1
|
Kakoti BB, Bezbaruah R, Ahmed N. Therapeutic drug repositioning with special emphasis on neurodegenerative diseases: Threats and issues. Front Pharmacol 2022; 13:1007315. [PMID: 36263141 PMCID: PMC9574100 DOI: 10.3389/fphar.2022.1007315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Drug repositioning or repurposing is the process of discovering leading-edge indications for authorized or declined/abandoned molecules for use in different diseases. This approach revitalizes the traditional drug discovery method by revealing new therapeutic applications for existing drugs. There are numerous studies available that highlight the triumph of several drugs as repurposed therapeutics. For example, sildenafil to aspirin, thalidomide to adalimumab, and so on. Millions of people worldwide are affected by neurodegenerative diseases. According to a 2021 report, the Alzheimer's disease Association estimates that 6.2 million Americans are detected with Alzheimer's disease. By 2030, approximately 1.2 million people in the United States possibly acquire Parkinson's disease. Drugs that act on a single molecular target benefit people suffering from neurodegenerative diseases. Current pharmacological approaches, on the other hand, are constrained in their capacity to unquestionably alter the course of the disease and provide patients with inadequate and momentary benefits. Drug repositioning-based approaches appear to be very pertinent, expense- and time-reducing strategies for the enhancement of medicinal opportunities for such diseases in the current era. Kinase inhibitors, for example, which were developed for various oncology indications, demonstrated significant neuroprotective effects in neurodegenerative diseases. This review expounds on the classical and recent examples of drug repositioning at various stages of drug development, with a special focus on neurodegenerative disorders and the aspects of threats and issues viz. the regulatory, scientific, and economic aspects.
Collapse
Affiliation(s)
- Bibhuti Bhusan Kakoti
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | | | | |
Collapse
|
2
|
Damiano RF, Guedes BF, de Rocca CC, de Pádua Serafim A, Castro LHM, Munhoz CD, Nitrini R, Filho GB, Miguel EC, Lucchetti G, Forlenza O. Cognitive decline following acute viral infections: literature review and projections for post-COVID-19. Eur Arch Psychiatry Clin Neurosci 2022; 272:139-154. [PMID: 34173049 PMCID: PMC8231753 DOI: 10.1007/s00406-021-01286-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 06/21/2021] [Indexed: 12/15/2022]
Abstract
Recently, much attention has been drawn to the importance of the impact of infectious disease on human cognition. Several theories have been proposed, to explain the cognitive decline following an infection as well as to understand better the pathogenesis of human dementia, especially Alzheimer's disease. This article aims to review the state of the art regarding the knowledge about the impact of acute viral infections on human cognition, laying a foundation to explore the possible cognitive decline followed coronavirus disease 2019 (COVID-19). To reach this goal, we conducted a narrative review systematizing six acute viral infections as well as the current knowledge about COVID-19 and its impact on human cognition. Recent findings suggest probable short- and long-term COVID-19 impacts in cognition, even in asymptomatic individuals, which could be accounted for by direct and indirect pathways to brain dysfunction. Understanding this scenario might help clinicians and health leaders to deal better with a wave of neuropsychiatric issues that may arise following COVID-19 pandemic as well as with other acute viral infections, to alleviate the cognitive sequelae of these infections around the world.
Collapse
Affiliation(s)
- Rodolfo Furlan Damiano
- Departamento E Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, 785, Cerqueira César, São Paulo, SP, 05403-903, Brazil.
| | - Bruno F. Guedes
- Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Cristiana Castanho de Rocca
- Departamento E Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, 785, Cerqueira César, São Paulo, SP 05403-903 Brazil
| | - Antonio de Pádua Serafim
- Departamento E Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, 785, Cerqueira César, São Paulo, SP 05403-903 Brazil
| | | | - Carolina Demarchi Munhoz
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ricardo Nitrini
- Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Geraldo Busatto Filho
- Departamento E Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, 785, Cerqueira César, São Paulo, SP 05403-903 Brazil
| | - Eurípedes Constantino Miguel
- Departamento E Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, 785, Cerqueira César, São Paulo, SP 05403-903 Brazil
| | - Giancarlo Lucchetti
- Department of Medicine, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Orestes Forlenza
- Departamento E Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, 785, Cerqueira César, São Paulo, SP 05403-903 Brazil
| |
Collapse
|
3
|
Sohrabi M, Sahu B, Kaur H, Hasler WA, Prakash A, Combs CK. Gastrointestinal Changes and Alzheimer's Disease. Curr Alzheimer Res 2022; 19:335-350. [PMID: 35718965 PMCID: PMC10497313 DOI: 10.2174/1567205019666220617121255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND There is a well-described mechanism of communication between the brain and gastrointestinal system in which both organs influence the function of the other. This bi-directional communication suggests that disease in either organ may affect function in the other. OBJECTIVE To assess whether the evidence supports gastrointestinal system inflammatory or degenerative pathophysiology as a characteristic of Alzheimer's disease (AD). METHODS A review of both rodent and human studies implicating gastrointestinal changes in AD was performed. RESULTS Numerous studies indicate that AD changes are not unique to the brain but also occur at various levels of the gastrointestinal tract involving both immune and neuronal changes. In addition, it appears that numerous conditions and diseases affecting regions of the tract may communicate to the brain to influence disease. CONCLUSION Gastrointestinal changes represent an overlooked aspect of AD, representing a more system influence of this disease.
