1
|
Deng YP, Sun J, He QY, Liu Y, Fu L, Zhao H. The value of surfactant protein a in evaluating the severity and prognosis in community-acquired pneumonia patients. BMC Pulm Med 2024; 24:472. [PMID: 39334006 PMCID: PMC11438191 DOI: 10.1186/s12890-024-03297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Previous research has discovered that surfactant protein A (SP-A) is involved in the pathophysiology processes of certain lung illnesses. However, no definitive clinical studies have delved into the function of SP-A in individuals afflicted with community-acquired pneumonia (CAP). A prospective cohort study was used to investigate the relationships between blood SP-A levels and the severity and prognosis among CAP patients. MATERIALS AND METHODS This study included 260 patients with CAP. Clinical traits and demographic data were examined during hospitalization. The concentrations of serum SP-A and serum interleukin-6 (IL-6) were determined by enzyme-linked immunosorbent assay (ELISA). In addition, to evaluate the severity of CAP, a variety of scores, including the CURB-65, PSI, SMART-COP, and APACHE II, were employed. RESULTS The serum levels of SP-A at admission exhibited a gradual decline as the severity scores of CAP increased. Through Spearman correlation analysis, we observed an association between serum SP-A and some clinical indicators among CAP patients. Furthermore, results from a multiple linear regression model suggested changes in PSI scores (-17.868 scores, 95% CI: -32.743, -2.993) affect serum SP-A more than CURB-65 (-0.547 scores, 95% CI: -0.964, -0.131), SMART-COP (-1.097 scores, 95% CI: -1.889, -0.304) and APACHE II (-3.475 scores, 95% CI: -5.874, -1.075) with age, hypertension, diabetes mellitus, cerebral infarction, coronary heart disease, and bronchitis adjusted. In addition, the prognosis in CAP patients was monitored. Throughout their hospital stay, higher serum levels of SP-A decreased the risks of mechanical ventilation (RR: 0.315; 95% CI: 0.106, 0.937), vasoactive agents (RR: 0.165; 95% CI: 0.034, 0.790), intensive care unit (ICU) admissions (RR: 0.218; 95% CI: 0.066, 0.717) and longer hospital stays (RR: 0.397; 95% CI: 0.167, 0.945). CONCLUSION In CAP patients, inverse dose-response correlations exist between serum SP-A levels with severity scores as well as prognosis at admission, suggesting that SP-A may take part in the CAP pathophysiological processes. Moreover, lower serum SP-A on admission is associated with an elevated prognostic risk of mechanical ventilation, the use of vasoactive agents, longer hospital stays, ICU admission, and mortality. Therefore, as a biomarker, SP-A may have the potential to predict the severity and poor prognosis of CAP patients.
Collapse
Affiliation(s)
- You-Peng Deng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road no 678, Hefei, Anhui, 230601, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Jing Sun
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road no 678, Hefei, Anhui, 230601, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Qi-Yuan He
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road no 678, Hefei, Anhui, 230601, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Ying Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road no 678, Hefei, Anhui, 230601, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road no 678, Hefei, Anhui, 230601, China.
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road no 678, Hefei, Anhui, 230601, China.
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| |
Collapse
|
2
|
Carbone A, Vitullo P, Di Gioia S, Conese M. Lung Inflammatory Genes in Cystic Fibrosis and Their Relevance to Cystic Fibrosis Transmembrane Conductance Regulator Modulator Therapies. Genes (Basel) 2023; 14:1966. [PMID: 37895314 PMCID: PMC10606852 DOI: 10.3390/genes14101966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Cystic fibrosis (CF) is a monogenic syndrome determined by over 2000 mutations in the CF Transmembrane Conductance Regulator (CFTR) gene harbored on chromosome 7. In people with CF (PWCF), lung disease is the major determinant of morbidity and mortality and is characterized by a clinical phenotype which differs in the presence of equal mutational assets, indicating that genetic and environmental modifiers play an important role in this variability. Airway inflammation determines the pathophysiology of CF lung disease (CFLD) both at its onset and progression. In this narrative review, we aim to depict the inflammatory process in CF lung, with a particular emphasis on those genetic polymorphisms that could modify the clinical outcome of the respiratory disease in PWCF. The natural history of CF has been changed since the introduction of CFTR modulator therapies in the clinical arena. However, also in this case, there is a patient-to-patient variable response. We provide an overview on inflammatory/immunity gene variants that affect CFLD severity and an appraisal of the effects of CFTR modulator therapies on the inflammatory process in lung disease and how this knowledge may advance the optimization of the management of PWCF.
Collapse
Affiliation(s)
- Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Pamela Vitullo
- Cystic Fibrosis Support Center, Ospedale “G. Tatarella”, 71042 Cerignola, Italy;
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| |
Collapse
|
3
|
Reger RM, Meinicke A, Härtig W, Knüpfer M, Thome U, Schob S, Krause M. Changes in CSF Surface Tension in Relation to Surfactant Proteins in Children with Intraventricular Hemorrhage. Brain Sci 2022; 12:brainsci12111440. [PMID: 36358367 PMCID: PMC9688901 DOI: 10.3390/brainsci12111440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
The regulation of surface tension (ST) by surfactants plays an important role in the human respiratory system but is largely unexplored in brain homeostasis. The aim of this study was to evaluate changes in ST in relation to surfactant proteins (SPs) in children with intraventricular hemorrhage (IVH). CSF samples from 93 patients were analyzed for ST with a force tensiometer and SP-A-D and -G with ELISA assays. Patients belonged to six groups: (i) IVH before primary intervention (PI), (ii) IVH 4−28 days after PI, (iii) IVH 44−357 days after PI, (iv) hydrocephalus, (v) sepsis and (vi) controls. We found indirect correlations and significant differences in ST and SPs (all p < 0.001; except for SP-C, p = 0.007). Post hoc analyses showed significantly decreased ST in IVH patients before PI compared with patients with hydrocephalus, sepsis or controls (p < 0.001), but it increased in IVH patients over time. All SPs were significantly elevated when comparing IVH patients before PI with controls (all p < 0.001; except for SP-C, p = 0.003). Children suffering from IVH displayed an increase in SPs and a decrease in ST as coping mechanisms to preserve CSF flow. The increase in ST over time could serve as prognostic marker for the healing process.
