mather, CA 95655, USA; (D.M.V.); (M.M.)
- Department of Surgical & Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Demitria M. Vasilatis
- VA Northern California Health Care System, Mather, CA 95655, USA; (D.M.V.); (M.M.)
- Department of Urological Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Saisamkalpa Mantrala
- VA Northern California Health Care System, Mather, CA 95655, USA; (D.M.V.); (M.M.)
| | - Thenappan Chandrasekar
- Department of Urological Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Maria Mudryj
- VA Northern California Health Care System, Mather, CA 95655, USA; (D.M.V.); (M.M.)
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Paramita M. Ghosh
- VA Northern California Health Care System, Mather, CA 95655, USA; (D.M.V.); (M.M.)
- Department of Urological Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
44
|
Nanto-Hara F, Yamazaki M, Murakami H, Ohtsu H. Chronic heat stress induces renal fibrosis and mitochondrial dysfunction in laying hens. J Anim Sci Biotechnol 2023; 14:81. [PMID: 37268977 DOI: 10.1186/s40104-023-00878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/05/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Heat stress in laying hens negatively affects egg production and shell quality by disrupting the homeostasis of plasma calcium and phosphorus levels. Although the kidney plays an important role in calcium and phosphorus homeostasis, evidence regarding the effect of heat stress on renal injury in laying hens is yet to be elucidated. Therefore, the aim of this study was to evaluate the effects of chronic heat stress on renal damage in hens during laying periods. METHODS A total of 16 white-leghorn laying hens (32 weeks old) were randomly assigned to two groups (n = 8). One group was exposed to chronic heat stress (33 °C for 4 weeks), whereas the other group was maintained at 24 °C. RESULTS Chronic heat exposure significantly increased plasma creatinine and decreased plasma albumin levels (P < 0.05). Heat exposure also increased renal fibrosis and the transcription levels of fibrosis-related genes (COLA1A1, αSMA, and TGF-β) in the kidney. These results suggest that renal failure and fibrosis were induced by chronic heat exposure in laying hens. In addition, chronic heat exposure decreased ATP levels and mitochondrial DNA copy number (mtDNA-CN) in renal tissue, suggesting that renal mitochondrial dysfunction occurs under conditions of heat stress. Damaged mitochondria leak mtDNAs into the cytosol and mtDNA leakage may activate the cyclic GMP-AMP synthase (cGAS) stimulator of interferon genes (STING) signaling pathway. Our results showed that chronic heat exposure activated the cGAS-STING pathway as indicated by increased expression of MDA5, STING, IRF7, MAVS, and NF-κB levels. Furthermore, the expression of pro-inflammatory cytokines (IL-12) and chemokines (CCL4 and CCL20) was upregulated in heat-stressed hens. CONCLUSIONS These results suggest that chronic heat exposure induces renal fibrosis and mitochondrial damage in laying hens. Mitochondrial damage by heat stress may activate the mtDNA-cGAS-STING signaling and cause subsequent inflammation, which contributes to the progression of renal fibrosis and dysfunction.
Collapse
Affiliation(s)
- Fumika Nanto-Hara
- Division of Meat Animal and Poultry Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NILGS), 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan.
| | - Makoto Yamazaki
- Division of Meat Animal and Poultry Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NILGS), 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| | - Hitoshi Murakami
- Division of Meat Animal and Poultry Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NILGS), 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| | - Haruhiko Ohtsu
- Division of Meat Animal and Poultry Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NILGS), 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| |
Collapse
|
45
|
Atlante A, Valenti D. Mitochondria Have Made a Long Evolutionary Path from Ancient Bacteria Immigrants within Eukaryotic Cells to Essential Cellular Hosts and Key Players in Human Health and Disease. Curr Issues Mol Biol 2023; 45:4451-4479. [PMID: 37232752 PMCID: PMC10217700 DOI: 10.3390/cimb45050283] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Mitochondria have made a long evolutionary path from ancient bacteria immigrants within the eukaryotic cell to become key players for the cell, assuming crucial multitasking skills critical for human health and disease. Traditionally identified as the powerhouses of eukaryotic cells due to their central role in energy metabolism, these chemiosmotic machines that synthesize ATP are known as the only maternally inherited organelles with their own genome, where mutations can cause diseases, opening up the field of mitochondrial medicine. More recently, the omics era has highlighted mitochondria as biosynthetic and signaling organelles influencing the behaviors of cells and organisms, making mitochondria the most studied organelles in the biomedical sciences. In this review, we will especially focus on certain 'novelties' in mitochondrial biology "left in the shadows" because, although they have been discovered for some time, they are still not taken with due consideration. We will focus on certain particularities of these organelles, for example, those relating to their metabolism and energy efficiency. In particular, some of their functions that reflect the type of cell in which they reside will be critically discussed, for example, the role of some carriers that are strictly functional to the typical metabolism of the cell or to the tissue specialization. Furthermore, some diseases in whose pathogenesis, surprisingly, mitochondria are involved will be mentioned.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