Collapse
Affiliation(s)
- Mona Sohrabi
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Bijayani Sahu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Harpreet Kaur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Wendie A Hasler
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Atish Prakash
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Colin K Combs
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| |
Collapse
|
4
|
Mielcarska MB, Skowrońska K, Wyżewski Z, Toka FN. Disrupting Neurons and Glial Cells Oneness in the Brain-The Possible Causal Role of Herpes Simplex Virus Type 1 (HSV-1) in Alzheimer's Disease. Int J Mol Sci 2021; 23:ijms23010242. [PMID: 35008671 PMCID: PMC8745046 DOI: 10.3390/ijms23010242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Current data strongly suggest herpes simplex virus type 1 (HSV-1) infection in the brain as a contributing factor to Alzheimer's disease (AD). The consequences of HSV-1 brain infection are multilateral, not only are neurons and glial cells damaged, but modifications also occur in their environment, preventing the transmission of signals and fulfillment of homeostatic and immune functions, which can greatly contribute to the development of disease. In this review, we discuss the pathological alterations in the central nervous system (CNS) cells that occur, following HSV-1 infection. We describe the changes in neurons, astrocytes, microglia, and oligodendrocytes related to the production of inflammatory factors, transition of glial cells into a reactive state, oxidative damage, Aβ secretion, tau hyperphosphorylation, apoptosis, and autophagy. Further, HSV-1 infection can affect processes observed during brain aging, and advanced age favors HSV-1 reactivation as well as the entry of the virus into the brain. The host activates pattern recognition receptors (PRRs) for an effective antiviral response during HSV-1 brain infection, which primarily engages type I interferons (IFNs). Future studies regarding the influence of innate immune deficits on AD development, as well as supporting the neuroprotective properties of glial cells, would reveal valuable information on how to harness cytotoxic inflammatory milieu to counter AD initiation and progression.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-59-36063
| | - Katarzyna Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Adolfa Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
| | - Felix Ngosa Toka
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland;
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre 42123, Saint Kitts and Nevis
| |
Collapse
|
5
|
Itzhaki RF. Overwhelming Evidence for a Major Role for Herpes Simplex Virus Type 1 (HSV1) in Alzheimer's Disease (AD); Underwhelming Evidence against. Vaccines (Basel) 2021; 9:679. [PMID: 34205498 PMCID: PMC8234998 DOI: 10.3390/vaccines9060679] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
This review describes investigations of specific topics that lie within the general subject of HSV1's role in AD/dementia, published in the last couple of years. They include studies on the following: relationship of HSV1 to AD using neural stem cells; the apparent protective effects of treatment of HSV1 infection or of VZV infection with antivirals prior to the onset of dementia; the putative involvement of VZV in AD/dementia; the possible role of human herpes virus 6 (HHV6) in AD; the seemingly reduced risk of dementia after vaccination with diverse types of vaccine, and the association shown in some vaccine studies with reduced frequency of HSV1 reactivation; anti-HSV serum antibodies supporting the linkage of HSV1 in brain with AD in APOE-ε4 carriers, and the association between APOE and cognition, and association of APOE and infection with AD/dementia. The conclusions are that there is now overwhelming evidence for HSV1's role-probably causal-in AD, when it is present in brain of APOE-ε4 carriers, and that further investigations should be made on possible prevention of the disease by vaccination, or by prolonged antiviral treatment of HSV1 infection in APOE-ε4 carriers, before disease onset.
Collapse
Affiliation(s)
- Ruth F Itzhaki
- Institute of Population Ageing, University of Oxford, 66 Banbury Road, Oxford OX2 6PR, UK
| |
Collapse
|
6
|
Wang Y, Wang Q, Han X, Ma Y, Zhang Z, Zhao L, Guan F, Ma S. Fucoidan: a promising agent for brain injury and neurodegenerative disease intervention. Food Funct 2021; 12:3820-3830. [PMID: 33861265 DOI: 10.1039/d0fo03153d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brain injury and neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis are urgent medical problems, which severely threaten the life quality of patients and their carers. However, there are currently no effective therapies. Fucoidan is a natural compound found in brown algae and some animals, which has multiple biological and pharmacological activities, such as antioxidant, anti-tumor, anti-coagulant, anti-thrombotic, immunoregulatory, anti-viral, and anti-inflammatory effects. A growing number of studies have shown that fucoidan also exerts a neuroprotective function. Particularly, recent findings have indicated that fucoidan could slow down the neurodegenerative processes and show protective effects against brain injury, which might be of therapeutic value for intervening in brain injury and neurodegenerative diseases. In this review, we have discussed the pharmacokinetics of fucoidan as well as the molecular mechanisms by which fucoidan exerts its neuroprotective effect on some neurological disorders. Along with this, we have also summarized the potential benefits of fucoidan in combination with other drugs in the treatment of neurodegenerative diseases and brain injury. Although the extraction process of fucoidan has been improved well, more efforts should be devoted to the translational research and clinical trials of fucoidan in the near future.
Collapse
Affiliation(s)
- Yingying Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Qianqian Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Xiao Han
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Yingchao Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Zhenkun Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Liang Zhao
- Key Laboratory of Birth Defects Prevention in National Health Commission, Henan Institute of Population and Reproductive Health, Zhengzhou 450002, Henan, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China. and Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China. and Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
7
|
The association between herpes simplex virus type 1 infection and Alzheimer's disease. J Clin Neurosci 2020; 82:63-70. [PMID: 33317741 DOI: 10.1016/j.jocn.2020.10.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/19/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
There is growing evidence demonstrating the relationship between herpes simplex virus type 1 (HSV-1) infection and Alzheimer's disease (AD). We searched PubMed, Embase, and Cochrane databases for relevant articles. The Newcastle-Ottawa Scale (NOS) was used to evaluate the qualities of these studies. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated using random-effects models. We also performed subgroup analyses stratified by apolipoprotein ε4 (APOE ε4), NOS score, and the method of confirming AD. A total of 21 studies between 1990 and 2020 were identified. The pooled OR suggested that HSV-1 infection is a risk factor of AD: pooled OR 1.40 (95% CI: 1.13-1.75; I2 = 3%, P = 0.42). In the subgroup analyses, the pooled ORs of HSV-1 infection associated with AD were 0.75 (95% CI: 0.24-2.37) among the APOE ε4-positive individuals; 0.85 (95% CI: 0.61-1.17) among the APOE ε4-negative individuals; 1.51 (95% CI: 1.10-2.06) in the high NOS score studies; 1.23 (95% CI: 0.85-1.76) in the moderate NOS score studies; 1.47 (95% CI: 1.16-1.87) in the clinical diagnosis group, and 1.20 (95% CI: 0.77-1.87) in the autopsy group. Our up-to-date systematic review and meta-analysis suggest that HSV-1 infection is a risk factor of AD.
Collapse
|
8
|
Kwok MK, Schooling CM. Herpes simplex virus and Alzheimer's disease: a Mendelian randomization study. Neurobiol Aging 2020; 99:101.e11-101.e13. [PMID: 33139072 DOI: 10.1016/j.neurobiolaging.2020.09.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 09/07/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
This study assessed if any herpes simplex virus (HSV) infection was a genetically valid target for late-onset Alzheimer's disease (AD) using 2-sample Mendelian randomization. We applied strong (p-value <5×10-6) and independent (r2 < 0.05) genetic variants for any HSV infection (n = 450,581) to genome wide association studies of cognitive function (n = 300,486), and late-onset AD (n = 455,258) to obtain estimates. Genetically predicted log odds of any HSV infection was not associated with cognitive function (mean difference 0.0004 per any HSV infection, 95% confidence interval (CI) -0.001 to 0.001), or late-onset AD (odds ratio (OR) 0.999, 95% CI 0.998-1.001). Different genetic variant selections produced similar results. Any HSV infection does not appear to be a genetically valid target of intervention in late-onset AD, suggesting a rethink of the relevance of any HSV infection to late-onset AD.
