1
|
Gerardo H, Oliveira PJ, Cavadas C, Grãos M, Teixeira J. The (un)known crosstalk between metabolism and mechanotransduction: Implications for metabolic syndrome (MetS)-associated neurological complications. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167678. [PMID: 39832691 DOI: 10.1016/j.bbadis.2025.167678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Metabolic syndrome (MetS) has been associated with disruptions in tissue mechanical homeostasis and inflammatory and metabolic derangements. However, the direct correlation between metabolic alterations and changes in tissue stiffness, and whether they could play a role as upstream initiators of disease pathology remains to be investigated. This emerging concept has yet to be put into clinical practice as many questions concerning the interplay between extracellular matrix mechanical properties and regulation of metabolic pathways remain unsolved. This review will highlight key foundational studies examining mutual regulation of cell metabolism and mechanotransduction, and opening questions lying ahead for better understanding MetS pathophysiology.
Collapse
Affiliation(s)
- Heloísa Gerardo
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| | - Paulo J Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal.
| | - Cláudia Cavadas
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| | - Mário Grãos
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - José Teixeira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal.
| |
Collapse
|
2
|
Carvalho AVS, Sanches EF, Ribeiro RT, Durán-Carabali LE, Júnior OR, Muniz BD, Wajner M, Wyse AT, Netto CA, Sizonenko SV. Maternal lactoferrin supplementation prevents mitochondrial and redox homeostasis dysfunction, and improves antioxidant defenses through Nrf2 and UCP2 signaling after neonatal hypoxia-ischemia. Free Radic Biol Med 2025; 231:S0891-5849(25)00119-4. [PMID: 40010517 DOI: 10.1016/j.freeradbiomed.2025.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Neonatal hypoxia-ischemia (HI) is a major cause of mortality and neurological impairments in infants. Main HI-induced pathological mechanisms include mitochondrial dysfunction and oxidative stress due to insufficient oxygen and energetic substrates to the nervous cells. Bovine lactoferrin (Lf) has demonstrated neuroprotective effects in several experimental models of neonatal brain injury in rodents, however its mechanisms remain unclear. This study aimed to evaluate the early impact of maternal dietary supplementation with Lf on redox and hippocampal mitochondrial function following neonatal HI. From postnatal day 6 (PND6), pregnant Wistar rats were fed with a diet supplemented with Lf (1g/kg) or with an isocaloric control diet until offspring euthanasia. At PND7, pups of both sexes were subjected to experimental HI through the occlusion of the right common carotid artery followed by 60 minutes of hypoxia (8% oxygen). Twenty-four hours before HI. Lf prevented HI-induced increased levels of DCFH and lipoperoxidation in hippocampus. Furthermore, Lf enhanced antioxidant defenses including SOD, GPx, and GSH, counteracting HI-induced oxidative stress. HI injury altered the activities of enzymes in the mitochondrial respiratory chain and increased the mitochondrial membrane potential. Both effects were counteracted by Lf supplementation. Lactoferrin prevented oxidative stress and to restored mitochondrial function by upregulating Nrf2 and UCP2 expression following experimental HI. Our results show that even a shorter period of Lf delivery to rat pups is able to improve hippocampal response to neonatal hypoxia-ischemia, reversing initial mechanisms of damage in the cascade of HI injury.
Collapse
Affiliation(s)
- Andrey Vinicios S Carvalho
- Postgraduate Program in Biological Science: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Eduardo F Sanches
- Division of Child Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Rafael T Ribeiro
- Postgraduate Program in Biological Science: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luz Elena Durán-Carabali
- Department of Physiological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Osmar Ramires Júnior
- Postgraduate Program in Biological Science: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Dutra Muniz
- Postgraduate Program in Biological Science: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Moacir Wajner
- Postgraduate Program in Biological Science: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Angela T Wyse
- Postgraduate Program in Biological Science: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Postgraduate Program in Biological Science: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Department of Physiological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Stéphane V Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, School of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Kaur M, Aran KR. Unraveling the role of Nrf2 in dopaminergic neurons: a review of oxidative stress and mitochondrial dysfunction in Parkinson's disease. Metab Brain Dis 2025; 40:123. [PMID: 39932604 DOI: 10.1007/s11011-025-01552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/01/2025] [Indexed: 03/04/2025]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential transcriptional factor, involved in the regulation of countenance of various anti-oxidant enzymes and cytoprotective genes that respond to mitochondrial dysfunctions, oxidative stress, and neuroinflammation, thus potentially contributing to several neurodegenerative diseases (NDDs), including Parkison's disease (PD). PD is the second most prevalent progressive NDD, characterized by gradual neuronal death in substantia nigra pars compacta (SNpc), depletion of dopamine level, and a wide range of motor symptoms, including bradykinesia, tremor, tingling, and muscle fatigue. The etiopathology of PD is caused by multifactorial intertwined with the onset and progression of the disease. In this context, Nrf2 exhibits neuroprotective action by preserving dopaminergic neurons in the striatum and retarding the disease progression; thus, Nrf2 activation plays a crucial role in PD. Additionally, Nrf2 binds