1
|
Rahman MS, Hossain MS. Eicosanoids Signals in SARS-CoV-2 Infection: A Foe or Friend. Mol Biotechnol 2024; 66:3025-3041. [PMID: 37878227 DOI: 10.1007/s12033-023-00919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023]
Abstract
SARS-CoV-2 mediated infection instigated a scary pandemic state since 2019. They created havoc comprising death, imbalanced social structures, and a wrecked global economy. During infection, the inflammation and associated cytokine storm generate a critical pathological situation in the human body, especially in the lungs. By the passage of time of infection, inflammatory disorders, and multiple organ damage happen which might lead to death, if not treated properly. Until now, many pathological parameters have been used to understand the progress of the severity of COVID-19 but with limited success. Bioactive lipid mediators have the potential of initiating and resolving inflammation in any disease. The connection between lipid storm and inflammatory states of SARS-CoV-2 infection has surfaced and got importance to understand and mitigate the pathological states of COVID-19. As the role of eicosanoids in COVID-19 infection is not well defined, available information regarding this issue has been accumulated to address the possible network of eicosanoids related to the initiation of inflammation, promotion of cytokine storm, and resolution of inflammation, and highlight possible strategies for treatment and drug discovery related to SARS-CoV-2 infection in this study. Understanding the involvement of eicosanoids in exploration of cellular events provoked by SARS-CoV-2 infection has been summarized as an important factor to deescalate any upcoming catastrophe imposed by the lethal variants of this micro-monster. Additionally, this study also recognized the eicosanoid based drug discovery, treatment, and strategies for managing the severity of SARS-COV-2 infection.
Collapse
Affiliation(s)
- Mohammad Sharifur Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| |
Collapse
|
2
|
Chaves-Filho AM, Braniff O, Angelova A, Deng Y, Tremblay MÈ. Chronic inflammation, neuroglial dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome. Brain Res Bull 2023; 201:110702. [PMID: 37423295 DOI: 10.1016/j.brainresbull.2023.110702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/13/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
After five waves of coronavirus disease 2019 (COVID-19) outbreaks, it has been recognized that a significant portion of the affected individuals developed long-term debilitating symptoms marked by chronic fatigue, cognitive difficulties ("brain fog"), post-exertional malaise, and autonomic dysfunction. The onset, progression, and clinical presentation of this condition, generically named post-COVID-19 syndrome, overlap significantly with another enigmatic condition, referred to as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Several pathobiological mechanisms have been proposed for ME/CFS, including redox imbalance, systemic and central nervous system inflammation, and mitochondrial dysfunction. Chronic inflammation and glial pathological reactivity are common hallmarks of several neurodegenerative and neuropsychiatric disorders and have been consistently associated with reduced central and peripheral levels of plasmalogens, one of the major phospholipid components of cell membranes with several homeostatic functions. Of great interest, recent evidence revealed a significant reduction of plasmalogen contents, biosynthesis, and metabolism in ME/CFS and acute COVID-19, with a strong association to symptom severity and other relevant clinical outcomes. These bioactive lipids have increasingly attracted attention due to their reduced levels representing a common pathophysiological manifestation between several disorders associated with aging and chronic inflammation. However, alterations in plasmalogen levels or their lipidic metabolism have not yet been examined in individuals suffering from post-COVID-19 symptoms. Here, we proposed a pathobiological model for post-COVID-19 and ME/CFS based on their common inflammation and dysfunctional glial reactivity, and highlighted the emerging implications of plasmalogen deficiency in the underlying mechanisms. Along with the promising outcomes of plasmalogen replacement therapy (PRT) for various neurodegenerative/neuropsychiatric disorders, we sought to propose PRT as a simple, effective, and safe strategy for the potential relief of the debilitating symptoms associated with ME/CFS and post-COVID-19 syndrome.