Collapse
Affiliation(s)
- Man Ki Kwok
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Catherine Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; City University of New York Graduate School of Public Health and Health Policy, New York, United States.
| |
Collapse
|
9
|
Abate G, Memo M, Uberti D. Impact of COVID-19 on Alzheimer's Disease Risk: Viewpoint for Research Action. Healthcare (Basel) 2020; 8:E286. [PMID: 32839380 PMCID: PMC7551579 DOI: 10.3390/healthcare8030286] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
In the middle of the coronavirus disease 19 (COVID-19) outbreak, the main efforts of the scientific community are rightly all focused on identifying efficient pharmacological treatments to cure the acute severe symptoms and developing a reliable vaccine. On the other hand, we cannot exclude that, in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) positive subjects, the virus infection could have long-term consequences, leading to chronic medical conditions such as dementia and neurodegenerative disease. Considering the age of SARS-CoV-2 infected subjects, the neuroinvasive potential might lead/contribute to the development of neurodegenerative diseases. Here, we analyzed a possible link between SARS-CoV-2 infection and Alzheimer's disease risk, hypothesizing possible mechanisms at the base of disease development. This reflection raises the need to start to experimentally investigating today the mechanistic link between Alzheimer's disease (AD) and COVID-19 to be ready tomorrow.
Collapse
Affiliation(s)
- Giulia Abate
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (D.U.)
| | | | | |
Collapse
|
10
|
Itzhaki RF. Corroboration of a Major Role for Herpes Simplex Virus Type 1 in Alzheimer's Disease. Front Aging Neurosci 2018; 10:324. [PMID: 30405395 PMCID: PMC6202583 DOI: 10.3389/fnagi.2018.00324] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/25/2018] [Indexed: 01/10/2023] Open
Abstract
Strong evidence has emerged recently for the concept that herpes simplex virus type 1 (HSV1) is a major risk for Alzheimer’s disease (AD). This concept proposes that latent HSV1 in brain of carriers of the type 4 allele of the apolipoprotein E gene (APOE-ε4) is reactivated intermittently by events such as immunosuppression, peripheral infection, and inflammation, the consequent damage accumulating, and culminating eventually in the development of AD. Population data to investigate this epidemiologically, e.g., to find if subjects treated with antivirals might be protected from developing dementia—are available in Taiwan, from the National Health Insurance Research Database, in which 99.9% of the population has been enrolled. This is being extensively mined for information on microbial infections and disease. Three publications have now appeared describing data on the development of senile dementia (SD), and the treatment of those with marked overt signs of disease caused by varicella zoster virus (VZV), or by HSV. The striking results show that the risk of SD is much greater in those who are HSV-seropositive than in seronegative subjects, and that antiviral treatment causes a dramatic decrease in number of subjects who later develop SD. It should be stressed that these results apply only to those with severe cases of HSV1 or VZV infection, but when considered with the over 150 publications that strongly support an HSV1 role in AD, they greatly justify usage of antiherpes antivirals to treat AD. Three other studies are described which directly relate to HSV1 and AD: they deal respectively with lysosomal changes in HSV1-infected cell cultures, with evidence for a role of human herpes virus type 6 and 7 (HHV6 and HHV7) in AD, and viral effects on host gene expression, and with the antiviral characteristics of beta amyloid (Aβ). Three indirectly relevant studies deal respectively with schizophrenia, relating to antiviral treatment to target HSV1, with the likelihood that HSV1 is a cause of fibromyalgia (FM), and with FM being associated with later development of SD. Studies on the link between epilepsy, AD and herpes simplex encephalitis (HSE) are described also, as are the possible roles of APOE-ε4, HHV6 and HSV1 in epilepsy.
Collapse
Affiliation(s)
- Ruth F Itzhaki
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Ashraf GM, Tarasov VV, Makhmutovа A, Chubarev VN, Avila-Rodriguez M, Bachurin SO, Aliev G. The Possibility of an Infectious Etiology of Alzheimer Disease. Mol Neurobiol 2018; 56:4479-4491. [DOI: 10.1007/s12035-018-1388-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022]
|
12
|
Fülöp T, Itzhaki RF, Balin BJ, Miklossy J, Barron AE. Role of Microbes in the Development of Alzheimer's Disease: State of the Art - An International Symposium Presented at the 2017 IAGG Congress in San Francisco. Front Genet 2018; 9:362. [PMID: 30250480 PMCID: PMC6139345 DOI: 10.3389/fgene.2018.00362] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022] Open
Abstract
This article reviews research results and ideas presented at a special symposium at the International Association of Gerontology and Geriatrics (IAGG) Congress held in July 2017 in San Francisco. Five researchers presented their results related to infection and Alzheimer's disease (AD). Prof. Itzhaki presented her work on the role of viruses, specifically HSV-1, in the pathogenesis of AD. She maintains that although it is true that most people harbor HSV-1 infection, either latent or active, nonetheless aspects of herpes infection can play a role in the pathogenesis of AD, based on extensive experimental evidence from AD brains and infected cell cultures. Dr. Miklossy presented research on the high prevalence of bacterial infections that correlate with AD, specifically spirochete infections, which have been known for a century to be a significant cause of dementia (e.g., in syphilis). She demonstrated how spirochetes drive senile plaque formation, which are in fact biofilms. Prof. Balin then described the involvement of brain tissue infection by the Chlamydia pneumoniae bacterium, with its potential to use the innate immune system in its spread, and its initiation of tissue damage characteristic of AD. Prof. Fülöp described the role of AD-associated amyloid beta (Aβ) peptide as an antibacterial, antifungal and antiviral innate immune effector produced in reaction to microorganisms that attack the brain. Prof. Barron put forward the novel hypothesis that, according to her experiments, there is strong sequence-specific binding between the AD-associated Aβ and another ubiquitous and important human innate immune effector, the cathelicidin peptide LL-37. Given this binding, LL-37 expression in the brain will decrease Aβ deposition via formation of non-toxic, soluble Aβ/LL-37 complexes. Therefore, a chronic underexpression of LL-37 could be the factor that simultaneously permits chronic infections in brain tissue and allows for pathological accumulation of Aβ. This first-of-its-kind symposium opened the way for a paradigm shift in studying the pathogenesis of AD, from the "amyloid cascade hypothesis," which so far has been quite unsuccessful, to a new "infection hypothesis," or perhaps more broadly, "innate immune system dysregulation hypothesis," which may well permit and lead to the discovery of new treatments for AD patients.
Collapse
Affiliation(s)
- Tamàs Fülöp
- Department of Medicine, Division of Geriatrics, Research Center on Aging, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ruth F. Itzhaki
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Brian J. Balin
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Judith Miklossy
- International Alzheimer Research Centre, Prevention Alzheimer International Foundation, Martigny-Croix, Switzerland
| | - Annelise E. Barron
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
13
|
Durães F, Pinto M, Sousa E. Old Drugs as New Treatments for Neurodegenerative Diseases. Pharmaceuticals (Basel) 2018; 11:ph11020044. [PMID: 29751602 PMCID: PMC6027455 DOI: 10.3390/ph11020044] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are increasing in number, given that the general global population is becoming older. They manifest themselves through mechanisms that are not fully understood, in many cases, and impair memory, cognition and movement. Currently, no neurodegenerative disease is curable, and the treatments available only manage the symptoms or halt the progression of the disease. Therefore, there is an urgent need for new treatments for this kind of disease, since the World Health Organization has predicted that neurodegenerative diseases affecting motor function will become the second-most prevalent cause of death in the next 20 years. New therapies can come from three main sources: synthesis, natural products, and existing drugs. This last source is known as drug repurposing, which is the most advantageous, since the drug’s pharmacokinetic and pharmacodynamic profiles are already established, and the investment put into this strategy is not as significant as for the classic development of new drugs. There have been several studies on the potential of old drugs for the most relevant neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Multiple Sclerosis and Amyotrophic Lateral Sclerosis.
