1
|
Shanks MJ, Cirillo J, Stinear CM, Byblow WD. A novel TMS framework for assessing neurophysiological recovery at the subacute stage after stroke. Clin Neurophysiol 2025; 171:82-94. [PMID: 39889484 DOI: 10.1016/j.clinph.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/29/2024] [Accepted: 01/14/2025] [Indexed: 02/03/2025]
Abstract
OBJECTIVE To use peri-threshold transcranial magnetic stimulation (TMS) intensities to elicit motor evoked potentials (MEPs) during the subacute stage after stroke and assess their association with upper limb motor recovery. METHODS Twenty-five MEP+ patients participated in three sessions at 1, 3, and 6 months post-stroke. Single-pulse TMS across a range of stimulation intensities was used to elicit MEPs in four muscles of the paretic and non-paretic upper limb. At each timepoint, threshold matrices were constructed based on MEP amplitude and persistence. A matrix element was suprathreshold if five out of ten stimulations elicited MEPs ≥ 50 μV. A subthreshold element produced MEPs below this criterion. Dexterity was assessed using the nine hole peg test. RESULTS There were fewer suprathreshold, and more subthreshold elements on the paretic compared to the non-paretic side. The number of suprathreshold elements on the paretic side increased between 1 and 6 months post-stroke. Neither sub- nor supra-threshold elements were associated with dexterity recovery. CONCLUSION The proportion of sub- and supra-threshold elements reflect neurophysiological recovery during the subacute stage after stroke. A threshold matrix framework can identify patients with stable versus dynamic neurophysiology post-stroke. SIGNIFICANCE A compositional analysis framework can quantify neurophysiological recovery after stroke.
Collapse
Affiliation(s)
- Maxine J Shanks
- Department of Exercise Sciences, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, New Zealand
| | - John Cirillo
- Department of Exercise Sciences, University of Auckland, New Zealand; Discipline of Physiology, School of Biomedicine, The University of Adelaide, Australia
| | - Cathy M Stinear
- Centre for Brain Research, University of Auckland, New Zealand; Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Winston D Byblow
- Department of Exercise Sciences, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, New Zealand.
| |
Collapse
|
2
|
King EC, Schauer JM, Prabhakaran S, Wax A, Urday S, Madhavan S, Corcos DM, Stoykov ME. Priming and task-specific training for arm weakness post stroke: A randomized controlled trial. Ann Clin Transl Neurol 2025; 12:192-202. [PMID: 39688835 PMCID: PMC11752083 DOI: 10.1002/acn3.52271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
OBJECTIVE The objective of this work was to evaluate if task-specific training (TST) preceded by bilateral upper limb motor priming (BUMP) reduces upper limb impairment more than TST preceded by control priming ([CP], sham electrical stimulation) in people with chronic stroke. METHODS In this single-blind, randomized controlled trial, 76 adults with moderate to severe upper limb hemiparesis ≥6 months post-stroke were stratified by baseline impairment and randomized to receive either BUMP or CP prior to receiving the same TST protocol. Participants completed 30 h of treatment in 15 days over 6 weeks. The primary outcome was change in Fugl-Meyer upper extremity (FMUE) from baseline to 8-week follow-up. We also report clinically meaningful response rates defined as a change in FMUE score of 6 points or greater. RESULTS In response to treatment, both groups improved to a significant extent at follow-up, exceeding the FMUE minimum clinically important difference. Those in BUMP and CP saw a mean change of 5.68 (SE 0.76, p < 0.001) and 5.87 (SE 0.76, p < 0.001) respectively. There was no significant difference between treatment arms (mean difference of -0.20 (95% CI = [-2.37, 1.97], SE = 1.08, p = 0.86)). A response of ≥6 points was observed in 46% in BUMP and 50% in CP. INTERPRETATION There was no beneficial effect of BUMP. The magnitude of change seen in both groups reflects the largest improvement achieved with just 22.5 h of TST in this population, matching or out-performing more invasive, time-intensive, and costly interventions proposed in recent years.
Collapse
Affiliation(s)
- Erin C. King
- Department of Physical Therapy and Human Movement SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Jacob M. Schauer
- Division of Biostatistics, Department of Preventative MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | | | | | - Sebastian Urday
- Division of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Sangeetha Madhavan
- Department of Physical TherapyUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Mary Ellen Stoykov
- Shirley Ryan Ability LabChicagoIllinoisUSA
- Department of Physical Medicine and RehabilitationNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
3
|
Chan HH, Fisher BM, Oimoen MA, Chintada L, Khanna H, Sonneborn CA, Hogue O, Machado AG, Baker KB. Carry-Over Effect of Deep Cerebellar Stimulation-Mediated Motor Recovery in a Rodent Model of Traumatic Brain Injury. Neurorehabil Neural Repair 2024; 38:808-819. [PMID: 39215643 PMCID: PMC11567800 DOI: 10.1177/15459683241277194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND We previously demonstrated that deep brain stimulation (DBS) of lateral cerebellar nucleus (LCN) can enhance motor recovery and functional reorganization of perilesional cortex in rodent models of stroke or TBI. OBJECTIVE Considering the treatment-related neuroplasticity observed at the perilesional cortex, we hypothesize that chronic LCN DBS-enhanced motor recovery observed will carry-over even after DBS has been deactivated. METHODS Here, we directly tested the enduring effects of LCN DBS in male Long Evans rats that underwent controlled cortical impact (CCI) injury targeting sensorimotor cortex opposite their dominant forepaw followed by unilateral implantation of a macroelectrode into the LCN opposite the lesion. Animals were randomized to DBS or sham treatment for 4 weeks during which the motor performance were characterize by behavioral metrics. After 4 weeks, stimulation was turned off, with assessments continuing for an additional 2 weeks. Afterward, all animals were euthanized, and tissue was harvested for further analyses. RESULTS Treated animals showed significantly greater motor improvement across all behavioral metrics relative to untreated animals during the 4-week treatment, with functional gains persisting across 2-week post-treatment. This motor recovery was associated with the increase in CaMKIIα and BDNF positive cell density across perilesional cortex in treated animals. CONCLUSIONS LCN DBS enhanced post-TBI motor recovery, the effect of which was persisted up to 2 weeks beyond stimulation offset. Such evidence should be considered in relation to future translational efforts as, unlike typical DBS applications, treatment may only need to be provided until such time as a new function plateau is achieved.
Collapse
Affiliation(s)
- Hugh H. Chan
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland Ohio
| | - Brittany M. Fisher
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland Ohio
| | - Margaret A. Oimoen
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland Ohio
| | - Latavya Chintada
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland Ohio
| | - Hemen Khanna
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland Ohio
| | - Claire A. Sonneborn
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland Ohio
| | - Olivia Hogue
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland Ohio
| | | | - Kenneth B. Baker
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland Ohio
- Neurological Institute, Cleveland Clinic
| |
Collapse
|
4
|
Li X, Xue T, Li Z, Zhang J. Invasive electrical nerve stimulation for post-stroke motor rehabilitation. Chin Med J (Engl) 2024; 137:2495-2497. [PMID: 39252152 PMCID: PMC11479480 DOI: 10.1097/cm9.0000000000003286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Indexed: 09/11/2024] Open
Affiliation(s)
- Xianze Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Tao Xue
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
5
|
Beovich A, Boose J, Patel R, Wolf SL. Vagus Nerve Stimulation Paired With Rehabilitation for Chronic Stroke: Characterizing Responders. J Neurol Phys Ther 2024; 48:217-223. [PMID: 39028576 DOI: 10.1097/npt.0000000000000488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
BACKGROUND AND PURPOSE Implantable vagus nerve stimulation (VNS) paired with volitional upper extremity rehabilitation can improve impairment and function among moderately to severely impaired, chronic stroke survivors. This study is a retrospective analysis of the in-clinic rehabilitation phase of the blinded, placebo-controlled, randomized pivotal VNS-REHAB trial to determine whether dosing parameters during in-clinic paired VNS therapy were associated with responder status and whether covariates might impact that determination. METHODS Data were limited to 53 participants in the active VNS group who had received VNS implants prior to undergoing 6 weeks of in-clinic rehabilitation paired with VNS. Tasks were standardized across all participants. Dosing parameters included number of stimulations and task time. The primary outcome was the Fugl-Meyer Upper Extremity Assessment (FMA-UE), evaluated at the end of 6 weeks (Post-1). Participants were classified a priori as responders based on an improvement of ≥6 points on the FMA-UE from baseline to Post-1. RESULTS Dosing parameters were not associated with FMA-UE responder status at the end of 6 weeks. Covariates including age, gender, paretic hand, baseline severity, and chronicity of stroke were also not significant associations of response. DISCUSSION AND CONCLUSIONS While responders to VNS could be defined, therapy dosing and participant attributes did not provide greater specification for association of responder status. Limitations of this study include small sample size and non-linearity of the FMA-UE. Future studies will include reassessing responder categorization using more linear scales and examining stroke lesion characteristics to determine whether these measures are more sensitive to dosing parameters. VIDEO ABSTRACT AVAILABLE for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://www.w3.org/1999/xlink ).
Collapse
Affiliation(s)
- Alexa Beovich
- Emory Neurologic Physical Therapy Residency Program (A.B., R.P.), Doctor of Physical Therapy Program, Department of Rehabilitation Medicine (J.B.), Emory University, Atlanta, Georgia; Division of Physical Therapy, Department of Rehabilitation Medicine (S.L.W.), Emory University, School of Medicine, Atlanta, Georgia; Departments of Cell Biology and Medicine (S.L.W.), Woodruff School of Nursing, Emory University, Atlanta, Georgia; Atlanta VA Center for Visual and Neurocognitive Rehabilitation (S.L.W.), Decatur, Georgia
| | | | | | | |
Collapse
|
6
|
Xin D, Li T, Zhao Y, Guo X, Gai C, Jiang Z, Yu S, Cheng J, Song Y, Cheng Y, Luo Q, Gu B, Liu D, Wang Z. MiR-100-5p-rich small extracellular vesicles from activated neuron to aggravate microglial activation and neuronal activity after stroke. J Nanobiotechnology 2024; 22:534. [PMID: 39227960 PMCID: PMC11370036 DOI: 10.1186/s12951-024-02782-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Ischemic stroke is a common cause of mortality and severe disability in human and currently lacks effective treatment. Neuronal activation and neuroinflammation are the major two causes of neuronal damage. However, little is known about the connection of these two phenomena. This study uses middle cerebral artery occlusion mouse model and chemogenetic techniques to study the underlying mechanisms of neuronal excitotoxicity and severe neuroinflammation after ischemic stroke. Chemogenetic inhibition of neuronal activity in ipsilesional M1 alleviates infarct area and neuroinflammation, and improves motor recovery in ischemia mice. This study identifies that ischemic challenge triggers neuron to produce unique small extracellular vesicles (EVs) to aberrantly activate adjacent neurons which enlarge the neuron damage range. Importantly, these EVs also drive microglia activation to exacerbate neuroinflammation. Mechanistically, EVs from ischemia-evoked neuronal activity induce neuronal apoptosis and innate immune responses by transferring higher miR-100-5p to adjacent neuron and microglia. MiR-100-5p can bind to and activate TLR7 through U18U19G20-motif, thereby activating NF-κB pathway. Furthermore, knock-down of miR-100-5p expression improves poststroke outcomes in mice. Taken together, this study suggests that the combination of inhibiting aberrant neuronal activity and the secretion of specific EVs-miRNAs may serve as novel methods for stroke treatment.
Collapse
Affiliation(s)
- Danqing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yijing Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Xiaofan Guo
- Department of Neurology, Loma Linda University Health, Loma Linda, CA, 92354, USA
| | - Chengcheng Gai
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Zige Jiang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Shuwen Yu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Jiao Cheng
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Yan Song
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yahong Cheng
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Qian Luo
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Bing Gu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
7
|
Tam PK, Oey NE, Tang N, Ramamurthy G, Chew E. Facilitating Corticomotor Excitability of the Contralesional Hemisphere Using Non-Invasive Brain Stimulation to Improve Upper Limb Motor Recovery from Stroke-A Scoping Review. J Clin Med 2024; 13:4420. [PMID: 39124687 PMCID: PMC11313572 DOI: 10.3390/jcm13154420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Upper limb weakness following stroke poses a significant global psychosocial and economic burden. Non-invasive brain stimulation (NIBS) is a potential adjunctive treatment in rehabilitation. However, traditional approaches to rebalance interhemispheric inhibition may not be effective for all patients. The supportive role of the contralesional hemisphere in recovery of upper limb motor function has been supported by animal and clinical studies, particularly for those with severe strokes. This review aims to provide an overview of the facilitation role of the contralesional hemisphere for post-stroke motor recovery. While more studies are required to predict responses and inform the choice of NIBS approach, contralesional facilitation may offer new hope for patients in whom traditional rehabilitation and NIBS approaches have failed.
Collapse
Affiliation(s)
- Pui Kit Tam
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore; (P.K.T.); (N.E.O.); (N.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Nicodemus Edrick Oey
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore; (P.K.T.); (N.E.O.); (N.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Ning Tang
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore; (P.K.T.); (N.E.O.); (N.T.)
| | - Guhan Ramamurthy
- BG Institute of Neurosciences, BG Hospital, Tiruchendur, Tuticorin 628216, Tamil Nadu, India;
| | - Effie Chew
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore; (P.K.T.); (N.E.O.); (N.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| |
Collapse
|
8
|
Chan HH, Mathews ND, Khanna H, Mandava N, Hogue O, Machado AG, Baker KB. The role of dorsolateral striatum in the effects of deep cerebellar stimulation-mediated motor recovery following ischemic stroke in rodents. Exp Neurol 2024; 376:114751. [PMID: 38484864 DOI: 10.1016/j.expneurol.2024.114751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/18/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Despite great advances in acute care and rehabilitation, stroke remains the leading cause of motor impairment in the industrialized world. We have developed a deep brain stimulation (DBS)-based approach for post-stroke rehabilitation that has shown reproducible effects in rodent models and has been recently translated to humans. Mechanisms underlying the rehabilitative effects of this novel therapy have been largely focused on the ipsilesional cortex, including cortical reorganization, synaptogenesis, neurogenesis and greater expression of markers of long-term potentiation. The role of subcortical structures on its therapeutic benefits, particularly the striatum, remain unclear. In this study, we compared the motor rehabilitative effects of deep cerebellar stimulation in two rodent models of cerebral ischemia: a) cortical ischemia; and b) combined striatal and cortical ischemia. All animals underwent the same procedures, including implantation of the electrodes and tethered connections for stimulation. Both experimental groups received four weeks of continuous lateral cerebellar nucleus (LCN) DBS and each was paired with a no stimulation, sham, group. Fine motor function was indexed using the pasta matrix task. Brain tissue was harvested for histology and immunohistochemical analyses. In the cortical-only ischemia, the average pasta matrix performance of both sham and stimulated groups reduced from 19 to 24 pieces to 7-8 pieces following the stroke induction. At the end of the four-week treatment, the performance of stimulated group was significantly greater than that of sham group (14 pieces vs 7 pieces, p < 0.0001). Similarly, in the combined cortical and striatal ischemia, the performance of both sham and stimulated groups reduced from 29 to 30 pieces to 7-11 pieces following the stroke induction. However, at the end of the four-week treatment, the performance of stimulated group was not significantly greater than that of sham group (15 pieces vs 11 pieces, p = 0.452). In the post-mortem analysis, the number of cells expressing CaMKIIα at the perilesional cortical and striatum of the LCN DBS treated animals receiving cortical-only stroke elevated but not those receiving cortical+striatal stroke. The current findings suggested that the observed, LCN DBS-enhanced motor recovery and perilesional plasticity may involve striatal mechanisms.
Collapse
Affiliation(s)
- Hugh H Chan
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Nicole D Mathews
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Hemen Khanna
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Nymisha Mandava
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Olivia Hogue
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Andre G Machado
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Neurological Institute, Cleveland Clinic, USA
| | - Kenneth B Baker
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Neurological Institute, Cleveland Clinic, USA.
| |
Collapse
|
9
|
Dawson J, Abdul-Rahim AH, Kimberley TJ. Neurostimulation for treatment of post-stroke impairments. Nat Rev Neurol 2024; 20:259-268. [PMID: 38570705 DOI: 10.1038/s41582-024-00953-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Neurostimulation, the use of electrical stimulation to modulate the activity of the nervous system, is now commonly used for the treatment of chronic pain, movement disorders and epilepsy. Many neurostimulation techniques have now shown promise for the treatment of physical impairments in people with stroke. In 2021, vagus nerve stimulation was approved by the FDA as an adjunct to intensive rehabilitation therapy for the treatment of chronic upper extremity deficits after ischaemic stroke. In 2024, pharyngeal electrical stimulation was conditionally approved by the UK National Institute for Health and Care Excellence for neurogenic dysphagia in people with stroke who have a tracheostomy. Many other approaches have also been tested in pivotal device trials and a number of approaches are in early-phase study. Typically, neurostimulation techniques aim to increase neuroplasticity in response to training and rehabilitation, although the putative mechanisms of action differ and are not fully understood. Neurostimulation techniques offer a number of practical advantages for use after stroke, such as precise dosing and timing, but can be invasive and costly to implement. This Review focuses on neurostimulation techniques that are now in clinical use or that have reached the stage of pivotal trials and show considerable promise for the treatment of post-stroke impairments.
Collapse
Affiliation(s)
- Jesse Dawson
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Azmil H Abdul-Rahim
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Teresa J Kimberley
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Institute of Health Professions, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
10
|
Woods JE, Singer AL, Alrashdan F, Tan W, Tan C, Sheth SA, Sheth SA, Robinson JT. Miniature battery-free epidural cortical stimulators. SCIENCE ADVANCES 2024; 10:eadn0858. [PMID: 38608028 PMCID: PMC11014439 DOI: 10.1126/sciadv.adn0858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Miniaturized neuromodulation systems could improve the safety and reduce the invasiveness of bioelectronic neuromodulation. However, as implantable bioelectronic devices are made smaller, it becomes difficult to store enough power for long-term operation in batteries. Here, we present a battery-free epidural cortical stimulator that is only 9 millimeters in width yet can safely receive enough wireless power using magnetoelectric antennas to deliver 14.5-volt stimulation bursts, which enables it to stimulate cortical activity on-demand through the dura. The device has digitally programmable stimulation output and centimeter-scale alignment tolerances when powered by an external transmitter. We demonstrate that this device has enough power and reliability for real-world operation by showing acute motor cortex activation in human patients and reliable chronic motor cortex activation for 30 days in a porcine model. This platform opens the possibility of simple surgical procedures for precise neuromodulation.
Collapse
Affiliation(s)
- Joshua E. Woods
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Amanda L. Singer
- Motif Neurotech, 2450 Holcombe Blvd, Houston, TX 77021, USA
- Applied Physics Program, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Fatima Alrashdan
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Wendy Tan
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Chunfeng Tan
- Department of Neurology, UTHealth McGovern Medical School, 6431 Fannin St, Houston, TX 77030, USA
| | - Sunil A. Sheth
- Department of Neurology, UTHealth McGovern Medical School, 6431 Fannin St, Houston, TX 77030, USA
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Jacob T. Robinson
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, TX 77005, USA
- Motif Neurotech, 2450 Holcombe Blvd, Houston, TX 77021, USA
- Applied Physics Program, Rice University, 6100 Main St, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, 6100 Main St, Houston, TX 77005, USA
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
11
|
Saway BF, Palmer C, Hughes C, Triano M, Suresh RE, Gilmore J, George M, Kautz SA, Rowland NC. The evolution of neuromodulation for chronic stroke: From neuroplasticity mechanisms to brain-computer interfaces. Neurotherapeutics 2024; 21:e00337. [PMID: 38377638 PMCID: PMC11103214 DOI: 10.1016/j.neurot.2024.e00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
Stroke is one of the most common and debilitating neurological conditions worldwide. Those who survive experience motor, sensory, speech, vision, and/or cognitive deficits that severely limit remaining quality of life. While rehabilitation programs can help improve patients' symptoms, recovery is often limited, and patients frequently continue to experience impairments in functional status. In this review, invasive neuromodulation techniques to augment the effects of conventional rehabilitation methods are described, including vagus nerve stimulation (VNS), deep brain stimulation (DBS) and brain-computer interfaces (BCIs). In addition, the evidence base for each of these techniques, pivotal trials, and future directions are explored. Finally, emerging technologies such as functional near-infrared spectroscopy (fNIRS) and the shift to artificial intelligence-enabled implants and wearables are examined. While the field of implantable devices for chronic stroke recovery is still in a nascent stage, the data reviewed are suggestive of immense potential for reducing the impact and impairment from this globally prevalent disorder.
Collapse
Affiliation(s)
- Brian F Saway
- Department of Neurosurgery, Medical University of South Carolina, SC 29425, USA.
| | - Charles Palmer
- Department of Psychiatry, Medical University of South Carolina, SC 29425, USA
| | - Christopher Hughes
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Matthew Triano
- Department of Neurosurgery, Medical University of South Carolina, SC 29425, USA
| | - Rishishankar E Suresh
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jordon Gilmore
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Mark George
- Department of Psychiatry, Medical University of South Carolina, SC 29425, USA; Ralph H Johnson VA Health Care System, Charleston, SC 29425, USA
| | - Steven A Kautz
- Department of Health Science and Research, Medical University of South Carolina, SC 29425, USA; Ralph H Johnson VA Health Care System, Charleston, SC 29425, USA
| | - Nathan C Rowland
- Department of Neurosurgery, Medical University of South Carolina, SC 29425, USA; MUSC Institute for Neuroscience Discovery (MIND), Medical University of South Carolina, SC 29425, USA
| |
Collapse
|
12
|
Bayazeed A, Almalki G, Alnuaim A, Klem M, Sethi A. Factors Influencing Real-World Use of the More-Affected Upper Limb After Stroke: A Scoping Review. Am J Occup Ther 2024; 78:7802180250. [PMID: 38634670 DOI: 10.5014/ajot.2024.050512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
IMPORTANCE Current interventions are limited in improving use of the more-affected upper limb in real-world daily occupations and functional independence poststroke. A comprehensive understanding of the factors influencing real-world upper limb use is required to develop interventions to improve functional independence poststroke. OBJECTIVE To systematically review the factors that influence real-world use of the more-affected upper limb poststroke. DATA SOURCES We searched MEDLINE, Embase, PsycINFO, and the Physiotherapy Evidence Database for English-language articles from 2012 to 2023. STUDY SELECTION AND DATA COLLECTION Of 774 studies, we included 33 studies that had participants at least age 18 yr who exhibited upper limb impairments poststroke, objectively measured real-world upper limb use using a movement sensor, and measured factors affecting upper limb use. Two reviewers independently screened the abstracts. FINDINGS The results were categorized by International Classification of Functioning, Disability and Health domains. Prominent factors were upper limb impairment; motor ability; functional independence; task type; hand dominance; stroke-related factors, including time since stroke; and perception of use of the more-affected upper limb. CONCLUSIONS AND RELEVANCE Existing interventions primarily focus on upper limb impairments and motor ability. Our findings suggest that interventions should also incorporate other factors: task type (unilateral vs. bilateral), hand dominance, self-efficacy, and perception of more-affected limb use as active ingredients in improving real-world use of the more-affected upper limb poststroke. We also provide recommendations to use behavioral activation theory in designing an occupation-focused intervention to augment self-efficacy and confidence in use of the more-affected upper limb in daily occupations. Plain-Language Summary: In order to develop interventions to improve functional independence poststroke, occupational therapy practitioners must have a comprehensive understanding of the factors that influence real-world more-affected upper limb use. The study findings provide a set of distinct factors that practitioners can target separately or in combination to improve real-world use of the more-affected upper limb poststroke.
Collapse
Affiliation(s)
- Anadil Bayazeed
- Anadil Bayazeed, MSOT, is PhD Candidate, Department of Occupational Therapy, University of Pittsburgh, Pittsburgh, PA, and Teaching Assistant, Occupational Therapy Department, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia;
| | - Ghaleb Almalki
- Ghaleb Almalki, MSOT, is PhD Candidate, Department of Occupational Therapy, University of Pittsburgh, Pittsburgh, PA, and Teaching Assistant, Occupational Therapy Department, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Amjad Alnuaim
- Amjad Alnuaim, MSc, is Teaching Assistant, Department of Occupational Therapy, King Saud University, Riyadh, Saudi Arabia. At the time of the study, Alnuaim was Master's Student, Occupational Therapy Department, University of Pittsburgh, Pittsburgh, PA
| | - Mary Klem
- Mary Klem, PhD, MLIS, is Assistant Director for Advanced Information Support, Health Sciences Library System, University of Pittsburgh, Pittsburgh, PA
| | - Amit Sethi
- Amit Sethi, PhD, OTR/L, is Associate Professor, Department of Occupational Therapy, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
13
|
Ortego-Isasa I, Ortega-Morán JF, Lozano H, Stieglitz T, Sánchez-Margallo FM, Usón-Gargallo J, Pagador JB, Ramos-Murguialday A. Colonic Electrical Stimulation for Chronic Constipation: A Perspective Review. Biomedicines 2024; 12:481. [PMID: 38540095 PMCID: PMC10967790 DOI: 10.3390/biomedicines12030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 11/11/2024] Open
Abstract
Chronic constipation affects around 20% of the population and there is no efficient solution. This perspective review explores the potential of colonic electric stimulation (CES) using neural implants and methods of bioelectronic medicine as a therapeutic way to treat chronic constipation. The review covers the neurophysiology of colonic peristaltic function, the pathophysiology of chronic constipation, the technical aspects of CES, including stimulation parameters, electrode placement, and neuromodulation target selection, as well as a comprehensive analysis of various animal models highlighting their advantages and limitations in elucidating the mechanistic insights and translational relevance for CES. Finally, the main challenges and trends in CES are discussed.
Collapse
Affiliation(s)
- Iñaki Ortego-Isasa
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 San Sebastian, Spain; (H.L.); (A.R.-M.)
| | | | - Héctor Lozano
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 San Sebastian, Spain; (H.L.); (A.R.-M.)
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering–IMTEK and BrainLinks-BrainTools Center, University of Freiburg, 79110 Freiburg, Germany;
| | - Francisco M. Sánchez-Margallo
- Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.F.O.-M.); (F.M.S.-M.); (J.U.-G.)
- TERAV/ISCIII, Red Española de Terapias Avanzadas, Instituto de Salud Carlos III (RICORS, RD21/0017/0029), 28029 Madrid, Spain
| | - Jesús Usón-Gargallo
- Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.F.O.-M.); (F.M.S.-M.); (J.U.-G.)
| | - J. Blas Pagador
- Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.F.O.-M.); (F.M.S.-M.); (J.U.-G.)
- TERAV/ISCIII, Red Española de Terapias Avanzadas, Instituto de Salud Carlos III (RICORS, RD21/0017/0029), 28029 Madrid, Spain
| | - Ander Ramos-Murguialday
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 San Sebastian, Spain; (H.L.); (A.R.-M.)
- Department of Neurology and Stroke, University of Tubingen, 72076 Tubingen, Germany
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tubingen, 72076 Tubingen, Germany
- Athenea Neuroclinics, 20014 San Sebastian, Spain
| |
Collapse
|
14
|
Lin DJ, Backus D, Chakraborty S, Liew SL, Valero-Cuevas FJ, Patten C, Cotton RJ. Transforming modeling in neurorehabilitation: clinical insights for personalized rehabilitation. J Neuroeng Rehabil 2024; 21:18. [PMID: 38311729 PMCID: PMC10840185 DOI: 10.1186/s12984-024-01309-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/24/2024] [Indexed: 02/06/2024] Open
Abstract
Practicing clinicians in neurorehabilitation continue to lack a systematic evidence base to personalize rehabilitation therapies to individual patients and thereby maximize outcomes. Computational modeling- collecting, analyzing, and modeling neurorehabilitation data- holds great promise. A key question is how can computational modeling contribute to the evidence base for personalized rehabilitation? As representatives of the clinicians and clinician-scientists who attended the 2023 NSF DARE conference at USC, here we offer our perspectives and discussion on this topic. Our overarching thesis is that clinical insight should inform all steps of modeling, from construction to output, in neurorehabilitation and that this process requires close collaboration between researchers and the clinical community. We start with two clinical case examples focused on motor rehabilitation after stroke which provide context to the heterogeneity of neurologic injury, the complexity of post-acute neurologic care, the neuroscience of recovery, and the current state of outcome assessment in rehabilitation clinical care. Do we provide different therapies to these two different patients to maximize outcomes? Asking this question leads to a corollary: how do we build the evidence base to support the use of different therapies for individual patients? We discuss seven points critical to clinical translation of computational modeling research in neurorehabilitation- (i) clinical endpoints, (ii) hypothesis- versus data-driven models, (iii) biological processes, (iv) contextualizing outcome measures, (v) clinical collaboration for device translation, (vi) modeling in the real world and (vii) clinical touchpoints across all stages of research. We conclude with our views on key avenues for future investment (clinical-research collaboration, new educational pathways, interdisciplinary engagement) to enable maximal translational value of computational modeling research in neurorehabilitation.
Collapse
Affiliation(s)
- David J Lin
- Department of Neurology, Division of Neurocritical Care and Stroke Service, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Veterans Affairs, Rehabilitation Research and Development Service, Center for Neurorestoration and Neurotechnology, Providence, RI, USA.
| | - Deborah Backus
- Crawford Research Institute, Shepherd Center, Atlanta, GA, USA
| | - Stuti Chakraborty
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
| | - Sook-Lei Liew
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
| | - Francisco J Valero-Cuevas
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Carolynn Patten
- Department of Physical Medicine and Rehabilitation, UC Davis School of Medicine, Sacramento, CA, USA
- Department of Veterans Affairs, Northern California Health Care System, Martinez, CA, USA
| | - R James Cotton
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| |
Collapse
|
15
|
Zhou J, Khateeb K, Yazdan-Shahmorad A. Early Intervention with Electrical Stimulation Reduces Neural Damage After Stroke in Non-human Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572235. [PMID: 38187669 PMCID: PMC10769281 DOI: 10.1101/2023.12.18.572235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Ischemic stroke is a neurological condition that results in significant mortality and long-term disability for adults, creating huge health burdens worldwide. For stroke patients, acute intervention offers the most critical therapeutic opportunity as it can reduce irreversible tissue injury and improve functional outcomes. However, currently available treatments within the acute window are highly limited. Although emerging neuromodulation therapies have been tested for chronic stroke patients, acute stimulation is rarely studied due to the risk of causing adverse effects related to ischemia-induced electrical instability. To address this gap, we combined electrophysiology and histology tools to investigate the effects of acute electrical stimulation on ischemic neural damage in non-human primates. Specifically, we induced photothrombotic lesions in the monkey sensorimotor cortex while collecting electrocorticography (ECoG) signals through a customized neural interface. Gamma activity in ECoG was used as an electrophysiological marker to track the effects of stimulation on neural activation. Meanwhile, histological analysis including Nissl, cFos, and microglial staining was performed to evaluate the tissue response to ischemic injury. Comparing stimulated monkeys to controls, we found that theta-burst stimulation administered directly adjacent to the ischemic infarct at 1 hour post-stroke briefly inhibits peri-infarct neuronal activation as reflected by decreased ECoG gamma power and cFos expression. Meanwhile, lower microglial activation and smaller lesion volumes were observed in animals receiving post-stroke stimulation. Together, these results suggest that acute electrical stimulation can be used safely and effectively as an early stroke intervention to reduce excitotoxicity and inflammation, thus mitigating neural damage and enhancing stroke outcomes.
Collapse
Affiliation(s)
- Jasmine Zhou
- Department of Bioengineering, University of Washington, Seattle, WA, 98195
- Washington National Primate Research Center, Seattle, WA, 98195
| | - Karam Khateeb
- Department of Bioengineering, University of Washington, Seattle, WA, 98195
- Washington National Primate Research Center, Seattle, WA, 98195
| | - Azadeh Yazdan-Shahmorad
- Department of Bioengineering, University of Washington, Seattle, WA, 98195
- Washington National Primate Research Center, Seattle, WA, 98195
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195
| |
Collapse
|
16
|
Keser Z, Ikramuddin S, Shekhar S, Feng W. Neuromodulation for Post-Stroke Motor Recovery: a Narrative Review of Invasive and Non‑Invasive Tools. Curr Neurol Neurosci Rep 2023; 23:893-906. [PMID: 38015351 DOI: 10.1007/s11910-023-01319-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE OF REVIEW Stroke remains a leading disabling condition, and many survivors have permanent disability despite acute stroke treatment and subsequent standard-of-care rehabilitation therapies. Adjunctive neuromodulation is an emerging frontier in the field of stroke recovery. In this narrative review, we aim to highlight and summarize various neuromodulation techniques currently being investigated to enhance recovery and reduce impairment in patients with stroke. RECENT FINDINGS For motor recovery, repetitive transcranial magnetic simulation (rTMS) and direct current stimulation (tDCS) have shown promising results in many smaller-scale trials. Still, their efficacy has yet to be proven in large-scale pivotal trials. A promising large-scale study investigating higher dose tDCS combined with constraint movement therapy to enhance motor recovery is currently underway. MRI-guided tDCS studies in subacute and chronic post-stroke aphasia showed promising benefits for picture-naming recovery. rTMS, particularly inhibitory stimulation over the contralesional homolog, could represent a pathway forward in post-stroke motor recovery in the setting of a well-designed and adequately powered clinical trial. Recently evidenced-based guideline actually supported Level A (definite efficacy) for the use of low-frequency rTMS of the primary motor cortex for hand motor recovery in the post-acute stage of stroke based on the meta-analysis result. Adjunctive vagal nerve stimulation has recently received FDA approval to enhance upper limb motor recovery in chronic ischemic stroke with moderate impairment, and progress has been made to implement it in real-world practice. Despite a few small and large-scale studies in epidural stimulation (EDS), further research on the utilization of EDS in post-stroke recovery is needed. Deep brain stimulation or stent-based neuromodulation has yet to be further tested regarding safety and efficacy. Adjunctive neuromodulation to rehabilitation therapy is a promising avenue for promoting post-stroke recovery and decreasing the overall burden of disability. The pipeline for neuromodulation technology remains strong as they span from the preclinical stage to the post-market stage. We are optimistic to see that more neuromodulation tools will be available to stroke survivors in the not-to-distant future.
Collapse
Affiliation(s)
- Zafer Keser
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Salman Ikramuddin
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shashank Shekhar
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
17
|
Simpson BK, Rangwani R, Abbasi A, Chung JM, Reed CM, Gulati T. Disturbed laterality of non-rapid eye movement sleep oscillations in post-stroke human sleep: a pilot study. Front Neurol 2023; 14:1243575. [PMID: 38099067 PMCID: PMC10719949 DOI: 10.3389/fneur.2023.1243575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
Sleep is known to promote recovery post-stroke. However, there is a paucity of data profiling sleep oscillations in the post-stroke human brain. Recent rodent work showed that resurgence of physiologic spindles coupled to sleep slow oscillations (SOs) and concomitant decrease in pathological delta (δ) waves is associated with sustained motor performance gains during stroke recovery. The goal of this study was to evaluate bilaterality of non-rapid eye movement (NREM) sleep-oscillations (namely SOs, δ-waves, spindles, and their nesting) in post-stroke patients vs. healthy control subjects. We analyzed NREM-marked electroencephalography (EEG) data in hospitalized stroke-patients (n = 5) and healthy subjects (n = 3). We used a laterality index to evaluate symmetry of NREM oscillations across hemispheres. We found that stroke subjects had pronounced asymmetry in the oscillations, with a predominance of SOs, δ-waves, spindles, and nested spindles in affected hemisphere, when compared to the healthy subjects. Recent preclinical work classified SO-nested spindles as restorative post-stroke and δ-wave-nested spindles as pathological. We found that the ratio of SO-nested spindles laterality index to δ-wave-nested spindles laterality index was lower in stroke subjects. Using linear mixed models (which included random effects of concurrent pharmacologic drugs), we found large and medium effect size for δ-wave nested spindle and SO-nested spindle, respectively. Our results in this pilot study indicate that considering laterality index of NREM oscillations might be a useful metric for assessing recovery post-stroke and that factoring in pharmacologic drugs may be important when targeting sleep modulation for neurorehabilitation post-stroke.
Collapse
Affiliation(s)
- Benjamin K. Simpson
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Rohit Rangwani
- Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Bioengineering Graduate Program, Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aamir Abbasi
- Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jeffrey M. Chung
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Chrystal M. Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Tanuj Gulati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Bioengineering Graduate Program, Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
18
|
Simpson BK, Rangwani R, Abbasi A, Chung JM, Reed CM, Gulati T. Disturbed laterality of non-rapid eye movement sleep oscillations in post-stroke human sleep: a pilot study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.01.23289359. [PMID: 37205348 PMCID: PMC10187327 DOI: 10.1101/2023.05.01.23289359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sleep is known to promote recovery post-stroke. However, there is a paucity of data profiling sleep oscillations post-stroke in the human brain. Recent rodent work showed that resurgence of physiologic spindles coupled to sleep slow oscillations(SOs) and concomitant decrease in pathological delta(δ) waves is associated with sustained motor performance gains during stroke recovery. The goal of this study was to evaluate bilaterality of non-rapid eye movement (NREM) sleep-oscillations (namely SOs, δ-waves, spindles and their nesting) in post-stroke patients versus healthy control subjects. We analyzed NREM-marked electroencephalography (EEG) data in hospitalized stroke-patients (n=5) and healthy subjects (n=3) from an open-sourced dataset. We used a laterality index to evaluate symmetry of NREM oscillations across hemispheres. We found that stroke subjects had pronounced asymmetry in the oscillations, with a predominance of SOs, δ-waves, spindles and nested spindles in one hemisphere, when compared to the healthy subjects. Recent preclinical work classified SO-nested spindles as restorative post-stroke and δ-wave-nested spindles as pathological. We found that the ratio of SO-nested spindles laterality index to δ-wave-nested spindles laterality index was lower in stroke subjects. Using linear mixed models (which included random effects of concurrent pharmacologic drugs), we found large and medium effect size for δ-wave nested spindle and SO-nested spindle, respectively. Our results indicate considering laterality index of NREM oscillations might be a useful metric for assessing recovery post-stroke and that factoring in pharmacologic drugs may be important when targeting sleep modulation for neurorehabilitation post-stroke.
Collapse
Affiliation(s)
| | - Rohit Rangwani
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
- Bioengineering Graduate Program, Department of Bioengineering, Henry Samueli School of Engineering, University of California - Los Angeles, Los Angeles, CA
| | - Aamir Abbasi
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jeffrey M Chung
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Chrystal M Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Tanuj Gulati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
- Bioengineering Graduate Program, Department of Bioengineering, Henry Samueli School of Engineering, University of California - Los Angeles, Los Angeles, CA
- Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA
| |
Collapse
|
19
|
Baker KB, Plow EB, Nagel S, Rosenfeldt AB, Gopalakrishnan R, Clark C, Wyant A, Schroedel M, Ozinga J, Davidson S, Hogue O, Floden D, Chen J, Ford PJ, Sankary L, Huang X, Cunningham DA, DiFilippo FP, Hu B, Jones SE, Bethoux F, Wolf SL, Chae J, Machado AG. Cerebellar deep brain stimulation for chronic post-stroke motor rehabilitation: a phase I trial. Nat Med 2023; 29:2366-2374. [PMID: 37580534 PMCID: PMC10504081 DOI: 10.1038/s41591-023-02507-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/19/2023] [Indexed: 08/16/2023]
Abstract
Upper-extremity impairment after stroke remains a major therapeutic challenge and a target of neuromodulation treatment efforts. In this open-label, non-randomized phase I trial, we applied deep brain stimulation to the cerebellar dentate nucleus combined with renewed physical rehabilitation to promote functional reorganization of ipsilesional cortex in 12 individuals with persistent (1-3 years), moderate-to-severe upper-extremity impairment. No serious perioperative or stimulation-related adverse events were encountered, with participants demonstrating a seven-point median improvement on the Upper-Extremity Fugl-Meyer Assessment. All individuals who enrolled with partial preservation of distal motor function exceeded minimal clinically important difference regardless of time since stroke, with a median improvement of 15 Upper-Extremity Fugl-Meyer Assessment points. These robust functional gains were directly correlated with cortical reorganization evidenced by increased ipsilesional metabolism. Our findings support the safety and feasibility of deep brain stimulation to the cerebellar dentate nucleus as a promising tool for modulation of late-stage neuroplasticity for functional recovery and the need for larger clinical trials. ClinicalTrials.gov registration: NCT02835443 .
Collapse
Affiliation(s)
- Kenneth B Baker
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cerebrovascular Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sean Nagel
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anson B Rosenfeldt
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Raghavan Gopalakrishnan
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Cynthia Clark
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alexandria Wyant
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Madeleine Schroedel
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John Ozinga
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sara Davidson
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Olivia Hogue
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Darlene Floden
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jacqueline Chen
- Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Paul J Ford
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Neuroethics, Cleveland Clinic, Cleveland, OH, USA
| | - Lauren Sankary
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Neuroethics, Cleveland Clinic, Cleveland, OH, USA
| | - Xuemei Huang
- Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - David A Cunningham
- Physical Medicine and Rehabilitation, Case Western Reserve University, Cleveland, OH, USA
- Center for Rehabilitation Research, MetroHealth Systems, Cleveland, OH, USA
- Cleveland FES Center, Cleveland, OH, USA
| | - Frank P DiFilippo
- Department of Nuclear Medicine, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bo Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Stephen E Jones
- Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Francois Bethoux
- Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Steven L Wolf
- Center for Movement Science and Physical Therapy, Division of Physical Therapy Education, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - John Chae
- Physical Medicine and Rehabilitation, Case Western Reserve University, Cleveland, OH, USA
- Center for Rehabilitation Research, MetroHealth Systems, Cleveland, OH, USA
- Cleveland FES Center, Cleveland, OH, USA
| | - André G Machado
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
20
|
King EC, Pedi E, Stoykov ME, Corcos DM, Urday S. Combining high dose therapy, bilateral motor priming, and vagus nerve stimulation to treat the hemiparetic upper limb in chronic stroke survivors: a perspective on enhancing recovery. Front Neurol 2023; 14:1182561. [PMID: 37448744 PMCID: PMC10336216 DOI: 10.3389/fneur.2023.1182561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Stroke is a leading cause of disability worldwide and upper limb hemiparesis is the most common post-stroke disability. Recent studies suggest that clinically significant motor recovery is possible in chronic stroke survivors with severe impairment of the upper limb. Three promising strategies that have been investigated are (1) high dose rehabilitation therapy (2) bilateral motor priming and (3) vagus nerve stimulation. We propose that the future of effective and efficient upper limb rehabilitation will likely require a combination of these approaches.
Collapse
Affiliation(s)
- Erin C. King
- Northwestern University, Evanston, IL, United States
| | - Elizabeth Pedi
- Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Mary Ellen Stoykov
- Shirley Ryan AbilityLab, Chicago, IL, United States
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniel M. Corcos
- Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Sebastian Urday
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
21
|
Hudson HM, Guggenmos DJ, Azin M, Vitale N, McKenzie KA, Mahnken JD, Mohseni P, Nudo RJ. Broad Therapeutic Time Window for Driving Motor Recovery After TBI Using Activity-Dependent Stimulation. Neurorehabil Neural Repair 2023; 37:384-393. [PMID: 36636754 DOI: 10.1177/15459683221145144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND After an acquired injury to the motor cortex, the ability to generate skilled movements is impaired, leading to long-term motor impairment and disability. While rehabilitative therapy can improve outcomes in some individuals, there are no treatments currently available that are able to fully restore lost function. OBJECTIVE We previously used activity-dependent stimulation (ADS), initiated immediately after an injury, to drive motor recovery. The objective of this study was to determine if delayed application of ADS would still lead to recovery and if the recovery would persist after treatment was stopped. METHODS Rats received a controlled cortical impact over primary motor cortex, microelectrode arrays were implanted in ipsilesional premotor and somatosensory areas, and a custom brain-machine interface was attached to perform the ADS. Stimulation was initiated either 1, 2, or 3 weeks after injury and delivered constantly over a 4-week period. An additional group was monitored for 8 weeks after terminating ADS to assess persistence of effect. Results were compared to rats receiving no stimulation. RESULTS ADS was delayed up to 3 weeks from injury onset and still resulted in significant motor recovery, with maximal recovery occurring in the 1-week delay group. The improvements in motor performance persisted for at least 8 weeks following the end of treatment. CONCLUSIONS ADS is an effective method to treat motor impairments following acquired brain injury in rats. This study demonstrates the clinical relevance of this technique as it could be initiated in the post-acute period and could be explanted/ceased once recovery has occurred.
Collapse
Affiliation(s)
- Heather M Hudson
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - David J Guggenmos
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Meysam Azin
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, USA
| | - Nicholas Vitale
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Katelyn A McKenzie
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jonathan D Mahnken
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Pedram Mohseni
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, USA
| | - Randolph J Nudo
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
22
|
Cho H, Ojemann J, Herron J. Open Mind Neuromodulation Interface for the CorTec Brain Interchange (OMNI-BIC): an investigational distributed research platform for next-generation clinical neuromodulation research. INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING : [PROCEEDINGS]. INTERNATIONAL IEEE EMBS CONFERENCE ON NEURAL ENGINEERING 2023; 2023:10.1109/ner52421.2023.10123808. [PMID: 38807974 PMCID: PMC11131587 DOI: 10.1109/ner52421.2023.10123808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The rise of adaptive stimulation approaches has shown great therapeutic promise in the growing field of neuromodulation. The discovery and growth of these novel adaptive stimulation paradigms has been largely concentrated around several implantable devices with research application programming interfaces (APIs) that allow for custom applications to be created for clinical neuromodulation studies. However, the sunsetting of devices and ongoing development of new platforms is leading to an increased fragmentation in the research environment- resulting in the reinvention of system features and the inability to leverage previous development efforts for future studies. The Open Mind Neuromodulation Interface (OMNI) is a previously proposed solution to address the weaknesses of the DLL-driven API approach of past neuromodulation research by utilizing an alternative gRPC-enabled microservice framework. Here, we introduce OMNI-BIC, an implementation of the OMNI framework to the CorTec Brain Interchange system. This paper describes the design and implementation of the OMNI-BIC software tools and demonstrates the framework's capabilities for implementing customized neuromodulation therapies for clinical investigations. Through the development and deployment of the OMNI-BIC system, we hope to improve future clinical studies with the Brain Interchange system and aid in continuing the growth and momentum of the exciting field of adaptive neuromodulation.
Collapse
Affiliation(s)
- Hanbin Cho
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA USA
| | - Jeffrey Ojemann
- Department of Neurological Surgery, University of Washington, Seattle, WA USA
| | - Jeffrey Herron
- Department of Neurological Surgery, University of Washington, Seattle, WA USA
| |
Collapse
|
23
|
Branco MP, Geukes SH, Aarnoutse EJ, Ramsey NF, Vansteensel MJ. Nine decades of electrocorticography: A comparison between epidural and subdural recordings. Eur J Neurosci 2023; 57:1260-1288. [PMID: 36843389 DOI: 10.1111/ejn.15941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
In recent years, electrocorticography (ECoG) has arisen as a neural signal recording tool in the development of clinically viable neural interfaces. ECoG electrodes are generally placed below the dura mater (subdural) but can also be placed on top of the dura (epidural). In deciding which of these modalities best suits long-term implants, complications and signal quality are important considerations. Conceptually, epidural placement may present a lower risk of complications as the dura is left intact but also a lower signal quality due to the dura acting as a signal attenuator. The extent to which complications and signal quality are affected by the dura, however, has been a matter of debate. To improve our understanding of the effects of the dura on complications and signal quality, we conducted a literature review. We inventorized the effect of the dura on signal quality, decodability and longevity of acute and chronic ECoG recordings in humans and non-human primates. Also, we compared the incidence and nature of serious complications in studies that employed epidural and subdural ECoG. Overall, we found that, even though epidural recordings exhibit attenuated signal amplitude over subdural recordings, particularly for high-density grids, the decodability of epidural recorded signals does not seem to be markedly affected. Additionally, we found that the nature of serious complications was comparable between epidural and subdural recordings. These results indicate that both epidural and subdural ECoG may be suited for long-term neural signal recordings, at least for current generations of clinical and high-density ECoG grids.
Collapse
Affiliation(s)
- Mariana P Branco
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Simon H Geukes
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Erik J Aarnoutse
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
24
|
Abstract
OBJECTIVE Up to 50% of the nearly 800,000 patients who experience a new or recurrent stroke each year in the United States fail to achieve full independence afterward. More effective approaches to enhance motor recovery following stroke are needed. This article reviews the rehabilitative principles and strategies that can be used to maximize post-stroke recovery. LATEST DEVELOPMENTS Evidence dictates that mobilization should not begin prior to 24 hours following stroke, but detailed guidelines beyond this are lacking. Specific classes of potentially detrimental medications should be avoided in the early days poststroke. Patients with stroke who are unable to return home should be referred for evaluation to an inpatient rehabilitation facility. Research suggests that a substantial increase in both the dose and intensity of upper and lower extremity exercise is beneficial. A clinical trial supports vagus nerve stimulation as an adjunct to occupational therapy for motor recovery in the upper extremity. The data remain somewhat mixed as to whether robotics, transcranial magnetic stimulation, functional electrical stimulation, and transcranial direct current stimulation are better than dose-matched traditional exercise. No current drug therapy has been proven to augment exercise poststroke to enhance motor recovery. ESSENTIAL POINTS Neurologists will collaborate with rehabilitation professionals for several months following a patient's stroke. Many questions still remain about the ideal exercise regimen to maximize motor recovery in patients poststroke. The next several years will likely bring a host of new research studies exploring the latest strategies to enhance motor recovery using poststroke exercise.
Collapse
|
25
|
Khan A, Podlasek A, Somaa F. Virtual reality in post-stroke neurorehabilitation - a systematic review and meta-analysis. Top Stroke Rehabil 2023; 30:53-72. [PMID: 34747351 DOI: 10.1080/10749357.2021.1990468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Stroke is a neurological disorder and one of the leading causes of disability worldwide. The patient may lose the ability to adequately move the extremities, perceive sensations, or ambulate independently. Recent experimental studies have reported the beneficial influence of virtual reality training strategies on improving overall functional abilities for stroke survivors. METHODS Conducted a systematic review of the literature using the following keywords to retrieve the data: stroke, virtual reality, motor deficits, neurorehabilitation, cognitive impairments, and sensory deficits. A random-effect meta-analysis was performed for seven scales - one cognitive (MMSE) and six motor (Fugl-Meyer, Berg Balance Scale, Time up and go, Wolf motor function, 10 m walk, Brunnstrom score). OBJECTIVE To organize and compare all the available data regarding the effectiveness of virtual reality for stroke rehabilitation. RESULTS This literature reviewed 150 studies and included 46 for qualitative and 27 for quantitative analysis. There was no statistically significant difference between groups in MMSE score (MD = 0.24, 95%CI = ((-0.42) -(0.9)), p = .47, I2 = 0%) and Fugl-Meyer score (MD = (-0.38), 95%CI = ((-12.88)-(12.11)), p = .95, I2 = 98%) . The statistical significance was not reached in any of the other outcomes. CONCLUSIONS This review supports that stroke rehabilitation programs incorporating virtual reality are associated with improved functional outcomes, but there is no statistically significant difference compared to standard therapy.
Collapse
Affiliation(s)
- Azka Khan
- Faculty of Rehabilitation and Allied Health Sciences Islamabad, Riphah International University, Rawalpindi, Pakistan
| | - Anna Podlasek
- Neuroscience and Vascular Simulation, School of Medicine, Anglia Ruskin University, Chelmsford, Essex, UK.,Nihr Nottingham Brc, University of Nottingham, Nottingham, UK.,Clinical Radiology,Queens Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Fahad Somaa
- King Abdulaziz University,Occupational Therapy Department, Faculty of Medical Rehabilitation Sciences, King AbdulAziz University Jeddah, Saudi, Arabia
| |
Collapse
|
26
|
Putrino D, Krakauer JW. Neurotechnology’s Prospects for Bringing About Meaningful Reductions in Neurological Impairment. Neurorehabil Neural Repair 2022:15459683221137341. [DOI: 10.1177/15459683221137341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Here we report and comment on the magnitudes of post-stroke impairment reduction currently observed using new neurotechnologies. We argue that neurotechnology’s best use case is impairment reduction as this is neither the primary strength nor main goal of conventional rehabilitation, which is better at targeting the activity and participation levels of the ICF. The neurotechnologies discussed here can be divided into those that seek to be adjuncts for enhancing conventional rehabilitation, and those that seek to introduce a novel behavioral intervention altogether. Examples of the former include invasive and non-invasive brain stimulation. Examples of the latter include robotics and some forms of serious gaming. We argue that motor learning and training-related recovery are conceptually and mechanistically distinct. Based on our survey of recent results, we conclude that large reductions in impairment will need to begin with novel forms of high dose and high intensity behavioral intervention that are qualitatively different to conventional rehabilitation. Adjunct forms of neurotechnology, if they are going to be effective, will need to piggyback on these new behavioral interventions.
Collapse
Affiliation(s)
- David Putrino
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John W. Krakauer
- Departments of Neurology, Neuroscience, and Physical Medicine & Rehabilitation, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Zhi JF, Liao QH, He YB, Xu WW, Zhu DW, Shao LH. Superior treatment efficacy of neuromodulation rehabilitation for upper limb recovery after stroke: a meta-analysis. Expert Rev Neurother 2022; 22:875-888. [PMID: 36242781 DOI: 10.1080/14737175.2022.2137405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND This study aims to explore the treatment efficacy of different motor rehabilitation interventions for upper limb impairment recovery. RESEARCH DESIGN & METHODS Publications were searched in PubMed and Embase. 4 grouped motor rehabilitation treatments (training, technological intervention, pharmacological intervention, and neuromodulation) were compared. The change of the Fugl-Meyer Assessment Scale for Upper Extremity (FMA-UE) was applied to assess upper limb function after stroke. RESULTS 56 studies including 5292 patients were identified. A significant difference was found among the 4 groups (P = 0.02). Neuromodulation interventions had the best treatment efficacy among the 4 types of interventions (P < 0.01). Among neuromodulation interventions, acupuncture, electric, or magnetic intervention all had therapeutic efficacy for stroke upper limb recovery, without significant subgroup difference (P = 0.34). Stroke patients with mild upper limb impairment might not benefit from motor rehabilitation (P = 0.14). CONCLUSION Neuromodulation interventions might have the best therapeutic efficacy among motor rehabilitation treatments for upper limb impairment after stroke. It is a potential treatment direction for upper limb recovery among stroke patients. However, since a large proportion of the original studies are low to very low-quality evidence, large-scale RCTs should be conducted in the future to validate current findings and assess treatment effects based on patient characteristics.
Collapse
Affiliation(s)
- Jian-Feng Zhi
- Department of Rehabilitation Medicine, the First People's Hospital of Jiashan/Jiashan Branch of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Qing-Hong Liao
- Department of Rehabilitation Medicine, the First People's Hospital of Jiashan/Jiashan Branch of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Yu-Bo He
- Department of Rehabilitation Medicine, the First People's Hospital of Jiashan/Jiashan Branch of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Wen-Wen Xu
- Department of Rehabilitation Medicine, the First People's Hospital of Jiashan/Jiashan Branch of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Dan-Wei Zhu
- Department of Rehabilitation Medicine, the First People's Hospital of Jiashan/Jiashan Branch of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Lin-Hong Shao
- Department of Rehabilitation Medicine, the First People's Hospital of Jiashan/Jiashan Branch of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| |
Collapse
|
28
|
Liu CY, Russin J, Adelson DP, Jenkins A, Hilmi O, Brown B, Lega B, Whitworth T, Bhattacharyya D, Schwartz TH, Krishna V, Williams Z, Uff C, Willie J, Hoffman C, Vandergrift WA, Achrol AS, Ali R, Konrad P, Edmonds J, Kim D, Bhatt P, Tarver BW, Pierce D, Jain R, Burress C, Casavant R, Prudente CN, Engineer ND. Vagus nerve stimulation paired with rehabilitation for stroke: Implantation experience from the VNS-REHAB trial. J Clin Neurosci 2022; 105:122-128. [PMID: 36182812 DOI: 10.1016/j.jocn.2022.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Vagus Nerve Stimulation (VNS) paired with rehabilitation delivered by the Vivistim® Paired VNS™ System was approved by the FDA in 2021 to improve motor deficits in chronic ischemic stroke survivors with moderate to severe arm and hand impairment. Vagus nerve stimulators have previously been implanted in over 125,000 patients for treatment-resistant epilepsy and the surgical procedure is generally well-tolerated and safe. In this report, we describe the Vivistim implantation procedure, perioperative management, and complications for chronic stroke survivors enrolled in the pivotal trial. METHODS The pivotal, multisite, randomized, triple-blind, sham-controlled trial (VNS-REHAB) enrolled 108 participants. All participants were implanted with the VNS device in an outpatient procedure. Thrombolytic agents were temporarily discontinued during the perioperative period. Participants were discharged within 48 hrs and started rehabilitation therapy approximately 10 days after the Procedure. RESULTS The rate of surgery-related adverse events was lower than previously reported for VNS implantation for epilepsy and depression. One participant had vocal cord paresis that eventually resolved. There were no serious adverse events related to device stimulation. Over 90% of participants were taking antiplatelet drugs (APD) or anticoagulants and no adverse events or serious adverse events were reported as a result of withholding these medications during the perioperative period. CONCLUSIONS This study is the largest, randomized, controlled trial in which a VNS device was implanted in chronic stroke survivors. Results support the use of the Vivistim System in chronic stroke survivors, with a safety profile similar to VNS implantations for epilepsy and depression.
Collapse
Affiliation(s)
- Charles Y Liu
- USC Neurorestoration Center and Department of Neurological Surgery, USC Keck School of Medicine, Los Angeles, CA, USA; Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA.
| | - Jonathan Russin
- USC Neurorestoration Center and Department of Neurological Surgery, USC Keck School of Medicine, Los Angeles, CA, USA; Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA
| | - David P Adelson
- Barrow Neurological Institute, Phoenix Children's Hospital, University of Arizona, Phoenix, USA
| | - Alistair Jenkins
- Royal Victoria Infirmary Newcastle, Newcastle upon Tyne, England, UK
| | - Omar Hilmi
- NHS Greater Glasgow and Clyde, Glasgow, UK
| | | | | | | | | | | | | | | | - Christopher Uff
- Royal London Hospital and Major Trauma Centre. Whitechapel, London, E1 1FR, UK
| | | | | | | | | | - Rushna Ali
- Department of Neurosciences, Spectrum Health, Grands Rapids, MI, USA
| | | | | | | | | | | | | | - Ravi Jain
- MicroTransponder Inc, Austin, TX, USA
| | | | | | | | | |
Collapse
|
29
|
Lee S, Park J, Choi DS, Lim S, Kwak Y, Jang DP, Kim DH, Ji HB, Choy YB, Im CH. Feasibility of epidural temporal interference stimulation for minimally invasive electrical deep brain stimulation: simulation and phantom experimental studies. J Neural Eng 2022; 19. [PMID: 36066021 DOI: 10.1088/1741-2552/ac8503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022]
Abstract
Objective. Temporal interference stimulation (TIS) has shown the potential as a new method for selective stimulation of deep brain structures in small animal experiments. However, it is challenging to deliver a sufficient temporal interference (TI) current to directly induce an action potential in the deep area of the human brain when electrodes are attached to the scalp because the amount of injection current is generally limited due to safety issues. Thus, we propose a novel method called epidural TIS (eTIS) to address this issue; in this method, the electrodes are attached to the epidural surface under the skull.Approach. We employed finite element method (FEM)-based electric field simulations to demonstrate the feasibility of eTIS. We first optimized the electrode conditions to deliver maximum TI currents to each of the three different targets (anterior hippocampus, subthalamic nucleus, and ventral intermediate nucleus) based on FEM, and compared the stimulation focality between eTIS and transcranial TIS (tTIS). Moreover, we conducted realistic skull-phantom experiments for validating the accuracy of the computational simulation for eTIS.Main results. Our simulation results showed that eTIS has the advantage of avoiding the delivery of TI currents over unwanted neocortical regions compared with tTIS for all three targets. It was shown that the optimized eTIS could induce neural action potentials at each of the three targets when a sufficiently large current equivalent to that for epidural cortical stimulation is injected. Additionally, the simulated results and measured results via the phantom experiments were in good agreement.Significance. We demonstrated the feasibility of eTIS, facilitating more focalized and stronger electrical stimulation of deep brain regions than tTIS, with the relatively less invasive placement of electrodes than conventional deep brain stimulation via computational simulation and realistic skull phantom experiments.
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jimin Park
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Da Som Choi
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seokbeen Lim
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Youngjong Kwak
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Dong Pyo Jang
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Dong Hwan Kim
- Center for Intelligent and Interactive Robotics, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Han Bi Ji
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Bin Choy
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea.,Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea.,Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chang-Hwan Im
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea.,Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
30
|
Hermann JK, Borseth A, Pucci FG, Toth C, Hogue O, Chan HH, Machado AG, Baker KB. Changes in somatosensory evoked potentials elicited by lateral cerebellar nucleus deep brain stimulation in the naïve rodent. Neurosci Lett 2022; 786:136800. [PMID: 35842210 DOI: 10.1016/j.neulet.2022.136800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Deep brain stimulation (DBS) of the deep cerebellar nuclei has been shown to enhance perilesional cortical excitability and promote motor rehabilitation in preclinical models of cortical ischemia and is currently being evaluated in patients with chronic, post-stroke deficits. Understanding the effects of cerebellar DBS on contralateral sensorimotor cortex may be key to developing approaches to optimize stimulation delivery and treatment outcomes. Using the naïve rat model, we characterized the effects of DBS of the lateral cerebellar nucleus (LCN) on somatosensory evoked potentials (SSEPs) and evaluated their potential use as a surrogate index of cortical excitability. SSEPs were recorded concurrently with continuous 30 Hz or 100 Hz LCN DBS and compared to the DBS OFF condition. Ratios of SSEP peak to peak amplitude during 100 Hz LCN DBS to DBS OFF at longer latency peaks were significantly>1, suggesting that cortical excitability was enhanced as a result of LCN DBS. Although changes in SSEP peak to peak amplitudes were observed, they were modest in relation to previously reported effects on motor cortical excitability. Overall, our findings suggest that LCN output influences thalamocortical somatosensory pathways, however further work is need to better understand the potential role of SSEPs in optimizing therapy.
Collapse
Affiliation(s)
- John K Hermann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, United States
| | - Ashley Borseth
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, United States
| | - Francesco G Pucci
- Center for Neurologic Restoration, Neurological Institute, Cleveland Clinic, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, United States; Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, United States
| | - Carmen Toth
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, United States
| | - Olivia Hogue
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, United States
| | - Hugh H Chan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, United States
| | - Andre G Machado
- Center for Neurologic Restoration, Neurological Institute, Cleveland Clinic, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, United States; Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, United States
| | - Kenneth B Baker
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, United States.
| |
Collapse
|
31
|
Ganguly K, Khanna P, Morecraft RJ, Lin DJ. Modulation of neural co-firing to enhance network transmission and improve motor function after stroke. Neuron 2022; 110:2363-2385. [PMID: 35926452 PMCID: PMC9366919 DOI: 10.1016/j.neuron.2022.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/15/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023]
Abstract
Stroke is a leading cause of disability. While neurotechnology has shown promise for improving upper limb recovery after stroke, efficacy in clinical trials has been variable. Our central thesis is that to improve clinical translation, we need to develop a common neurophysiological framework for understanding how neurotechnology alters network activity. Our perspective discusses principles for how motor networks, both healthy and those recovering from stroke, subserve reach-to-grasp movements. We focus on neural processing at the resolution of single movements, the timescale at which neurotechnologies are applied, and discuss how this activity might drive long-term plasticity. We propose that future studies should focus on cross-area communication and bridging our understanding of timescales ranging from single trials within a session to across multiple sessions. We hope that this perspective establishes a combined path forward for preclinical and clinical research with the goal of more robust clinical translation of neurotechnology.
Collapse
Affiliation(s)
- Karunesh Ganguly
- Department of Neurology, Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA; Neurology Service, SFVAHCS, San Francisco, CA, USA.
| | - Preeya Khanna
- Department of Neurology, Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA; Neurology Service, SFVAHCS, San Francisco, CA, USA
| | - Robert J Morecraft
- Laboratory of Neurological Sciences, Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD 57069, USA
| | - David J Lin
- Center for Neurotechnology and Neurorecovery, Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
| |
Collapse
|
32
|
Cho J, Ryu S, Lee S, Kim J, Park JY, Kwon HS, Kim HI. Clozapine-Induced Chemogenetic Neuromodulation Rescues Post-Stroke Deficits After Chronic Capsular Infarct. Transl Stroke Res 2022:10.1007/s12975-022-01059-8. [PMID: 35809218 DOI: 10.1007/s12975-022-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022]
Abstract
Long-term disabilities induced by stroke impose a heavy burden on patients, families, caregivers, and public health systems. Extensive studies have demonstrated the therapeutic value of neuromodulation in enhancing post-stroke recovery. Among them, chemogenetic neuromodulation activated by clozapine-N-oxide (CNO) has been proposed as the potential tool of neuromodulation. However, recent evidence showed that CNO does not cross the blood - brain barrier and may in fact have low binding affinity for chemogenetic tool. Thus, clozapine (CLZ) has been suggested for use in chemogenetic neuromodulation, in place of CNO, because it readily crosses the blood-brain barrier. Previously we reported that low doses of CLZ (0.1 mg/kg) successfully induced neural responses without off-target effects. Here, we show that low-dose clozapine (0.1 mg/kg) can induce prolonged chemogenetic activation while avoiding permeability issues and minimizing off-target effects. In addition, clozapine-induced excitatory chemogenetic neuromodulation (CLZ-ChemoNM) of sensory-parietal cortex with hsyn-hM3Dq-YFP-enhanced motor recovery in a chronic capsular infarct model of stroke in rats, improving post-stroke behavioral scores to 56% of pre-infarct levels. Longitudinal 2-deoxy-2-[18F]-fluoro-D-glucose microPET (FDG-microPET) scans showed that a reduction in diaschisis volume and activation of corticostriatal circuits were both correlated with post-stroke recovery. We also found c-Fos increases in bilateral cortices and BDNF increases in the cortices and striatum after CLZ-ChemoNM, indicating an increase in neural plasticity. These findings suggest the translational feasibility of CLZ-ChemoNM for augmenting recovery in chronic stroke.
Collapse
Affiliation(s)
- Jongwook Cho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Seungjun Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Sunwoo Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Junsoo Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Ji-Young Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyuk-Sang Kwon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| | - Hyoung-Ihl Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
33
|
Stoykov ME, Biller OM, Wax A, King E, Schauer JM, Fogg LF, Corcos DM. Bilateral upper extremity motor priming (BUMP) plus task-specific training for severe, chronic upper limb hemiparesis: study protocol for a randomized clinical trial. Trials 2022; 23:523. [PMID: 35733202 PMCID: PMC9214193 DOI: 10.1186/s13063-022-06465-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Various priming techniques to enhance neuroplasticity have been examined in stroke rehabilitation research. Most priming techniques are costly and approved only for research. Here, we describe a priming technique that is cost-effective and has potential to significantly change clinical practice. Bilateral motor priming uses the Exsurgo priming device (Exsurgo Rehabilitation, Auckland, NZ) so that the less affected limb drives the more affected limb in bilateral symmetrical wrist flexion and extension. The aim of this study is to determine the effects of a 5-week protocol of bilateral motor priming in combination with task-specific training on motor impairment of the affected limb, bimanual motor function, and interhemispheric inhibition in moderate to severely impaired people with stroke. METHODS Seventy-six participants will be randomized to receive either 15, 2-h sessions, 3 times per week for 5 weeks (30 h of intervention) of bilateral motor priming and task-specific training (experimental group) or the same dose of control priming plus the task-specific training protocol. The experimental group performs bilateral symmetrical arm movements via the Exsurgo priming device which allows both wrists to move in rhythmic, symmetrical wrist flexion and extension for 15 min. The goal is one cycle (wrist flexion and wrist extension) per second. The control priming group receives transcutaneous electrical stimulation below sensory threshold for 15 min prior to the same 45 min of task-specific training. Outcome measures are collected at pre-intervention, post-intervention, and follow-up (8 weeks post-intervention). The primary outcome measure is the Fugl-Meyer Test of Upper Extremity Function. The secondary outcome is the Chedoke Arm and Hand Activity Index-Nine, an assessment of bimanual functional tasks. DISCUSSION To date, there are only 6 studies documenting the efficacy of priming using bilateral movements, 4 of which are pilot or feasibility studies. This is the first large-scale clinical trial of bilateral priming plus task-specific training. We have previously completed a feasibility intervention study of bilateral motor priming plus task-specific training and have considerable experience using this protocol. TRIAL REGISTRATION ClinicalTrials.gov NCT03517657 . Retrospectively registered on May 7, 2018.
Collapse
Affiliation(s)
- Mary Ellen Stoykov
- Arms & Hands Lab, Shirley Ryan AbilityLab, Chicago, IL, USA. .,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Olivia M Biller
- Department of Occupational Therapy, Jefferson College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexandra Wax
- Arms & Hands Lab, Shirley Ryan AbilityLab, Chicago, IL, USA.,Think & Speak Lab, Arms & Hands Lab, Shirley Ryan AbilityLab, Chicago, USA
| | - Erin King
- Interdepartmental Institution of Neuroscience, Northwestern University, Chicago, USA
| | - Jacob M Schauer
- Department of Preventive Medicine - Division of Biostatistics, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Louis F Fogg
- Department of Occupational Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, USA
| | - Daniel M Corcos
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
| |
Collapse
|
34
|
Rustamov N, Humphries J, Carter A, Leuthardt EC. Theta-gamma coupling as a cortical biomarker of brain-computer interface-mediated motor recovery in chronic stroke. Brain Commun 2022; 4:fcac136. [PMID: 35702730 PMCID: PMC9188323 DOI: 10.1093/braincomms/fcac136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/19/2022] [Accepted: 05/23/2022] [Indexed: 11/15/2022] Open
Abstract
Chronic stroke patients with upper-limb motor disabilities are now beginning to see treatment options that were not previously available. To date, the two options recently approved by the United States Food and Drug Administration include vagus nerve stimulation and brain-computer interface therapy. While the mechanisms for vagus nerve stimulation have been well defined, the mechanisms underlying brain-computer interface-driven motor rehabilitation are largely unknown. Given that cross-frequency coupling has been associated with a wide variety of higher-order functions involved in learning and memory, we hypothesized this rhythm-specific mechanism would correlate with the functional improvements effected by a brain-computer interface. This study investigated whether the motor improvements in chronic stroke patients induced with a brain-computer interface therapy are associated with alterations in phase-amplitude coupling, a type of cross-frequency coupling. Seventeen chronic hemiparetic stroke patients used a robotic hand orthosis controlled with contralesional motor cortical signals measured with EEG. Patients regularly performed a therapeutic brain-computer interface task for 12 weeks. Resting-state EEG recordings and motor function data were acquired before initiating brain-computer interface therapy and once every 4 weeks after the therapy. Changes in phase-amplitude coupling values were assessed and correlated with motor function improvements. To establish whether coupling between two different frequency bands was more functionally important than either of those rhythms alone, we calculated power spectra as well. We found that theta-gamma coupling was enhanced bilaterally at the motor areas and showed significant correlations across brain-computer interface therapy sessions. Importantly, an increase in theta-gamma coupling positively correlated with motor recovery over the course of rehabilitation. The sources of theta-gamma coupling increase following brain-computer interface therapy were mostly located in the hand regions of the primary motor cortex on the left and right cerebral hemispheres. Beta-gamma coupling decreased bilaterally at the frontal areas following the therapy, but these effects did not correlate with motor recovery. Alpha-gamma coupling was not altered by brain-computer interface therapy. Power spectra did not change significantly over the course of the brain-computer interface therapy. The significant functional improvement in chronic stroke patients induced by brain-computer interface therapy was strongly correlated with increased theta-gamma coupling in bihemispheric motor regions. These findings support the notion that specific cross-frequency coupling dynamics in the brain likely play a mechanistic role in mediating motor recovery in the chronic phase of stroke recovery.
Collapse
Affiliation(s)
- Nabi Rustamov
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St Louis, MO, USA
| | - Joseph Humphries
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
| | - Alexandre Carter
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Eric C. Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
35
|
Bloch J, Greaves-Tunnell A, Shea-Brown E, Harchaoui Z, Shojaie A, Yazdan-Shahmorad A. Network structure mediates functional reorganization induced by optogenetic stimulation of non-human primate sensorimotor cortex. iScience 2022; 25:104285. [PMID: 35573193 PMCID: PMC9095749 DOI: 10.1016/j.isci.2022.104285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022] Open
Abstract
Because aberrant network-level functional connectivity underlies a variety of neural disorders, the ability to induce targeted functional reorganization would be a profound development toward therapies for neural disorders. Brain stimulation has been shown to induce large-scale network-wide functional connectivity changes (FCC), but the mapping from stimulation to the induced changes is unclear. Here, we develop a model which jointly considers the stimulation protocol and the cortical network structure to accurately predict network-wide FCC in response to optogenetic stimulation of non-human primate primary sensorimotor cortex. We observe that the network structure has a much stronger effect than the stimulation protocol on the resulting FCC. We also observe that the mappings from these input features to the FCC diverge over frequency bands and successive stimulations. Our framework represents a paradigm shift for targeted neural stimulation and can be used to interrogate, improve, and develop stimulation-based interventions for neural disorders.
Collapse
Affiliation(s)
- Julien Bloch
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Center for Neurotechnology, University of Washington, Seattle, WA 98105, USA
- Computational Neuroscience Center, University of Washington, Seattle, WA 98105, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98105, USA
| | | | - Eric Shea-Brown
- Department of Applied Mathematics, University of Washington, Seattle, WA 98105, USA
- Center for Neurotechnology, University of Washington, Seattle, WA 98105, USA
- Computational Neuroscience Center, University of Washington, Seattle, WA 98105, USA
| | - Zaid Harchaoui
- Department of Statistics, University of Washington, Seattle, WA 98105, USA
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Azadeh Yazdan-Shahmorad
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98105, USA
- Center for Neurotechnology, University of Washington, Seattle, WA 98105, USA
- Computational Neuroscience Center, University of Washington, Seattle, WA 98105, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
36
|
Mohan A, Knutson JS, Cunningham DA, Widina M, O'Laughlin K, Arora T, Li X, Sakaie K, Wang X, Uchino K, Plow EB. Contralaterally Controlled Functional Electrical Stimulation Combined With Brain Stimulation for Severe Upper Limb Hemiplegia-Study Protocol for a Randomized Controlled Trial. Front Neurol 2022; 13:869733. [PMID: 35599736 PMCID: PMC9117963 DOI: 10.3389/fneur.2022.869733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/01/2022] [Indexed: 12/05/2022] Open
Abstract
Background Approximately two-thirds of stroke survivors experience chronic upper limb paresis, and of them, 50% experience severe paresis. Treatment options for severely impaired survivors are often limited. Rehabilitation involves intensively engaging the paretic upper limb, and disincentivizing use of the non-paretic upper limb, with the goal to increase excitability of the ipsilesional primary motor cortex (iM1) and suppress excitability of the undamaged (contralesional) motor cortices, presumed to have an inhibitory effect on iM1. Accordingly, brain stimulation approaches, such as repetitive transcranial magnetic stimulation (rTMS), are also given to excite iM1 and/or suppress contralesional motor cortices. But such approaches aimed at ultimately increasing iM1 excitability yield limited functional benefit in severely impaired survivors who lack sufficient ipsilesional substrate. Aim Here, we test the premise that combining Contralaterally Controlled Functional Electrical Stimulation (CCFES), a rehabilitation technique that engages the non-paretic upper limb in delivery of neuromuscular electrical stimulation to the paretic upper limb, and a new rTMS approach that excites intact, contralesional higher motor cortices (cHMC), may have more favorable effect on paretic upper limb function in severely impaired survivors based on recruitment of spared, transcallosal and (alternate) ipsilateral substrate. Methods In a prospective, double-blind, placebo-controlled RCT, 72 chronic stroke survivors with severe distal hand impairment receive CCFES plus cHMC rTMS, iM1 rTMS, or sham rTMS, 2X/wk for 12wks. Measures of upper limb motor impairment (Upper Extremity Fugl Meyer, UEFM), functional ability (Wolf Motor-Function Test, WMFT) and perceived disability are collected at 0, 6, 12 (end-of-treatment), 24, and 36 wks (follow-up). TMS is performed at 0, 12 (end-of-treatment), and 36 wks (follow-up) to evaluate inter-hemispheric and ipsilateral mechanisms. Influence of baseline severity is also characterized with imaging. Conclusions Targeting of spared neural substrates and rehabilitation which engages the unimpaired limb in movement of the impaired limb may serve as a suitable combinatorial treatment option for severely impaired stroke survivors. ClinicalTrials No NCT03870672.
Collapse
Affiliation(s)
- Akhil Mohan
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jayme S. Knutson
- Department of Physical Medicine and Rehabilitation, MetroHealth System, Cleveland, OH, United States
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland FES Center, Cleveland, OH, United States
| | - David A. Cunningham
- Department of Physical Medicine and Rehabilitation, MetroHealth System, Cleveland, OH, United States
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland FES Center, Cleveland, OH, United States
| | - Morgan Widina
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Kyle O'Laughlin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Tarun Arora
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Xin Li
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Ken Sakaie
- Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Xiaofeng Wang
- Respiratory Institute Biostatistics Core, Lerner Research Institute, Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Ken Uchino
- Cerebrovascular Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Ela B. Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
37
|
Khateeb K, Bloch J, Zhou J, Rahimi M, Griggs DJ, Kharazia VN, Le MN, Wang RK, Yazdan-Shahmorad A. A versatile toolbox for studying cortical physiology in primates. CELL REPORTS METHODS 2022; 2:100183. [PMID: 35445205 PMCID: PMC9017216 DOI: 10.1016/j.crmeth.2022.100183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/06/2022] [Accepted: 02/23/2022] [Indexed: 12/02/2022]
Abstract
Lesioning and neurophysiological studies have facilitated the elucidation of cortical functions and mechanisms of functional recovery following injury. Clinical translation of such studies is contingent on their employment in non-human primates (NHPs), yet tools for monitoring and modulating cortical physiology are incompatible with conventional lesioning techniques. To address these challenges, we developed a toolbox validated in seven macaques. We introduce the photothrombotic method for inducing focal cortical lesions, a quantitative model for designing experiment-specific lesion profiles and optical coherence tomography angiography (OCTA) for large-scale (~5 cm2) monitoring of vascular dynamics. We integrate these tools with our electrocorticographic array for large-scale monitoring of neural dynamics and testing stimulation-based interventions. Advantageously, this versatile toolbox can be incorporated into established chronic cranial windows. By combining optical and electrophysiological techniques in the NHP cortex, we can enhance our understanding of cortical functions, investigate functional recovery mechanisms, integrate physiological and behavioral findings, and develop neurorehabilitative treatments. MOTIVATION The primate neocortex encodes for complex functions and behaviors, the physiologies of which are yet to be fully understood. Such an understanding in both healthy and diseased states can be crucial for the development of effective neurorehabilitative strategies. However, there is a lack of a comprehensive and adaptable set of tools that enables the study of multiple physiological phenomena in healthy and injured brains. Therefore, we developed a toolbox with the capability to induce targeted cortical lesions, monitor dynamics of underlying cortical microvasculature, and record and stimulate neural activity. With this toolbox, we can enhance our understanding of cortical functions, investigate functional recovery mechanisms, test stimulation-based interventions, and integrate physiological and behavioral findings.
Collapse
Affiliation(s)
- Karam Khateeb
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, Seattle, WA 98195, USA
| | - Julien Bloch
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, Seattle, WA 98195, USA
| | - Jasmine Zhou
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, Seattle, WA 98195, USA
| | - Mona Rahimi
- Washington National Primate Research Center, Seattle, WA 98195, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | - Devon J. Griggs
- Washington National Primate Research Center, Seattle, WA 98195, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | - Viktor N. Kharazia
- Department of Physiology and Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Minh N. Le
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Ophthalmology, University of Washington Medicine, Seattle, WA 98195, USA
| | - Azadeh Yazdan-Shahmorad
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, Seattle, WA 98195, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
38
|
Kim J, Guo L, Hishinuma A, Lemke S, Ramanathan DS, Won SJ, Ganguly K. Recovery of consolidation after sleep following stroke-interaction of slow waves, spindles, and GABA. Cell Rep 2022; 38:110426. [PMID: 35235787 DOI: 10.1016/j.celrep.2022.110426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/01/2021] [Accepted: 02/01/2022] [Indexed: 12/18/2022] Open
Abstract
Sleep is known to promote recovery after stroke. Yet it remains unclear how stroke affects neural processing during sleep. Using an experimental stroke model in rats along with electrophysiological monitoring of neural firing and sleep microarchitecture, here we show that sleep processing is altered by stroke. We find that the precise coupling of spindles to global slow oscillations (SOs), a phenomenon that is known to be important for memory consolidation, is disrupted by a pathological increase in "isolated" local delta waves. The transition from this pathological to a physiological state-with increased spindle coupling to SO-is associated with sustained performance gains during recovery. Interestingly, post-injury sleep could be pushed toward a physiological state via a pharmacological reduction of tonic γ-aminobutyric acid (GABA). Together, our results suggest that sleep processing after stroke is impaired due to an increase in delta waves and that its restoration can be important for recovery.
Collapse
Affiliation(s)
- Jaekyung Kim
- Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ling Guo
- Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - April Hishinuma
- Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stefan Lemke
- Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dhakshin S Ramanathan
- Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Seok Joon Won
- Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Karunesh Ganguly
- Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
39
|
Anwer S, Waris A, Gilani SO, Iqbal J, Shaikh N, Pujari AN, Niazi IK. Rehabilitation of Upper Limb Motor Impairment in Stroke: A Narrative Review on the Prevalence, Risk Factors, and Economic Statistics of Stroke and State of the Art Therapies. Healthcare (Basel) 2022; 10:healthcare10020190. [PMID: 35206805 PMCID: PMC8872602 DOI: 10.3390/healthcare10020190] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Stroke has been one of the leading causes of disability worldwide and is still a social health issue. Keeping in view the importance of physical rehabilitation of stroke patients, an analytical review has been compiled in which different therapies have been reviewed for their effectiveness, such as functional electric stimulation (FES), noninvasive brain stimulation (NIBS) including transcranial direct current stimulation (t-DCS) and transcranial magnetic stimulation (t-MS), invasive epidural cortical stimulation, virtual reality (VR) rehabilitation, task-oriented therapy, robot-assisted training, tele rehabilitation, and cerebral plasticity for the rehabilitation of upper extremity motor impairment. New therapeutic rehabilitation techniques are also being investigated, such as VR. This literature review mainly focuses on the randomized controlled studies, reviews, and statistical meta-analyses associated with motor rehabilitation after stroke. Moreover, with the increasing prevalence rate and the adverse socio-economic consequences of stroke, a statistical analysis covering its economic factors such as treatment, medication and post-stroke care services, and risk factors (modifiable and non-modifiable) have also been discussed. This review suggests that if the prevalence rate of the disease remains persistent, a considerable increase in the stroke population is expected by 2025, causing a substantial economic burden on society, as the survival rate of stroke is high compared to other diseases. Compared to all the other therapies, VR has now emerged as the modern approach towards rehabilitation motor activity of impaired limbs. A range of randomized controlled studies and experimental trials were reviewed to analyse the effectiveness of VR as a rehabilitative treatment with considerable satisfactory results. However, more clinical controlled trials are required to establish a strong evidence base for VR to be widely accepted as a preferred rehabilitation therapy for stroke.
Collapse
Affiliation(s)
- Saba Anwer
- School of Mechanical & Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad 45200, Pakistan; (S.A.); (A.W.); (S.O.G.); (J.I.)
| | - Asim Waris
- School of Mechanical & Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad 45200, Pakistan; (S.A.); (A.W.); (S.O.G.); (J.I.)
| | - Syed Omer Gilani
- School of Mechanical & Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad 45200, Pakistan; (S.A.); (A.W.); (S.O.G.); (J.I.)
| | - Javaid Iqbal
- School of Mechanical & Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad 45200, Pakistan; (S.A.); (A.W.); (S.O.G.); (J.I.)
| | - Nusratnaaz Shaikh
- Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland 0627, New Zealand;
| | - Amit N. Pujari
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK;
- School of Engineering, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Imran Khan Niazi
- Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland 0627, New Zealand;
- Center of Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
- Center for Sensory-Motor Interaction, Department of Health Science & Technology, Aalborg University, 9000 Alborg, Denmark
- Correspondence:
| |
Collapse
|
40
|
Dobkin BH. Rehabilitation and Recovery of the Patient With Stroke. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Liew SL, Lin DJ, Cramer SC. Interventions to Improve Recovery After Stroke. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
McCrea MA, Cramer SC, Okonkwo DO, Mattke S, Paadre S, Bates D, Nejadnik B, Giacino JT. Determining minimally clinically important differences for outcome measures in patients with chronic motor deficits secondary to traumatic brain injury. Expert Rev Neurother 2021; 21:1051-1058. [PMID: 34402352 DOI: 10.1080/14737175.2021.1968299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To determine minimally clinically important differences (MCIDs) for Disability Rating Scale (DRS), Fugl-Meyer Upper Extremity Subscale (FM-UE), Fugl-Meyer Lower Extremity Subscale (FM-LE), and Fugl-Meyer Motor Scale (FMMS) in patients with chronic motor deficits secondary to traumatic brain injury (TBI). METHODS Retrospective analysis from the 1-year, double-blind, randomized, surgical sham-controlled, Phase 2 STEMTRA trial (NCT02416492), in which patients with chronic motor deficits secondary to TBI (N = 61) underwent intracerebral stereotactic implantation of modified bone marrow-derived mesenchymal stromal (SB623) cells. MCIDs for DRS, FM-UE, FM-LE, and FMMS were triangulated with distribution-based, anchor-based, and Delphi panel estimates. RESULTS Triangulated MCIDs were: 1) -1.5 points for the Disability Rating Scale; 2) 6.2 points for the Fugl-Meyer Upper Extremity Subscale; 3) 3.2 points for the Fugl-Meyer Lower Extremity Subscale; and 4) 8.4 points for the Fugl-Meyer Motor Scale. CONCLUSIONS For the first time in the setting of patients with chronic motor deficits secondary to TBI, this study reports triangulated MCIDs for: 1) DRS, a measure of global outcome; and 2) Fugl-Meyer Scales, measures of motor impairment. These findings guide the use of DRS and Fugl-Meyer Scales in the assessment of global disability outcome and motor impairment in future TBI clinical trials.
Collapse
Affiliation(s)
- Michael A McCrea
- Co-Director, Center For Neurotrauma Research; And Professor, Department Of Neurosurgery, Medical College Of Wisconsin, Milwaukee, USA
| | - Steven C Cramer
- Professor, Department Of Neurology, University Of California, Los Angeles; Los Angeles, Ca; And Medical Director Of Research, California Rehabilitation Institute; Los Angeles, CA, USA
| | - David O Okonkwo
- Director, Neurotrauma Clinical Trials Center; And Professor, Department Of Neurological Surgery, University Of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Soeren Mattke
- Director, Center For Improving Chronic Illness Care, USC Dornsife, Los Angeles, Ca, USA
| | - Susan Paadre
- Associate Director, Biostatistics, Biostatistical Consulting Inc., Lexington, MA, USA
| | - Damien Bates
- Consultant, SanBio, Inc., Mountain View, CA, USA
| | - Bijan Nejadnik
- Chief Medical Officer, Global Head Of Regulatory, Medical Affairs, Research and Clinical Development, SanBio Inc., CA, USA
| | - Joseph T Giacino
- Director Of Rehabilitation Neuropsychology; Director, SRN Disorders Of Consciousness Program; Project Director, Spaulding-Harvard TBI Model System, Spaulding Rehabilitation Hospital, Charlestown, MA; And Consulting Neuropsychologist, Department Of Psychiatry, Massachusetts General Hospital, Boston, MA; And Professor, Department Of Physical Medicine And Rehabilitation, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Charlebois CM, Caldwell DJ, Rampersad SM, Janson AP, Ojemann JG, Brooks DH, MacLeod RS, Butson CR, Dorval AD. Validating Patient-Specific Finite Element Models of Direct Electrocortical Stimulation. Front Neurosci 2021; 15:691701. [PMID: 34408621 PMCID: PMC8365306 DOI: 10.3389/fnins.2021.691701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Direct electrocortical stimulation (DECS) with electrocorticography electrodes is an established therapy for epilepsy and an emerging application for stroke rehabilitation and brain-computer interfaces. However, the electrophysiological mechanisms that result in a therapeutic effect remain unclear. Patient-specific computational models are promising tools to predict the voltages in the brain and better understand the neural and clinical response to DECS, but the accuracy of such models has not been directly validated in humans. A key hurdle to modeling DECS is accurately locating the electrodes on the cortical surface due to brain shift after electrode implantation. Despite the inherent uncertainty introduced by brain shift, the effects of electrode localization parameters have not been investigated. The goal of this study was to validate patient-specific computational models of DECS against in vivo voltage recordings obtained during DECS and quantify the effects of electrode localization parameters on simulated voltages on the cortical surface. We measured intracranial voltages in six epilepsy patients during DECS and investigated the following electrode localization parameters: principal axis, Hermes, and Dykstra electrode projection methods combined with 0, 1, and 2 mm of cerebral spinal fluid (CSF) below the electrodes. Greater CSF depth between the electrode and cortical surface increased model errors and decreased predicted voltage accuracy. The electrode localization parameters that best estimated the recorded voltages across six patients with varying amounts of brain shift were the Hermes projection method and a CSF depth of 0 mm (r = 0.92 and linear regression slope = 1.21). These results are the first to quantify the effects of electrode localization parameters with in vivo intracranial recordings and may serve as the basis for future studies investigating the neuronal and clinical effects of DECS for epilepsy, stroke, and other emerging closed-loop applications.