Collapse
Affiliation(s)
| | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Molecular Medicine, Université Laval, Québec City, Québec, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC) and Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
3
|
Chen P, Wu M, He Y, Jiang B, He ML. Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic targets against coronavirus infection. Signal Transduct Target Ther 2023; 8:237. [PMID: 37286535 DOI: 10.1038/s41392-023-01510-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/18/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by coronavirus SARS-CoV-2 infection has become a global pandemic due to the high viral transmissibility and pathogenesis, bringing enormous burden to our society. Most patients infected by SARS-CoV-2 are asymptomatic or have mild symptoms. Although only a small proportion of patients progressed to severe COVID-19 with symptoms including acute respiratory distress syndrome (ARDS), disseminated coagulopathy, and cardiovascular disorders, severe COVID-19 is accompanied by high mortality rates with near 7 million deaths. Nowadays, effective therapeutic patterns for severe COVID-19 are still lacking. It has been extensively reported that host metabolism plays essential roles in various physiological processes during virus infection. Many viruses manipulate host metabolism to avoid immunity, facilitate their own replication, or to initiate pathological response. Targeting the interaction between SARS-CoV-2 and host metabolism holds promise for developing therapeutic strategies. In this review, we summarize and discuss recent studies dedicated to uncovering the role of host metabolism during the life cycle of SARS-CoV-2 in aspects of entry, replication, assembly, and pathogenesis with an emphasis on glucose metabolism and lipid metabolism. Microbiota and long COVID-19 are also discussed. Ultimately, we recapitulate metabolism-modulating drugs repurposed for COVID-19 including statins, ASM inhibitors, NSAIDs, Montelukast, omega-3 fatty acids, 2-DG, and metformin.
Collapse
Affiliation(s)
- Peiran Chen
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Mandi Wu
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Binghua Jiang
- Cell Signaling and Proteomic Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China.
| |
Collapse
|
4
|
Paulukonis ST, Snyder A, Smeltzer MP, Sutaria AN, Hurden I, Latta K, Chennuri S, Vichinsky E, Reeves SL. COVID-19 Infection and Outcomes in Newborn Screening Cohorts of Sickle Cell Trait and Sickle Cell Disease in Michigan and Georgia. J Pediatr Hematol Oncol 2023; 45:174-180. [PMID: 37083273 PMCID: PMC10249598 DOI: 10.1097/mph.0000000000002671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/01/2023] [Indexed: 04/22/2023]
Abstract
The sickle cell mutation increases morbidity in those with sickle cell disease (SCD) and potentially sickle cell trait, impacting pulmonary, coagulation, renal, and other systems that are implicated in COVID-19 severity. There are no population-based registries for hemoglobinopathies, and they are not tracked in COVID-19 testing. We used COVID-19 test data from 2 states linked to newborn screening data to estimate COVID outcomes in people with SCD or trait compared with normal hemoglobin. We linked historical newborn screening data to COVID-19 tests, hospitalization, and mortality data and modeled the odds of hospitalization and mortality. Georgia's cohort aged 0 to 12 years; Michigan's, 0 to 33 years. Over 8% of those in Michigan were linked to positive COVID-19 results, and 4% in Georgia. Those with SCD showed significantly higher rates of COVID-19 hospitalization than the normal hemoglobin Black cohort, and Michigan had higher rates of mortality as well. Outcomes among those with the trait did not differ significantly from the normal hemoglobin Black group. People with SCD are at increased risk of COVID-19-related hospitalization and mortality and are encouraged to be vaccinated and avoid infection. Persons with the trait were not at higher risk of COVID-related severe outcomes.
