1
|
Vasilchikova E, Ermakova P, Bogomolova A, Kashirina A, Lugovaya L, Tselousova J, Naraliev N, Kuchin D, Zagaynova E, Zagainov V, Kashina A. A Fresh Look at Islet Isolation from Rabbit Pancreases. Int J Mol Sci 2024; 25:10669. [PMID: 39408998 PMCID: PMC11477383 DOI: 10.3390/ijms251910669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Islet transplantation represents a promising therapeutic approach for diabetes management, yet the isolation and evaluation of pancreatic islets remain challenging. This study focuses on the isolation of islets from rabbit pancreases, followed by a comprehensive assessment of their viability and functionality. We developed a novel method for isolating islet cells from the pancreas of adult rabbits. We successfully isolated viable islets, which were subsequently evaluated through a combination of viability assays, an insulin enzyme-linked immunosorbent assay (ELISA), and fluorescence lifetime imaging microscopy (FLIM). The viability assays indicated a high percentage of intact islets post-isolation, while the insulin ELISA demonstrated robust insulin secretion in response to glucose stimulation. FLIM provided insights into the metabolic state of the islets, revealing distinct fluorescence lifetime signatures correlating with functional viability. Our findings underscore the potential of rabbit islets as a model for studying islet biology and diabetes therapy, highlighting the efficacy of combining traditional assays with advanced imaging techniques for comprehensive functional assessments. This research contributes to the optimization of islet isolation protocols and enhances our understanding of islet functional activity dynamics in preclinical settings.
Collapse
Affiliation(s)
- Ekaterina Vasilchikova
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of Russia, Nizhny Novgorod 603082, Russia; (P.E.); (A.B.); (A.K.); (L.L.); (J.T.); (N.N.); (D.K.); (E.Z.); (V.Z.); (A.K.)
- Federal State Educational Institution of Higher Educational Institution “National Research Nizhny Novgorod State University Named after N.I. Lobachevsky”, Nizhny Novgorod 603105, Russia
| | - Polina Ermakova
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of Russia, Nizhny Novgorod 603082, Russia; (P.E.); (A.B.); (A.K.); (L.L.); (J.T.); (N.N.); (D.K.); (E.Z.); (V.Z.); (A.K.)
| | - Alexandra Bogomolova
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of Russia, Nizhny Novgorod 603082, Russia; (P.E.); (A.B.); (A.K.); (L.L.); (J.T.); (N.N.); (D.K.); (E.Z.); (V.Z.); (A.K.)
| | - Alena Kashirina
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of Russia, Nizhny Novgorod 603082, Russia; (P.E.); (A.B.); (A.K.); (L.L.); (J.T.); (N.N.); (D.K.); (E.Z.); (V.Z.); (A.K.)
| | - Liya Lugovaya
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of Russia, Nizhny Novgorod 603082, Russia; (P.E.); (A.B.); (A.K.); (L.L.); (J.T.); (N.N.); (D.K.); (E.Z.); (V.Z.); (A.K.)
| | - Julia Tselousova
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of Russia, Nizhny Novgorod 603082, Russia; (P.E.); (A.B.); (A.K.); (L.L.); (J.T.); (N.N.); (D.K.); (E.Z.); (V.Z.); (A.K.)
| | - Nasip Naraliev
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of Russia, Nizhny Novgorod 603082, Russia; (P.E.); (A.B.); (A.K.); (L.L.); (J.T.); (N.N.); (D.K.); (E.Z.); (V.Z.); (A.K.)
- State Budgetary Healthcare Institution “Nizhny Novgorod Regional Clinical Oncology Dispensary”, Nizhny Novgorod 603126, Russia
| | - Denis Kuchin
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of Russia, Nizhny Novgorod 603082, Russia; (P.E.); (A.B.); (A.K.); (L.L.); (J.T.); (N.N.); (D.K.); (E.Z.); (V.Z.); (A.K.)
- Nizhny Novgorod Regional Clinical Hospital Named after N.A. Semashko, Nizhny Novgorod 603005, Russia
| | - Elena Zagaynova
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of Russia, Nizhny Novgorod 603082, Russia; (P.E.); (A.B.); (A.K.); (L.L.); (J.T.); (N.N.); (D.K.); (E.Z.); (V.Z.); (A.K.)
- Federal Scientific and Clinical Center for Physico-Chemical Medicine Named after Academician Yu. M. Lopukhin, Moscow 119334, Russia
| | - Vladimir Zagainov
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of Russia, Nizhny Novgorod 603082, Russia; (P.E.); (A.B.); (A.K.); (L.L.); (J.T.); (N.N.); (D.K.); (E.Z.); (V.Z.); (A.K.)
- State Budgetary Healthcare Institution “Nizhny Novgorod Regional Clinical Oncology Dispensary”, Nizhny Novgorod 603126, Russia
| | - Alexandra Kashina
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of Russia, Nizhny Novgorod 603082, Russia; (P.E.); (A.B.); (A.K.); (L.L.); (J.T.); (N.N.); (D.K.); (E.Z.); (V.Z.); (A.K.)