Collapse
Affiliation(s)
- Rieka M. Reger
- Department of Neurosurgery, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Anton Meinicke
- Paul Flechsig Institute for Brain Research, Leipzig University, 04103 Leipzig, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, Leipzig University, 04103 Leipzig, Germany
| | - Matthias Knüpfer
- Department of Neonatology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Ulrich Thome
- Department of Neonatology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Stefan Schob
- Department of Neuroradiology, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Matthias Krause
- Department of Neurosurgery, University Hospital Leipzig, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-341-9717500
| |
Collapse
|
4
|
Meinicke A, Härtig W, Winter K, Puchta J, Mages B, Michalski D, Emmer A, Otto M, Hoffmann KT, Reimann W, Krause M, Schob S. Surfactant Protein-G in Wildtype and 3xTg-AD Mice: Localization in the Forebrain, Age-Dependent Hippocampal Dot-like Deposits and Brain Content. Biomolecules 2022; 12:biom12010096. [PMID: 35053244 PMCID: PMC8773979 DOI: 10.3390/biom12010096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022] Open
Abstract
The classic surfactant proteins (SPs) A, B, C, and D were discovered in the lungs, where they contribute to host defense and regulate the alveolar surface tension during breathing. Their additional importance for brain physiology was discovered decades later. SP-G, a novel amphiphilic SP, was then identified in the lungs and is mostly linked to inflammation. In the brain, it is also present and significantly elevated after hemorrhage in premature infants and in distinct conditions affecting the cerebrospinal fluid circulation of adults. However, current knowledge on SP-G-expression is limited to ependymal cells and some neurons in the subventricular and superficial cortex. Therefore, we primarily focused on the distribution of SP-G-immunoreactivity (ir) and its spatial relationships with components of the neurovascular unit in murine forebrains. Triple fluorescence labeling elucidated SP-G-co-expressing neurons in the habenula, infundibulum, and hypothalamus. Exploring whether SP-G might play a role in Alzheimer’s disease (AD), 3xTg-AD mice were investigated and displayed age-dependent hippocampal deposits of β-amyloid and hyperphosphorylated tau separately from clustered, SP-G-containing dots with additional Reelin-ir—which was used as established marker for disease progression in this specific context. Semi-quantification of those dots, together with immunoassay-based quantification of intra- and extracellular SP-G, revealed a significant elevation in old 3xTg mice when compared to age-matched wildtype animals. This suggests a role of SP-G for the pathophysiology of AD, but a confirmation with human samples is required.
Collapse
Affiliation(s)
- Anton Meinicke
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (A.M.); (W.H.); (J.P.); (W.R.)
- Institute of Neuroradiology, University Hospital Leipzig, Liebigstr. 20, 04103 Leipzig, Germany;
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (A.M.); (W.H.); (J.P.); (W.R.)
| | - Karsten Winter
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany; (K.W.); (B.M.)
| | - Joana Puchta
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (A.M.); (W.H.); (J.P.); (W.R.)
- Institute of Neuroradiology, University Hospital Leipzig, Liebigstr. 20, 04103 Leipzig, Germany;
| | - Bianca Mages
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany; (K.W.); (B.M.)
| | - Dominik Michalski
- Department of Neurology, University Hospital Leipzig, Liebigstr. 20, 04103 Leipzig, Germany;
| | - Alexander Emmer
- Department of Neurology, University Hospital Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (A.E.); (M.O.)
| | - Markus Otto
- Department of Neurology, University Hospital Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (A.E.); (M.O.)
| | - Karl-Titus Hoffmann
- Institute of Neuroradiology, University Hospital Leipzig, Liebigstr. 20, 04103 Leipzig, Germany;
| | - Willi Reimann
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (A.M.); (W.H.); (J.P.); (W.R.)
- Institute of Neuroradiology, University Hospital Leipzig, Liebigstr. 20, 04103 Leipzig, Germany;
| | - Matthias Krause
- Department of Neurosurgery, University Hospital Leipzig, Liebigstr. 20, 04103 Leipzig, Germany;
| | - Stefan Schob
- Department of Neuroradiology, Clinic and Policlinic of Radiology, University Hospital Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
- Correspondence: ; Tel.: +49-345-557-2432
| |
Collapse
|
5
|
Oves M, Ravindran M, Rauf MA, Omaish Ansari M, Zahin M, Iyer AK, Ismail IMI, Khan MA, Palaniyar N. Comparing and Contrasting MERS, SARS-CoV, and SARS-CoV-2: Prevention, Transmission, Management, and Vaccine Development. Pathogens 2020; 9:pathogens9120985. [PMID: 33255989 PMCID: PMC7761006 DOI: 10.3390/pathogens9120985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic is responsible for an unprecedented disruption to the healthcare systems and economies of countries around the world. Developing novel therapeutics and a vaccine against SARS-CoV-2 requires an understanding of the similarities and differences between the various human coronaviruses with regards to their phylogenic relationships, transmission, and management. Phylogenetic analysis indicates that humans were first infected with SARS-CoV-2 in late 2019 and the virus rapidly spread from the outbreak epicenter in Wuhan, China to various parts of the world. Multiple variants of SARS-CoV-2 have now been identified in particular regions. It is apparent that MERS, SARS-CoV, and SARS-CoV-2 present with several common symptoms including fever, cough, and dyspnea in mild cases, but can also progress to pneumonia and acute respiratory distress syndrome. Understanding the molecular steps leading to SARS-CoV-2 entry into cells and the viral replication cycle can illuminate crucial targets for testing several potential therapeutics. Genomic and structural details of SARS-CoV-2 and previous attempts to generate vaccines against SARS-CoV and MERS have provided vaccine targets to manage future outbreaks more effectively. The coordinated global response against this emerging infectious disease is unique and has helped address the need for urgent therapeutics and vaccines in a remarkably short time.
Collapse
Affiliation(s)
- Mohammad Oves
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Makkah 21589, Saudi Arabia; (M.O.); (I.M.I.I.)
| | - Mithunan Ravindran
- Program in Translational Medicine, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Mohd Ahmar Rauf
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (M.A.R.); (A.K.I.)
| | - Mohammad Omaish Ansari
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Makkah 21589, Saudi Arabia;
| | - Maryam Zahin
- Center for Predictive Medicine and James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA;
| | - Arun K. Iyer
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (M.A.R.); (A.K.I.)
| | - Iqbal M. I. Ismail
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Makkah 21589, Saudi Arabia; (M.O.); (I.M.I.I.)
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Makkah 21589, Saudi Arabia
| | - Meraj A. Khan
- Program in Translational Medicine, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Correspondence: (M.A.K.); (N.P.)
| | - Nades Palaniyar
- Program in Translational Medicine, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Correspondence: (M.A.K.); (N.P.)
| |
Collapse
|
6
|
Papini E, Tavano R, Mancin F. Opsonins and Dysopsonins of Nanoparticles: Facts, Concepts, and Methodological Guidelines. Front Immunol 2020; 11:567365. [PMID: 33154748 PMCID: PMC7587406 DOI: 10.3389/fimmu.2020.567365] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
Understanding the effects mediated by a set of nanoparticle (NP)-bound host biomolecules, often indicated with the umbrella term of NP corona, is essential in nanomedicine, nanopharmacology, and nanotoxicology. Among the NP-adsorbed proteome, some factors mediate cell binding, endocytosis, and clearing by macrophages and other phagocytes (opsonins), while some others display few affinities for the cell surface (dysopsonins). The functional mapping of opsonins and dysopsonins is instrumental to design long-circulating and nanotoxicologically safe next-generation nanotheranostics. In this review, we critically analyze functional data identifying specific proteins with opsonin or dysopsonin properties. Special attention is dedicated to the following: (1) the simplicity or complexity of the NP proteome and its modulation, (2) the role of specific host proteins in mediating the stealth properties of uncoated or polymer-coated NPs, and (3) the ability of the innate immune system, and, in particular, of the complement proteins, to mediate NP clearance by phagocytes. Emerging species-specific peculiarities, differentiating humans from preclinical animal models (the murine especially), are highlighted throughout this overview. The operative definition of opsonin and dysopsonin and the measurement schemes to assess their in vitro efficacy is critically re-examined. This provides a shared and unbiased approach useful for NP opsonin and dysopsonin systematic identification.