Collapse
Affiliation(s)
| | - Angela Snyder
- Georgia Health Policy Center, Georgia State University, Atlanta, GA
| | - Matthew P. Smeltzer
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN
| | - Ankit N. Sutaria
- Division of Health Protection, Georgia Department of Public Health, Maternal and Child Health Epidemiology, Atlanta, GA
| | - Isabel Hurden
- Michigan Department of Health & Human Services, Detroit
| | - Krista Latta
- Department of Pediatrics, Susan B. Meister Child Health Evaluation and Research Center
| | | | - Elliott Vichinsky
- University of California San Francisco Benioff Children’s Hospital Oakland, Oakland, CA
| | - Sarah L. Reeves
- Department of Pediatrics, Susan B. Meister Child Health Evaluation and Research Center
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| |
Collapse
|
5
|
Farooqui AA, Farooqui T, Sun GY, Lin TN, Teh DBL, Ong WY. COVID-19, Blood Lipid Changes, and Thrombosis. Biomedicines 2023; 11:biomedicines11041181. [PMID: 37189799 DOI: 10.3390/biomedicines11041181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Although there is increasing evidence that oxidative stress and inflammation induced by COVID-19 may contribute to increased risk and severity of thromboses, the underlying mechanism(s) remain to be understood. The purpose of this review is to highlight the role of blood lipids in association with thrombosis events observed in COVID-19 patients. Among different types of phospholipases A2 that target cell membrane phospholipids, there is increasing focus on the inflammatory secretory phospholipase A2 IIA (sPLA2-IIA), which is associated with the severity of COVID-19. Analysis indicates increased sPLA2-IIA levels together with eicosanoids in the sera of COVID patients. sPLA2 could metabolise phospholipids in platelets, erythrocytes, and endothelial cells to produce arachidonic acid (ARA) and lysophospholipids. Arachidonic acid in platelets is metabolised to prostaglandin H2 and thromboxane A2, known for their pro-coagulation and vasoconstrictive properties. Lysophospholipids, such as lysophosphatidylcholine, could be metabolised by autotaxin (ATX) and further converted to lysophosphatidic acid (LPA). Increased ATX has been found in the serum of patients with COVID-19, and LPA has recently been found to induce NETosis, a clotting mechanism triggered by the release of extracellular fibres from neutrophils and a key feature of the COVID-19 hypercoagulable state. PLA2 could also catalyse the formation of platelet activating factor (PAF) from membrane ether phospholipids. Many of the above lipid mediators are increased in the blood of patients with COVID-19. Together, findings from analyses of blood lipids in COVID-19 patients suggest an important role for metabolites of sPLA2-IIA in COVID-19-associated coagulopathy (CAC).
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Tahira Farooqui
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Teng-Nan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11929, Taiwan
| | - Daniel B L Teh
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 119260, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 119260, Singapore
| |
Collapse
|
6
|
Jeican II, Inișca P, Gheban D, Anton V, Lazăr M, Vică ML, Mironescu D, Rebeleanu C, Crivii CB, Aluaș M, Albu S, Siserman CV. Histopathological Lung Findings in COVID-19 B.1.617.2 SARS-CoV-2 Delta Variant. J Pers Med 2023; 13:jpm13020279. [PMID: 36836513 PMCID: PMC9961426 DOI: 10.3390/jpm13020279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The Delta variant (Pango lineage B.1.617.2) is one of the most significant and aggressive variants of SARS-CoV-2. To the best of our knowledge, this is the first paper specifically studying pulmonary morphopathology in COVID-19 caused by the B.1.617.2 Delta variant. METHODS The study included 10 deceased patients (40-83 years) with the COVID-19 Delta variant. The necrotic lung fragments were obtained either by biopsy (six cases) or autopsy (four cases). Tissue samples were subjected to virology analysis for identification of the SARS-CoV-2 variant, histopathology, and immunohistochemistry (anti-SARS coronavirus mouse anti-virus antibody). RESULTS Virology analysis identified B.1.617.2 through genetic sequencing in eight cases, and in two cases, specific mutations of B.1.617.2 were identified. Macroscopically, in all autopsied cases, the lung had a particular appearance, purple in color, with increased consistency on palpation and abolished crepitations. Histopathologically, the most frequently observed lesions were acute pulmonary edema (70%) and diffuse alveolar damage at different stages. The immunohistochemical examination was positive for proteins of SARS-CoV-2 in 60% of cases on alveolocytes and in endothelial cells. CONCLUSIONS The histopathological lung findings in the B.1.617.2 Delta variant are similar to those previously described in COVID-19. Spike protein-binding antibodies were identified immunohistochemically both on alveolocytes and in the endothelial cells, showing the potential of indirect damage from thrombosis.
Collapse
Affiliation(s)
- Ionuț Isaia Jeican
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Patricia Inișca
- Department of Pathology, County Emergency Hospital Deva, 330084 Deva, Romania
| | - Dan Gheban
- Department of Pathology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
- Department of Pathology, Emergency Clinical Hospital for Children, 400370 Cluj-Napoca, Romania
| | - Vlad Anton
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Mihaela Lazăr
- Viral Respiratory Infections Laboratory, Cantacuzino National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Mihaela Laura Vică
- Institute of Legal Medicine, 400006 Cluj-Napoca, Romania
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | | | - Codrin Rebeleanu
- Department of Legal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Carmen Bianca Crivii
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Maria Aluaș
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babeș Str., No. 15, 400012 Cluj-Napoca, Romania
- Correspondence: (M.A.); (S.A.)
| | - Silviu Albu
- Department of Head and Neck Surgery and Otorhinolaryngology, University Clinical Hospital of Railway Company, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania
- Correspondence: (M.A.); (S.A.)
| | - Costel Vasile Siserman
- Institute of Legal Medicine, 400006 Cluj-Napoca, Romania
- Department of Legal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Papadopoulos KI, Papadopoulou A, Aw TC. A protective erythropoietin evolutionary landscape, NLRP3 inflammasome regulation, and multisystem inflammatory syndrome in children. Hum Cell 2023; 36:26-40. [PMID: 36310304 PMCID: PMC9618415 DOI: 10.1007/s13577-022-00819-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2022]
Abstract
The low incidence of pediatric severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and the associated multisystem inflammatory syndrome (MIS-C) lack a unifying pathophysiological explanation, impeding effective prevention and therapy. Activation of the NACHT, LRR, and PYD domains-containing protein (NLRP) 3 inflammasome in SARS-CoV-2 with perturbed regulation in MIS-C, has been reported. We posit that, early age physiological states and genetic determinants, such as certain polymorphisms of renin-angiotensin aldosterone system (RAAS) molecules, promote a controlled RAAS hyperactive state, and form an evolutionary landscape involving an age-dependent erythropoietin (EPO) elevation, mediating ancestral innate immune defenses that, through appropriate NLRP3 regulation, mitigate tissue injury and pathogen invasion. SARS-CoV-2-induced downregulation of angiotensin-converting enzyme (ACE)2 expression in endothelial cells (EC), impairment of endothelial nitric oxide (NO) synthase (eNOS) activity and downstream NO bioavailability, may promote a hyperactive RAAS with elevated angiotensin II and aldosterone that, can trigger, and accelerate NLRP3 inflammasome activation, while EPO-eNOS/NO abrogate it. Young age and a protective EPO evolutionary landscape may successfully inhibit SARS-CoV-2 and contain NLRP3 inflammasome activation. By contrast, increasing age and falling EPO levels, in genetically susceptible children with adverse genetic variants and co-morbidities, may lead to unopposed RAAS hyperactivity, NLRP3 inflammasome dysregulation, severe endotheliitis with pyroptotic cytokine storm, and development of autoantibodies, as already described in MIS-C. Our haplotype estimates, predicted from allele frequencies in population databases, are in concordance with MIS-C incidence reports in Europeans but indicate lower risks for Asians and African Americans. Targeted Mendelian approaches dissecting the influence of relevant genetic variants are needed.
Collapse
Affiliation(s)
- Konstantinos I Papadopoulos
- Department of Research and Development, THAI StemLife Co., Ltd., 566/3 THAI StemLife Bldg., Soi Ramkhamhaeng 39 (Thepleela 1), Prachaouthit Rd., Wangthonglang, 10310, Bangkok, Thailand.
| | - Alexandra Papadopoulou
- Occupational and Environmental Health Services, Feelgood Lund, Ideon Science Park, Scheelevägen 17, 223 63, Lund, Sweden
| | - Tar-Choon Aw
- Department of Laboratory Medicine, Changi General Hospital, Singapore, 529889, Singapore
- Department of Medicine, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|
8
|
Al-kuraishy HM, Al-Buhadily AK, Al-Gareeb AI, Alorabi M, Hadi Al-Harcan NA, El-Bouseary MM, Batiha GES. Citicoline and COVID-19: vis-à-vis conjectured. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1463-1475. [PMID: 36063198 PMCID: PMC9442587 DOI: 10.1007/s00210-022-02284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a current pandemic disease caused by a novel severe acute respiratory syndrome coronavirus virus respiratory type 2 (SARS-CoV-2). SARS-CoV-2 infection is linked with various neurological manifestations due to cytokine-induced disruption of the blood brain barrier (BBB), neuroinflammation, and peripheral neuronal injury, or due to direct SARS-CoV-2 neurotropism. Of note, many repurposed agents were included in different therapeutic protocols in the management of COVID-19. These agents did not produce an effective therapeutic eradication of SARS-CoV-2, and continuing searching for novel anti-SARS-CoV-2 agents is a type of challenge nowadays. Therefore, this study aimed to review the potential anti-inflammatory and antioxidant effects of citicoline in the management of COVID-19.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali K. Al-Buhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Mohammed Alorabi
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Nasser A. Hadi Al-Harcan
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Rasheed University College, Baghdad, Iraq
| | - Maisra M. El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour, 22511 Egypt
| |
Collapse
|
9
|
Abstract
The cytokine storm (CS) in hyperinflammation is characterized by high levels of cytokines, extreme activation of innate as well as adaptive immune cells and initiation of apoptosis. High levels of apoptotic cells overwhelm the proper recognition and removal system of these cells. Phosphatidylserine on the apoptotic cell surface, which normally provides a recognition signal for removal, becomes a target for hemostatic proteins and secretory phospholipase A2. The dysregulation of these normal pathways in hemostasis and the inflammasome result in a prothrombotic state, cellular death, and end-organ damage. In this review, we provide the argument that this imbalance in recognition and removal is a common denominator regardless of the inflammatory trigger. The complex reaction of the immune defense system in hyperinflammation leads to self-inflicted damage. This common endpoint may provide additional options to monitor the progression of the inflammatory syndrome, predict severity, and may add to possible treatment strategies.
Collapse
|
10
|
Masuda R, Lodge S, Whiley L, Gray N, Lawler N, Nitschke P, Bong SH, Kimhofer T, Loo RL, Boughton B, Zeng AX, Hall D, Schaefer H, Spraul M, Dwivedi G, Yeap BB, Diercks T, Bernardo-Seisdedos G, Mato JM, Lindon JC, Holmes E, Millet O, Wist J, Nicholson JK. Exploration of Human Serum Lipoprotein Supramolecular Phospholipids Using Statistical Heterospectroscopy in n-Dimensions (SHY- n): Identification of Potential Cardiovascular Risk Biomarkers Related to SARS-CoV-2 Infection. Anal Chem 2022; 94:4426-4436. [PMID: 35230805 DOI: 10.1021/acs.analchem.1c05389] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 infection causes a significant reduction in lipoprotein-bound serum phospholipids give rise to supramolecular phospholipid composite (SPC) signals observed in diffusion and relaxation edited 1H NMR spectra. To characterize the chemical structural components and compartmental location of SPC and to understand further its possible diagnostic properties, we applied a Statistical HeterospectroscopY in n-dimensions (SHY-n) approach. This involved statistically linking a series of orthogonal measurements made on the same samples, using independent analytical techniques and instruments, to identify the major individual phospholipid components giving rise to the SPC signals. Thus, an integrated model for SARS-CoV-2 positive and control adults is presented that relates three identified diagnostic subregions of the SPC signal envelope (SPC1, SPC2, and SPC3) generated using diffusion and relaxation edited (DIRE) NMR spectroscopy to lipoprotein and lipid measurements obtained by in vitro diagnostic NMR spectroscopy and ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The SPC signals were then correlated sequentially with (a) total phospholipids in lipoprotein subfractions; (b) apolipoproteins B100, A1, and A2 in different lipoproteins and subcompartments; and (c) MS-measured total serum phosphatidylcholines present in the NMR detection range (i.e., PCs: 16.0,18.2; 18.0,18.1; 18.2,18.2; 16.0,18.1; 16.0,20.4; 18.0,18.2; 18.1,18.2), lysophosphatidylcholines (LPCs: 16.0 and 18.2), and sphingomyelin (SM 22.1). The SPC3/SPC2 ratio correlated strongly (r = 0.86) with the apolipoprotein B100/A1 ratio, a well-established marker of cardiovascular disease risk that is markedly elevated during acute SARS-CoV-2 infection. These data indicate the considerable potential of using a serum SPC measurement as a metric of cardiovascular risk based on a single NMR experiment. This is of specific interest in relation to understanding the potential for increased cardiovascular risk in COVID-19 patients and risk persistence in post-acute COVID-19 syndrome (PACS).
Collapse
Affiliation(s)
- Reika Masuda
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | - Samantha Lodge
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | - Luke Whiley
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | - Nicola Gray
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | - Nathan Lawler
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | - Philipp Nitschke
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | - Sze-How Bong
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | - Torben Kimhofer
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | - Ruey Leng Loo
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | - Berin Boughton
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | - Annie X Zeng
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | - Drew Hall
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | | | - Manfred Spraul
- Bruker Biospin GmbH, Silberstreifen, Ettlingen 76275, Germany
| | - Girish Dwivedi
- Department of Cardiology, Fiona Stanley Hospital, Medical School, University of Western Australia, Perth 6150, Western Australia, Australia
| | - Bu B Yeap
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Medical School, University of Western Australia, Perth 6150, Western Australia, Australia
| | - Tammo Diercks
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bld. 800, 48160 Derio, Spain
| | - Ganeko Bernardo-Seisdedos
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bld. 800, 48160 Derio, Spain
| | - José M Mato
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bld. 800, 48160 Derio, Spain
| | - John C Lindon
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, U.K
| | - Elaine Holmes
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia.,Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, U.K
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bld. 800, 48160 Derio, Spain
| | - Julien Wist
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia.,Chemistry Department, Universidad del Valle, 76001 Cali, Colombia
| | - Jeremy K Nicholson
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia.,Department of Cardiology, Fiona Stanley Hospital, Medical School, University of Western Australia, Perth 6150, Western Australia, Australia.,Institute of Global Health Innovation, Faculty of Medicine, Imperial College London, Level 1, Faculty Building, South Kensington Campus, London SW7 2NA, U.K
| |
Collapse
|
11
|
Spracklen TF, Mendelsohn SC, Butters C, Facey-Thomas H, Stander R, Abrahams D, Erasmus M, Baguma R, Day J, Scott C, Zühlke LJ, Kassiotis G, Scriba TJ, Webb K. IL27 gene expression distinguishes multisystem inflammatory syndrome in children from febrile illness in a South African cohort. Front Immunol 2022; 13:992022. [PMID: 36148243 PMCID: PMC9486543 DOI: 10.3389/fimmu.2022.992022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Multisystem inflammatory syndrome in children (MIS-C) is a severe acute inflammatory reaction to SARS-CoV-2 infection in children. There is a lack of data describing differential expression of immune genes in MIS-C compared to healthy children or those with other inflammatory conditions and how expression changes over time. In this study, we investigated expression of immune-related genes in South African MIS-C patients and controls. Methods The cohort included 30 pre-treatment MIS-C cases and 54 healthy non-inflammatory paediatric controls. Other controls included 34 patients with juvenile systemic lupus erythematosus, Kawasaki disease or other inflammatory conditions. Longitudinal post-treatment MIS-C specimens were available at various timepoints. Expression of 80 immune-related genes was determined by real-time quantitative PCR. Results A total of 29 differentially expressed genes were identified in pre-treatment MIS-C compared to healthy controls. Up-regulated genes were found to be overrepresented in innate immune pathways including interleukin-1 processing and pyroptosis. Post-treatment follow-up data were available for up to 1,200 hours after first treatment. All down-regulated genes and 17/18 up-regulated genes resolved to normal levels in the timeframe, and all patients clinically recovered. When comparing MIS-C to other febrile conditions, only IL27 expression could differentiate these two groups with high sensitivity and specificity. Conclusions These data indicate a unique 29-gene signature of MIS-C in South African children. The up-regulation of interleukin-1 and pyroptosis pathway genes highlights the role of the innate immune system in MIS-C. IL-27 is a potent anti-inflammatory and antiviral cytokine that may distinguish MIS-C from other conditions in our setting.