Collapse
Affiliation(s)
- Fernando Durães
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos P, 4450-208 Matosinhos, Portugal.
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos P, 4450-208 Matosinhos, Portugal.
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos P, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
14
|
Itzhaki RF. Herpes and Alzheimer's Disease: Subversion in the Central Nervous System and How It Might Be Halted. J Alzheimers Dis 2018; 54:1273-1281. [PMID: 27497484 DOI: 10.3233/jad-160607] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The last 8 or so years have seen a large increase in the number of studies supporting the concept of a major role for herpes simplex virus type 1 (HSV1) in Alzheimer's disease (AD). The main advances have been made through studies in humans and in mice, investigating the likelihood of reactivation of the latent virus in brain. Others have aimed to explain the mechanisms in cells whereby the increase in amyloid-beta (Aβ) production on HSV1 infection of cells and mouse brains occurs, and the reason that infected cells make this increase. The possibility that other herpesviruses are involved in the development of AD has been explored, and human herpesvirus type 6, Epstein-Barr virus, and cytomegalovirus, in particular, have been implicated. Epidemiological studies have further supported the role specifically of HSV1 and its reactivation in the disease. Antiviral studies have continued, comparing those acting by different mechanisms, such as restricting viral replication, or blocking viral entry into cells, to treat HSV1-infected cell cultures, and then examining the extent to which the virus-induced increases in Aβ and AD-like tau are reduced. All the studies support the usage of antiviral treatment to slow or halt the progression of AD.
Collapse
|
15
|
Sochocka M, Zwolińska K, Leszek J. The Infectious Etiology of Alzheimer's Disease. Curr Neuropharmacol 2017; 15:996-1009. [PMID: 28294067 PMCID: PMC5652018 DOI: 10.2174/1570159x15666170313122937] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Inflammation is a part of the first line of defense of the body against invasive pathogens, and plays a crucial role in tissue regeneration and repair. A proper inflammatory response ensures the suitable resolution of inflammation and elimination of harmful stimuli, but when the inflammatory reactions are inappropriate it can lead to damage of the surrounding normal cells. The relationship between infections and Alzheimer's Disease (AD) etiology, especially lateonset AD (LOAD) has been continuously debated over the past three decades. METHODS This review discusses whether infections could be a causative factor that promotes the progression of AD and summarizes recent investigations associating infectious agents and chronic inflammation with AD. Preventive and therapeutic approaches to AD in the context of an infectious etiology of the disease are also discussed. RESULTS Emerging evidence supports the hypothesis of the role of neurotropic viruses from the Herpesviridae family, especially Human herpesvirus 1 (HHV-1), Cytomegalovirus (CMV), and Human herpesvirus 2 (HHV-2), in AD neuropathology. Recent investigations also indicate the association between Hepatitis C virus (HCV) infection and dementia. Among bacteria special attention is focused on spirochetes family and on periodontal pathogens such as Porphyromonas gingivalis or Treponema denticola that could cause chronic periodontitis and possibly contribute to the clinical onset of AD. CONCLUSION Chronic viral, bacterial and fungal infections might be causative factors for the inflammatory pathway in AD.
Collapse
Affiliation(s)
- Marta Sochocka
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Katarzyna Zwolińska
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
16
|
Koyama T, Kuriyama N, Ozaki E, Matsui D, Watanabe I, Miyatani F, Kondo M, Tamura A, Kasai T, Ohshima Y, Yoshida T, Tokuda T, Mizuta I, Mizuno S, Yamada K, Takeda K, Matsumoto S, Nakagawa M, Mizuno T, Watanabe Y. Serum albumin to globulin ratio is related to cognitive decline via reflection of homeostasis: a nested case-control study. BMC Neurol 2016; 16:253. [PMID: 27931194 PMCID: PMC5146886 DOI: 10.1186/s12883-016-0776-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/30/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Recent research suggests that several pathogenetic factors, including aging, genetics, inflammation, dyslipidemia, diabetes, and infectious diseases, influence cognitive decline (CD) risk. However, no definitive candidate causes have been identified. The present study evaluated whether certain serum parameters predict CD. METHODS A total of 151 participants were assessed for CD using the Mini-Mental State Examination (MMSE), and 34 participants were identified as showing CD. RESULTS Among CD predictive risk factors, Helicobacter pylori seropositivity was significantly predictive of CD risk, more so than classical risk factors, including white matter lesions and arterial stiffness [adjusted odds ratio (OR) = 4.786, 95% confidence interval (CI) = 1.710-13.39]. A multivariate analysis indicated that the albumin to globulin (A/G) ratio was the only factor that significantly lowered CD risk (OR = 0.092, 95% CI = 0.010-0.887). A/G ratio also was positively correlated with MMSE scores and negatively correlated with disruption of homeostatic factors (i.e., non-high-density lipoprotein, hemoglobin A1c, and high-sensitive C-reactive protein). CONCLUSIONS The current study results suggest that the A/G ratio is related to cognitive decline and may reflect homeostatic alterations.
Collapse
Affiliation(s)
- Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Nagato Kuriyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Etsuko Ozaki
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Daisuke Matsui
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Isao Watanabe
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Fumitaro Miyatani
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.,Department of Dental Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Masaki Kondo
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Aiko Tamura
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takashi Kasai
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yoichi Ohshima
- Department of Pharmacology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tomokatsu Yoshida
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takahiko Tokuda
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.,Department of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ikuko Mizuta
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shigeto Mizuno
- Endoscopy Department, Kindai University Nara Hospital, 1248-1 Otoda-cho, Ikoma, 630-0293, Japan
| | - Kei Yamada
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuo Takeda
- Kyoto Industrial Health Association, 67 Nishinokyo Kitatsuboi-cho, Nakagyo-ku, Kyoto, 604-8472, Japan
| | - Sanae Matsumoto
- Kyoto Industrial Health Association, 67 Nishinokyo Kitatsuboi-cho, Nakagyo-ku, Kyoto, 604-8472, Japan
| | - Masanori Nakagawa
- Director of North Medical Center, Kyoto Prefectural University of Medicine, 481 Aza-Otokoyama, Yosano-cho, Yosa-gun, Kyoto, 629-2261, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yoshiyuki Watanabe
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
17
|
Kell DB, Pretorius E. On the translocation of bacteria and their lipopolysaccharides between blood and peripheral locations in chronic, inflammatory diseases: the central roles of LPS and LPS-induced cell death. Integr Biol (Camb) 2016; 7:1339-77. [PMID: 26345428 DOI: 10.1039/c5ib00158g] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have recently highlighted (and added to) the considerable evidence that blood can contain dormant bacteria. By definition, such bacteria may be resuscitated (and thus proliferate). This may occur under conditions that lead to or exacerbate chronic, inflammatory diseases that are normally considered to lack a microbial component. Bacterial cell wall components, such as the endotoxin lipopolysaccharide (LPS) of Gram-negative strains, are well known as potent inflammatory agents, but should normally be cleared. Thus, their continuing production and replenishment from dormant bacterial reservoirs provides an easy explanation for the continuing, low-grade inflammation (and inflammatory cytokine production) that is characteristic of many such diseases. Although experimental conditions and determinants have varied considerably between investigators, we summarise the evidence that in a great many circumstances LPS can play a central role in all of these processes, including in particular cell death processes that permit translocation between the gut, blood and other tissues. Such localised cell death processes might also contribute strongly to the specific diseases of interest. The bacterial requirement for free iron explains the strong co-existence in these diseases of iron dysregulation, LPS production, and inflammation. Overall this analysis provides an integrative picture, with significant predictive power, that is able to link these processes via the centrality of a dormant blood microbiome that can resuscitate and shed cell wall components.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK.