Collapse
Affiliation(s)
- Emanuele Papini
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Centre for Innovative Biotechnological Research, University of Padua, Padua, Italy
| | - Regina Tavano
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Centre for Innovative Biotechnological Research, University of Padua, Padua, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
7
|
Krause M, Härtig W, Mahr CV, Richter C, Schob J, Puchta J, Hoffmann KT, Nestler U, Thome U, Knüpfer M, Gebauer C, Schob S. CSF Surfactant Protein Changes in Preterm Infants After Intraventricular Hemorrhage. Front Pediatr 2020; 8:572851. [PMID: 33102410 PMCID: PMC7546901 DOI: 10.3389/fped.2020.572851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/12/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Surfactant proteins (SP) have been shown to be inherent proteins of the human CNS and are altered during acute and chronic disturbances of CSF circulation. Aim of the study was to examine the changes of surfactant protein concentrations in CSF of preterm babies suffering from intraventricular hemorrhage. Patients and Methods: Consecutive CSF samples of 21 preterm infants with intraventricular hemorrhages (IVH) and posthemorrhagic hydrocephalus (PHHC) were collected at primary intervention, after 5-10 days and at time of shunt insertion ~50 days after hemorrhage. Samples were analyzed for surfactant proteins A, B, C, and G by ELISA assays and the results were compared to 35 hydrocephalus patients (HC) without hemorrhage and 6 newborn control patients. Results and Discussion: Premature patients with IVH showed a significant elevation of surfactant proteins SP-A, C, and G compared to HC and control groups: mean values for the respective groups were SP-A 4.19 vs. 1.08 vs. 0.38 ng/ml. Mean SP-C 3.63 vs. 1.47 vs. 0.48 ng/ml. Mean SP-G 3.86 vs. 0.17 vs. 0.2 ng/ml. SP-A and G concentrations were slowly falling over time without reaching normal values. SP-C levels declined faster following neurosurgical interventions and reached levels comparable to those of hydrocephalus patients without hemorrhage. Conclusion: Intraventricular hemorrhages of premature infants cause posthemorrhagic CSF flow disturbance and are associated with highly significant elevations of surfactant proteins A, C, and G independent of total CSF protein concentrations.
Collapse
Affiliation(s)
- Matthias Krause
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, Medical Faculty of University Leipzig, Leipzig, Germany.,Department of Neuroradiology, University Hospital Leipzig, Leipzig, Germany
| | | | - Cindy Richter
- Department of Neuroradiology, University Hospital Leipzig, Leipzig, Germany
| | - Julia Schob
- Department of Ophthalmology, University Hospital Leipzig, Leipzig, Germany
| | - Joana Puchta
- Paul Flechsig Institute for Brain Research, Medical Faculty of University Leipzig, Leipzig, Germany.,Department of Neuroradiology, University Hospital Leipzig, Leipzig, Germany
| | | | - Ulf Nestler
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | - Ulrich Thome
- Department of Neonatology, University Hospital Leipzig, Leipzig, Germany
| | - Matthias Knüpfer
- Department of Neonatology, University Hospital Leipzig, Leipzig, Germany
| | - Corinna Gebauer
- Department of Neonatology, University Hospital Leipzig, Leipzig, Germany
| | - Stefan Schob
- Department of Neuroradiology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
8
|
Weiß A, Krause M, Stockert A, Richter C, Puchta J, Bhogal P, Hoffmann KT, Emmer A, Quäschling U, Scherlach C, Härtig W, Schob S. Rheologically Essential Surfactant Proteins of the CSF Interacting with Periventricular White Matter Changes in Hydrocephalus Patients - Implications for CSF Dynamics and the Glymphatic System. Mol Neurobiol 2019; 56:7863-7871. [PMID: 31127529 DOI: 10.1007/s12035-019-01648-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
Surfactant proteins (SP) are multi-systemic proteins playing crucial roles in the regulation of rheological properties of physiological fluids, host defense, and the clearance of potentially harmful metabolites. Hydrocephalus patients suffer from disturbed central nervous system (CNS) fluid homeostasis and exhibit remarkably altered SP concentrations within the cerebrospinal fluid (CSF). A connection between CSF-SPs, CSF flow, and ventricular dilatation, a morphological hallmark of hydrocephalus, has been reported previously. However, currently there are no studies investigating the link between rheologically active SPs and periventricular white matter changes caused by impaired CSF microcirculation in hydrocephalic conditions. Thus, the aim of this study was to assess their possible relationships. The present study included 47 individuals (27 healthy subjects and 20 hydrocephalus patients). CSF specimens were analyzed for concentrations of SP-A, SP-C, and SP-D by using enzyme-linked immunosorbent assays (ELISAs). Axial T2w turbo inversion recovery magnitude (TIRM) magnetic resonance imaging was employed in all cases. Using a custom-made MATLAB-based tool for quantification of magnetic resonance signal intensities in the brain, parameters related to disturbed deep white matter CSF microcirculation were estimated (TIRM signal intensity (SI)-mean, minimum, maximum, median, mode, standard deviation, and percentiles, p10th, p25th, p75th, p90th, as well as kurtosis, skewness, and entropy of the SI distribution). Subsequently, statistical analysis was performed (IBM SPSS 24™) to identify differences between hydrocephalic patients and healthy individuals and to further investigate the connections between CSF-SP changes and deep white matter signal intensities. SP-A (0.38 ± 0.23 vs. 0.76 ± 0.49 ng/ml) and SP-C (0.54 ± 0.28 vs. 1.27 ± 1.09 ng/ml) differed between healthy controls and hydrocephalus patients in a statistically significant manner. Also, corresponding quantification of white matter signal intensities revealed statistically significant differences between hydrocephalus patients and healthy individuals: SImean (370.41 ± 188.15 vs. 222.27 ± 99.86, p = 0.001), SImax (1115.30 ± 700.12 vs. 617.00 ± 459.34, p = 0.005), SImedian (321.40 ± 153.17 vs. 209.52 ± 84.86, p = 0.001), SImode (276.55 ± 125.63 vs. 197.26 ± 78.51, p = 0.011), SIstd (157.09 ± 110.07 vs. 81.71 ± 64.94, p = 0.005), SIp10 (229.10 ± 104.22 vs. 140.00 ± 63.12, p = 0.001), SIp25 (266.95 ± 122.62 vs. 175.63 ± 71.42, p = 0.002), SIp75 (428.80 ± 226.88 vs. 252.19 ± 110.91, p = 0.001), SIp90 (596.47 ± 345.61 vs. 322.06 ± 176.00, p = 0.001), skewness (1.19 ± 0.68 vs. 0.43 ± 1.19, p = 0.014), and entropy (5.36 ± 0.37 vs. 4.92 ± 0.51, p = 0.002). There were no differences regarding SP-D levels in hydrocephalus patients vs. healthy controls. In the acute hydrocephalic subgroup, correlations were as follows: SP-A showed a statistically significant correlation with SImax (r = 0.670, p = 0.024), SIstd (r = 0.697, p = 0.017), SIp90 (r = 0.621, p = 0.041), and inverse correlation with entropy (r = - 0.700, p = 0.016). SP-C correlated inversely with entropy (r = - 0.686, p = 0.020). For the chronic hydrocephalus subgroup, the following correlations were identified: SP-A correlated with kurtosis of the TIRM histogram (r = - 0.746, p = 0.021). SP-C correlated with SImean (r = - 0.688, p = 0.041), SImax (r = - 0.741, p = 0.022), SImedian (r = - 0.716, p = 0.030), SImode (r = - 0.765, p = 0.016), SIstd (r = - 0.671, p = 0.048), SIp25 (r = - 0.740, p = 0.023), SIp75 (r = - 0.672, p = 0.048), and SIp90 (r = - 0.667, p = 0.050). SP-D apparently does not play a major role in CSF fluid physiology. SP-A and SP-C are involved in different aspects of CNS fluid physiology. SP-A appears to play an essential compensatory role in acute hydrocephalus and seems less involved in chronic hydrocephalus. In contrary, SP-C profile and white matter changes are remarkably connected in CSF of chronic hydrocephalus patients. Considering the association between CSF flow phenomena, white matter changes, and SP-C profiles, the latter may especially contribute to the regulation of paravascular glymphatic physiology.
Collapse
Affiliation(s)
- Alexander Weiß
- Department of Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Matthias Krause
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | - Anika Stockert
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Cindy Richter
- Department of Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Joana Puchta
- Department of Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany.,Paul Flechsig Institute for Brain Research, University Leipzig, Leipzig, Germany
| | - Pervinder Bhogal
- Department of Interventional Neuroradiology, Royal London Hospital, London, UK
| | - Karl-Titus Hoffmann
- Department of Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Alexander Emmer
- Department for Neurology, University Hospital Halle-Wittenberg, Halle, Germany
| | - Ulf Quäschling
- Department of Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Cordula Scherlach
- Department of Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University Leipzig, Leipzig, Germany
| | - Stefan Schob
- Department of Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany.
| |
Collapse
|
9
|
Krause M, Peukert N, Härtig W, Emmer A, Mahr CV, Richter C, Dieckow J, Puchta J, Pirlich M, Hoffmann KT, Nestler U, Schob S. Localization, Occurrence, and CSF Changes of SP-G, a New Surface Active Protein with Assumable Immunoregulatory Functions in the CNS. Mol Neurobiol 2018; 56:2433-2439. [PMID: 30032421 DOI: 10.1007/s12035-018-1247-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/15/2018] [Indexed: 10/28/2022]
Abstract
Conventional surfactant proteins (A, B, C, and D) are important players of the innate immunity in the central nervous system and serve as effective regulators of cerebrospinal fluid rheology, probably being involved in clearance of detrimental metabolites like beta-amyloid and phospho-tau. Recently, a novel surfactant protein, SP-G, was described in kidneys and peripheral endocrine and exocrine glands. So far, its presence and possible functions in the central nervous system are unknown. Therefore, our study aimed to elucidate the presence of SP-G in the brain and its concentration in normal and pathologic samples of cerebrospinal fluid in order to gain first insight into its regulation and possible functions. A total of 121 samples of human cerebrospinal fluid (30 controls, 60 hydrocephalus patients, 7 central nervous system infections, and 24 brain hemorrhage patients) and 21 rat brains were included in our study. CSF samples were quantified using a commercially available ELISA system. Results were analyzed statistically using SPSS 22, performing Spearman Rho correlation and ANOVA with Dunnett's post hoc analysis. Rat brains were investigated via immunofluorescence to determine SP-G presence and colocalization with common markers like aquaporin-4, glial fibrillary acidic protein, platelet endothelial adhesion molecule 1, and neuronal nuclear antigen. SP-G occurs associated with brain vessels, comparable to other conventional SPs, and is present in a set of cortical neurons. SP-G is furthermore actively produced by ependymal and choroid plexus epithelium and secreted into the cerebrospinal fluid. Its concentrations are low in control subjects and patients suffering from aqueductal stenosis, higher in normal pressure hydrocephalus (p < 0.01), and highest in infections of the central nervous system and brain hemorrhage (p < 0.001). Interestingly, SP-G did correlate with total CSF protein in patients with CNS infections and hemorrhage, but not with cell count. Based on the changes in CSF levels of SP-G in hydrocephalus, brain hemorrhage, and CNS infections as well as its abundance at CSF flow-related anatomical structures closely associated with immunological barrier systems, importance for CSF rheology, brain waste clearance, and host defense is assumable. Thus, SP-G is a potential new CSF biomarker, possibly not only reflecting aspects of CNS innate immune responses, but also rheo-dynamically relevant changes of CSF composition, associated with CSF malabsorbtion. However, further studies are warranted to validate our findings and increase insight into the physiological importance of SP-G in the CNS.
Collapse
Affiliation(s)
- Matthias Krause
- Department for Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | - Nicole Peukert
- Department for Pediatric Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, Medical Faculty / University Leipzig, Leipzig, Germany
| | - Alexander Emmer
- Department for Neurology, University Hospital Halle-Wittenberg / Martin Luther University, Halle/Saale, Germany
| | | | - Cindy Richter
- Department for Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Julia Dieckow
- Department for Ophthalmology, University Hospital Leipzig, Leipzig, Germany
| | - Joana Puchta
- Paul Flechsig Institute for Brain Research, Medical Faculty / University Leipzig, Leipzig, Germany.,Department for Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Mandy Pirlich
- Department for Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Karl-Titus Hoffmann
- Department for Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Ulf Nestler
- Department for Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | - Stefan Schob
- Department for Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany.
| |
Collapse
|
10
|
Abstract
Only a few extracellular soluble proteins are known to modulate apoptosis. We considered that surfactant-associated protein D (SP-D), an innate immune collectin present on many mucosal surfaces, could regulate apoptosis. Although SP-D is known to be important for immune cell homeostasis, whether SP-D affects apoptosis is unknown. In this study we aimed to determine the effects of SP-D on Jurkat T cells and human T cells dying by apoptosis. Here we show that SP-D binds to Jurkat T cells and delays the progression of Fas (CD95)-Fas ligand and TRAIL-TRAIL receptor induced, but not TNF-TNF receptor-mediated apoptosis. SP-D exerts its effects by reducing the activation of initiator caspase-8 and executioner caspase-3. SP-D also delays the surface exposure of phosphatidylserine. The effect of SP-D was ablated by the presence of caspase-8 inhibitor, but not by intrinsic pathway inhibitors. The binding ability of SP-D to dying cells decreases during the early stages of apoptosis, suggesting the release of apoptotic cell surface targets during apoptosis. SP-D also delays FasL-induced death of primary human T cells. SP-D delaying the progression of the extrinsic pathway of apoptosis could have important implications in regulating immune cell homeostasis at mucosal surfaces.
Collapse
|
11
|
Schob S, Weiß A, Surov A, Dieckow J, Richter C, Pirlich M, Horvath-Rizea D, Härtig W, Hoffmann KT, Krause M, Quäschling U. Elevated Surfactant Protein Levels and Increased Flow of Cerebrospinal Fluid in Cranial Magnetic Resonance Imaging. Mol Neurobiol 2017; 55:6227-6236. [PMID: 29282698 DOI: 10.1007/s12035-017-0835-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/08/2017] [Indexed: 12/14/2022]
Abstract
Surfactant proteins (SPs) are a multifunctional group of proteins, responsible for the regulation of rheological properties of body fluids, host defense, and cellular waste clearance. Their concentrations are changed in cerebrospinal fluid (CSF) of patients suffering from communicating hydrocephalus. Hydrocephalic conditions are accompanied by altered CSF flow dynamics; however, the association of CSF-SP concentrations and CSF flow has not yet been investigated. Hence, the aim of this study was to evaluate the association between SP concentrations in the CSF and marked CSF flow phenomena at different anatomical landmarks of CSF spaces. Sixty-one individuals (15 healthy subjects and 46 hydrocephalus patients) were included in this study. CSF specimens were analyzed for SP-A, SP-B, SP-C, and SP-D concentrations by the use of enzyme-linked immunosorbent assays (ELISA). CSF flow was evaluated in axial T2_turbo inversion recovery magnitude (TIRM)-weighted and sagittal T2-weighted magnetic resonance imaging sections using a 4-grade scale (1-no flow, 2-subtle flow, 3-moderate flow, and 4-strong flow). CSF-SP concentrations (mean ± standard deviation) of the overall collective were as follows: SP-A = 0.73 ± 0.58 ng/ml, SP-B = 0.17 ± 0.93 ng/ml, SP-C = 0.95 ± 0.75 ng/ml, and SP-D = 7.43 ± 5.17 ng/ml. The difference between healthy controls and hydrocephalic patients regarding CSF concentrations of SP-A (0.34 ± 0.22 vs. 0.81 ± 0.59 ng/ml) and SP-C (0.48 ± 0.29 vs. 1.10 ± 0.79 ng/ml) revealed to be statistically significant as calculated by means of ANOVA (p values of 0.022 and 0.007, respectively). CSF flow voids were detectable at all investigated landmarks of the CSF spaces (foramina of Monro, third ventricle, mesencephalic aqueduct, prepontine cistern, fourth ventricle, cisterna magna, and craniocervical junction). CSF flow voids, reported as mean ± standard deviation, revealed to be significantly increased in hydrocephalic patients compared to controls as calculated by means of ANOVA (respective p values are given in brackets following values of descriptive statistics) at the following sites: foramina of Monro (1.60 ± 0.91 vs. 2.37 ± 0.99, p = 0.01), fourth ventricle (1.67 ± 0.98 vs. 2.52 ± 1.05, p = 0.007), and the cisterna magna (1.93 ± 1.10 vs. 2.72 ± 1.13, p = 0.022). Spearman's rank order calculation identified significant correlations for CSF flow voids at the foramina of Monro and the third ventricle with SP-A (r = 0.429, p = 0.001 and r = 0.464, p < 0.001) and CSF flow void at the mesencephalic duct with SP-D (r = - 0.371, p = 0.039). Furthermore, SP-C showed a moderate inverse correlation with age (r = - 0.302, p = 0.022). The present study confirmed statistically significant differences in SP-CSF concentrations between healthy controls and hydrocephalic patients. Additionally, significant correlations between SP concentrations in CSF with increased CSF flow were identified. These findings underline the role of SPs as regulators of CSF rheology.
Collapse
Affiliation(s)
- Stefan Schob
- Department for Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany.
| | - Alexander Weiß
- Department for Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Alexey Surov
- Department for Diagnostic and Interventional Radiology, University Hospital Leipzig, Leipzig, Germany
| | - Julia Dieckow
- Department for Ophthalmology, University Hospital Leipzig, Leipzig, Germany
| | - Cindy Richter
- Department for Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany.,Institute for Anatomy, University Hospital Leipzig, Leipzig, Germany
| | - Mandy Pirlich
- Department for Neurology, University Hospital Leipzig, Leipzig, Germany
| | | | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, Medical Faculty / University Hospital Leipzig, Leipzig, Germany
| | - Karl-Titus Hoffmann
- Department for Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Matthias Krause
- Department for Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | - Ulf Quäschling
- Department for Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| |
Collapse
|
12
|
Djiadeu P, Farmakovski N, Azzouz D, Kotra LP, Sweezey N, Palaniyar N. Surfactant protein D regulates caspase-8-mediated cascade of the intrinsic pathway of apoptosis while promoting bleb formation. Mol Immunol 2017; 92:190-198. [PMID: 29107869 DOI: 10.1016/j.molimm.2017.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 01/10/2023]
Abstract
Surfactant-associated protein D (SP-D) is a soluble innate immune collectin present on many mucosal surfaces. We recently showed that SP-D suppresses the extrinsic pathway of apoptosis by downregulating caspase-8 activation. However, the effects of SP-D on the intrinsic pathway of apoptosis are not clearly understood. In the intrinsic pathway, cytochrome c is released by mitochondria into the cytoplasm. Oxidation of cytochrome c by cytochrome c oxidase activates the apoptosome and caspase-9 cascade. Both caspase-8- and caspase-9-mediated branches are activated in the intrinsic pathway of apoptosis; however, little is known about the relevance of the caspase-8 pathway in this context. Here we studied the effects of SP-D on different branches of the intrinsic pathway of apoptosis using UV-irradiated Jurkat T-cells. We found that SP-D does not inhibit the caspase-9 branch of apoptosis and the relevance of the caspase-8-related branch became apparent when the caspase-9 pathway was inhibited by blocking cytochrome c oxidase. Under these conditions, SP-D reduces the activation of caspase-8, executioner caspase-3 and exposure of phosphatidylserine (PS) on the membranes of dying cells. By contrast, SP-D increases the formation of nuclear and membrane blebs. Inhibition of caspase-8 confirms the effect of SP-D is unique to the caspase-8 pathway. Overall, SP-D suppresses certain aspects of the intrinsic pathway of apoptosis via reduction of caspase-8 activation and PS flipping while at the same time increasing membrane and nuclear bleb formation. This novel regulatory aspect of SP-D could help to regulate intrinsic pathway of apoptosis to promote effective blebbing and breakdown of dying cells.
Collapse
Affiliation(s)
- Pascal Djiadeu
- Lung Innate Immunity Research Laboratory, Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada; Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| | - Nicole Farmakovski
- Lung Innate Immunity Research Laboratory, Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada
| | - Dhia Azzouz
- Lung Innate Immunity Research Laboratory, Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada
| | - Lakshmi P Kotra
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada; Center for Molecular Design and Preformulations, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | - Neil Sweezey
- Lung Innate Immunity Research Laboratory, Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada; Departments of Paediatrics, Physiology and Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - Nades Palaniyar
- Lung Innate Immunity Research Laboratory, Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada; Departments of Laboratory Medicine and Pathobiology and Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
13
|
Bautista-Rodriguez C, Launes C, Jordan I, Andres M, Arias MT, Lozano F, Garcia-Garcia JJ, Muñoz-Almagro C. Mannose-binding lectin-deficient genotypes as a risk factor of pneumococcal meningitis in infants. PLoS One 2017; 12:e0178377. [PMID: 28562692 PMCID: PMC5451051 DOI: 10.1371/journal.pone.0178377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/11/2017] [Indexed: 12/24/2022] Open
Abstract
Objectives The objective of this study was to evaluate to evaluate the role of mannose-binding-lectin deficient genotypes in pneumococcal meningitis (PM) in children. Methods We performed a 16-year retrospective study (January 2001 to March 2016) including patients ≤ 18 years with PM. Variables including attack rate of pneumococcal serotype (high or low invasive capacity) and MBL2 genotypes associated with low serum MBL levels were recorded. Results Forty-eight patients were included in the study. Median age was 18.5 months and 17/48 episodes (35.4%) occurred in children ≤ 12 months old. Serotypes with high-invasive disease potential were identified in 15/48 episodes (31.2%). MBL2 deficient genotypes accounted for 18.8% (9/48). Children ≤ 12 months old had a 7-fold risk (95% CI: 1.6–29.9; p < 0.01) of having a MBL2 deficient genotype in comparison to those > 12 months old. A sub-analysis of patients by age group revealed significant proportions of carriers of MBL2 deficient genotypes among those ≤ 12 months old with PM caused by opportunistic serotypes (54.5%), admitted to the PICU (Pediatric Intensive Care Unit) (46.7%) and of White ethnicity (35.7%). These proportions were significantly higher than in older children (all p<0.05). Conclusions Our results suggest that differences in MBL2 genotype in children ≤12 months old affects susceptibility to PM, and it may have an important role in the episodes caused by non-high invasive disease potential serotypes.