Collapse
Affiliation(s)
- Timothy F Spracklen
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa.,Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Simon C Mendelsohn
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Claire Butters
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa.,Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Heidi Facey-Thomas
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Raphaella Stander
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Debbie Abrahams
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Mzwandile Erasmus
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Richard Baguma
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Jonathan Day
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Christiaan Scott
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Liesl J Zühlke
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa.,Cape Heart Institute, University of Cape Town, Cape Town, South Africa.,South African Medical Research Council, Cape Town, South Africa
| | - George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, United Kingdom.,Department of Infectious Disease, St Mary's Hospital, Imperial College, London, United Kingdom
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Kate Webb
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa.,Crick African Network, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
12
|
Scott KF, Mann TJ, Fatima S, Sajinovic M, Razdan A, Kim RR, Cooper A, Roohullah A, Bryant KJ, Gamage KK, Harman DG, Vafaee F, Graham GG, Church WB, Russell PJ, Dong Q, de Souza P. Human Group IIA Phospholipase A 2-Three Decades on from Its Discovery. Molecules 2021; 26:molecules26237267. [PMID: 34885848 PMCID: PMC8658914 DOI: 10.3390/molecules26237267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Phospholipase A2 (PLA2) enzymes were first recognized as an enzyme activity class in 1961. The secreted (sPLA2) enzymes were the first of the five major classes of human PLA2s to be identified and now number nine catalytically-active structurally homologous proteins. The best-studied of these, group IIA sPLA2, has a clear role in the physiological response to infection and minor injury and acts as an amplifier of pathological inflammation. The enzyme has been a target for anti-inflammatory drug development in multiple disorders where chronic inflammation is a driver of pathology since its cloning in 1989. Despite intensive effort, no clinically approved medicines targeting the enzyme activity have yet been developed. This review catalogues the major discoveries in the human group IIA sPLA2 field, focusing on features of enzyme function that may explain this lack of success and discusses future research that may assist in realizing the potential benefit of targeting this enzyme. Functionally-selective inhibitors together with isoform-selective inhibitors are necessary to limit the apparent toxicity of previous drugs. There is also a need to define the relevance of the catalytic function of hGIIA to human inflammatory pathology relative to its recently-discovered catalysis-independent function.
Collapse
Affiliation(s)
- Kieran F. Scott
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- Correspondence: ; Tel.: +61-2-8738-9026
| | - Timothy J. Mann
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
| | - Shadma Fatima
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- School of Biotechnology and Biological Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia;
| | - Mila Sajinovic
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
| | - Anshuli Razdan
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
| | - Ryung Rae Kim
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (W.B.C.)
| | - Adam Cooper
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Aflah Roohullah
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Katherine J. Bryant
- School of Photovoltaic and Renewable Energy Engineering, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Kasuni K. Gamage
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia; (K.K.G.); (D.G.H.)
| | - David G. Harman
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia; (K.K.G.); (D.G.H.)
| | - Fatemeh Vafaee
- School of Biotechnology and Biological Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia;
- UNSW Data Science Hub, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Garry G. Graham
- Department of Clinical Pharmacology, St Vincent’s Hospital Sydney, Darlinghurst, NSW 2010, Australia;
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - W. Bret Church
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (W.B.C.)
| | - Pamela J. Russell
- Australian Prostate Cancer Research Centre—QUT, Brisbane, QLD 4102, Australia;
| | - Qihan Dong
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Paul de Souza
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- School of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
13
|
Vella LA, Rowley AH. Current Insights Into the Pathophysiology of Multisystem Inflammatory Syndrome in Children. CURRENT PEDIATRICS REPORTS 2021; 9:83-92. [PMID: 34692237 PMCID: PMC8524214 DOI: 10.1007/s40124-021-00257-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 12/14/2022]
Abstract
Purpose of Review We highlight the new clinical entity multisystem inflammatory syndrome in children (MIS-C), the progress in understanding its immunopathogenesis, and compare and contrast the clinical and immunologic features of MIS-C with Kawasaki disease (KD). Recent Findings Studies show immune dysregulation in MIS-C including T lymphocyte depletion and activation, T cell receptor Vbeta skewing, elevated plasmablast frequencies, increased markers of vascular pathology, and decreased numbers and functional profiles of antigen-presenting cells. Summary MIS-C is a late manifestation of infection with SARS-CoV-2 associated with marked immune activation and many potential mechanisms of immunopathogenesis. MIS-C and KD have clinical similarities but are distinct. Myocardial dysfunction with or without mild coronary artery dilation can occur in MIS-C but generally corrects within weeks. In contrast, the coronary arteries are the primary target in KD, and coronary artery sequelae can be lifelong. Supportive care and anti-inflammatory therapy appear to hasten improvement in children with MIS-C, and there is hope that vaccines will prevent its development.