- Federal Scientific and Clinical Center for Physico-Chemical Medicine Named after Academician Yu. M. Lopukhin, Moscow 119334, Russia
| |
Collapse
|
2
|
Bertorello S, Cei F, Fink D, Niccolai E, Amedei A. The Future Exploring of Gut Microbiome-Immunity Interactions: From In Vivo/Vitro Models to In Silico Innovations. Microorganisms 2024; 12:1828. [PMID: 39338502 PMCID: PMC11434319 DOI: 10.3390/microorganisms12091828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Investigating the complex interactions between microbiota and immunity is crucial for a fruitful understanding progress of human health and disease. This review assesses animal models, next-generation in vitro models, and in silico approaches that are used to decipher the microbiome-immunity axis, evaluating their strengths and limitations. While animal models provide a comprehensive biological context, they also raise ethical and practical concerns. Conversely, modern in vitro models reduce animal involvement but require specific costs and materials. When considering the environmental impact of these models, in silico approaches emerge as promising for resource reduction, but they require robust experimental validation and ongoing refinement. Their potential is significant, paving the way for a more sustainable and ethical future in microbiome-immunity research.
Collapse
Affiliation(s)
- Sara Bertorello
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Francesco Cei
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Dorian Fink
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
- Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis Research for a Circular Health), University of Florence, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
- Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis Research for a Circular Health), University of Florence, 50134 Florence, Italy
| |
Collapse
|
3
|
Han Y, Zhou J, Zhang R, Liang Y, Lai L, Li Z. Genome-edited rabbits: Unleashing the potential of a promising experimental animal model across diverse diseases. Zool Res 2024; 45:253-262. [PMID: 38287906 PMCID: PMC11017087 DOI: 10.24272/j.issn.2095-8137.2023.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/05/2023] [Indexed: 01/31/2024] Open
Abstract
Animal models are extensively used in all aspects of biomedical research, with substantial contributions to our understanding of diseases, the development of pharmaceuticals, and the exploration of gene functions. The field of genome modification in rabbits has progressed slowly. However, recent advancements, particularly in CRISPR/Cas9-related technologies, have catalyzed the successful development of various genome-edited rabbit models to mimic diverse diseases, including cardiovascular disorders, immunodeficiencies, aging-related ailments, neurological diseases, and ophthalmic pathologies. These models hold great promise in advancing biomedical research due to their closer physiological and biochemical resemblance to humans compared to mice. This review aims to summarize the novel gene-editing approaches currently available for rabbits and present the applications and prospects of such models in biomedicine, underscoring their impact and future potential in translational medicine.
Collapse
Affiliation(s)
- Yang Han
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Jiale Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Renquan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Yuru Liang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Liangxue Lai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, Jilin 130062, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- Guangzhou Regenerative Medicine and Health Guang Dong Laboratory (GRMH-GDL), Guangzhou, Guangdong 510005, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China. E-mail:
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, Jilin 130062, China. E-mail:
| |
Collapse
|
4
|
Mahsoub HM, Heffron CL, Hassebroek AM, Sooryanarain H, Wang B, LeRoith T, Rodríguez GR, Tian D, Meng XJ. Fetal Loss in Pregnant Rabbits Infected with Genotype 3 Hepatitis E Virus Is Associated with Altered Inflammatory Responses, Enhanced Virus Replication, and Extrahepatic Virus Dissemination with Positive Correlations with Increased Estradiol Level. mBio 2023; 14:e0041823. [PMID: 36939322 PMCID: PMC10128027 DOI: 10.1128/mbio.00418-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/21/2023] Open
Abstract
Hepatitis E virus (HEV) causes adverse clinical outcomes in pregnant women, but the underlying mechanisms remain poorly understood. To delineate the mechanisms of pregnancy-associated adverse effects during HEV infection, we utilized a genotype 3 HEV from rabbit (HEV-3ra) and its cognate host (rabbits) to systematically investigate the clinical consequences, viral replication dynamics, and host immune and hormonal responses of HEV infection during pregnancy. We found a significant fetal loss of 23% in HEV-infected pregnant rabbits, indicating an early-stage miscarriage. HEV infection in pregnant rabbits was characterized by higher viral loads in feces, intestinal contents, liver, and spleen tissues, as well as a longer and earlier onset of viremia than in infected nonpregnant rabbits. HEV infection altered the pattern of cytokine gene expressions in the liver of pregnant rabbits and caused a transient increase of serum interferon gamma (IFN-γ) shortly after a notable increase in viral replication, which may contribute to early fetal loss. Histological lesions in the spleen were more pronounced in infected pregnant rabbits, although moderate liver lesions were seen in both infected pregnant and nonpregnant rabbits. Total bilirubin was elevated in infected pregnant rabbits. The serum levels of estradiol (E2) in HEV-infected pregnant rabbits were significantly higher than those in mock-infected pregnant rabbits at 14 days postinoculation (dpi) and correlated positively with higher viral loads in feces, liver, and spleen tissues at 28 dpi, suggesting that it may play a role in extrahepatic virus dissemination. The results have important implications for understanding the severe diseases associated with HEV infection during pregnancy. IMPORTANCE HEV causes adverse pregnancy outcomes, with a mortality rate of >30% in pregnant women, but the underlying mechanisms are poorly understood. In this study, we utilized HEV-3ra and its cognate host (pregnant rabbit) to delineate the potential underlying mechanisms of pregnancy-associated adverse outcomes during HEV infection. We found that infected pregnant rabbits had a fetal loss of 23%, which coincided with enhanced viral replication and an elevated systemic IFN-γ response, followed by longer viremia duration and extrahepatic viral dissemination. Estradiol levels were increased in infected pregnant rabbits and correlated positively with higher fecal viral shedding and higher viral loads in liver and spleen tissues. Infected pregnant rabbits had more pronounced splenic lesions, higher serum total bilirubin, and an altered cytokine gene expression profile in the liver. The results will contribute to our understanding of the mechanisms of HEV-associated adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Hassan M. Mahsoub
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - C. Lynn Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Anna M. Hassebroek
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Harini Sooryanarain
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Guillermo Raimundi Rodríguez
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Debin Tian
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
5
|
Soares J, Pinheiro A, Esteves PJ. The rabbit as an animal model to study innate immunity genes: Is it better than mice? Front Immunol 2022; 13:981815. [PMID: 36159800 PMCID: PMC9501708 DOI: 10.3389/fimmu.2022.981815] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
The European rabbit (Oryctolagus cuniculus) was the first animal model used to understand human diseases like rabies and syphilis. Nowadays, the rabbit is still used to study several human infectious diseases like syphilis, HIV and papillomavirus. However, due to several mainly practical reasons, it has been replaced as an animal model by mice (Mus musculus). The rabbit and mouse share a recent common ancestor and are classified in the superorder Glires which arose at approximately 82 million years ago (mya). These species diverged from the Primates’ ancestor at around 92 million years ago and, as such, one expects the rabbit-human and mouse-human genetic distances to be very similar. To evaluate this hypothesis, we developed a set of tools for automatic data extraction, sequence alignment and similarity study, and a web application for visualization of the resulting data. We aligned and calculated the genetic distances for 2793 innate immune system genes from human, rabbit and mouse using sequences available in the NCBI database. The obtained results show that the rabbit-human genetic distance is lower than the mouse-human genetic distance for 88% of these genes. Furthermore, when we considered only genes with a difference in genetic distance higher than 0.05, this figure increase to 93%. These results can be explained by the increase of the mutation rates in the mouse lineage suggested by some authors and clearly show that, at least looking to the genetic distance to human genes, the European rabbit is a better model to study innate immune system genes than the mouse.