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa.
| |
Collapse
|
18
|
The Association Between Helicobacter pylori Infection and Cognitive Disorder in Iranian Elderly Population. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2016. [DOI: 10.5812/archcid.38193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Abstract
More than 50% of the U.S. population is infected with herpes simplex virus type-I (HSV-1) and global infectious estimates are nearly 90%. HSV-1 is normally seen as a harmless virus but debilitating diseases can arise, including encephalitis and ocular diseases. HSV-1 is unique in that it can undermine host defenses and establish lifelong infection in neurons. Viral reactivation from latency may allow HSV-1 to lay siege to the brain (Herpes encephalitis). Recent advances maintain that HSV-1 proteins act to suppress and/or control the lysosome-dependent degradation pathway of macroautophagy (hereafter autophagy) and consequently, in neurons, may be coupled with the advancement of HSV-1-associated pathogenesis. Furthermore, increasing evidence suggests that HSV-1 infection may constitute a gradual risk factor for neurodegenerative disorders. The relationship between HSV-1 infection and autophagy manipulation combined with neuropathogenesis may be intimately intertwined demanding further investigation.
Collapse
Affiliation(s)
- Douglas O'Connell
- a Department of Molecular Microbiology and Immunology , Keck Medical School, University of Southern California , Los Angeles , CA , USA
| | - Chengyu Liang
- a Department of Molecular Microbiology and Immunology , Keck Medical School, University of Southern California , Los Angeles , CA , USA
| |
Collapse
|
20
|
Braak H, Del Tredici K. The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain 2015; 138:2814-33. [DOI: 10.1093/brain/awv236] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/21/2015] [Indexed: 12/13/2022] Open
|
21
|
Wozniak M, Bell T, Dénes Á, Falshaw R, Itzhaki R. Anti-HSV1 activity of brown algal polysaccharides and possible relevance to the treatment of Alzheimer's disease. Int J Biol Macromol 2015; 74:530-40. [PMID: 25583021 DOI: 10.1016/j.ijbiomac.2015.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/22/2014] [Accepted: 01/03/2015] [Indexed: 01/05/2023]
Abstract
Herpes simplex virus type 1 (HSV1) induces the formation of the characteristic abnormal molecules of Alzheimer's disease (AD) brains, beta-amyloid, and abnormally phosphorylated, AD-like tau (P-tau). Formation of these molecules is inhibited by treatment with the antiviral agent acyclovir (ACV), which prevents viral DNA replication. A totally different mechanism of antiviral action against herpes simplex viruses is shown by sulfated fucans. The antiviral activity of sulfated fucans from five brown algae (Scytothamnus australis, Marginariella boryana, Papenfussiella lutea, Splachnidium rugosum and Undaria pinnatifida) was investigated in relation to the HSV1-induced formation of beta-amyloid, and AD-like tau. Antiviral activity was also related to specific structural features of these polysaccharides. Four sulfated fucan extracts each prevented the accumulation of HSV1-induced beta-amyloid and AD-like tau in HSV1-infected Vero cells. The structures of these extracts had some similarities but also key differences, indicating that a number of structural features can cause antiviral activity. The most active sulfated fucan combined with acyclovir was particularly effective, so may be particularly suitable for further experimental testing in order to develop treatment protocols for AD patients, with the aim of slowing or stopping disease progression.
Collapse
Affiliation(s)
- Matthew Wozniak
- Faculty of Life Sciences, The University of Manchester, 3.545 Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| | - Tracey Bell
- The Ferrier Research Institute, Victoria University of Wellington, PO Box 31-310, Lower Hutt, New Zealand.
| | - Ádám Dénes
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u 43, Budapest H 1083, Hungary.
| | - Ruth Falshaw
- The Ferrier Research Institute, Victoria University of Wellington, PO Box 31-310, Lower Hutt, New Zealand.
| | - Ruth Itzhaki
- Faculty of Life Sciences, The University of Manchester, 3.545 Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
22
|
Itzhaki RF. Herpes simplex virus type 1 and Alzheimer's disease: increasing evidence for a major role of the virus. Front Aging Neurosci 2014; 6:202. [PMID: 25157230 PMCID: PMC4128394 DOI: 10.3389/fnagi.2014.00202] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/23/2014] [Indexed: 12/15/2022] Open
Abstract
Herpes simplex virus type 1 (HSV1), when present in brain of carriers of the type 4 allele of the apolipoprotein E gene (APOE), has been implicated as a major factor in Alzheimer's disease (AD). It is proposed that virus is normally latent in many elderly brains but reactivates periodically (as in the peripheral nervous system) under certain conditions, for example stress, immunosuppression, and peripheral infection, causing cumulative damage and eventually development of AD. Diverse approaches have provided data that explicitly support, directly or indirectly, these concepts. Several have confirmed HSV1 DNA presence in human brains, and the HSV1-APOE-ε4 association in AD. Further, studies on HSV1-infected APOE-transgenic mice have shown that APOE-e4 animals display a greater potential for viral damage. Reactivated HSV1 can cause direct and inflammatory damage, probably involving increased formation of beta amyloid (Aβ) and of AD-like tau (P-tau)-changes found to occur in HSV1-infected cell cultures. Implicating HSV1 further in AD is the discovery that HSV1 DNA is specifically localized in amyloid plaques in AD. Other relevant, harmful effects of infection include the following: dynamic interactions between HSV1 and amyloid precursor protein (APP), which would affect both viral and APP transport; induction of toll-like receptors (TLRs) in HSV1-infected astrocyte cultures, which has been linked to the likely effects of reactivation of the virus in brain. Several epidemiological studies have shown, using serological data, an association between systemic infections and cognitive decline, with HSV1 particularly implicated. Genetic studies too have linked various pathways in AD with those occurring on HSV1 infection. In relation to the potential usage of antivirals to treat AD patients, acyclovir (ACV) is effective in reducing HSV1-induced AD-like changes in cell cultures, and valacyclovir, the bioactive form of ACV, might be most effective if combined with an antiviral that acts by a different mechanism, such as intravenous immunoglobulin (IVIG).