with the antioxidant response element, which is located in the promoter region of most of the genes that are responsible for coding antioxidant enzymes. Moreover, protein kinase C (PKC) mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinase (PI3K) are also involved in the regulation of Keap1 pathway-mediated Nrf2 activation. As Nrf2 revealed its defensive and protective role in the central nervous system (CNS), it is gaining enough interest in treating PD. The treatments that are currently available are intended to alleviate the symptoms of PD; however, they are unable to halt the progression and severity of the disease. Therefore, in this review we delve deeper into various molecular mechanisms associated with oxidative stress, mitochondrial dysfunction, and neuroinflammation in PD. Additionally, we elaborated on the substantial role that NRF2 plays in mitigating these adverse effects and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Khadga Raj Aran
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
4
|
Kopalli SR, Behl T, Kyada A, Rekha MM, Kundlas M, Rani P, Nathiya D, Satyam Naidu K, Gulati M, Bhise M, Gupta P, Wal P, Fareed M, Ramniwas S, Koppula S, Gasmi A. Synaptic plasticity and neuroprotection: The molecular impact of flavonoids on neurodegenerative disease progression. Neuroscience 2025; 569:161-183. [PMID: 39922366 DOI: 10.1016/j.neuroscience.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/11/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Flavonoids are a broad family of polyphenolic chemicals that are present in a wide variety of fruits, vegetables, and medicinal plants. Because of their neuroprotective qualities, flavonoids have attracted a lot of interest. The potential of flavonoids to control synaptic plasticity-a crucial process underlying memory, learning, and cognitive function-is becoming more and more clear. Dysregulation of synaptic plasticity is a feature of neurodegenerative diseases such as amyotrophic lateral sclerosis (0.4 %), Parkinson's (1-2 %), Alzheimer's (5-7 %), and Huntington's ((0.2 %)). This review discusses the molecular mechanisms via which flavonoids influence synaptic plasticity as well as their therapeutic potential in neurodegenerative diseases. Flavonoids modulate key signaling pathways such as MAPK/ERK and PI3K/Akt/mTOR to support neuroprotection, synaptic plasticity, and neuronal health, while also influencing neurotrophic factors (BDNF, NGF) and their receptors (TrkB, TrkA). They regulate neurotransmitter receptors like GABA, AMPA, and NMDA to balance excitatory and inhibitory transmission, and exert antioxidant effects via the Nrf2-ARE pathway and anti-inflammatory actions by inhibiting NF-κB signaling, highlighting their potential for treating neurodegenerative diseases. These varied reactions support the preservation of synapse function and neuronal integrity in the face of neurodegenerative insults. Flavonoids can reduce the symptoms of neurodegeneration, prevent synaptic loss, and enhance cognitive function, according to experimental studies. However, there are still obstacles to using these findings in clinical settings, such as limited bioavailability and the need for consistent dose. The focus of future research should be on improving flavonoid delivery systems and combining them with conventional medications.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006 Republic of Korea
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab 140306, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot 360003 Gujarat, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401 Punjab, India
| | - Pooja Rani
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307 Punjab, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | | | | | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology, Pharmacy Kanpur UP, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Seema Ramniwas
- University Centre for Research and Development, Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413 Punjab, India
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| | - Amin Gasmi
- Societe Francophone de Nutritherapie et de Nutrigenetique Appliquee, Villeurbanne, France; International Institute of Nutrition and Micronutrient Sciences, Saint-Etienne, France
| |
Collapse
|
5
|
Ikpeama EU, Orish CN, Ezejiofor AN, Cirovic A, Cirovic A, Nwaogazie IL, Orisakwe OE. Selenium and zinc protect against heavy metal mixture-induced, olfactory bulb and hippocampal damage by augmenting antioxidant capacity and activation of Nrf2-Hmox-1 signaling in male rats. Int J Neurosci 2025; 135:242-256. [PMID: 38108304 DOI: 10.1080/00207454.2023.2295227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE/AIM OF THE STUDY Heavy metals and metalloids have been implicated in neurodenerative diseases. Present study has evaluated the potential protective effects of Se and Zn on heavy metals and metalloids mixture-induced (Cd, Pb, Hg and As) toxicity in the hippocampus and olfactory bulb in male rats. MATERIALS AND METHODS Five groups of Wistar rats were randomly divided in to: controls, toxic metals mixture (TMM) exposed rats (PbCl2, 20 mg·kg-1; CdCl2, 1.61 mg·kg-1; HgCl2, 0.40 mg·kg-1 and NaAsO3, 10 mg·kg-1)), TMM + Zn, TMM + Se and TMM-+Zn + Se groups and were orally treated for 60 days. RESULTS We found that in hippocampus and olfactory bulb, TMM generated increased lipid peroxidation and diminished antioxidant capacity. These adverse effects induced by TMM were alleviated by Zn and Se co-treatment; moreover, essential trace elements (Zn and Se) decreased activity of acetylcholinesterase, reduced Cd, Pb, Hg and As bioaccumulation in hippocampus and olfactory bulb and decreased levels of TNF-α in the hippocampus. TMM treated rats had lower levels of Hmox-1 (hippocampus), higher levels of Nrf2 (olfactory bulb and hippocampus) and NF-kB (olfactory bulb). TMM treated rats showed significantly highest time in locating the escape hole. Histopathological examination revealed hypertrophied granule cells in OB of TMM exposed rats. CONCLUSION Zn and Se supplementation can reverse quaternary mixture-induced (Cd, Pb, Hg and As) toxicity in hippocampus and OB in male albino rats.