Collapse
Affiliation(s)
- João Soares
- Departamento de Ciências dos Computadores, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro de Sistemas de Computação Avançada - Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência (CRACS - INESC TEC), Porto, Portugal
| | - Ana Pinheiro
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratrio Associado, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Pedro José Esteves
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratrio Associado, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CITS - Centro de Investigação em Tecnologias de Saúde, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Gandra, Portugal
- *Correspondence: Pedro José Esteves,
| |
Collapse
|
6
|
Antczak M, Cañete PF, Chen Z, Belle C, Yu D. Evolution of γ chain cytokines: Mechanisms, methods and applications. Comput Struct Biotechnol J 2022; 20:4746-4755. [PMID: 36147674 PMCID: PMC9465101 DOI: 10.1016/j.csbj.2022.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022] Open
Abstract
The common γ chain family of cytokines and their receptors play fundamental roles in the immune system. Evolutionary studies of γ chain cytokines have elegantly illustrated how the immune system adapts to ever-changing environmental conditions. Indeed, these studies have revealed the uniqueness of cytokine evolution, which exhibits strong positive selection pressure needed to adapt to rapidly evolving threats whilst still conserving their receptor binding capabilities. In this review, we summarise the evolutionary mechanisms that gave rise to the characteristically diverse family of γ chain cytokines. We also speculate on the benefits of studying cytokine evolution, which may provide alternative ways to design novel cytokine therapeutic strategies. Additionally, we discuss current evolutionary models that elucidate the emergence of distinct cytokines (IL-4 and IL-13) and cytokine receptors (IL-2Rα and IL-15Rα). Finally, we address and reflect on the difficulties associated with evolutionary studies of rapidly evolving genes and describe a variety of computational methods that have revealed numerous aspects of cytokine evolution.
Collapse
Affiliation(s)
- Magdalena Antczak
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Pablo F. Cañete
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhian Chen
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Clémence Belle
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Di Yu
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Ian Frazer Centre for Children’s Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
7
|
Deng B, Wang Y, Wu Y, Yin W, Lu J, Ye J. Raman Nanotags-Guided Intraoperative Sentinel Lymph Nodes Precise Location with Minimal Invasion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102405. [PMID: 34741446 PMCID: PMC8805599 DOI: 10.1002/advs.202102405] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The accurate positioning of sentinel lymph node (SLN) by tracers during surgery is an important prerequisite for SLN biopsy. A major problem of traditional tracers in SLN biopsy is the short surgery window due to the fast diffusion of tracers through the lymphatics, resulting in a misjudgment between SLN and second echelon lymph node (2nd LN). Here, a nontoxic Raman nanoparticle tracer, termed gap-enhanced Raman tags (GERTs), for the accurate intraoperative positioning of SLNs with a sufficient surgical time window is designed. In white New Zealand rabbit models, GERTs enable precise identification of SLNs within 10 min, as well as provide the surgeon with a more than 4 h time window to differentiate SLN and 2nd LN. In addition, the ultrahigh sensitivity of GERTs (detection limit is 0.5 × 10-12 m) allows detection of labeled SLNs before surgery, thereby providing preoperative positioning information for minimally invasive surgery. Comprehensive biosafety evaluations carried out in the context of the Food and Drug Administration and International Standard Organization demonstrate no significant toxicity of GERTs, which supports a promising clinical translation opportunity of GERTs for precise SLN identification in breast cancer.