Collapse
Affiliation(s)
| | - Cristian Launes
- Pediatrics Department, University Hospital Sant Joan de Deu, Barcelona, Spain
- CIBER de Epidemiologia y Salud Publica (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Iolanda Jordan
- CIBER de Epidemiologia y Salud Publica (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Intensive Care Department, University Hospital Sant Joan de Deu, Barcelona, Spain
- School of Medicine, University of Barcelona, Barcelona, Spain
| | - Maria Andres
- CIBER de Epidemiologia y Salud Publica (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Molecular Microbiology Department, University Hospital Sant Joan de Deu, Barcelona, Spain
| | - Maria Teresa Arias
- Department of Immunology, Centre de Diagnostic Biomedic, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Francisco Lozano
- School of Medicine, University of Barcelona, Barcelona, Spain
- Department of Immunology, Centre de Diagnostic Biomedic, Hospital Clinic of Barcelona, Barcelona, Spain
- Immunoreceptors of the Innate and Adaptive Systems, Institut Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Jose Garcia-Garcia
- Pediatrics Department, University Hospital Sant Joan de Deu, Barcelona, Spain
- CIBER de Epidemiologia y Salud Publica (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- School of Medicine, University of Barcelona, Barcelona, Spain
| | - Carmen Muñoz-Almagro
- CIBER de Epidemiologia y Salud Publica (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Molecular Microbiology Department, University Hospital Sant Joan de Deu, Barcelona, Spain
- School of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
- * E-mail:
| |
Collapse
|
14
|
Schob S, Weiß A, Dieckow J, Richter C, Pirlich M, Voigt P, Surov A, Hoffmann KT, Quaeschling U, Preuß M. Correlations of Ventricular Enlargement with Rheologically Active Surfactant Proteins in Cerebrospinal Fluid. Front Aging Neurosci 2017; 8:324. [PMID: 28101052 PMCID: PMC5209370 DOI: 10.3389/fnagi.2016.00324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/14/2016] [Indexed: 12/25/2022] Open
Abstract
Purpose: Surfactant proteins (SPs) are involved in the regulation of rheological properties of body fluids. Concentrations of SPs are altered in the cerebrospinal fluid (CSF) of hydrocephalus patients. The common hallmark of hydrocephalus is enlargement of the brain ventricles. The relationship of both phenomena has not yet been investigated. The aim of this study was to evaluate the association between SP concentrations in the CSF and enlargement of the brain ventricles. Procedures: Ninty-six individuals (41 healthy subjects and 55 hydrocephalus patients) were included in this retrospective analysis. CSF specimens were analyzed for SP-A, SP-B, SP-C and SP-D concentrations by use of enzyme linked immunosorbent assays (ELISA). Ventricular enlargement was quantified in T2 weighted (T2w) magnetic resonance imaging (MRI) sections using an uni-dimensional (Evans’ Index) and a two-dimensional approach (lateral ventricles area index, LVAI). Results: CSF-SP concentrations (mean ± standard deviation in ng/ml) were as follows: SP-A 0.71 ± 0.58, SP-B 0.18 ± 0.43, SP-C 0.89 ± 0.77 and SP-D 7.4 ± 5.4. Calculated values of Evans’ Index were 0.37 ± 0.11, a calculation of LVAI resulted in 0.18 ± 0.15 (each mean ± standard deviation). Significant correlations were identified for Evans’ Index with SP-A (r = 0.388, p < 0.001) and SP-C (r = 0.392, p < 0.001), LVAI with SP-A (r = 0.352, p = 0.001), SP-C (r = 0.471, p < 0.001) and SP-D (r = 0.233, p = 0.025). Furthermore, SP-C showed a clear inverse correlation with age (r = −0.357, p = 0.011). Conclusion: The present study confirmed significant correlations between SPs A, C and D in the CSF with enlargement of the inner CSF spaces. In conclusion, SPs clearly play an important role for CSF rheology. CSF rheology is profoundly altered in hydrocephalic diseases, however, diagnosis and therapy of hydrocephalic conditions are still almost exclusively based on ventricular enlargement. Until now it was unclear, whether the stage of the disease, as represented by the extent of ventricular dilatation, is somehow related to the changes of SP levels in the CSF. Our study is the first to provide evidence that increasing ventriculomegaly is accompanied by enhanced changes of rheologically active compounds in the CSF and therefore introduces completely new aspects for hydrocephalus testing and conservative therapeutic approaches.
Collapse
Affiliation(s)
- Stefan Schob
- Department of Neuroradiology, Leipzig University Leipzig, Germany
| | - Alexander Weiß
- Department of Neuroradiology, Leipzig University Leipzig, Germany
| | - Julia Dieckow
- Department of Ophthalmology, Leipzig University Leipzig, Germany
| | - Cindy Richter
- Institute of Anatomy, Leipzig University Leipzig, Germany
| | - Mandy Pirlich
- Department of Neurology, Leipzig University Leipzig, Germany
| | - Peter Voigt
- Department of Neuroradiology, Leipzig University Leipzig, Germany
| | - Alexey Surov
- Department of Diagnostic and Interventional Radiology, Leipzig University Hospital Leipzig, Germany
| | | | - Ulf Quaeschling
- Department of Neuroradiology, Leipzig University Leipzig, Germany
| | - Matthias Preuß
- Department of Neurosurgery, Leipzig University Leipzig, Germany
| |
Collapse
|
15
|
The Cerebral Surfactant System and Its Alteration in Hydrocephalic Conditions. PLoS One 2016; 11:e0160680. [PMID: 27656877 PMCID: PMC5033422 DOI: 10.1371/journal.pone.0160680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/24/2016] [Indexed: 01/06/2023] Open
Abstract
Introduction Pulmonary Surfactant reduces surface tension in the terminal airways thus facilitating breathing and contributes to host’s innate immunity. Surfactant Proteins (SP) A, B, C and D were recently identified as inherent proteins of the CNS. Aim of the study was to investigate cerebrospinal fluid (CSF) SP levels in hydrocephalus patients compared to normal subjects. Patients and Methods CSF SP A-D levels were quantified using commercially available ELISA kits in 126 patients (0–84 years, mean 39 years). 60 patients without CNS pathologies served as a control group. Hydrocephalus patients were separated in aqueductal stenosis (AQS, n = 24), acute hydrocephalus without aqueductal stenosis (acute HC w/o AQS, n = 16) and idiopathic normal pressure hydrocephalus (NPH, n = 20). Furthermore, six patients with pseudotumor cerebri were investigated. Results SP A—D are present under physiological conditions in human CSF. SP-A is elevated in diseases accompanied by ventricular enlargement (AQS, acute HC w/o AQS) in a significant manner (0.67, 1.21 vs 0.38 ng/ml in control, p<0.001). SP-C is also elevated in hydrocephalic conditions (AQS, acute HC w/o AQS; 0.87, 1.71 vs. 0.48 ng/ml in controls, p<0.001) and in Pseudotumor cerebri (1.26 vs. 0.48 ng/ml in controls, p<0.01). SP-B and SP-D did not show significant alterations. Conclusion The present study confirms the presence of SPs in human CSF. There are significant changes of SP-A and SP-C levels in diseases affecting brain water circulation and elevation of intracranial pressure. Cause of the alterations, underlying regulatory mechanisms, as well as diagnostic and therapeutic consequences of cerebral SP’s requires further thorough investigations.