Collapse
Affiliation(s)
- Chantel M Charlebois
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, United States
| | - David J Caldwell
- Department of Bioengineering, University of Washington, Seattle, WA, United States.,Center for Neurotechnology, University of Washington, Seattle, WA, United States.,Medical Scientist Training Program, University of Washington, Seattle, WA, United States
| | - Sumientra M Rampersad
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States
| | - Andrew P Janson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, United States
| | - Jeffrey G Ojemann
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Dana H Brooks
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States
| | - Rob S MacLeod
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, United States
| | - Christopher R Butson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, United States.,Department of Neurology, Neurosurgery and Psychiatry, University of Utah, Salt Lake City, UT, United States
| | - Alan D Dorval
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
44
|
Kwakkel G, Dobkin BH. Vagus Nerve Stimulation for Upper Limb Function: Significant Difference, but Clinically Important? Stroke 2021; 52:3407-3409. [PMID: 34315255 DOI: 10.1161/strokeaha.121.035648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Gert Kwakkel
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam Neuroscience, the Netherlands (G.K.).,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL (G.K.)
| | - Bruce H Dobkin
- Department of Neurology, University of California Los Angeles, Geffen School of Medicine (B.H.D.)
| |
Collapse
|
45
|
Ting WKC, Fadul FAR, Fecteau S, Ethier C. Neurostimulation for Stroke Rehabilitation. Front Neurosci 2021; 15:649459. [PMID: 34054410 PMCID: PMC8160247 DOI: 10.3389/fnins.2021.649459] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/26/2021] [Indexed: 01/08/2023] Open
Abstract
Neurological injuries such as strokes can lead to important loss in motor function. Thanks to neuronal plasticity, some of the lost functionality may be recovered over time. However, the recovery process is often slow and incomplete, despite the most effective conventional rehabilitation therapies. As we improve our understanding of the rules governing activity-dependent plasticity, neuromodulation interventions are being developed to harness neural plasticity to achieve faster and more complete recovery. Here, we review the principles underlying stimulation-driven plasticity as well as the most commonly used stimulation techniques and approaches. We argue that increased spatiotemporal precision is an important factor to improve the efficacy of neurostimulation and drive a more useful neuronal reorganization. Consequently, closed-loop systems and optogenetic stimulation hold theoretical promise as interventions to promote brain repair after stroke.
Collapse
Affiliation(s)
- Windsor Kwan-Chun Ting
- Département de Psychiatrie et de Neurosciences, Centre de Recherche CERVO, Université Laval, Québec City, QC, Canada
| | - Faïza Abdou-Rahaman Fadul
- Département de Psychiatrie et de Neurosciences, Centre de Recherche CERVO, Université Laval, Québec City, QC, Canada
| | - Shirley Fecteau
- Département de Psychiatrie et de Neurosciences, Centre de Recherche CERVO, Université Laval, Québec City, QC, Canada
| | - Christian Ethier
- Département de Psychiatrie et de Neurosciences, Centre de Recherche CERVO, Université Laval, Québec City, QC, Canada
| |
Collapse
|
46
|
Invasive cortical stimulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:23-45. [PMID: 34446248 DOI: 10.1016/bs.irn.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The field of neuromodulation, at its essence, aims to apply electrical stimulation to the brain to ameliorate various pathology. Many methods of applying this stimulation exist, including invasive and non-invasive means. In the realm of invasive stimulation, stimulation of the cortex remains one of the earliest techniques investigated, yet one of the most underutilized today. Evidence for the efficacy of direct invasive cortical stimulation continues to mount, especially in recent years. In this chapter we will review the evidence for the use of invasive cortical stimulation as it applies to neuropathic pain, epilepsy, psychiatric disease, movement disorders, tinnitus, and post-stroke recovery, as well explore some potential mechanisms and future directions of the technique.
Collapse
|
47
|
Dawson J, Liu CY, Francisco GE, Cramer SC, Wolf SL, Dixit A, Alexander J, Ali R, Brown BL, Feng W, DeMark L, Hochberg LR, Kautz SA, Majid A, O'Dell MW, Pierce D, Prudente CN, Redgrave J, Turner DL, Engineer ND, Kimberley TJ. Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial. Lancet 2021; 397:1545-1553. [PMID: 33894832 PMCID: PMC8862193 DOI: 10.1016/s0140-6736(21)00475-x] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Long-term loss of arm function after ischaemic stroke is common and might be improved by vagus nerve stimulation paired with rehabilitation. We aimed to determine whether this strategy is a safe and effective treatment for improving arm function after stroke. METHODS In this pivotal, randomised, triple-blind, sham-controlled trial, done in 19 stroke rehabilitation services in the UK and the USA, participants with moderate-to-severe arm weakness, at least 9 months after ischaemic stroke, were randomly assigned (1:1) to either rehabilitation paired with active vagus nerve stimulation (VNS group) or rehabilitation paired with sham stimulation (control group). Randomisation was done by ResearchPoint Global (Austin, TX, USA) using SAS PROC PLAN (SAS Institute Software, Cary, NC, USA), with stratification by region (USA vs UK), age (≤30 years vs >30 years), and baseline Fugl-Meyer Assessment-Upper Extremity (FMA-UE) score (20-35 vs 36-50). Participants, outcomes assessors, and treating therapists were masked to group assignment. All participants were implanted with a vagus nerve stimulation device. The VNS group received 0·8 mA, 100 μs, 30 Hz stimulation pulses, lasting 0·5 s. The control group received 0 mA pulses. Participants received 6 weeks of in-clinic therapy (three times per week; total of 18 sessions) followed by a home exercise programme. The primary outcome was the change in impairment measured by the FMA-UE score on the first day after completion of in-clinic therapy. FMA-UE response rates were also assessed at 90 days after in-clinic therapy (secondary endpoint). All analyses were by intention to treat. This trial is registered at ClinicalTrials.gov, NCT03131960. FINDINGS Between Oct 2, 2017, and Sept 12, 2019, 108 participants were randomly assigned to treatment (53 to the VNS group and 55 to the control group). 106 completed the study (one patient for each group did not complete the study). On the first day after completion of in-clinic therapy, the mean FMA-UE score increased by 5·0 points (SD 4·4) in the VNS group and by 2·4 points (3·8) in the control group (between group difference 2·6, 95% CI 1·0-4·2, p=0·0014). 90 days after in-clinic therapy, a clinically meaningful response on the FMA-UE score was achieved in 23 (47%) of 53 patients in the VNS group versus 13 (24%) of 55 patients in the control group (between group difference 24%, 6-41; p=0·0098). There was one serious adverse event related to surgery (vocal cord paresis) in the control group. INTERPRETATION Vagus nerve stimulation paired with rehabilitation is a novel potential treatment option for people with long-term moderate-to-severe arm impairment after ischaemic stroke. FUNDING MicroTransponder.
Collapse
Affiliation(s)
- Jesse Dawson
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Charles Y Liu
- USC Neurorestoration Center and Department of Neurological Surgery, USC Keck School of Medicine, Los Angeles, CA, USA; Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA
| | - Gerard E Francisco
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center McGovern Medical School, Houston, TX, USA; The Institute for Rehabilitation and Research (TIRR) Memorial Hermann Hospital, Houston, Texas, USA
| | - Steven C Cramer
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; California Rehabilitation Institute, Los Angeles, CA, USA
| | - Steven L Wolf
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA
| | - Anand Dixit
- Stroke Service, The Newcastle Upon Tyne Hospitals National Health Service Foundation Trust, Newcastle, UK
| | - Jen Alexander
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Rushna Ali
- Department of Neurosciences, Spectrum Health, Grand Rapids, MI, USA
| | - Benjamin L Brown
- Department of Neurosurgery, Ochsner Neuroscience Institute, Covington, LA, USA
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | | | - Leigh R Hochberg
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; School of Engineering and Carney Institute for Brain Science, Brown University, Providence, RI, USA; VA RR&D Center for Neurorestoration and Neurotechnology, VA Medical Center, Providence, RI, USA
| | - Steven A Kautz
- Ralph H Johnson VA Medical Center, Charleston, SC, USA; Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA
| | - Arshad Majid
- Sheffield Institute for Neurological Sciences (SITraN), University of Sheffield, Sheffield, UK; Sheffield Teaching Hospitals National Health Service Foundation Trust, Sheffield, UK
| | - Michael W O'Dell
- Clinical Rehabilitation Medicine, Weill Cornell Medicine, New York City, NY, USA
| | | | | | - Jessica Redgrave
- Sheffield Institute for Neurological Sciences (SITraN), University of Sheffield, Sheffield, UK
| | - Duncan L Turner
- School of Health, Sport and Bioscience, University of East London, London, UK
| | | | - Teresa J Kimberley
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Physical Therapy, MGH Institute of Health Professions, Boston, MA, USA
| |
Collapse
|
48
|
Lin DJ, Cramer SC. Principles of Neural Repair and Their Application to Stroke Recovery Trials. Semin Neurol 2021; 41:157-166. [PMID: 33663003 DOI: 10.1055/s-0041-1725140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Neural repair is the underlying therapeutic strategy for many treatments currently under investigation to improve recovery after stroke. Repair-based therapies are distinct from acute stroke strategies: instead of salvaging threatened brain tissue, the goal is to improve behavioral outcomes on the basis of experience-dependent brain plasticity. Furthermore, timing, concomitant behavioral experiences, modality specific outcome measures, and careful patient selection are fundamental concepts for stroke recovery trials that can be deduced from principles of neural repair. Here we discuss core principles of neural repair and their implications for stroke recovery trials, highlighting related issues from key studies in humans. Research suggests a future in which neural repair therapies are personalized based on measures of brain structure and function, genetics, and lifestyle factors.
Collapse
Affiliation(s)
- David J Lin
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of VA Medical Center, Providence, Rhode Island
| | - Steven C Cramer
- Department of Neurology, University of California, Los Angeles, California.,California Rehabilitation Institute, Los Angeles, California
| |
Collapse
|
49
|
Stoykov ME, King E, David FJ, Vatinno A, Fogg L, Corcos DM. Bilateral motor priming for post stroke upper extremity hemiparesis: A randomized pilot study. Restor Neurol Neurosci 2021; 38:11-22. [PMID: 31609714 DOI: 10.3233/rnn-190943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Bilateral priming, device assisted bilateral symmetrical wrist flexion/extension, is a noninvasive neuromodulation technique that can be used in the clinic. OBJECTIVE We examined the additive effect of bilateral motor priming and task specific training in individuals with severe upper limb hemiparesis. METHODS This is a parallel assignment, single-masked, randomized exploratory pilot study with three timepoints (pre-/post-intervention and follow up). Participants received either bilateral motor priming or health care education followed by task specific training. Sixteen participants who were at least 6 months post-stroke and had a Fugl Meyer Upper Extremity (FMUE) score between 23 and 38 were randomized. Our primary and secondary measures were Chedoke Arm & Hand Activity Index 9 (CAHAI-9) and the FMUE respectively. We determined changes in interhemispheric inhibition using transcranial magnetic stimulation. We hypothesized that improvement in the priming group would persist at follow up. RESULTS There was no between-group difference in the CAHAI. The improvement in the FMUE was significantly greater in the experimental group at follow up (t = 2.241, p = 0.045). CONCLUSIONS Both groups improved in the CAHAI. There was a significant between-group difference in the secondary outcome measure (FMUE) where the bilateral priming group had an average increase of 10 points from pre-intervention to follow up.
Collapse
Affiliation(s)
- Mary Ellen Stoykov
- Shirley Ryan Ability Lab, Chicago, IL, USA.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - Erin King
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, USA
| | - Fabian J David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Amanda Vatinno
- Department of Health Sciences and Research, Medical College of South Carolina, Charleston, SC, USA
| | - Louis Fogg
- Department of Nursing, Rush University Medical Center, Chicago, IL, USA
| | - Daniel M Corcos
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, USA.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| |
Collapse
|
50
|
Khanna P, Totten D, Novik L, Roberts J, Morecraft RJ, Ganguly K. Low-frequency stimulation enhances ensemble co-firing and dexterity after stroke. Cell 2021; 184:912-930.e20. [PMID: 33571430 DOI: 10.1016/j.cell.2021.01.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/08/2020] [Accepted: 01/15/2021] [Indexed: 12/31/2022]
Abstract
Electrical stimulation is a promising tool for modulating brain networks. However, it is unclear how stimulation interacts with neural patterns underlying behavior. Specifically, how might external stimulation that is not sensitive to the state of ongoing neural dynamics reliably augment neural processing and improve function? Here, we tested how low-frequency epidural alternating current stimulation (ACS) in non-human primates recovering from stroke interacted with task-related activity in perilesional cortex and affected grasping. We found that ACS increased co-firing within task-related ensembles and improved dexterity. Using a neural network model, we found that simulated ACS drove ensemble co-firing and enhanced propagation of neural activity through parts of the network with impaired connectivity, suggesting a mechanism to link increased co-firing to enhanced dexterity. Together, our results demonstrate that ACS restores neural processing in impaired networks and improves dexterity following stroke. More broadly, these results demonstrate approaches to optimize stimulation to target neural dynamics.
Collapse
Affiliation(s)
- Preeya Khanna
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Douglas Totten
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Lisa Novik
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Jeffrey Roberts
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Robert J Morecraft
- Laboratory of Neurological Sciences, Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD 57069, USA
| | - Karunesh Ganguly
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|