Collapse
Affiliation(s)
- Binge Deng
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Yaohui Wang
- Department of Breast SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Yifan Wu
- Department of Breast SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Wenjin Yin
- Department of Breast SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Jinsong Lu
- Department of Breast SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Jian Ye
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
- Shanghai Key Laboratory of Gynecologic OncologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
- Institute of Medical RoboticsShanghai Jiao Tong UniversityShanghai200240P. R. China
| |
Collapse
|
8
|
Yu P, Duan Z, Liu S, Pachon I, Ma J, Hemstreet GP, Zhang Y. Drug-Induced Nephrotoxicity Assessment in 3D Cellular Models. MICROMACHINES 2021; 13:mi13010003. [PMID: 35056167 PMCID: PMC8780064 DOI: 10.3390/mi13010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Abstract
The kidneys are often involved in adverse effects and toxicity caused by exposure to foreign compounds, chemicals, and drugs. Early predictions of these influences are essential to facilitate new, safe drugs to enter the market. However, in current drug treatments, drug-induced nephrotoxicity accounts for 1/4 of reported serious adverse reactions, and 1/3 of them are attributable to antibiotics. Drug-induced nephrotoxicity is driven by multiple mechanisms, including altered glomerular hemodynamics, renal tubular cytotoxicity, inflammation, crystal nephropathy, and thrombotic microangiopathy. Although the functional proteins expressed by renal tubules that mediate drug sensitivity are well known, current in vitro 2D cell models do not faithfully replicate the morphology and intact renal tubule function, and therefore, they do not replicate in vivo nephrotoxicity. The kidney is delicate and complex, consisting of a filter unit and a tubular part, which together contain more than 20 different cell types. The tubular epithelium is highly polarized, and maintaining cellular polarity is essential for the optimal function and response to environmental signals. Cell polarity depends on the communication between cells, including paracrine and autocrine signals, as well as biomechanical and chemotaxis processes. These processes affect kidney cell proliferation, migration, and differentiation. For drug disposal research, the microenvironment is essential for predicting toxic reactions. This article reviews the mechanism of drug-induced kidney injury, the types of nephrotoxicity models (in vivo and in vitro models), and the research progress related to drug-induced nephrotoxicity in three-dimensional (3D) cellular culture models.
Collapse
Affiliation(s)
- Pengfei Yu
- Difficult & Complicated Liver Diseases and Artificial Liver Center, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (P.Y.); (Z.D.); (S.L.)
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhongping Duan
- Difficult & Complicated Liver Diseases and Artificial Liver Center, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (P.Y.); (Z.D.); (S.L.)
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Shuang Liu
- Difficult & Complicated Liver Diseases and Artificial Liver Center, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (P.Y.); (Z.D.); (S.L.)
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Ivan Pachon
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
| | - Jianxing Ma
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
| | | | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
- Correspondence: ; Tel.: +1-336-713-1189
| |
Collapse
|
9
|
Wong RM, Li TK, Li J, Ho WT, Chow SKH, Leung SS, Cheung WH, Ip M. A systematic review on current osteosynthesis-associated infection animal fracture models. J Orthop Translat 2020; 23:8-20. [PMID: 32440511 PMCID: PMC7231979 DOI: 10.1016/j.jot.2020.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Osteosynthesis-associated infection is a challenging complication post fracture fixation, burdening the patients and the orthopaedic surgeons alike. A clinically relevant animal model is critical in devising new therapeutic strategies. Our aim was to perform a systematic review to evaluate existing preclinical models and identify their applications in aspects of animal selection, bacterial induction, fracture fixation and complications. Methods A systematic literature research was conducted in PubMed and Embase up to February 2020. A total of 31 studies were included. Information on the animal, bacterial induction, fracture fixation, healing result and complications were extracted. Results Animals selected included murine (23), rabbit (6), ewe (1) and goat (1). Larger animals had enabled the use of human-sized implant, however small animals were more economical and easier in handling. Staphylococcus aureus (S. aureus) was the most frequently chosen bacteria for induction. Bacterial inoculation dose ranged from 102-8 CFU. Consistent and replicable infections were observed from 104 CFU in general. Methods of inoculation included injections of bacterial suspension (20), placement of foreign objects (8) and pretreatment of implants with established biofilm (3). Intramedullary implants (13), plates and screws (18) were used in most models. Radiological (29) and histological evaluations (24) in osseous healing were performed. Complications such as instability of fracture fixation (7), unexpected surgical death (5), sepsis (1) and persistent lameness (1) were encountered. Conclusion The most common animal model is the S. aureus infected open fracture internally fixated. Replicable infections were mainly from 104 CFU of bacteria. However, with the increase in antibiotic resistance, future directions should explore polymicrobial and antibiotic resistant strains, as these will no doubt play a major role in bone infection. Currently, there is also a lack of osteoporotic bone infection models and the pathophysiology is unexplored, which would be important with our aging population. The translational potential of this article This systematic review provides an updated overview and compares the currently available animal models of osteosynthesis-associated infections. A discussion on future research directions and suggestion of animal model settings were made, which is expected to advance the research in this field.
Collapse
Affiliation(s)
- Ronald M.Y. Wong
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Tsz-kiu Li
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Jie Li
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Wing-Tung Ho
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Simon K.-H. Chow
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | | | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
- Corresponding author. Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Margaret Ip
- Department of Microbiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
10
|
Changes in innate and adaptive immune response to Lagovirus europaeus GI.1 (Rabbit Haemorrhagic Disease Virus -RHDV) infection. ACTA BIOLOGICA 2020. [DOI: 10.18276/ab.2020.27-08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Neves F, Águeda-Pinto A, Pinheiro A, Abrantes J, Esteves PJ. Strong selection of the TLR2 coding region among the Lagomorpha suggests an evolutionary history that differs from other mammals. Immunogenetics 2019; 71:437-443. [PMID: 30874861 DOI: 10.1007/s00251-019-01110-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Toll-like receptors (TLRs) are one of the first lines of defense against pathogens and are crucial for triggering an appropriate immune response. Among TLRs, TLR2 is functional in all vertebrates and has high ability in detecting bacterial and viral pathogen ligands. The mammals' phylogenetic tree of TLR2 showed longer branches for the Lagomorpha clade, raising the hypothesis that lagomorphs experienced an acceleration of the mutation rate. This hypothesis was confirmed by (i) Tajima's test of neutrality that revealed different evolutionary rates between lagomorphs and the remaining mammals with lagomorphs presenting higher nucleotide diversity; (ii) genetic distances were similar among lagomorphs and between lagomorphs and other mammals; and (iii) branch models reinforced the existence of an acceleration of the mutation rate in lagomorphs. These results suggest that the lagomorph TLR2 has been strongly involved in pathogen recognition, which probably caused a host-pathogen arms race that led to the observed acceleration of the mutation rate.