46
|
Lin J, Ye S, Ke H, Lin L, Wu X, Guo M, Jiao B, Chen C, Zhao L. Changes in the mammary gland during aging and its links with breast diseases. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 37184281 DOI: 10.3724/abbs.2023073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The functional capacity of organisms declines in the process of aging. In the case of breast tissue, abnormal mammary gland development can lead to dysfunction in milk secretion, a primary function, as well as the onset of various diseases, such as breast cancer. In the process of aging, the terminal duct lobular units (TDLUs) within the breast undergo gradual degeneration, while the proportion of adipose tissue in the breast continues to increase and hormonal levels in the breast change accordingly. Here, we review changes in morphology, internal structure, and cellular composition that occur in the mammary gland during aging. We also explore the emerging mechanisms of breast aging and the relationship between changes during aging and breast-related diseases, as well as potential interventions for delaying mammary gland aging and preventing breast disease.
Collapse
Affiliation(s)
- Junqiang Lin
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Shihui Ye
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Hao Ke
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Liang Lin
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Xia Wu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Mengfei Guo
- Huankui Academy, Nanchang University, Nanchang 330031, China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ceshi Chen
- Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- the Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China
| | - Limin Zhao
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| |
Collapse
|
47
|
Malayil R, Chhichholiya Y, Vasudeva K, Singh HV, Singh T, Singh S, Munshi A. Oncogenic metabolic reprogramming in breast cancer: focus on signaling pathways and mitochondrial genes. Med Oncol 2023; 40:174. [PMID: 37170010 DOI: 10.1007/s12032-023-02037-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023]
Abstract
Oncogenic metabolic reprogramming impacts the abundance of key metabolites that regulate signaling and epigenetics. Metabolic vulnerability in the cancer cell is evident from the Warburg effect. The research on metabolism in the progression and survival of breast cancer (BC) is under focus. Oncogenic signal activation and loss of tumor suppressor are important regulators of tumor cell metabolism. Several intrinsic and extrinsic factors contribute to metabolic reprogramming. The molecular mechanisms underpinning metabolic reprogramming in BC are extensive and only partially defined. Various signaling pathways involved in the metabolism play a significant role in the modulation of BC. Notably, PI3K/AKT/mTOR pathway, lactate-ERK/STAT3 signaling, loss of the tumor suppressor Ras, Myc, oxidative stress, activation of the cellular hypoxic response and acidosis contribute to different metabolic reprogramming phenotypes linked to enhanced glycolysis. The alterations in mitochondrial genes have also been elaborated upon along with their functional implications. The outcome of these active research areas might contribute to the development of novel therapeutic interventions and the remodeling of known drugs.
Collapse
Affiliation(s)
- Rhuthuparna Malayil
- Department of Human Genetics and Molecular Medicine, Central University of Punjab Bathinda, Punjab, India
| | - Yogita Chhichholiya
- Department of Human Genetics and Molecular Medicine, Central University of Punjab Bathinda, Punjab, India
| | | | - Harsh Vikram Singh
- Department of Orthopedics, All India Institute of Medical Sciences, Bathinda, India
| | - Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab Bathinda, Punjab, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab Bathinda, Punjab, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab Bathinda, Punjab, India.
| |
Collapse
|
48
|
Pinho SA, Anjo SI, Cunha-Oliveira T. Metabolic Priming as a Tool in Redox and Mitochondrial Theragnostics. Antioxidants (Basel) 2023; 12:1072. [PMID: 37237939 PMCID: PMC10215850 DOI: 10.3390/antiox12051072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Theragnostics is a promising approach that integrates diagnostics and therapeutics into a single personalized strategy. To conduct effective theragnostic studies, it is essential to create an in vitro environment that accurately reflects the in vivo conditions. In this review, we discuss the importance of redox homeostasis and mitochondrial function in the context of personalized theragnostic approaches. Cells have several ways to respond to metabolic stress, including changes in protein localization, density, and degradation, which can promote cell survival. However, disruption of redox homeostasis can lead to oxidative stress and cellular damage, which are implicated in various diseases. Models of oxidative stress and mitochondrial dysfunction should be developed in metabolically conditioned cells to explore the underlying mechanisms of diseases and develop new therapies. By choosing an appropriate cellular model, adjusting cell culture conditions and validating the cellular model, it is possible to identify the most promising therapeutic options and tailor treatments to individual patients. Overall, we highlight the importance of precise and individualized approaches in theragnostics and the need to develop accurate in vitro models that reflect the in vivo conditions.