Collapse
Affiliation(s)
- Evelyn U Ikpeama
- World Bank Africa Centre of Excellence in Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| | - Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Ify L Nwaogazie
- World Bank Africa Centre of Excellence in Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| |
Collapse
|
6
|
Sedlacek J, Smahelova Z, Adamek M, Subova D, Svobodova L, Kadlecova A, Majer P, Machara A, Grantz Saskova K. Small-molecule activators of NRF1 transcriptional activity prevent protein aggregation. Biomed Pharmacother 2025; 183:117864. [PMID: 39884031 DOI: 10.1016/j.biopha.2025.117864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 02/01/2025] Open
Abstract
Intracellular protein aggregation causes proteotoxic stress, underlying highly debilitating neurodegenerative disorders in parallel with decreased proteasome activity. Nevertheless, under such stress conditions, the expression of proteasome subunits is upregulated by Nuclear Factor Erythroid 2-related factor 1 (NRF1), a transcription factor that is encoded by NFE2L1. Activating the NRF1 pathway could accordingly delay the onset of neurodegenerative and other disorders with impaired cell proteostasis. Here, we present a series of small-molecule compounds based on bis(phenylmethylen)cycloalkanones and their heterocyclic analogues, identified via targeted library screening, that can induce NRF1-dependent downstream events, such as proteasome synthesis, heat shock response, and autophagy, in both model cell lines and Caenorhabditis elegans strains. These compounds increase proteasome activity and decrease the size and number of protein aggregates without causing any cellular stress or inhibiting the ubiquitin-proteasome system (UPS). Therefore, our compounds represent a new promising therapeutic approach for various protein conformational diseases, including the most debilitating neurodegenerative diseases.
Collapse
Affiliation(s)
- Jindrich Sedlacek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic; Department of Genetics and Microbiology, Charles University and Research Center BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Zuzana Smahelova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic; Department of Genetics and Microbiology, Charles University and Research Center BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Michael Adamek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic; Department of Genetics and Microbiology, Charles University and Research Center BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Dominika Subova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic; Department of Genetics and Microbiology, Charles University and Research Center BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic; First Faculty of Medicine & General University Hospital, Charles University, U Nemocnice 2, Prague 2 12808, Czech Republic
| | - Lucie Svobodova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic; Department of Organic Chemistry, Charles University, Hlavova 2030/8, Prague 2 12843, Czech Republic
| | - Alena Kadlecova
- Department of Experimental Biology, Palacky University, Slechtitelu 27, Olomouc 78371, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic
| | - Ales Machara
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic.
| | - Klara Grantz Saskova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic; Department of Genetics and Microbiology, Charles University and Research Center BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic.
| |
Collapse
|
7
|
Li Y, Wang X, Li S, Wang L, Ding N, She Y, Li C. Therapeutic Effects of Natural Products in the Treatment of Chronic Diseases: The Role in Regulating KEAP1-NRF2 Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:67-96. [PMID: 39880664 DOI: 10.1142/s0192415x25500041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Oxidative stress represents a pivotal mechanism in the pathogenesis of numerous chronic diseases. The Kelch-like ECH-associated protein 1-transcription factor NF-E2 p45-related factor 2 (KEAP1-NRF2) pathway plays a crucial role in maintaining redox homeostasis and regulating a multitude of biological processes such as inflammation, protein homeostasis, and metabolic homeostasis. In this paper, we present the findings of recent studies on the KEAP1-NRF2 pathway, which have revealed that it is aberrantly regulated and induces oxidative stress injury in a variety of diseases such as neurodegenerative diseases, cardiovascular diseases, metabolic diseases, respiratory diseases, digestive diseases, and cancer. Given this evidence, targeting KEAP1-NRF2 represents a highly promising avenue for developing therapeutic strategies for chronic diseases, and thus the development of appropriate therapeutic strategies based on the targeting of the NRF2 pathway has emerged as a significant area of research interest. This paper highlights an overview of current strategies to modulate KEAP1-NRF2, as well as recent advances in the use of natural compounds and traditional Chinese medicine, with a view to providing meaningful guidelines for drug discovery and development targeting KEAP1-NRF2. Additionally, it discusses the challenges associated with harnessing NRF2 as a therapeutic target.