Collapse
Affiliation(s)
- Fabiana Neves
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr.7, 4485-661, Vairão, Portugal
| | - Ana Águeda-Pinto
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr.7, 4485-661, Vairão, Portugal
| | - Ana Pinheiro
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr.7, 4485-661, Vairão, Portugal
| | - Joana Abrantes
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr.7, 4485-661, Vairão, Portugal
| | - Pedro J Esteves
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr.7, 4485-661, Vairão, Portugal. .,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal. .,CITS - Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal.
| |
Collapse
|
12
|
Mage RG, Esteves PJ, Rader C. Rabbit models of human diseases for diagnostics and therapeutics development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:99-104. [PMID: 30339876 PMCID: PMC6364550 DOI: 10.1016/j.dci.2018.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/07/2018] [Accepted: 10/11/2018] [Indexed: 05/03/2023]
Abstract
This review presents some examples of studies using the European rabbit (Oryctolagus cuniculus) that have led to, and continue to, contribute to advancement of understanding of human diseases as well as therapeutics development. In addition, we tabulate FDA-approved rabbit polyclonal and rabbit monoclonal antibodies (mAbs) that are used for diagnostic applications, as well as an overview of some "humanized" or otherwise altered rabbit mAbs that are in initial phase I, II, or advanced to phase III clinical trials. Information about endogenous retriviruses learned from studies of rabbits and other members of the order Lagomorpha are summarized as this knowledge now applies to new therapeutics being developed for several human diseases including Multiple Sclerosis, Type 1 Diabetes and Cancer.
Collapse
Affiliation(s)
- Rose G Mage
- Laboratory of Immune System Biology, NIAID, NIH, Bldg 10 11N311, 10 Center Drive, Bethesda, MD, 20892-1892, USA.
| | - Pedro J Esteves
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal; Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (CESPU), Gandra, Portugal
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| |
Collapse
|
13
|
Seixas FA, Boursot P, Melo-Ferreira J. The genomic impact of historical hybridization with massive mitochondrial DNA introgression. Genome Biol 2018; 19:91. [PMID: 30056805 PMCID: PMC6065068 DOI: 10.1186/s13059-018-1471-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The extent to which selection determines interspecific patterns of genetic exchange enlightens the role of adaptation in evolution and speciation. Often reported extensive interspecific introgression could be selection-driven, but also result from demographic processes, especially in cases of invasive species replacements, which can promote introgression at their invasion front. Because invasion and selective sweeps similarly mold variation, population genetics evidence for selection can only be gathered in an explicit demographic framework. The Iberian hare, Lepus granatensis, displays in its northern range extensive mitochondrial DNA introgression from L. timidus, an arctic/boreal species that it replaced locally after the last glacial maximum. We use whole-genome sequencing to infer geographic and genomic patterns of nuclear introgression and fit a neutral model of species replacement with hybridization, allowing us to evaluate how selection influenced introgression genome-wide, including for mtDNA. RESULTS Although the average nuclear and mtDNA introgression patterns contrast strongly, they fit a single demographic model of post-glacial invasive replacement of timidus by granatensis. Outliers of elevated introgression include several genes related to immunity, spermatogenesis, and mitochondrial metabolism. Introgression is reduced on the X chromosome and in low recombining regions. CONCLUSIONS General nuclear and mtDNA patterns of introgression can be explained by purely demographic processes. Hybrid incompatibilities and interplay between selection and recombination locally modulate levels of nuclear introgression. Selection promoted introgression of some genes involved in conflicts, either interspecific (parasites) or possibly cytonuclear. In the latter case, nuclear introgression could mitigate the potential negative effects of alien mtDNA on mitochondrial metabolism and male-specific traits.
Collapse
Affiliation(s)
- Fernando A Seixas
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal
- Institut des Sciences de l'Évolution, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095, Montpellier, France
| | - Pierre Boursot
- Institut des Sciences de l'Évolution, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095, Montpellier, France.