Collapse
Affiliation(s)
- Ruth F. Itzhaki
- Faculty of Life Sciences, University of ManchesterManchester, Lancs, UK
| |
Collapse
|
23
|
Increased inflammatory response in cytomegalovirus seropositive patients with Alzheimer's disease. PLoS One 2014; 9:e96779. [PMID: 24804776 PMCID: PMC4013077 DOI: 10.1371/journal.pone.0096779] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/11/2014] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) has been associated with increased local inflammation in the affected brain regions, and in some studies also with elevated levels of proinflammatory cytokines in peripheral blood. Cytomegalovirus (CMV) is known to promote a more effector-oriented phenotype in the T-cell compartment, increasing with age. The aim of this study was to investigate the inflammatory response of peripheral blood mononuclear cells (PBMCs) from AD patients and non-demented (ND) controls. Using a multiplex Luminex xMAP assay targeting GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IP-10 and TNF-α, cytokine profiles from PBMCs were analysed after stimulation with anti-CD3/CD28 beads, CMV pp65 peptide mix or amyloid β (Aβ) protofibrils, respectively. CMV seropositive AD subjects presented with higher IFN-γ levels after anti-CD3/CD28 and CMV pp65 but not after Aβ stimulation, compared to CMV seropositive ND controls. When analysing IFN-γ response to anti-CD3/CD28 stimulation on a subgroup level, CMV seropositive AD subjects presented with higher levels compared to both CMV seronegative AD and CMV seropositive ND subjects. Taken together, our data from patients with clinically manifest AD suggest a possible role of CMV as an inflammatory promoter in AD immunology. Further studies of AD patients at earlier stages of disease, could provide better insight into the pathophysiology.
Collapse
|
24
|
|
25
|
Eradication of Helicobacter pylori Is Associated with the Progression of Dementia: A Population-Based Study. Gastroenterol Res Pract 2013; 2013:175729. [PMID: 24371435 PMCID: PMC3859120 DOI: 10.1155/2013/175729] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/10/2013] [Indexed: 12/20/2022] Open
Abstract
Objective. To evaluate the effect of eradication of Helicobacter pylori (H. pylori) on the progression of dementia in Alzheimer's disease (AD) patients with peptic ulcer.
Methods. Participants with the diagnosis of AD and peptic ulcer were recruited between 2001 and 2008. We examined the association between eradication of H. pylori and the progression of AD using the multiple regression models. Medication shift from Donepezil, Rivastgmine, and Galantamine to Mematine is defined as progression of dementia according to the insurance of National Health Insurance (NHI) under expert review. Results. Among the 30142 AD patients with peptic ulcers, the ratio of medication shift in AD patients with peptic ulcers is 79.95%. There were significant lower incidence comorbidities (diabetes mellitus, hypertension, cerebrovascular disease, coronary artery disease, congestive heart failure and hyperlipidemia) in patients with H. pylori eradication as compared with no H. pylori eradication. Eradication of H. pylori was associated with a decreased risk of AD progression (odds ratio [OR] 0.35 [0.23–0.52]) as compared with no H. pylori eradication, which was not modified by comorbidities. Conclusions. Eradication of H. pylori was associated with a decreased progression of dementia as compared to no eradication of H. pylori in AD patients with peptic ulcers.
Collapse
|
26
|
Wozniak M, Frost A, Itzhaki R. The helicase-primase inhibitor BAY 57–1293 reduces the Alzheimer’s disease-related molecules induced by herpes simplex virus type 1. Antiviral Res 2013; 99:401-4. [DOI: 10.1016/j.antiviral.2013.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/01/2013] [Accepted: 07/05/2013] [Indexed: 11/25/2022]
|
27
|
Appleby BS, Nacopoulos D, Milano N, Zhong K, Cummings JL. A review: treatment of Alzheimer's disease discovered in repurposed agents. Dement Geriatr Cogn Disord 2013; 35:1-22. [PMID: 23307039 DOI: 10.1159/000345791] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/AIMS Many compounds that have already been approved for alternate diagnoses have been studied in relation to Alzheimer's disease (AD). The purpose of this review is to summarize these studies and discuss the rationale and benefits of repurposing drugs for AD treatment. METHODS Studies of drugs related to AD treatment that were relevant to a disease-modifying mechanism of action (MOA) and are already approved by the Food and Drug Administration for non-AD diagnoses were collected from PubMed. RESULTS Many drugs already approved for the treatment of other diseases have been studied in relation to AD treatment. Numerous drugs with known toxicity profiles have the potential to be repurposed as a treatment for AD. CONCLUSION Known MOA, toxicology, and pharmacodynamic profiles would accelerate the process and increase the odds of finding a more timely disease-modifying treatment for AD.
Collapse
Affiliation(s)
- Brian S Appleby
- Cleveland Clinic Lou Ruvo Center for Brain Health, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
28
|
Lurain NS, Hanson BA, Martinson J, Leurgans SE, Landay AL, Bennett DA, Schneider JA. Virological and immunological characteristics of human cytomegalovirus infection associated with Alzheimer disease. J Infect Dis 2013; 208:564-72. [PMID: 23661800 DOI: 10.1093/infdis/jit210] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Serum, cerebrospinal fluid (CSF), and cryopreserved lymphocytes from subjects in the Rush Alzheimer's Disease Center Religious Orders Study were analyzed for associations between cytomegalovirus (CMV) infection and clinical and pathological markers of Alzheimer disease. CMV antibody levels were associated with neurofibrillary tangles (NFTs). CSF interferon γ was only detected in seropositive subjects and was significantly associated with NFTs. The percentage of senescent T cells (CD4+ or CD8+CD28-CD57+) was significantly higher for CMV-seropositive as compared to CMV-seronegative subjects and was marginally associated with the pathologic diagnosis of Alzheimer disease (CD4+) or amyloid-β (CD8+). Immunocytochemical analysis showed induction of amyloid-β in human foreskin fibroblasts (HFFs) infected with each of 3 clinical CMV strains. In the same subjects, there was no association of herpes simplex virus type 1 (HSV-1) antibody levels with CMV antibody levels or clinical or pathological markers of Alzheimer disease. HSV-1 infection of HFFs did not induce amyloid-β. These data support an association between CMV and the development of Alzheimer disease.