Collapse
Affiliation(s)
- Yaling Li
- Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- Basic Medical School, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Xijia Wang
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People's Liberation Army, Lanzhou 730050, P. R. China
| | - Shuyue Li
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People's Liberation Army, Lanzhou 730050, P. R. China
| | - Lei Wang
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People's Liberation Army, Lanzhou 730050, P. R. China
| | - Ningning Ding
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People's Liberation Army, Lanzhou 730050, P. R. China
| | - Yali She
- Basic Medical School, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Changtian Li
- Basic Medical School, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| |
Collapse
|
8
|
Alves I, Araújo EMQ, Dalgaard LT, Singh S, Børsheim E, Carvalho E. Protective Effects of Sulforaphane Preventing Inflammation and Oxidative Stress to Enhance Metabolic Health: A Narrative Review. Nutrients 2025; 17:428. [PMID: 39940284 PMCID: PMC11821257 DOI: 10.3390/nu17030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/14/2025] Open
Abstract
The worldwide obesity epidemic has led to a drastic increase in diabetes and cardiovascular disease in younger generations. Further, maintaining metabolic health during aging is frequently a challenge due to poor diets and decreased mobility. In this setting, bioactive nutrients that are naturally occurring antioxidants, such as sulforaphane (SFN), are of high nutritional interest. SFN, a bioactive compound that is present in cruciferous vegetables, is a molecule that protects cells from cytotoxic damage and mitigates oxidative stress, protecting against disease. It exerts its action through the activation of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). Many studies have been performed in animals and humans to evaluate its effects on cancer, brain health, and neurodegenerative disorders. However, fewer clinical studies have been performed to evaluate its effects on insulin resistance and the development of type 2 diabetes mellitus (T2DM) across the lifespan. Given that, in some parts of the world, particularly in Europe, the population is growing older at a significant rate, it is crucial to promote healthy habits (healthy foods, dietary pattern, precision nutrition, and physical activity) from an early stage in life and across the lifespan to avoid debilitating health conditions occurring during adulthood and aging. Thus, in this narrative review, we discuss the protective effects of SFN supplementation on inflammatory and oxidative stress pathways and relate them to metabolic disease.
Collapse
Affiliation(s)
- Inês Alves
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal;
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA;
| | - Edilene Maria Queiroz Araújo
- Nutritional Genomics and Metabolic Dysfunctions Research and Extension Center, Department of Life Sciences, State University of Bahia, Salvador 41195001, BA, Brazil;
| | - Louise T. Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark;
| | - Sharda Singh
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Medical Sciences Center, Lubbock, TX 79430, USA;
| | - Elisabet Børsheim
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA;
- Department of Pediatrics & Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
| | - Eugenia Carvalho
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinar Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
9
|
Unadkat P, Rebeiz T, Ajmal E, De Souza V, Xia A, Jinu J, Powell K, Li C. Neurobiological Mechanisms Underlying Psychological Dysfunction After Brain Injuries. Cells 2025; 14:74. [PMID: 39851502 PMCID: PMC11763422 DOI: 10.3390/cells14020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Despite the presentation of similar psychological symptoms, psychological dysfunction secondary to brain injury exhibits markedly lower treatment efficacy compared to injury-independent psychological dysfunction. This gap remains evident, despite extensive research efforts. This review integrates clinical and preclinical evidence to provide a comprehensive overview of the neurobiological mechanisms underlying neuropsychological disorders, focusing on the role of key brain regions in emotional regulation across various forms of brain injuries. It examines therapeutic interventions and mechanistic targets, with the primary goal of identifying pathways for targeted treatments. The review highlights promising therapeutic avenues for addressing injury-associated psychological dysfunction, emphasizing Nrf2, neuropeptides, and nonpharmacological therapies as multi-mechanistic interventions capable of modulating upstream mediators to address the complex interplay of factors underlying psychological dysfunction in brain injury. Additionally, it identifies sexually dimorphic factors as potential areas for further exploration and advocates for detailed investigations into sex-specific patterns to uncover additional contributors to these disorders. Furthermore, it underscores significant gaps, particularly the inadequate consideration of interactions among causal factors, environmental influences, and individual susceptibilities. By addressing these gaps, this review provides new insights and calls for a paradigm shift toward a more context-specific and integrative approach to developing targeted therapies for psychological dysfunction following brain injuries.
Collapse
Affiliation(s)
- