1
|
Liu T, Chen X, Sun Q, Li J, Wang Q, Wei P, Wang W, Li C, Wang Y. Valerenic acid attenuates pathological myocardial hypertrophy by promoting the utilization of multiple substrates in the mitochondrial energy metabolism. J Adv Res 2025; 68:241-256. [PMID: 38373650 PMCID: PMC11785575 DOI: 10.1016/j.jare.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024] Open
Abstract
INTRODUCTION Valerenic acid (VA) is a unique and biologically active component in Valeriana officinalis L., which has been reported to have a regulatory effect on the cardiovascular system. However, its therapeutic effects on pathological myocardial hypertrophy (PMH) and the underlying mechanisms are undefined. OBJECTIVES Our study aims to elucidate how VA improves PMH, and preliminarily discuss its mechanism. METHODS The efficacy of VA on PMH was confirmed by in vivo and in vitro experiments and the underlying mechanism was investigated by molecular dynamics (MD) simulations and specific siRNA interference. RESULTS VA enhanced cardiomyocyte fatty acid oxidation (FAO), inhibited hyper-activated glycolysis, and improved the unbalanced pyruvate-lactate axis. VA could significantly improve impaired mitochondrial function and reduce the triglyceride (TG) in the hypertrophic myocardium while reducing the lactate (LD) content. Molecular mechanistic studies showed that VA up-regulated the expression of peroxisome proliferator-activated receptor-α (PPARα) and downstream FAO-related genes including CD36, CPT1A, EHHADH, and MCAD. VA reduced the expression of ENO1 and PDK4, the key enzymes in glycolysis. Meanwhile, VA improved the pyruvate-lactate axis and promoted the aerobic oxidation of pyruvate by inhibiting LDAH and MCT4. MD simulations confirmed that VA can bind with the F273 site of PPARα, which proposes VA as a potential activator of the PPARα. CONCLUSION Our results demonstrated that VA might be a potent activator for the PPARα-mediated pathway. VA directly targets the PPARα and subsequently promotes energy metabolism to attenuate PMH, which can be applied as a potentially effective drug for the treatment of HF.
Collapse
Affiliation(s)
- Tiantian Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xu Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qianbin Sun
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Junjun Li
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qiyan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peng Wei
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 100029, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangdong 510006, China..
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 100029, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangdong 510006, China..
| | - Yong Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China; Yunnan University of Chinese Medicine, Yunnan 650500, China.
| |
Collapse
|
2
|
He S, Li C, Lu M, Lin F, Hu S, Zhang J, Peng L, Li L. Comprehensive analysis of scRNA-seq and bulk RNA-seq reveals the non-cardiomyocytes heterogeneity and novel cell populations in dilated cardiomyopathy. J Transl Med 2025; 23:17. [PMID: 39762897 PMCID: PMC11702085 DOI: 10.1186/s12967-024-05983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. Infiltration and alterations in non-cardiomyocytes of the human heart involve crucially in the occurrence of DCM and associated immunotherapeutic approaches. METHODS We constructed a single-cell transcriptional atlas of DCM and normal patients. Then, the xCell algorithm, EPIC algorithm, MCP counter algorithm, and CIBERSORT method were applied to identify DCM-related cell types with a high degree of precision and specificity using RNA-seq datasets. We further analyzed the heterogeneity among cell types, performed trajectory analysis, examined transcription factor regulatory networks, investigated metabolic heterogeneity, and conducted intercellular communication analysis. Finally, we used bulk RNA-seq data to confirm the roles of M2-like2 subpopulations and GAS6 in DCM. RESULTS We integrated and analyzed Single-cell sequencing (scRNA-seq) data from 7 DCM samples and 3 normal heart tissue samples, totaling 70,958 single-cell data points. Based on gene-specific expression and prior marker genes, we identified 9 distinct subtypes, including fibroblasts, endothelial cells, myeloid cells, pericytes, T/NK cells, smooth muscle cells, neuronal cells, B cells, and cardiomyocytes. Using machine learning methods to quantify bulk RNA-seq data, we found significant differences in fibroblasts, T cells, and macrophages between DCM and normal samples. Further analysis revealed high heterogeneity in tissue preference, gene expression, functional enrichment, immunodynamics, transcriptional regulatory factors, metabolic changes, and communication patterns in fibroblasts and myeloid cells. Among fibroblast subpopulations, proliferative F3 cells were implicated in the fibroblast transition process in DCM, while myofibroblast F6 cells promoted the fibroblast transition to a late cell state in DCM. Additionally, two subpopulations of M2 macrophages, M2-like1 and M2-like2, were identified with distinct features. The M2-like2 cell subpopulation, which was enriched in glycolysis and fatty acid metabolism, involved in inflammation inhibition and fibrosis promotion. Cell‒cell communication analysis indicated the GAS6-MERTK axis might exhibit interaction between M2 macrophage and M2-like1 macrophage. Furthermore, deconvolution analysis for bulk RNA-seq data revealed a significant increase in M2-like2 subpopulations in DCM, suggesting a more important role for this cell population in DCM. CONCLUSIONS We revealed the heterogeneity of non-cardiomyocytes in DCM and identified subpopulations of myofibroblast and macrophages engaged in DCM, which suggested a potential significance of non-cardiomyocytes in treatment of DCM.
Collapse
Affiliation(s)
- Siyu He
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Stem Cell Research Center, Medical School, Tongji University, Shanghai, 200120, China
| | - Chunyu Li
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Stem Cell Research Center, Medical School, Tongji University, Shanghai, 200120, China
| | - Mingxin Lu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Stem Cell Research Center, Medical School, Tongji University, Shanghai, 200120, China
| | - Fang Lin
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Stem Cell Research Center, Medical School, Tongji University, Shanghai, 200120, China
| | - Sangyu Hu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Stem Cell Research Center, Medical School, Tongji University, Shanghai, 200120, China
| | - Junfang Zhang
- Stem Cell Research Center, Medical School, Tongji University, Shanghai, 200120, China
| | - Luying Peng
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Stem Cell Research Center, Medical School, Tongji University, Shanghai, 200120, China.
- Department of Cell and Genetics, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Li Li
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Stem Cell Research Center, Medical School, Tongji University, Shanghai, 200120, China.
- Department of Cell and Genetics, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
3
|
Alhasan KA, King MA, Pattar BSB, Lewis IA, Lopaschuk GD, Greenway SC. Anaplerotic filling in heart failure: a review of mechanism and potential therapeutics. Cardiovasc Res 2024; 120:2166-2178. [PMID: 39570879 DOI: 10.1093/cvr/cvae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/08/2024] [Accepted: 11/12/2024] [Indexed: 01/01/2025] Open
Abstract
Heart failure (HF) is a complex syndrome and a leading cause of mortality worldwide. While current medical treatment is based on known pathophysiology and is effective for many patients, the underlying cellular mechanisms are poorly understood. Energy deficiency is a characteristic of HF, marked by complex alterations in metabolism. Within the tricarboxylic acid cycle, anaplerosis emerges as an essential metabolic process responsible for replenishing lost intermediates, thereby playing a crucial role in sustaining energy metabolism and consequently cardiac function. Alterations in cardiac anaplerosis are commonly observed in HF, demonstrating potential for therapeutic intervention. This review discusses recent advances in understanding the anaplerotic adaptations that occur in HF. We also explore therapeutics that can directly modulate anaplerosis or are likely to confer cardioprotective effects through anaplerosis, which could potentially be implemented to rescue the failing heart.
Collapse
Affiliation(s)
- Karm A Alhasan
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 1N4
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Melissa A King
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Badal S B Pattar
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Ian A Lewis
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | - Steven C Greenway
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 1N4
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| |
Collapse
|
4
|
Liu XY, Chi YF, Wu YS, Chai JK. Research progress and considerations on oral rehydration therapy for the prevention and treatment of severe burn shock: A narrative review. Burns 2024; 50:107160. [PMID: 39322503 DOI: 10.1016/j.burns.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/17/2024] [Accepted: 04/29/2024] [Indexed: 09/27/2024]
Abstract
Severe burns are a significant cause of life-threatening conditions in both peacetime and wartime. Shock is a critical complication during the early stages of burn injury, contributing substantially to mortality and long-term disability. Effective fluid resuscitation is crucial for preventing and treating shock, with prompt administration being vital. However, timely intravenous fluid resuscitation is often challenging, and errors in resuscitation significantly contribute to mortality. Therefore, exploring a more rapid and effective non-invasive method of fluid resuscitation is necessary. Oral rehydration therapy (ORT) has shown considerable potential in this regard. This paper reviews ORT's historical development and current research progress, discussing its application in early anti-shock treatment for burns. While ORT is generally safe, potential complications like diarrhoea, vomiting, and abdominal discomfort must be noted, particularly if the rehydration rate is too rapid or if gastrointestinal issues exist. Careful patient assessment and monitoring are essential during ORT administration. Based on a comprehensive review of relevant research, we present provisional guidelines for ORT in burn patients. These guidelines aim to inform clinical practice but should be applied cautiously due to limited clinical evidence. Implementation must be tailored to the patient's condition under healthcare supervision, with adjustments according to evolving circumstances: ① Initiation timing: Start as soon as possible, and the ideal start time is usually within 6 h after injury. ② Rate of application: Employing a fractional administration approach, wherein small quantities of approximately 150-250 millilitres are provided for each instance and the initial fluid rate of oral rehydration can be simplified to 100 mL/kg/24 h. ③ Composition combination: In addition to essential salts and glucose, the oral rehydration solution can incorporate various anti-inflammatory and cellular protection constituents.
Collapse
Affiliation(s)
- Xiang-Yu Liu
- Graduate School, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing 100853, China; Senior Department of Burns & Plastic Surgery, Institute of Burn in the Fourth Medical Centre, Chinese PLA General Hospital, Fucheng Road 51, Haidian District, Beijing 100048, China
| | - Yun-Fei Chi
- Senior Department of Burns & Plastic Surgery, Institute of Burn in the Fourth Medical Centre, Chinese PLA General Hospital, Fucheng Road 51, Haidian District, Beijing 100048, China
| | - Yu-Shou Wu
- Graduate School, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing 100853, China; Senior Department of Burns & Plastic Surgery, Institute of Burn in the Fourth Medical Centre, Chinese PLA General Hospital, Fucheng Road 51, Haidian District, Beijing 100048, China
| | - Jia-Ke Chai
- Senior Department of Burns & Plastic Surgery, Institute of Burn in the Fourth Medical Centre, Chinese PLA General Hospital, Fucheng Road 51, Haidian District, Beijing 100048, China.
| |
Collapse
|
5
|
Olek RA, Kujach S, Radak Z. Current knowledge about pyruvate supplementation: A brief review. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:295-301. [PMID: 39309457 PMCID: PMC11411338 DOI: 10.1016/j.smhs.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 09/25/2024] Open
Abstract
Pyruvate is a three-carbon ketoacid that occurs naturally in cells. It is produced through enzymatic reactions in the glycolytic pathway and plays a crucial role in energy metabolism. Despite promising early results, later well-controlled studies of physically active people have shown that pyruvate supplementation lasting more than 1 week has no ergogenic effects. However, some data suggest that ingested pyruvate may be preferentially metabolized without accumulation in the bloodstream. Pyruvate exhibits antioxidant activity and can affect the cellular redox state, and exogenous pyruvate can influence metabolism by affecting the acid-base balance of the blood. This brief review focuses on the potential effects of pyruvate as a supplement for active people. The current state of understanding suggests that studies of the effects of pyruvate supplementation should prioritize investigating the timing of pyruvate intake.
Collapse
Affiliation(s)
- Robert A. Olek
- Department of Athletics, Strength, and Conditioning, Poznan University of Physical Education, Poznan, Poland
| | - Sylwester Kujach
- Department of Neurophysiology, Neuropsychology and Neuroinformatics, Medical University of Gdansk, Gdansk, Poland
| | - Zsolt Radak
- Research Institute of Sport Science, Hungarian University of Sport Science, Budapest, Hungary
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| |
Collapse
|
6
|
Shinozaki K, Wong V, Aoki T, Hayashida K, Takegawa R, Endo Y, Nandurkar H, Diamond B, Robson SC, Becker LB. The role of pyruvate-induced enhancement of oxygen metabolism in extracellular purinergic signaling in the post-cardiac arrest rat model. Purinergic Signal 2024; 20:345-357. [PMID: 37507639 PMCID: PMC11303634 DOI: 10.1007/s11302-023-09958-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Purine nucleotide adenosine triphosphate (ATP) is a source of intracellular energy maintained by mitochondrial oxidative phosphorylation. However, when released from ischemic cells into the extracellular space, they act as death-signaling molecules (eATP). Despite there being potential benefit in using pyruvate to enhance mitochondria by inducing a highly oxidative metabolic state, its association with eATP levels is still poorly understood. Therefore, while we hypothesized that pyruvate could beneficially increase intracellular ATP with the enhancement of mitochondrial function after cardiac arrest (CA), our main focus was whether a proportion of the raised intracellular ATP would detrimentally leak out into the extracellular space. As indicated by the increased levels in systemic oxygen consumption, intravenous administrations of bolus (500 mg/kg) and continuous infusion (1000 mg/kg/h) of pyruvate successfully increased oxygen metabolism in post 10-min CA rats. Plasma ATP levels increased significantly from 67 ± 11 nM before CA to 227 ± 103 nM 2 h after the resuscitation; however, pyruvate administration did not affect post-CA ATP levels. Notably, pyruvate improved post-CA cardiac contraction and acidemia (low pH). We also found that pyruvate increased systemic CO2 production post-CA. These data support that pyruvate has therapeutic potential for improving CA outcomes by enhancing oxygen and energy metabolism in the brain and heart and attenuating intracellular hydrogen ion disorders, but does not exacerbate the death-signaling of eATP in the blood.
Collapse
Affiliation(s)
- Koichiro Shinozaki
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Department of Emergency Medicine, Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA.
- Department of Emergency Medicine, Kindai University Faculty of Medicine, Osaka, Japan.
| | - Vanessa Wong
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Tomoaki Aoki
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Kei Hayashida
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Ryosuke Takegawa
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Yusuke Endo
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Harshal Nandurkar
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Betty Diamond
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Simon C Robson
- Department of Anesthesia: Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lance B Becker
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Emergency Medicine, Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| |
Collapse
|
7
|
Jian X, Hou G, Li L, Diao Z, Wu Y, Wang J, Xie L, Peng C, Lin L, Li J. Identification of pyruvic and maleic acid as potential markers for disease activity and prognosis in chronic urticaria. J Allergy Clin Immunol 2024; 154:412-423. [PMID: 38599289 DOI: 10.1016/j.jaci.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Population-based studies have highlighted the link between chronic urticaria (CU) and metabolic syndrome, and metabolic alterations have been revealed in CU. However, to our knowledge, a comprehensive metabolomics study on a large cohort of patients with CU has not been reported. OBJECTIVE We sought to explore the underlying metabolic subtypes and novel metabolite biomarkers for CU diagnosis and therapy. METHODS Plasma samples from 80 patients with CU and 82 healthy controls were collected for metabolomics quantification and bioinformatics analysis. Another independent cohort consisting of 144 patients with CU was studied to validate the findings. Bone marrow-derived mast cells and mice with IgE-induced passive cutaneous anaphylaxis were used for in vitro and in vivo experiments, respectively. RESULTS We observed clear metabolome differences between CU patients and healthy controls. Meanwhile, differential metabolites N6-acetyl-l-lysine, l-aspartate, maleic acid, and pyruvic acid were used to construct random forest classifiers and achieved area under receiver operating characteristic curve values greater than 0.85, suggesting their potential as diagnostic biomarkers of CU. More importantly, by exploring the underlying metabolic subtypes of CU, we found that the low abundance of pyruvic acid and maleic acid was significantly related to the activity of CU, poor efficacy of second-generation H1 antihistamines, and short relapse-free time. The results were validated in the independent cohort. Moreover, supplementation with pyruvate or maleate could significantly attenuate IgE-mediated mast cell activation in vitro and in vivo. CONCLUSIONS Plasma pyruvic acid and maleic acid may be effective biomarkers for predicting disease activity, therapeutic efficacy, and prognosis for patients with CU.
Collapse
Affiliation(s)
- Xingxing Jian
- Department of Dermatology (Dermatology Hospital), Xiangya Hospital, Central South University, Changsha, China; Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | | | - Liqiao Li
- Department of Dermatology (Dermatology Hospital), Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Department of Dermatology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | | | - Yingfang Wu
- Department of Dermatology (Dermatology Hospital), Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Jiayi Wang
- Department of Dermatology (Dermatology Hospital), Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Xie
- Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Peng
- Department of Dermatology (Dermatology Hospital), Xiangya Hospital, Central South University, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
| | | | - Jie Li
- Department of Dermatology (Dermatology Hospital), Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
Lu R, Lin W, Jin Q, Wang D, Zhang C, Wang H, Chen T, Gao J, Wang X. Plasma Metabolic Profiling and Multiclass Diagnostic Model Development for Stable Angina Pectoris and Acute Myocardial Infarction. ACS OMEGA 2024; 9:16322-16333. [PMID: 38617635 PMCID: PMC11007838 DOI: 10.1021/acsomega.3c10474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
Abstract
Coronary heart disease remains a major global health challenge, with a clear need for enhanced early risk assessment. This study aimed to elucidate metabolic signatures across various stages of coronary heart disease and develop an effective multiclass diagnostic model. Using metabolomic approaches, gas chromatography-mass and liquid chromatography-tandem mass spectrometry were used to analyze plasma samples from healthy controls, patients with stable angina pectoris, and those with acute myocardial infarction. Pathway enrichment analysis was conducted on metabolites exhibiting significant differences. The key metabolites were identified using Random Forest and Recursive Feature Elimination strategies to construct a multiclass diagnostic model. The performance of the model was validated through 10-fold cross-validation and evaluated using confusion matrices, receiver operating characteristic curves, and calibration curves. Metabolomics was used to identify 1491 metabolites, with 216, 567, and 295 distinctly present among the healthy controls, patients with stable angina pectoris, and those with acute myocardial infarction, respectively. This implicated pathways such as the glucagon signaling pathway, d-amino acid metabolism, pyruvate metabolism, and amoebiasis across various stages of coronary heart disease. After selection, testosterone isobutyrate, N-acetyl-tryptophan, d-fructose, l-glutamic acid, erythritol, and gluconic acid were identified as core metabolites in the multiclass diagnostic model. Evaluating the diagnostic model demonstrated its high discriminative ability and accuracy. This study revealed metabolic pathway perturbations at different stages of coronary heart disease, and a precise multiclass diagnostic model was established based on these findings. This study provides new insights and tools for the early diagnosis and treatment of coronary heart disease.
Collapse
Affiliation(s)
- Ruixia Lu
- Branch
of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
- Cardiovascular
Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional
Chinese Medicine, Shanghai 201203, China
| | - Wenyong Lin
- Branch
of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
- Cardiovascular
Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional
Chinese Medicine, Shanghai 201203, China
| | - Qipeng Jin
- Branch
of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
- Cardiovascular
Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional
Chinese Medicine, Shanghai 201203, China
| | - Dongyuan Wang
- Branch
of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
- Cardiovascular
Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional
Chinese Medicine, Shanghai 201203, China
| | - Chunling Zhang
- Branch
of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
- Cardiovascular
Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional
Chinese Medicine, Shanghai 201203, China
| | - Huiying Wang
- Branch
of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
- Cardiovascular
Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional
Chinese Medicine, Shanghai 201203, China
| | - Tiejun Chen
- Branch
of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
- Cardiovascular
Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional
Chinese Medicine, Shanghai 201203, China
| | - Junjie Gao
- Branch
of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
- Cardiovascular
Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional
Chinese Medicine, Shanghai 201203, China
| | - Xiaolong Wang
- Branch
of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
- Cardiovascular
Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional
Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
9
|
Chu C, Liu S, Nie L, Hu H, Liu Y, Yang J. The interactions and biological pathways among metabolomics products of patients with coronary heart disease. Biomed Pharmacother 2024; 173:116305. [PMID: 38422653 DOI: 10.1016/j.biopha.2024.116305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Through bioinformatics analysis, this study explores the interactions and biological pathways involving metabolomic products in patients diagnosed with coronary heart disease (CHD). METHODS A comprehensive search for relevant studies focusing on metabolomics analysis in CHD patients was conducted across databases including CNKI, Wanfang, VIP, CBM, PubMed, Cochrane Library, Nature, Web of Science, Springer, and Science Direct. Metabolites reported in the literature underwent statistical analysis and summarization, with the identification of differential metabolites. The pathways associated with these metabolites were examined using the Kyoto Encyclopedia of Genes and Genomes (KEGG). Molecular annotation of metabolites and their relationships with enzymes or transporters were elucidated through analysis with the Human Metabolome Database (HMDB). Visual representation of the properties related to these metabolites was achieved using Metabolomics Pathway Analysis (metPA). RESULTS A total of 13 literatures satisfying the criteria for enrollment were included. A total of 91 metabolites related to CHD were preliminarily screened, and 87 effective metabolites were obtained after the unrecognized metabolites were excluded. A total of 45 pathways were involved. Through the topology analysis (TPA) of pathways, their influence values were calculated, and 13 major metabolic pathways were selected. The pathways such as Phenylalanine, tyrosine, and tryptophan biosynthesis, Citrate cycle (TCA cycle), Glyoxylate and dicarboxylate metabolism, and Glycine, serine, and threonine metabolism primarily involved the regulation of processes and metabolites related to inflammation, oxidative stress, one-carbon metabolism, energy metabolism, lipid metabolism, immune regulation, and nitric oxide expression. CONCLUSION Multiple pathways, including Phenylalanine, tyrosine, and tryptophan biosynthesis, Citrate cycle (TCA cycle), Glyoxylate and dicarboxylate metabolism, and Glycine, serine, and threonine metabolism, were involved in the occurrence of CHD. The occurrence of CHD is primarily associated with the regulation of processes and metabolites related to inflammation, oxidative stress, one-carbon metabolism, energy metabolism, lipid metabolism, immune regulation, and nitric oxide expression.
Collapse
Affiliation(s)
- Chun Chu
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Shengquan Liu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Liangui Nie
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Hongming Hu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Yi Liu
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China.
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China.
| |
Collapse
|
10
|
Husková Z, Kikerlová S, Miklovič M, Kala P, Papoušek F, Neckář J. Inappropriate activation of the renin-angiotensin system improves cardiac tolerance to ischemia/reperfusion injury in rats with late angiotensin II-dependent hypertension. Front Physiol 2023; 14:1151308. [PMID: 37389123 PMCID: PMC10301744 DOI: 10.3389/fphys.2023.1151308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
The aim of the study was to clarify the role of the interplay between hypertension and the renin-angiotensin system (RAS) in the pathophysiology of myocardial ischemia/reperfusion (I/R) injury. We hypothesized that in the late phase of hypertension with already developed signs of end-organ damage, inappropriate RAS activation could impair cardiac tolerance to I/R injury. Experiments were performed in male Cyp1a1-Ren-2 transgenic rats with inducible hypertension. The early phase of ANG II-dependent hypertension was induced by 5 days and the late phase by the 13 days dietary indole-3-carbinol (I3C) administration. Noninduced rats served as controls. Echocardiography and pressure-volume analysis were performed, angiotensins' levels were measured and cardiac tolerance to ischemia/reperfusion injury was studied. The infarct size was significantly reduced (by 50%) in 13 days I3C-induced hypertensive rats with marked cardiac hypertrophy, this reduction was abolished by losartan treatment. In the late phase of hypertension there are indications of a failing heart, mainly in reduced preload recruitable stroke work (PRSW), but only nonsignificant trends in worsening of some other parameters, showing that the myocardium is in a compensated phase. The influence of the RAS depends on the balance between the vasoconstrictive and the opposed vasodilatory axis. In the initial stage of hypertension, the vasodilatory axis of the RAS prevails, and with the development of hypertension the vasoconstrictive axis of the RAS becomes stronger. We observed a clear effect of AT1 receptor blockade on maximum pressure in left ventricle, cardiac hypertrophy and ANG II levels. In conclusion, we confirmed improved cardiac tolerance to I/R injury in hypertensive hypertrophied rats and showed that, in the late phase of hypertension, the myocardium is in a compensated phase.
Collapse
Affiliation(s)
- Zuzana Husková
- Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Soňa Kikerlová
- Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Matúš Miklovič
- Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
- Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czechia
| | - Petr Kala
- Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
- Department of Cardiology, 2nd Medical Faculty, Charles University and University Hospital Motol, Prague, Czechia
| | - František Papoušek
- Laboratory of Developmental Cardiology, Institute of Physiology, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
| | - Jan Neckář
- Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
- Laboratory of Developmental Cardiology, Institute of Physiology, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
| |
Collapse
|
11
|
Kolotyeva NA, Limareva LV, Gilmiyarova FN, Boltovskaya VV, Ilyasov PV, Gusyakova OA, Remizov VV. Predicted Oxaloacetate Activity, Gene Expression And Viability Of Human Dermal Fibroblasts. RUSSIAN OPEN MEDICAL JOURNAL 2022. [DOI: 10.15275/rusomj.2022.0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rationale — The impact of metabolic pathway intermediates on biological processes and cell viability is a topic of fundamental research: functional potential of low-molecular weight biologically active compounds as regulators of metabolic processes, signal molecules, transmitters of intra- and intercellular signals are of special interest; however, this field remains poorly studied. Objective — To perform computer modeling of oxaloacetate biological activity and to evaluate its effect on human dermal fibroblast culture. Material and Methods — We predicted biological activity of oxaloacetate using in silico methods. The obtained data demonstrated that oxaloacetate could influence proliferative properties and cell culture viability of dermal fibroblasts. We studied metabolic parameters and enzymatic activity in supernatant and cell culture lysate. Cell viability was assessed via methyl tetrazolium test (MTT). Results — We established that oxaloacetate had a stimulating effect on human dermal fibroblast culture. Conclusion — Our results demonstrated the stimulating role of oxaloacetate in the form of changes in the level of metabolites and activity of enzymes, such as gamma-glutamyl transpeptidase (p=0.0019) and glycerol-3-phosphate dehydrogenase (p<0.0001). We also established that oxaloacetate increased the percentage of viable cells, compared with the control (p=0.028).
Collapse
|
12
|
Xiao J, Zeng W, Zhang P, Zhou Y, Fang Q. Acid ceramidase targeting pyruvate kinase affected trypsinogen activation in acute pancreatitis. Mol Med 2022; 28:106. [PMID: 36068514 PMCID: PMC9450262 DOI: 10.1186/s10020-022-00538-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background Acute pancreatitis is the sudden inflammation of the pancreas. Severe cases of acute pancreatitis are potentially fatal and have no specific treatment available. Premature trypsinogen activation could initiate acute pancreatitis. However, the mechanism underlying premature trypsinogen activation is not fully understood. Methods In this research, a primary pancreatic acinar cell or mouse acute pancreatitis model was constructed. The effect of acid ceramidase (ASAH1), which is responsible for sphingosine production, was investigated in trypsinogen activation in vitro and in vivo. Meanwhile, the proteins regulating ASAH1 or binding to sphingosine were also detected by co-immunoprecipitation followed by mass spectrometry. Results The results showed that ASAH1 increased in acute pancreatitis. Increased ASAH1 promoted the activation of trypsinogen and cathepsin B. On the contrary, ASAH1 downregulation inhibited trypsinogen and cathepsin B. Meanwhile, ASAH1 regulated the activity of trypsin and cathepsin B through sphingosine. Additionally, E3 ligase Mind bomb homolog 1 (MIB1) decreased in acute pancreatitis resulting in the decreased binding between MIB1 and ASAH1. Exogenous MIB1 diminished the elevation in trypsin activity induced by acute pancreatitis inducer. ASAH1 increased owing to the inhibition of the proteasome degradation by MIB1. In acute pancreatitis, sphingosine was found to bind to pyruvate kinase. Pyruvate kinase activation could reduce trypsinogen activation and mitochondrial reactive oxygen species (ROS) production induced by sphingosine. Conclusions In conclusion, during the process of acute pancreatitis, MIB1 downregulation led to ASAH1 upregulation, resulting in pyruvate kinase inhibition, followed by trypsinogen activation. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00538-w.
Collapse
Affiliation(s)
- Juan Xiao
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China. .,Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.
| | - Wenying Zeng
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Pengcheng Zhang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Yuan Zhou
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Qiangqiang Fang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| |
Collapse
|
13
|
Zhao YY, Zhang LJ, Liang XY, Zhang XC, Chang JR, Shi M, Liu H, Zhou Y, Sun Z, Zhao YF. Pyruvate Upregulates Hepatic FGF21 Expression by Activating PDE and Inhibiting cAMP–Epac–CREB Signaling Pathway. Int J Mol Sci 2022; 23:ijms23105490. [PMID: 35628302 PMCID: PMC9141208 DOI: 10.3390/ijms23105490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) functions as a polypeptide hormone to regulate glucose and lipid metabolism, and its expression is regulated by cellular metabolic stress. Pyruvate is an important intermediate metabolite that acts as a key hub for cellular fuel metabolism. However, the effect of pyruvate on hepatic FGF21 expression and secretion remains unknown. Herein, we examined the gene expression and protein levels of FGF21 in human hepatoma HepG2 cells and mouse AML12 hepatocytes in vitro, as well as in mice in vivo. In HepG2 and AML12 cells, pyruvate at concentrations above 0.1 mM significantly increased FGF21 expression and secretion. The increase in cellular cAMP levels by adenylyl cyclase activation, phosphodiesterase (PDE) inhibition and 8-Bromo-cAMP administration significantly restrained pyruvate-stimulated FGF21 expression. Pyruvate significantly increased PDE activities, reduced cAMP levels and decreased CREB phosphorylation. The inhibition of exchange protein directed activated by cAMP (Epac) and cAMP response element binding protein (CREB) upregulated FGF21 expression, upon which pyruvate no longer increased FGF21 expression. The increase in plasma pyruvate levels in mice induced by the intraperitoneal injection of pyruvate significantly increased FGF21 gene expression and PDE activity with a reduction in cAMP levels and CREB phosphorylation in the mouse liver compared with the control. In conclusion, pyruvate activates PDEs to reduce cAMP and then inhibits the cAMP–Epac–CREB signaling pathway to upregulate FGF21 expression in hepatocytes.
Collapse
|
14
|
Effects of Sodium Pyruvate on Vanadyl Sulphate-Induced Reactive Species Generation and Mitochondrial Destabilisation in CHO-K1 Cells. Antioxidants (Basel) 2022; 11:antiox11050909. [PMID: 35624773 PMCID: PMC9137755 DOI: 10.3390/antiox11050909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Vanadium is ranked as one of the world’s critical metals considered important for economic growth with wide use in the steel industry. However, its production, applications, and emissions related to the combustion of vanadium-containing fuels are known to cause harm to the environment and human health. Pyruvate, i.e., a glucose metabolite, has been postulated as a compound with multiple cytoprotective properties, including antioxidant and anti-inflammatory effects. The aim of the present study was to examine the antioxidant potential of sodium pyruvate (4.5 mM) in vanadyl sulphate (VOSO4)-exposed CHO-K1 cells. Dichloro-dihydro-fluorescein diacetate and dihydrorhodamine 123 staining were performed to measure total and mitochondrial generation of reactive oxygen species (ROS), respectively. Furthermore, mitochondrial damage was investigated using MitoTell orange and JC-10 staining assays. We demonstrated that VOSO4 alone induced a significant rise in ROS starting from 1 h to 3 h after the treatment. Additionally, after 24 and 48 h of exposure, VOSO4 elicited both extensive hyperpolarisation and depolarisation of the mitochondrial membrane potential (MMP). The two-way ANOVA analysis of the results showed that, through antagonistic interaction, pyruvate prevented VOSO4-induced total ROS generation, which could be observed at the 3 h time point. In addition, through the independent action and antagonistic interaction with VOSO4, pyruvate provided a pronounced protective effect against VOSO4-mediated mitochondrial toxicity at 24-h exposure, i.e., prevention of VOSO4-induced hyperpolarisation and depolarisation of MMP. In conclusion, we found that pyruvate exerted cytoprotective effects against vanadium-induced toxicity at least in part by decreasing ROS generation and preserving mitochondrial functions
Collapse
|
15
|
Neckář J, Alánová P, Olejníčková V, Papoušek F, Hejnová L, Šilhavý J, Behuliak M, Bencze M, Hrdlička J, Vecka M, Jarkovská D, Švíglerová J, Mistrová E, Štengl M, Novotný J, Ošťádal B, Pravenec M, Kolář F. Excess ischemic tachyarrhythmias trigger protection against myocardial infarction in hypertensive rats. Clin Sci (Lond) 2021; 135:2143-2163. [PMID: 34486670 DOI: 10.1042/cs20210648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022]
Abstract
Increased level of C-reactive protein (CRP) is a risk factor for cardiovascular diseases, including myocardial infarction and hypertension. Here, we analyzed the effects of CRP overexpression on cardiac susceptibility to ischemia/reperfusion (I/R) injury in adult spontaneously hypertensive rats (SHR) expressing human CRP transgene (SHR-CRP). Using an in vivo model of coronary artery occlusion, we found that transgenic expression of CRP predisposed SHR-CRP to repeated and prolonged ventricular tachyarrhythmias. Excessive ischemic arrhythmias in SHR-CRP led to a significant reduction in infarct size (IS) compared with SHR. The proarrhythmic phenotype in SHR-CRP was associated with altered heart and plasma eicosanoids, myocardial composition of fatty acids (FAs) in phospholipids, and autonomic nervous system imbalance before ischemia. To explain unexpected IS-limiting effect in SHR-CRP, we performed metabolomic analysis of plasma before and after ischemia. We also determined cardiac ischemic tolerance in hearts subjected to remote ischemic perconditioning (RIPer) and in hearts ex vivo. Acute ischemia in SHR-CRP markedly increased plasma levels of multiple potent cardioprotective molecules that could reduce IS at reperfusion. RIPer provided IS-limiting effect in SHR that was comparable with myocardial infarction observed in naïve SHR-CRP. In hearts ex vivo, IS did not differ between the strains, suggesting that extra-cardiac factors play a crucial role in protection. Our study shows that transgenic expression of human CRP predisposes SHR-CRP to excess ischemic ventricular tachyarrhythmias associated with a drop of pump function that triggers myocardial salvage against lethal I/R injury likely mediated by protective substances released to blood from hypoxic organs and tissue at reperfusion.
Collapse
Affiliation(s)
- Jan Neckář
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petra Alánová
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Olejníčková
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - František Papoušek
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucie Hejnová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Šilhavý
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Behuliak
- Laboratory of Experimental Hypertension, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Bencze
- Laboratory of Experimental Hypertension, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Hrdlička
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Vecka
- 4th Department of Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dagmar Jarkovská
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Jitka Švíglerová
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Eliška Mistrová
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Milan Štengl
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Bohuslav Ošťádal
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Pravenec
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - František Kolář
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
16
|
Modulations of Cardiac Functions and Pathogenesis by Reactive Oxygen Species and Natural Antioxidants. Antioxidants (Basel) 2021; 10:antiox10050760. [PMID: 34064823 PMCID: PMC8150787 DOI: 10.3390/antiox10050760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 01/11/2023] Open
Abstract
Homeostasis in the level of reactive oxygen species (ROS) in cardiac myocytes plays a critical role in regulating their physiological functions. Disturbance of balance between generation and removal of ROS is a major cause of cardiac myocyte remodeling, dysfunction, and failure. Cardiac myocytes possess several ROS-producing pathways, such as mitochondrial electron transport chain, NADPH oxidases, and nitric oxide synthases, and have endogenous antioxidation mechanisms. Cardiac Ca2+-signaling toolkit proteins, as well as mitochondrial functions, are largely modulated by ROS under physiological and pathological conditions, thereby producing alterations in contraction, membrane conductivity, cell metabolism and cell growth and death. Mechanical stresses under hypertension, post-myocardial infarction, heart failure, and valve diseases are the main causes for stress-induced cardiac remodeling and functional failure, which are associated with ROS-induced pathogenesis. Experimental evidence demonstrates that many cardioprotective natural antioxidants, enriched in foods or herbs, exert beneficial effects on cardiac functions (Ca2+ signal, contractility and rhythm), myocytes remodeling, inflammation and death in pathological hearts. The review may provide knowledge and insight into the modulation of cardiac pathogenesis by ROS and natural antioxidants.
Collapse
|
17
|
Helke KL, Meyerholz DK, Beck AP, Burrough ER, Derscheid RJ, Löhr C, McInnes EF, Scudamore CL, Brayton CF. Research Relevant Background Lesions and Conditions: Ferrets, Dogs, Swine, Sheep, and Goats. ILAR J 2021; 62:133-168. [PMID: 33712827 DOI: 10.1093/ilar/ilab005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023] Open
Abstract
Animal models provide a valuable tool and resource for biomedical researchers as they investigate biological processes, disease pathogenesis, novel therapies, and toxicologic studies. Interpretation of animal model data requires knowledge not only of the processes/diseases being studied but also awareness of spontaneous conditions and background lesions in the model that can influence or even confound the study results. Species, breed/stock, sex, age, anatomy, physiology, diseases (noninfectious and infectious), and neoplastic processes are model features that can impact the results as well as study interpretation. Here, we review these features in several common laboratory animal species, including ferret, dog (beagle), pig, sheep, and goats.
Collapse
Affiliation(s)
- Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Amanda P Beck
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eric R Burrough
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Rachel J Derscheid
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Christiane Löhr
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Elizabeth F McInnes
- Toxicologic Pathology, Toxicology Section, Human Safety at Syngenta, in Jealott's Hill, Bracknell, United Kingdom
| | - Cheryl L Scudamore
- ExePathology, Pathologist at ExePathology, Exmouth, Devon, United Kingdom
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Wu G, Zhong J, Chen L, Gu Y, Hong Y, Ma J, Zheng N, Liu AJ, Sheng L, Zhang W, Li H. Effects of the Suxiao Jiuxin pill on acute myocardial infarction assessed by comprehensive metabolomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153291. [PMID: 32739572 DOI: 10.1016/j.phymed.2020.153291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/06/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND SJP is the commercial Chinese medicine included in the Chinese Pharmacopoeia, with well-established cardiovascular protective effects in the clinic. However, the mechanisms underlying the protective effects of SJP on cardiovascular disease have not yet been clearly elucidated. AIMS To investigate the underlying protective mechanisms of SJP in an acute myocardial infarction (AMI) rat model using comprehensive metabolomics. MATERIALS AND METHODS The rat model of AMI was generated by ligating the left anterior descending coronary artery. After 2 weeks treatment with SJP, the entire metabolic changes in the serum, heart, urine and feces of the rat were profiled by HPLC-QTOF-MS/MS. RESULTS The metabolic profiles in different biological samples (heart, serum, urine and feces) were significantly different among groups, in which a total of 112 metabolites were identified. AMI caused comprehensive metabolic changes in amino acid metabolism, galactose metabolism and fatty acid metabolism, while SJP reversed more than half of the differential metabolic changes, mainly affecting amino acid metabolism and fatty acid metabolism. Correlation analysis found that SJP could significantly alter the metabolic activity of 12 key metabolites, regarded as potential biomarkers of SJP treatment. According to the results of network analysis, 6 biomarkers were considered to be hub metabolites, which means that these metabolites may have a major relationship with the SJP therapeutic effects on AMI. CONCLUSION The combined comprehensive metabolomics and network analysis, indicated that the protective effect of SJP on cardiovascular disease was associated with systemic metabolic modulation, in particular regulation of amino acid and fatty acid metabolism.
Collapse
Affiliation(s)
- Gaosong Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Zhong
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Linlin Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Gu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Hong
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junli Ma
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Zheng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ai-Jun Liu
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lili Sheng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Houkai Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
19
|
Barton GP, Macdonald EB, Goss KN, Eldridge MW, Fain SB. Measuring the link between cardiac mechanical function and metabolism during hyperpolarized 13C-pyruvate magnetic resonance experiments. Magn Reson Imaging 2020; 68:9-17. [PMID: 31978518 PMCID: PMC7131884 DOI: 10.1016/j.mri.2020.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/19/2019] [Accepted: 01/19/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE The goal of this study was to develop a methodology to investigate the relationship between contractile function and hyperpolarized (HP) [1-13C]pyruvate metabolism in a small animal model. To achieve sufficient signal from HP 13C compounds, HP 13C MRS/MRSI has required relatively large infusion volumes relative to the total blood volume in small animal models, which may affect cardiac function. METHODS Eight female Sprague Dawley rats were imaged on a 4.7T scanner with a dual tuned 1H/13C volume coil. ECG and respiratory gated k-t spiral MRSI and an IDEAL based reconstruction to determine [1-13C]pyruvate metabolism in the myocardium. This was coupled with 1H cine MRI to determine ventricular volumes and mechanical function pre- and post-infusion of [1-13C]pyruvate. For comparison to the [1-13C]pyruvate experiments, three female Sprague Dawley rats were imaged with 1H cine MRI to determine myocardial function pre- and post-saline infusion. RESULTS We demonstrated significant changes in cardiac contractile function between pre- and post-infusion of [1-13C]pyruvate. Specifically, there was an increase in end-diastolic volume (EDV), stroke volume (SV), and ejection fraction (EF). Additionally, the ventricular vascular coupling ratio (VVCR) showed an improvement after [1-13C]pyruvate infusion, indicating increased systolic performance due to an increased arterial load. There was a moderate to strong relationship between the downstream metabolic conversion of pyruvate to bicarbonate and a strong relationship between the conversion of pyruvate to lactate and the cardiac mechanical function response. CONCLUSION The infusion of [1-13C]pyruvate resulted in demonstrable increases in contractile function which was related to pyruvate conversion to bicarbonate and lactate. The combined effects of the infusion volume and inotropic effects of pyruvate metabolism likely explains the augmentation in myocardial mechanical function seen in these experiments. Given the relationship between pyruvate metabolism and contractile function observed in this study, this methodological approach may be utilized to better understand cardiac metabolic and functional remodeling in heart disease.