| | - José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
14
|
Esteves PJ, Abrantes J, Baldauf HM, BenMohamed L, Chen Y, Christensen N, González-Gallego J, Giacani L, Hu J, Kaplan G, Keppler OT, Knight KL, Kong XP, Lanning DK, Le Pendu J, de Matos AL, Liu J, Liu S, Lopes AM, Lu S, Lukehart S, Manabe YC, Neves F, McFadden G, Pan R, Peng X, de Sousa-Pereira P, Pinheiro A, Rahman M, Ruvoën-Clouet N, Subbian S, Tuñón MJ, van der Loo W, Vaine M, Via LE, Wang S, Mage R. The wide utility of rabbits as models of human diseases. Exp Mol Med 2018; 50:1-10. [PMID: 29789565 PMCID: PMC5964082 DOI: 10.1038/s12276-018-0094-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 12/11/2022] Open
Abstract
Studies using the European rabbit Oryctolagus cuniculus contributed to elucidating numerous fundamental aspects of antibody structure and diversification mechanisms and continue to be valuable for the development and testing of therapeutic humanized polyclonal and monoclonal antibodies. Additionally, during the last two decades, the use of the European rabbit as an animal model has been increasingly extended to many human diseases. This review documents the continuing wide utility of the rabbit as a reliable disease model for development of therapeutics and vaccines and studies of the cellular and molecular mechanisms underlying many human diseases. Examples include syphilis, tuberculosis, HIV-AIDS, acute hepatic failure and diseases caused by noroviruses, ocular herpes, and papillomaviruses. The use of rabbits for vaccine development studies, which began with Louis Pasteur’s rabies vaccine in 1881, continues today with targets that include the potentially blinding HSV-1 virus infection and HIV-AIDS. Additionally, two highly fatal viral diseases, rabbit hemorrhagic disease and myxomatosis, affect the European rabbit and provide unique models to understand co-evolution between a vertebrate host and viral pathogens. Rabbits offer a powerful complement to rodents as a model for studying human immunology, disease pathology, and responses to infectious disease. A review from Pedro Esteves at the University of Porto, Portugal, Rose Mage of the National Institute of Allergy and Infectious Disease, Bethesda, USA and colleagues highlights some of the areas of research where rabbits offer an edge over rats and mice. Rabbits have a particularly sophisticated adaptive immune system, which could provide useful insights into human biology and produce valuable research and clinical reagents. They are also excellent models for studying - infectious diseases such as syphilis and tuberculosis, which produce pathology that closely resembles that of human patients. Rabbit-specific infections such as myxomatosis are giving researchers insights into how pathogens and hosts can shape each other’s evolution.
Collapse
Affiliation(s)
- Pedro J Esteves
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal. .,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal. .,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (CESPU), Gandra, Portugal.
| | - Joana Abrantes
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Hanna-Mari Baldauf
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, 81377, Munich, Germany
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA, 92697, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA.,Institute for Immunology, University of California, Irvine School of Irvine, School of Medicine, Irvine, CA, 92697, USA
| | - Yuxing Chen
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Neil Christensen
- Departments of Pathology, Microbiology and Immunology, and Comparative Medicine, Penn State University, Hershey, PA, USA
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of León, 24071, León, Spain
| | - Lorenzo Giacani
- Departments of Medicine and Global Health, University of Washington, Seattle, USA
| | - Jiafen Hu
- Departments of Pathology, Microbiology and Immunology, and Comparative Medicine, Penn State University, Hershey, PA, USA
| | - Gilla Kaplan
- Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Oliver T Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, 81377, Munich, Germany
| | - Katherine L Knight
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY10016, USA
| | - Dennis K Lanning
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Jacques Le Pendu
- CRCINA, Inserm, Université d'Angers, Université de Nantes, Nantes, France
| | - Ana Lemos de Matos
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ, 85287-5401, USA
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, 72205, USA
| | - Shuying Liu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Ana M Lopes
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Sheila Lukehart
- Departments of Medicine and Global Health, University of Washington, Seattle, USA
| | - Yukari C Manabe
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabiana Neves
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Grant McFadden
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ, 85287-5401, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY10016, USA
| | - Xuwen Peng
- Departments of Pathology, Microbiology and Immunology, and Comparative Medicine, Penn State University, Hershey, PA, USA
| | - Patricia de Sousa-Pereira
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.,Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, 81377, Munich, Germany
| | - Ana Pinheiro
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Masmudur Rahman
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ, 85287-5401, USA
| | | | - Selvakumar Subbian
- The Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers Biomedical and Health Sciences (RBHS), Rutgers University, Newark, NJ, USA
| | - Maria Jesús Tuñón
- Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of León, 24071, León, Spain
| | - Wessel van der Loo
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Michael Vaine
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Laura E Via
- Tubercolosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Institute of Infectious Disease and Molecular Medicine, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Rose Mage
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
de Sousa-Pereira P, Abrantes J, Baldauf HM, Esteves PJ. Evolutionary studies on the betaretrovirus RERV-H in the Leporidae family reveal an endogenization in the ancestor of Oryctolagus, Bunolagus and Pentalagus at 9 million years ago. Virus Res 2017; 262:24-29. [PMID: 29208424 DOI: 10.1016/j.virusres.2017.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 01/31/2023]
Abstract
RERV-H was first identified in human tissues and mistaken for a human exogenous retrovirus. However, the integration sites carried by this virus showed that it was instead a European rabbit (Oryctolagus cuniculus) endogenous retrovirus. The first clones retrieved from European rabbit samples represented defective proviruses, although estimation of proviral copy numbers found in the European rabbit genome ranged from hundreds to thousands. Screening for the presence of RERV-H showed the absence of the virus in two other lagomorphs, pika (Ochotona) and hares (Lepus), which diverged from rabbits about 35 and 12 million years ago, respectively. Using a PCR-based approach, samples of seven different Lagomorph genera were tested for the presence of RERV-H. It was possible to amplify a proviral fragment corresponding to RNaseH from Oryctolagus, Bunolagus and Pentalagus genomic samples. The amplification of proviral DNA in species other than Oryctolagus revealed that this virus was endogenized in their common ancestor, roughly 9 million years ago. Using the European rabbit genome sequence OryCun2.0, it was possible to find multiple copies spread throughout the genome and several complete proviral genomes were retrieved. Some copies contained full open reading frames for all viral components. The lack of a complete genome in the other Lagomorph species did not allow further analyses of the provirus, although more deleterious mutations were found in Bunolagus and Pentalagus than in Oryctolagus RNaseH-amplified sequences. To what extent RERV-H and other endogenous viruses might have had an impact on the rabbit genome and its immune system remains elusive.