Collapse
Affiliation(s)
- Nell S Lurain
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Itzhaki RF, Wozniak MA. Could antivirals be used to treat Alzheimer’s disease? Future Microbiol 2012; 7:307-9. [DOI: 10.2217/fmb.12.10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Ruth F Itzhaki
- Faculty of Life Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Matthew A Wozniak
- Faculty of Life Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
30
|
Álvarez G, Aldudo J, Alonso M, Santana S, Valdivieso F. Herpes simplex virus type 1 induces nuclear accumulation of hyperphosphorylated tau in neuronal cells. J Neurosci Res 2012; 90:1020-9. [DOI: 10.1002/jnr.23003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/04/2011] [Accepted: 11/12/2011] [Indexed: 12/20/2022]
|
31
|
Dysfunctional nucleus tractus solitarius: its crucial role in promoting neuropathogenetic cascade of Alzheimer's dementia--a novel hypothesis. Neurochem Res 2012; 37:846-68. [PMID: 22219130 DOI: 10.1007/s11064-011-0680-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/16/2011] [Accepted: 12/15/2011] [Indexed: 12/22/2022]
Abstract
The pathophysiological mechanism(s) underlying Alzheimer's disease (AD) still remain unclear, and no disease-modifying or prophylactic therapies are currently available. Unraveling the fundamental neuropathogenesis of AD is an important challenge. Several studies on AD have suggested lesions in a number of CNS areas including the basal forebrain, hippocampus, entorhinal cortex, amygdale/insula, and the locus coeruleus. However, plausible unifying studies on the upstream factors that involve these heterogeneous regions and herald the onset of AD pathogenesis are not available. The current article presents a novel nucleus tractus solitarius (NTS) vector hypothesis that underpins several disparate biological mechanisms and neural circuits, and identifies relevant hallmarks of major presumptive causative factor(s) linked to the NTS, in older/aging individuals. Aging, obesity, infection, sleep apnea, smoking, neuropsychological states, and hypothermia-all activate inflammatory cytokines and oxidative stress. The synergistic impact of systemic proinflammatory mediators activates microglia and promotes neuroinflammation. Acutely, the innate immune response is protective defending against pathogens/toxins; however, when chronic, it causes neuroinflammation and neuronal dysfunction, particularly in brainstem and neocortex. The NTS in the brainstem is an essential multiple signaling hub, and an extremely important central integration site of baroreceptor, chemoreceptor, and a multitude of sensory afferents from gustatory, gastrointestinal, cardiac, pulmonary, and upper airway systems. Owing to persistent neuroinflammation, the dysfunctional NTS exerts deleterious impact on nucleus ambiguus, dorsal motor nucleus of vagus, hypoglossal, parabrachial, locus coeruleus and many key nuclei in the brainstem, and the hippocampus, entorhinal cortex, prefrontal cortex, amygdala, insula, and basal forebrain in the neocortex. The neuronal and synaptic dysfunction emanating from the inflamed NTS may affect its interconnected pathways impacting almost the entire CNS--which is already primed by neuroinflammation, thus promoting cognitive and neuropsychiatric symptoms. The upstream factors discussed here may underpin the neuropathopgenesis of AD. AD pathology is multifactorial; the current perspective underscores the value of attenuating disparate upstream factors--in conjunction with anticholinesterase, anti-inflammatory, immunosuppressive, and anti-oxidant pharmacotherapy. Amelioration of the NTS pathology may be of central importance in countering the neuropathological cascade of AD. The NTS, therefore, may be a potential target of novel therapeutic strategies.
Collapse
|
32
|
Association between IgM anti-herpes simplex virus and plasma amyloid-beta levels. PLoS One 2011; 6:e29480. [PMID: 22216291 PMCID: PMC3247269 DOI: 10.1371/journal.pone.0029480] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 11/29/2011] [Indexed: 11/20/2022] Open
Abstract
Objective Herpes simplex virus (HSV) reactivation has been identified as a possible risk factor for Alzheimer's disease (AD) and plasma amyloid-beta (Aβ) levels might be considered as possible biomarkers of the risk of AD. The aim of our study was to investigate the association between anti-HSV antibodies and plasma Aβ levels. Methods The study sample consisted of 1222 subjects (73.9 y in mean) from the Three-City cohort. IgM and IgG anti-HSV antibodies were quantified using an ELISA kit, and plasma levels of Aβ1–40 and Aβ1–42 were measured using an xMAP-based assay technology. Cross-sectional analyses of the associations between anti-HSV antibodies and plasma Aβ levels were performed by multi-linear regression. Results After adjustment for study center, age, sex, education, and apolipoprotein E-e4 polymorphism, plasma Aβ1–42 and Aβ1–40 levels were specifically inversely associated with anti-HSV IgM levels (β = −20.7, P = 0.001 and β = −92.4, P = 0.007, respectively). In a sub-sample with information on CLU- and CR1-linked SNPs genotyping (n = 754), additional adjustment for CR1 or CLU markers did not modify these associations (adjustment for CR1 rs6656401, β = −25.6, P = 0.002 for Aβ1–42 and β = −132.7, P = 0.002 for Aβ1–40; adjustment for CLU rs2279590, β = −25.6, P = 0.002 for Aβ1–42 and β = −134.8, P = 0.002 for Aβ1–40). No association between the plasma Aβ1–42-to-Aβ1–40 ratio and anti-HSV IgM or IgG were evidenced. Conclusion High anti-HSV IgM levels, markers of HSV reactivation, are associated with lower plasma Aβ1–40 and Aβ1–42 levels, which suggest a possible involvement of the virus in the alterations of the APP processing and potentially in the pathogenesis of AD in human.
Collapse
|
33
|
Roubaud-Baudron C, Krolak-Salmon P, Quadrio I, Mégraud F, Salles N. Impact of chronic Helicobacter pylori infection on Alzheimer's disease: preliminary results. Neurobiol Aging 2011; 33:1009.e11-9. [PMID: 22133280 DOI: 10.1016/j.neurobiolaging.2011.10.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 10/12/2011] [Accepted: 10/21/2011] [Indexed: 12/27/2022]
Abstract
Recent case-control studies reported an association between H. pylori infection and Alzheimer's disease (AD). Our aim was to compare cognitive impairment, neuroinflammation, and cerebrovascular lesion load in a group of AD patients according to their H. pylori status. For the 53 AD patients included, we assessed: clinical data (vascular comorbidities and cognitive assessment), biological data (especially fibrinogen, homocysteine levels, apolipoprotein E4 genotype; cerebrospinal fluid [CSF] total tau protein [Tau], phospho-tau(181) protein [pTau(181)]), and amyloid beta peptide levels, serum/CSF-cytokines (interleukin [IL]-1β, IL-6, IL-8, tumor necrosis factor [TNF]-α) and pepsinogen I/pepsinogen II (PgI/PgII) ratio, and cerebrovascular lesion load (magnetic resonance imaging [MRI] fluid-attenuated inversion recovery [FLAIR] with the Fazekas and Schmidt scale). H. pylori infection was diagnosed by enzyme-linked immunosorbent assay (ELISA) and immunoblot test. H. pylori infection was associated with a decreased Mini Mental State Examination (MMS) (p = 0.024), and higher CSF pTau(181) (p = 0.014) and tau (p = 0.021) levels. A decreased PgI/II ratio (i.e., an increased gastric atrophy) was associated with the infection (p = 0.005). Homocysteine levels were positively correlated to Fazekas score (r = 0.34; p = 0.032) and to H. pylori immunoglobulin (Ig)G levels (r = 0.44; p = 0.001). Higher CSF cytokine levels (IL-8, p = 0.003; TNF-α, p = 0.019) were associated with the infection, but systemic inflammation results were controversial. Finally, in multivariate analysis, a lower MMSE score (odds ratio [OR], 0.83 [0.72-0.97]; p = 0.017), plasma IL-1β level (OR, 0.31 [0.11-0.87]; p = 0.025), an increased gastric atrophy, i.e., a lower PgI/PgII ratio (OR, 0.63 [0.43-0.93]; p = 0.020) were still associated with the infection. AD patients infected by H. pylori tended to be more cognitively impaired. Studies are needed to attest to the impact of H. pylori infection on AD course, especially on cerebrovascular lesions and neuroinflammation.