Collapse
Affiliation(s)
- Laura A. Vella
- Division of Infectious Diseases, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Anne H. Rowley
- Division of Infectious Diseases, Department of Pediatrics, The Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E Chicago Avenue, Box 20, Chicago, IL 60611 USA
- Northwestern Feinberg School of Medicine, Chicago, IL 60611 USA
| |
Collapse
|
14
|
Snider JM, You JK, Wang X, Snider AJ, Hallmark B, Zec MM, Seeds MC, Sergeant S, Johnstone L, Wang Q, Sprissler R, Carr TF, Lutrick K, Parthasarathy S, Bime C, Zhang HH, Luberto C, Kew RR, Hannun YA, Guerra S, McCall CE, Yao G, Del Poeta M, Chilton FH. Group IIA secreted phospholipase A2 is associated with the pathobiology leading to COVID-19 mortality. J Clin Invest 2021; 131:e149236. [PMID: 34428181 PMCID: PMC8483752 DOI: 10.1172/jci149236] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
There is an urgent need to identify the cellular and molecular mechanisms responsible for severe COVID-19 that results in death. We initially performed both untargeted and targeted lipidomics as well as focused biochemical analyses of 127 plasma samples and found elevated metabolites associated with secreted phospholipase A2 (sPLA2) activity and mitochondrial dysfunction in patients with severe COVID-19. Deceased COVID-19 patients had higher levels of circulating, catalytically active sPLA2 group IIA (sPLA2-IIA), with a median value that was 9.6-fold higher than that for patients with mild disease and 5.0-fold higher than the median value for survivors of severe COVID-19. Elevated sPLA2-IIA levels paralleled several indices of COVID-19 disease severity (e.g., kidney dysfunction, hypoxia, multiple organ dysfunction). A decision tree generated by machine learning identified sPLA2-IIA levels as a central node in the stratification of patients who died from COVID-19. Random forest analysis and least absolute shrinkage and selection operator-based (LASSO-based) regression analysis additionally identified sPLA2-IIA and blood urea nitrogen (BUN) as the key variables among 80 clinical indices in predicting COVID-19 mortality. The combined PLA-BUN index performed significantly better than did either one alone. An independent cohort (n = 154) confirmed higher plasma sPLA2-IIA levels in deceased patients compared with levels in plasma from patients with severe or mild COVID-19, with the PLA-BUN index-based decision tree satisfactorily stratifying patients with mild, severe, or fatal COVID-19. With clinically tested inhibitors available, this study identifies sPLA2-IIA as a therapeutic target to reduce COVID-19 mortality.
Collapse
Affiliation(s)
- Justin M. Snider
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Jeehyun Karen You
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Xia Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
- Department of Molecular and Cellular Biology and
| | - Ashley J. Snider
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Brian Hallmark
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Manja M. Zec
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | | | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Qiuming Wang
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Ryan Sprissler
- Center for Applied Genetics and Genomic Medicine
- Department of Health Sciences
| | | | - Karen Lutrick
- Family and Community Medicine, College of Medicine – Tucson
| | | | - Christian Bime
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
| | - Hao Helen Zhang
- Department of Mathematics, and
- Statistics Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
- Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Richard R. Kew
- Stony Brook Cancer Center, Stony Brook, New York, USA
- Department of Pathology
| | - Yusuf A. Hannun
- Stony Brook Cancer Center, Stony Brook, New York, USA
- Department of Pathology
- Department of Medicine, and
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
- Veterans Affairs Medical Center, Northport, New York, USA
| | | | - Charles E. McCall
- Departments of Internal Medicine, Microbiology, and Immunology and Translational Sciences Institute, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Guang Yao
- Department of Molecular and Cellular Biology and
- Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Veterans Affairs Medical Center, Northport, New York, USA
- Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| | - Floyd H. Chilton
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|