Collapse
Affiliation(s)
- Sónia A. Pinho
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal; (S.A.P.); (S.I.A.)
- PDBEB—PhD Programme in Experimental Biology and Biomedicine, Institute of Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sandra I. Anjo
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal; (S.A.P.); (S.I.A.)
- IIIUC, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Teresa Cunha-Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal; (S.A.P.); (S.I.A.)
- IIIUC, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
49
|
Ding H, Zhao Y, Jiang Z, Zhou D, Zhu R. Analysis of Mitochondrial Transfer RNA Mutations in Breast Cancer. Balkan J Med Genet 2023; 25:15-22. [PMID: 37265965 PMCID: PMC10230833 DOI: 10.2478/bjmg-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
Damage of mitochondrial functions caused by mitochondrial DNA (mtDNA) pathogenic mutations had long been proposed to be involved in breast carcinogenesis. However, the detailed pathological mechanism remained deeply undetermined. In this case-control study, we screened the frequencies of mitochondrial tRNA (mt-tRNA) mutations in 80 breast cancer tissues and matched normal adjacent tissues. PCR and Sanger sequence revealed five possible pathogenic mutations: tRNAVal G1606A, tRNAIle A4300G, tRNASer(UCN) T7505C, tRNAGlu A14693G and tRNAThr G15927A. We noticed that these mutations resided at extremely conserved positions of tRNAs and would affect tRNAs transcription or modifications. Furthermore, functional analysis suggested that patients with these mt-tRNA mutations exhibited much lower levels of mtDNA copy number and ATP, as compared with controls (p<0.05). Therefore, it can be speculated that these mutations may impair mitochondrial protein synthesis and oxidative phosphorylation (OXPHOS) complexes, which caused mitochondrial dysfunctions that were involved in the breast carcinogenesis. Taken together, our data indicated that mutations in mt-tRNA were the important contributors to breast cancer, and mutational analyses of mt-tRNA genes were critical for prevention of breast cancer.
Collapse
Affiliation(s)
- H.J. Ding
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Y.P. Zhao
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, China
| | - Z.C. Jiang
- Department of Pathology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - D.T. Zhou
- Department of Pharmacy, The First People’s Hospital of Kaili, Kaili, China
| | - R. Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
50
|
Bakr BA, Sadek IA, El-Samad LM, El Wakil A. Switchable hepatic organelles aberrations in DEN-induced mice under the influence of chemically characterized silk sericin. Tissue Cell 2023; 82:102101. [PMID: 37141749 DOI: 10.1016/j.tice.2023.102101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVE Assessing the beneficial effects of silk sericin against hepatic injury induced by diethylnitrosamine (DEN). METHODS Aiming at promoting sericin as a natural product able to counteract the hazards of toxic elements, HPLC profile was conducted on the extracted sericin sample versus the standard one to qualitatively identify it. Following sericin treatment on human HepG2 liver cancer cells, many parameters were analyzed in vitro including cell viability, cell cycle, and cell apoptosis. Hepatic pro-inflammatory cytokines as well as histopathological and ultrastructure changes were evaluated in vivo in the different experimental groups. RESULTS Sericin exhibited a dose-dependent cytotoxic effect on HepG2 cells with an IC50 of 14.12 + 0.75 μg/mL. The hepatotoxicity of DEN was manifested in mice by increased pro-inflammatory markers (IL-2, IL-6, and TNF-α), decreased IL-10, liver structure deterioration, and characteristic histopathological and ultrastructure changes. Sericin administration reversed most of the observed alterations inflected by DEN. CONCLUSIONS Our results substantiate the sericin's powerful apoptotic impact in vitro. In experimental mice, combination treatment using sericin together with melatonin appears to be more potent in mitigating the adverse effects of DEN. However, further investigations are needed to identify the underlying mechanism of action and complement the knowledge about the expected medicinal values of sericin.
Collapse
Affiliation(s)
- Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
| | - Ismail A Sadek
- Department of Zoology, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, 21526 Alexandria, Egypt.
| |
Collapse
|