Collapse
|
34
|
Wozniak MA, Frost AL, Preston CM, Itzhaki RF. Antivirals reduce the formation of key Alzheimer's disease molecules in cell cultures acutely infected with herpes simplex virus type 1. PLoS One 2011; 6:e25152. [PMID: 22003387 PMCID: PMC3189195 DOI: 10.1371/journal.pone.0025152] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 08/26/2011] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) afflicts around 20 million people worldwide and so there is an urgent need for effective treatment. Our research showing that herpes simplex virus type 1 (HSV1) is a risk factor for AD for the brains of people who possess a specific genetic factor and that the virus causes accumulation of key AD proteins (β-amyloid (Aβ) and abnormally phosphorylated tau (P-tau)), suggests that anti-HSV1 antiviral agents might slow AD progression. However, currently available antiviral agents target HSV1 DNA replication and so might be successful in AD only if Aβ and P-tau accumulation depend on viral DNA replication. Therefore, we investigated firstly the stage(s) of the virus replication cycle required for Aβ and P-tau accumulation, and secondly whether antiviral agents prevent these changes using recombinant strains of HSV1 that progress only partly through the replication cycle and antiviral agents that inhibit HSV1 DNA replication. By quantitative immunocytochemistry we demonstrated that entry, fusion and uncoating of HSV1, are insufficient to induce Aβ and P-tau production. We showed also that none of the "immediate early" viral proteins is directly responsible, and that Aβ and P-tau are produced at a subsequent stage of the HSV1 replication cycle. Importantly, the anti-HSV1 antiviral agents acyclovir, penciclovir and foscarnet reduced Aβ and P-tau accumulation, as well as HSV1, with foscarnet being less effective in each case. P-tau accumulation was found to depend on HSV1 DNA replication, whereas Aβ accumulation was not. The antiviral-induced decrease in Aβ is attributable to the reduced number of new viruses, and hence the reduction in viral spread. Since antiviral agents reduce greatly Aβ and P-tau accumulation in HSV1-infected cells, they would be suitable for treating AD with great advantage unlike current AD therapies, only the virus, not the host cell, would be targeted.
Collapse
Affiliation(s)
- Matthew A. Wozniak
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Alison L. Frost
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Chris M. Preston
- Centre for Virus Research, Medical Research Council-University of Glasgow, Glasgow, United Kingdom
| | - Ruth F. Itzhaki
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Therapies from fucoidan; multifunctional marine polymers. Mar Drugs 2011; 9:1731-1760. [PMID: 22072995 PMCID: PMC3210604 DOI: 10.3390/md9101731] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 12/22/2022] Open
Abstract
Published research on fucoidans increased three fold between 2000 and 2010. These algal derived marine carbohydrate polymers present numerous valuable bioactivities. This review discusses the role for fucoidan in the control of acute and chronic inflammation via selectin blockade, enzyme inhibition and inhibiting the complement cascade. The recent data on toxicology and uptake of fucoidan is detailed together with a discussion on the comparative activities of fractions of fucoidan from different sources. Recent in vivo, in vitro and clinical research related to diverse clinical needs is discussed. Targets include osteoarthritis, kidney and liver disease, neglected infectious diseases, hemopoietic stem cell modulation, protection from radiation damage and treatments for snake envenomation. In recent years, the production of well characterized reproducible fucoidan fractions on a commercial scale has become possible making therapies from fucoidan a realizable goal.
Collapse
|
36
|
Acyclovir or Aβ42 peptides attenuate HSV-1-induced miRNA-146a levels in human primary brain cells. Neuroreport 2011; 21:922-7. [PMID: 20683212 DOI: 10.1097/wnr.0b013e32833da51a] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human brains harbor herpes simplex virus type-1 (HSV-1) DNA, which normally remains quiescent throughout many decades of life. HSV-1 is associated with viral encephalopathy and with the amyloid beta 42 (Abeta42) peptide-enriched lesions that characterize Alzheimer's disease neuropathology. Here we report that infection of human neuronal-glial cells in primary co-culture with HSV-1 induces an irregular hypertrophy of human neuronal-glial cell bodies, an induction of HSV-1 DNA polymerase, and an up-regulation of micro-RNA-146a associated with altered innate-immune responses. Presence of the antiviral acyclovir or soluble Abeta42 peptide significantly attenuated these neuropathological responses. The inhibitory effects of Abeta42 peptide were also observed in an HSV-1-infected CV-1 cell-based viral plaque assay. The results suggest that soluble Abeta42 peptide can invoke non-pathological and anti-viral effects through inactivation of an HSV-1 challenge to human brain cells by simple viral sequestration, viral destruction, or by complex neurogenetic mechanisms.
Collapse
|
37
|
Abstract
AbstractAlzheimer’s disease (AD) is the most frequent cause of dementia in the elderly, characterized by the presence of cerebral amyloid plaques and neurofibrillary tangles. The causes of the disease are not well understood, especially considering that more than 95% of AD patients are non-familial. Due to the similarity of brain regions affected in herpes simplex encephalitis to those mainly affected in AD, and owing to the very high prevalence of latent herpes simplex virus type 1 (HSV1) infection, reactivation of HSV1 was proposed as one of the possible causes of AD. The trigeminal ganglion, located only a few millimeters from the entorhinal cortex, is the primary site of HSV1 latency, although other sites including the sensory neurons, the nodose ganglion of the vagus nerve and other regions of the brain may be involved, possibly in relation to very early neurofibrillary AD changes in the dorsal raphe, locus coeruleus and other brainstem nuclei. Novel data obtained upon infection of cultured neuronal cells and mouse brain with HSV1 further show that HSV1 infection causes intracellular amyloid-beta protein accumulation, as well as abnormal phosphorylation of tau protein, the major component of tangles. Another interesting fact is the existence of a significant degree of homology between HSV1 components and AD susceptibility genes. In this review we summarize findings that reveal connections between the two conditions, as well as different suggestions for the mechanisms of HSV1-induced AD. As most of the available results support a connection of AD and HSV1 infection, antiviral therapy should be taken into consideration for AD treatment following early diagnosis.
Collapse
|