Collapse
Affiliation(s)
- Patricia de Sousa-Pereira
- InBIO - Research Network in Biodiversity and Evolutionary Biology, CIBIO, Campus de Vairão, Universidade do Porto, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany.
| | - Joana Abrantes
- InBIO - Research Network in Biodiversity and Evolutionary Biology, CIBIO, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
| | - Hanna-Mari Baldauf
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany.
| | - Pedro José Esteves
- InBIO - Research Network in Biodiversity and Evolutionary Biology, CIBIO, Campus de Vairão, Universidade do Porto, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; CITS - Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal.
| |
Collapse
|
16
|
Trzeciak-Ryczek A, Tokarz-Deptuła B, Deptuła W. Expression of IL-1Ra, IL-6, IL-8, IL-18, TNF-α and IFN-γ genes in peripheral blood leukocytes of rabbits infected with RHDV (Rabbit Haemorrhagic Disease Virus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:310-315. [PMID: 28689774 DOI: 10.1016/j.dci.2017.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Rabbit haemorrhagic disease virus (RHDV) induces a highly contagious and extremely lethal disease that fulfils many requirements of an animal model of fulminant hepatic failure (FHF); however, the pathogenesis of RHD has still not been fully elucidated. Cytokines play an important role in regulation of the immune response and pathogenesis of many diseases, including those caused by viral infections. Furthermore, recent studies indicate a role of the immune response, especially peripheral blood leukocytes (PBL), in the pathogenesis of RHD. Thus, in the present study we investigated the expression of IL-1Ra, IL-6, IL-8, IL-18, TNF-α and IFN-γ genes in PBL of RHDV-infected rabbits. We also compared the expression of genes encoding these cytokines in rabbits with different course of RHDV infection (in animals that died 36 h post infection or survived even over 60 h after infection). The study revealed increased expression of genes encoding pro-inflammatory cytokines: IL-6, IL-8, TNF-α, IFN-γ in PBL of RHDV-infected rabbits. Moreover, the level of cytokine gene expression depended on the course of RHD. Hence, the results obtained indicate the potential role of these cytokines in RHDV infection and their influence on the survival time of infected rabbits.
Collapse
Affiliation(s)
- Alicja Trzeciak-Ryczek
- Department of Immunology, Faculty of Biology, University of Szczecin, Szczecin, Poland; Molecular Biology and Biotechnology Center, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | - Beata Tokarz-Deptuła
- Department of Immunology, Faculty of Biology, University of Szczecin, Szczecin, Poland; Molecular Biology and Biotechnology Center, Faculty of Biology, University of Szczecin, Szczecin, Poland.
| | - Wiesław Deptuła
- Department of Microbiology, Faculty of Biology, University of Szczecin, Szczecin, Poland; Molecular Biology and Biotechnology Center, Faculty of Biology, University of Szczecin, Szczecin, Poland
| |
Collapse
|
17
|
Lanning DK, Esteves PJ, Knight KL. The remnant of the European rabbit (Oryctolagus cuniculus) IgD gene. PLoS One 2017; 12:e0182029. [PMID: 28832642 PMCID: PMC5568218 DOI: 10.1371/journal.pone.0182029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 07/11/2017] [Indexed: 02/06/2023] Open
Abstract
Although IgD first appeared, along with IgM, in the cartilaginous fishes and has been retained throughout subsequent vertebrate evolution, it has been lost in a diverse group of vertebrate species. We previously showed that, unlike vertebrates that express IgD, the rabbit lacks an IgD (Cδ) gene within 13.5 kb downstream of the IgM gene. We report here that, by conducting BLAST searches of rabbit Ig heavy chain genomic DNA with known mammalian IgD exons, we identified the remnant of the rabbit Cδ gene approximately 21 kb downstream of the IgM gene. The remnant Cδ locus lacks the δCH1 and hinge exons, but contains truncated δCH2 and δCH3 exons, as well as largely intact, but non-functional, secretory and transmembrane exons. In addition, we report that the Cδ gene probably became non-functional in leporids at least prior to the divergence of rabbits and hares ~12 million years ago.
Collapse
Affiliation(s)
- Dennis K. Lanning
- Department of Microbiology and Immunology, Center for Translational Research and Education, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
- * E-mail:
| | - Pedro J. Esteves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Campus de Vairão, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CITS - Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal
| | - Katherine L. Knight
- Department of Microbiology and Immunology, Center for Translational Research and Education, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
18
|
Malutan AM, Drugan C, Walch K, Drugan T, Ciortea R, Mihu D. The association between interleukin-10 (IL-10) −592C/A, −819T/C, −1082G/A promoter polymorphisms and endometriosis. Arch Gynecol Obstet 2016; 295:503-510. [DOI: 10.1007/s00404-016-4269-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/09/2016] [Indexed: 01/06/2023]
|
19
|
Contribution of Staphylococcus aureus Coagulases and Clumping Factor A to Abscess Formation in a Rabbit Model of Skin and Soft Tissue Infection. PLoS One 2016; 11:e0158293. [PMID: 27336691 PMCID: PMC4918888 DOI: 10.1371/journal.pone.0158293] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/13/2016] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus produces numerous factors that facilitate survival in the human host. S. aureus coagulase (Coa) and von Willebrand factor-binding protein (vWbp) are known to clot plasma through activation of prothrombin and conversion of fibrinogen to fibrin. In addition, S. aureus clumping factor A (ClfA) binds fibrinogen and contributes to platelet aggregation via a fibrinogen- or complement-dependent mechanism. Here, we evaluated the contribution of Coa, vWbp and ClfA to S. aureus pathogenesis in a rabbit model of skin and soft tissue infection. Compared to skin abscesses caused by the Newman wild-type strain, those caused by isogenic coa, vwb, or clfA deletion strains, or a strain deficient in coa and vwb, were significantly smaller following subcutaneous inoculation in rabbits. Unexpectedly, we found that fibrin deposition and abscess capsule formation appear to be independent of S. aureus coagulase activity in the rabbit infection model. Similarities notwithstanding, S. aureus strains deficient in coa and vwb elicited reduced levels of several proinflammatory molecules in human blood in vitro. Although a specific mechanism remains to be determined, we conclude that S. aureus Coa, vWbp and ClfA contribute to abscess formation in rabbits.