Collapse
|
16
|
Dong D, Yulin Z, Yan X, Hongyan Z, Shitao Z, Jia W. Enhanced expressions of lysozyme, SLPI and glycoprotein 340 in biofilm-associated chronic rhinosinusitis. Eur Arch Otorhinolaryngol 2015; 271:1563-71. [PMID: 24121782 DOI: 10.1007/s00405-013-2758-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 10/02/2013] [Indexed: 12/20/2022]
Abstract
Lysozyme, secretory leukocyte proteinase inhibitor (SLPI) and glycoprotein 340 (gp340) are important effectors of the innate immune system in sinonasal mucosa. Bacterial biofilms (BBF) are highly organized bacterial communities resistant to host defense systems. The aim of this study was to investigate the expression of lysozyme, SLPI and gp340 in sinus mucosa from chronic rhinosinusitis (CRS) patients with different BBF status. In this prospective cohort study, 63 CRS patients undergoing endoscopic sinus surgery and 20 controls were enrolled and their mucosal samples from ethmoid sinus were obtained. Biofilms were examined by confocal scanning laser microscopy (CSLM), and the expressions of lysozyme, SLPI and gp340 in mRNA and protein levels were detected using reverse transcription polymerase chain reaction (RT-PCR), immunohistochemistry and Western blot assay, respectively. As a result, 35/63 (55.6%) of the patients were BBF positive in the CRS group and none in controls. Both mRNA and protein levels of lysozyme, SLPI and gp340 in patients with CRS were significantly higher than those in controls. When sub-classified according to BBF status, the CRS patients with BBF revealed the significantly enhanced mRNA and protein levels of lysozyme, SLPI and gp340. In conclusion, our study demonstrates that lysozyme, SLPI and gp340 are constitutively expressed in sinus mucosa and their up-regulated expressions on both the mRNA and protein levels are associated with BBF in CRS patients. These findings may offer an insight into the interaction between BBF and the innate immune system.
Collapse
|
17
|
Tolosa MF, Palaniyar N. Severe respiratory insufficiency during pandemic H1N1 infection: prognostic value and therapeutic potential of pulmonary surfactant protein A. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:479. [PMID: 25184962 PMCID: PMC4423634 DOI: 10.1186/s13054-014-0479-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 07/24/2014] [Indexed: 12/20/2022]
Abstract
For almost two decades, studies have shown collectins to be critical for effective antimicrobial defense of the airways. Members of this protein family, which includes surfactant proteins (SP)-A and D, provide broad-spectrum protection through promoting the aggregation and clearance of pathogens. Interestingly, these proteins may also modulate the immune response, and growing evidence has shown collectins to be protective against several markers of inflammation and injury. In a recent study by Herrera-Ramos and colleagues, genetic variants of collectins were examined in Spanish patients with the pandemic 2009 H1N1 influenza A virus. Comparing genotypes for measures of poor lung function, inflammation, and admission to intensive care, these authors identified three variants of the SP-A gene SFTPA2 that positively correlated with flu severity. Remarkably, they also found the haplotype 1A1 of SFTPA2 to be protective against these indicators, suggesting that targeted therapy with a recombinant form of SP-A2 may improve patient outcome. Although further work is required to confirm the specificity and efficacy of SP-A in therapeutic H1N1 protection, this study is one of the first to suggest a clinical role for SP-A in pandemic influenza.
Collapse
Affiliation(s)
- Monica Fern Tolosa
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada. .,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Nades Palaniyar
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada. .,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
18
|
Hamilos DL. Host-microbial interactions in patients with chronic rhinosinusitis. J Allergy Clin Immunol 2013; 133:640-53.e4. [PMID: 24290275 PMCID: PMC7112254 DOI: 10.1016/j.jaci.2013.06.049] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 12/26/2022]
Abstract
There has been considerable investigation of host-microbial interactions in patients with chronic rhinosinusitis (CRS) in hopes of elucidating mechanisms of disease and better treatment. Most attention has been paid to bacterial infection and potential underlying defects in innate immunity. Bacterial biofilm is present in most patients with CRS undergoing surgical intervention, and its presence is associated with more severe disease and worse surgical outcomes. A role for viral or fungal infection in patients with CRS is less clear. There is no evidence for a primary defect in mucociliary clearance in most patients with CRS. Decreased levels of certain antimicrobial proteins, most notably lactoferrin, have been found in sinus secretions, whereas levels of other antimicrobial proteins have been found to be normal. No primary defects in Toll-like receptors have been found in patients with CRS, although a 50% reduced expression of Toll-like receptor 9 was reported in patients with recalcitrant nasal polyps. A polymorphism in a bitter taste receptor was recently associated with refractory CRS and persistent Pseudomonas aeruginosa infection. A downregulation of innate immunity by maladaptive TH2 tissue inflammation has also been described in patients with recalcitrant nasal polyps, suggesting a link to persistent infection. To date, an effective means of restoring host-microbial balance and mitigating disease in patients with CRS remains elusive.
Collapse
Affiliation(s)
- Daniel L Hamilos
- Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Boston, Mass.
| |
Collapse
|
19
|
le Roex N, Koets AP, van Helden PD, Hoal EG. Gene polymorphisms in African buffalo associated with susceptibility to bovine tuberculosis infection. PLoS One 2013; 8:e64494. [PMID: 23691232 PMCID: PMC3654904 DOI: 10.1371/journal.pone.0064494] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/15/2013] [Indexed: 12/19/2022] Open
Abstract
Bovine tuberculosis (BTB) is a chronic, highly infectious disease that affects humans, cattle and numerous species of wildlife. In developing countries such as South Africa, the existence of extensive wildlife-human-livestock interfaces poses a significant risk of Mycobacterium bovis transmission between these groups, and has far-reaching ecological, economic and public health impacts. The African buffalo (Syncerus caffer), acts as a maintenance host for Mycobacterium bovis, and maintains and transmits the disease within the buffalo and to other species. In this study we aimed to investigate genetic susceptibility of buffalo for Mycobacterium bovis infection. Samples from 868 African buffalo of the Cape buffalo subspecies were used in this study. SNPs (n = 69), with predicted functional consequences in genes related to the immune system, were genotyped in this buffalo population by competitive allele-specific SNP genotyping. Case-control association testing and statistical analyses identified three SNPs associated with BTB status in buffalo. These SNPs, SNP41, SNP137 and SNP144, are located in the SLC7A13, DMBT1 and IL1α genes, respectively. SNP137 remained significantly associated after permutation testing. The three genetic polymorphisms identified are located in promising candidate genes for further exploration into genetic susceptibility to BTB in buffalo and other bovids, such as the domestic cow. These polymorphisms/genes may also hold potential for marker-assisted breeding programmes, with the aim of breeding more BTB-resistant animals and herds within both the national parks and the private sector.