Collapse
Affiliation(s)
| | | | - Kara N Goss
- Medicine University of Wisconsin, Madison, WI, USA; Pediatrics University of Wisconsin, Madison, WI, USA
| | - Marlowe W Eldridge
- Pediatrics University of Wisconsin, Madison, WI, USA; Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Sean B Fain
- Medical Physics, University of Wisconsin, Madison, WI, USA; Biomedical Engineering, University of Wisconsin, Madison, WI, USA; Radiology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
20
|
Wang SM, Ye LF, Wang LH. Shenmai Injection Improves Energy Metabolism in Patients With Heart Failure: A Randomized Controlled Trial. Front Pharmacol 2020; 11:459. [PMID: 32362824 PMCID: PMC7181884 DOI: 10.3389/fphar.2020.00459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
Background In recent years, the application of Shenmai (SM) injection, a traditional Chinese medicine (TCM), to treat heart failure (HF) has been gradually accepted in China. However, whether SM improves energy metabolism in patients with HF has not been determined due to the lack of high-quality studies. We aimed to investigate the influence of SM on energy metabolism in patients with HF. Methods This single-blind, controlled study randomly assigned 120 eligible patients equally into three groups receiving SM, trimetazidine (TMZ), or control in addition to standard medical treatment for HF for 7 days. The primary endpoints were changes in free fatty acids (FFAs), glucose, lactic acid (LA), pyroracemic acid (pyruvate, PA) and branched chain amino acids (BCAAs) in serum. The secondary outcomes included the New York Heart Association (NYHA) functional classification, TCM syndrome score (TCM-s), left ventricular injection fraction (LVEF), left ventricular internal diastolic diameter (LVIDd), left ventricular internal dimension systole (LVIDs), and B-type natriuretic peptide (BNP). Results After treatment for 1 week, the NYHA functional classification, TCM-s, and BNP level gradually decreased in the patients in all three groups, but these metrics were significantly increased in the patients in the SM group compared with those in the patients in the TMZ and control groups (P < 0.05). Moreover, energy metabolism was improved in the NYHA III–IV patients in the SM group compared with those in the patients in the TMZ and control groups as evidenced by changes in the serum levels of FFA, LA, PA, and BCAA. Conclusions Integrative treatment with SM in addition to standard medical treatment for HF was associated with improved cardiac function compared to standard medical treatment alone. The benefit of SM in HF may be related to an improvement in energy metabolism, which seems to be more remarkable than that following treatment with TMZ.
Collapse
Affiliation(s)
- Shao-Mei Wang
- Cardiovascular Medicine Department, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Bengbu Medical College, Bengbu, China
| | - Li-Fang Ye
- Cardiovascular Medicine Department, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Li-Hong Wang
- Cardiovascular Medicine Department, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
21
|
Zhang Q, Lyu W, Yu M, Niu Y, Meng Z. Investigating the inotropic effect of pyruvic acid on the isolated rat heart and its underlying mechanism. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 71:103206. [PMID: 31212135 DOI: 10.1016/j.etap.2019.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/09/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
Pyruvic acid is important organic chemical intermediates that plays a role in cardiomyocyte pathophysiology and therapy. This study sought to explore the inotropic effects of pyruvic acid on the function of the isolated rat hearts and investigate its underlying mechanism. Pyruvic acid produced a greater negative inotropic effect compared to HCl and sodium pyruvate in a concentration-dependent pattern in the hearts. The role of low dose of pyruvic acid on heart function was regulated by pyruvic acid molecules and high dose pyruvic acid may be influenced by pyruvic acid molecules and pH. Kv channels may be involved in the pyruvic acid-induced negative inotropic effect. Finally, pyruvic acid markedly increased the level of LDH and CK and reduced the level of Ca2+Mg2+-ATPase and Na+K+-ATPase. These results suggest that pyruvic acid may modulate cardiac function at physiological or low doses but can cause damage to cardiomyocytes at high doses.
Collapse
Affiliation(s)
- Quanxi Zhang
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| | - Wenru Lyu
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Mengbin Yu
- Institute of NBC Defence, Beijing 102205, China
| | - Yuxin Niu
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Ziqiang Meng
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
22
|
Abstract
This commentary addresses the recent retraction of an article which reported favorable outcomes in septic patients treated with intravenous pyruvate. The retracted report was cited in the authors' recent minireview on the cellular mechanisms and clinical application of pyruvate to improve cardiac performance. Because the retracted article reports pyruvate-enhanced resuscitation of critically ill patients, the authors wish to inform the readership, especially critical care providers, that this particular clinical application of pyruvate is not now supported by robust evidence. After discussing the retraction's implications for the clinical application of pyruvate-enriched resuscitation for sepsis, this commentary summarizes the extensive preclinical evidence of the efficacy and mechanisms of pyruvate resuscitation in animal models of hemorrhagic and septic shock, which argues for renewed clinical investigation of pyruvate-enriched resuscitation. Impact statement This commentary addresses the recent retraction of a clinical report of significant benefits of intravenous pyruvate resuscitation in septic patients, including sharply lowered mortality and decreased circulating pro-inflammatory cytokines, which was cited in the authors' minireview in Experimental Biology and Medicine. The potential implications of the retraction, and the extensive preclinical evidence supporting the use of pyruvate-enriched resuscitation for shock states, are summarized and discussed.
Collapse
Affiliation(s)
- Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Albert H Olivencia-Yurvati
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
- Department of Medical Education, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Rolf Bünger
- Emeritus Member of the American Physiological Society, McLean, VA 22101, USA
| |
Collapse
|