Collapse
|
20
|
Huang C, Tian Y, Cui Y, Xu J, Xin L, Yang X, Qi D. [Current Research of the Roles of IL-35 in Tumor Progression]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:230-5. [PMID: 27118652 PMCID: PMC5999808 DOI: 10.3779/j.issn.1009-3419.2016.04.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Interleukin(IL)-35 is a new member of the interleukin-12 superfamily. Since its first report in 2007, IL-35 rapidly became a research highlight in the field of immunology. Like other IL-12 superfamily members, IL-35 was a heterodimer which was composed of an α chain P35 and a β chain Epstein-Barr virus induced gene 3 (EBI3). Recent research work revealed two distinct roles of IL-35. Firstly, IL-35 is highly expressed in some kinds of inflammatory diseases and autoimmune diseases and plays import roles in the pathogenesis. Secondly, IL-35 is positively expressed in some cancers and plays some roles in the process of tumor progression. Here we demonstrate the structure and the signalling of IL-35. We reviewed the the roles of IL-35 in promoting tumor progression.
Collapse
Affiliation(s)
- Chongbiao Huang
- Department of Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ye Tian
- Department of Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yan Cui
- Department of Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Jie Xu
- Department of Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Liang Xin
- Department of Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xueling Yang
- Department of Interventional Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Daliang Qi
- Department of Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|
21
|
Evolutionary Insights into IL17A in Lagomorphs. Mediators Inflamm 2016; 2015:367670. [PMID: 26788019 PMCID: PMC4692990 DOI: 10.1155/2015/367670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/22/2015] [Indexed: 11/17/2022] Open
Abstract
In leporids, IL17A had been implicated in the host defense against extracellular pathogens, such as Francisella tularensis that infects hares and rabbits and causes the zoonotic disease tularemia. Here, we studied IL17A from five lagomorphs, European rabbit, pygmy rabbit, brush rabbit, European brown hare, and American pika. We observed that this protein is highly conserved between these species, with a similarity of 97-99% in leporids and ~88% between leporids and American pika. The exon/intron structure, N-glycosylation sites, and cysteine residues are conserved between lagomorphs. However, at codon 88, one of the interaction sites between IL17A and its receptor IL17RA, there is an Arg>Pro mutation that only occurs in European rabbit and European brown hare. This could induce critical alterations in the IL17A structure and conformation and consequently modify its function. The differences observed between leporids and humans or rodents might also represent important alterations in protein structure and function. In addition, as for other interleukins, IL17A sequences of human and European rabbit are more closely related than the sequences of human and mouse or European rabbit and mouse. This study gives further support to the hypothesis that European rabbit might be a more suitable animal model for studies on human IL17.
Collapse
|
22
|
Pinheiro A, Neves F, Lemos de Matos A, Abrantes J, van der Loo W, Mage R, Esteves PJ. An overview of the lagomorph immune system and its genetic diversity. Immunogenetics 2015; 68:83-107. [PMID: 26399242 DOI: 10.1007/s00251-015-0868-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/31/2015] [Indexed: 01/11/2023]
Abstract
Our knowledge of the lagomorph immune system remains largely based upon studies of the European rabbit (Oryctolagus cuniculus), a major model for studies of immunology. Two important and devastating viral diseases, rabbit hemorrhagic disease and myxomatosis, are affecting European rabbit populations. In this context, we discuss the genetic diversity of the European rabbit immune system and extend to available information about other lagomorphs. Regarding innate immunity, we review the most recent advances in identifying interleukins, chemokines and chemokine receptors, Toll-like receptors, antiviral proteins (RIG-I and Trim5), and the genes encoding fucosyltransferases that are utilized by rabbit hemorrhagic disease virus as a portal for invading host respiratory and gut epithelial cells. Evolutionary studies showed that several genes of innate immunity are evolving by strong natural selection. Studies of the leporid CCR5 gene revealed a very dramatic change unique in mammals at the second extracellular loop of CCR5 resulting from a gene conversion event with the paralogous CCR2. For the adaptive immune system, we review genetic diversity at the loci encoding antibody variable and constant regions, the major histocompatibility complex (RLA) and T cells. Studies of IGHV and IGKC genes expressed in leporids are two of the few examples of trans-species polymorphism observed outside of the major histocompatibility complex. In addition, we review some endogenous viruses of lagomorph genomes, the importance of the European rabbit as a model for human disease studies, and the anticipated role of next-generation sequencing in extending knowledge of lagomorph immune systems and their evolution.
Collapse
Affiliation(s)
- Ana Pinheiro
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
- SaBio-IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071, Ciudad Real, Spain
| | - Fabiana Neves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
- UMIB/UP-Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Lemos de Matos
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Joana Abrantes
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
| | - Wessel van der Loo
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
| | - Rose Mage
- NIAID, NIH, Bethesda, MD, 20892, USA
| | - Pedro José Esteves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
- CITS-Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal.
| |
Collapse
|