Collapse
Affiliation(s)
- Nikki le Roex
- Division of Molecular Biology and Human Genetics, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | | | | | | |
Collapse
|
20
|
Liu M, Pan J, Ji H, Zhao B, Zhang S. Vitellogenin mediates phagocytosis through interaction with FcγR. Mol Immunol 2011; 49:211-8. [DOI: 10.1016/j.molimm.2011.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 08/09/2011] [Accepted: 08/18/2011] [Indexed: 10/17/2022]
|
21
|
Douda DN, Jackson R, Grasemann H, Palaniyar N. Innate immune collectin surfactant protein D simultaneously binds both neutrophil extracellular traps and carbohydrate ligands and promotes bacterial trapping. THE JOURNAL OF IMMUNOLOGY 2011; 187:1856-65. [PMID: 21724991 DOI: 10.4049/jimmunol.1004201] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neutrophils release DNA-based extracellular traps to capture and kill bacteria. The mechanism(s) and proteins that promote neutrophil extracellular trap (NET)-mediated bacterial trapping are not clearly established. Surfactant protein D (SP-D) is an innate immune collectin present in many mucosal surfaces. We hypothesized that SP-D can bind both the pathogens and NETs to augment NET-mediated bacterial trapping. To test this hypothesis, we used LPS and Pseudomonas aeruginosa pneumonia mouse models and performed in vivo and ex vivo assays. In this study, we show that NETs are produced by the neutrophils recruited to the airways in response to the bacterial ligand. Notably, NETs are detected as short fragments of DNA-protein complexes in the airways as opposed to the long stringlike structures seen in ex vivo cultures. SP-D recognizes both the short NET fragments and the long NET DNA structures. SP-D-NET copurification studies further show that SP-D can simultaneously recognize NETs and carbohydrate ligands in vivo. Similar to the LPS model, soluble DNA-protein complexes and increased amounts of SP-D are detected in the murine model of P. aeruginosa pneumonia. We then tested the effect of SP-D on NET-mediated trapping of P. aeruginosa by means of Western blots, fluorescence microscopy, and scanning electron microscopy. Results of these experiments show that SP-D microagglutinates P. aeruginosa and allows an efficient bacterial trapping by NETs. Collectively, these findings provide a unique biological relevance for SP-D-DNA interactions and places SP-D as an important innate immune protein that promotes bacterial trapping by NETs during neutrophil-mediated host defense.
Collapse
Affiliation(s)
- David Nobuhiro Douda
- Program in Physiology and Experimental Medicine, SickKids Research Institute, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
22
|
Jolly A, Colavecchia SB, Fernández B, Fernández E, Mundo SL. Antibodies Induced by Lipoarabinomannan in Bovines: Characterization and Effects on the Interaction between Mycobacterium Avium Subsp. Paratuberculosis and Macrophages In Vitro. Vet Med Int 2011; 2011:258479. [PMID: 21772964 PMCID: PMC3134984 DOI: 10.4061/2011/258479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/08/2011] [Accepted: 04/15/2011] [Indexed: 12/25/2022] Open
Abstract
Lipoarabinomannan (LAM) is a major glycolipidic antigen on the mycobacterial envelope. The aim of this study was to characterize the humoral immune response induced by immunization with a LAM extract in bovines and to evaluate the role of the generated antibodies in the in vitro infection of macrophages with Mycobacterium avium subsp. paratuberculosis (MAP). Sera from fourteen calves immunized with LAM extract or PBS emulsified in Freund's Incomplete Adjuvant and from five paratuberculosis-infected bovines were studied. LAM-immunized calves developed specific antibodies with IgG1 as the predominant isotype. Serum immunoglobulins were isolated and their effect was examined in MAP ingestion and viability assays using a bovine macrophage cell line. Our results show that the antibodies generated by LAM immunization significantly increase MAP ingestion and reduce its intracellular viability, suggesting an active role in this model.
Collapse
Affiliation(s)
- Ana Jolly
- Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Chorroarín 280, C1427CWO Buenos Aires, Argentina
| | - Silvia Beatriz Colavecchia
- Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Chorroarín 280, C1427CWO Buenos Aires, Argentina
| | - Bárbara Fernández
- Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Chorroarín 280, C1427CWO Buenos Aires, Argentina
| | - Eloy Fernández
- Clínica de Rumiantes, Facultad de Ciencias Veterinarias, Universidad de Buenos Aire (UBA), Chorroarín 280, C1427CWO Buenos Aires, Argentina
| | - Silvia Leonor Mundo
- Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Chorroarín 280, C1427CWO Buenos Aires, Argentina
| |
Collapse
|
23
|
Litvack ML, Post M, Palaniyar N. IgM promotes the clearance of small particles and apoptotic microparticles by macrophages. PLoS One 2011; 6:e17223. [PMID: 21448268 PMCID: PMC3063157 DOI: 10.1371/journal.pone.0017223] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 01/24/2011] [Indexed: 12/20/2022] Open
Abstract
Background Antibodies are often involved in enhancing particle clearance by macrophages. Although the mechanisms of antibody-dependent phagocytosis have been studied for IgG in greater detail, very little is known about IgM-mediated clearance. It has been generally considered that IgM does not support phagocytosis. Recent studies indicate that natural IgM is important to clear microbes and other bioparticles, and that shape is critical to particle uptake by macrophages; however, the relevance of IgM and particle size in their clearance remains unclear. Here we show that IgM has a size-dependent effect on clearance. Methodology/Principal Findings We used antibody-opsonized sheep red blood cells, different size beads and apoptotic cells to determine the effect of human and mouse IgM on phagocytosis by mouse alveolar macrophages. Our microscopy (light, epifluorescence, confocal) and flow cytometry data show that IgM greatly enhances the clearance of small particles (about 1–2 micron) by these macrophages. There is an inverse relationship between IgM-mediated clearance by macrophages and the particle size; however, macrophages bind and internalize many different size particles coated with IgG. We also show that IgM avidly binds to small size late apoptotic cells or bodies (2–5 micron) and apoptotic microparticles (<2 µm) released from dying cells. IgM also promotes the binding and uptake of microparticle-coated beads. Conclusions/Significance Therefore, while the shape of the particles is important for non-opsonized particle uptake, the particle size matters for antibody-mediated clearance by macrophages. IgM particularly promotes the clearance of small size particles. This finding may have wider implications in IgM-mediated clearing of antigens, microbial pathogens and dying cells by the host.
Collapse
Affiliation(s)
- Michael L. Litvack
- Lung Innate Immunity Research Laboratory, The Hospital for Sick Children, Toronto, Ontario, Canada
- Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Martin Post
- Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nades Palaniyar
- Lung Innate Immunity Research Laboratory, The Hospital for Sick Children, Toronto, Ontario, Canada
- Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
24
|
Natural IgM and innate immune collectin SP-D bind to late apoptotic cells and enhance their clearance by alveolar macrophages in vivo. Mol Immunol 2010; 48:37-47. [DOI: 10.1016/j.molimm.2010.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 09/16/2010] [Accepted: 09/22/2010] [Indexed: 11/16/2022]
|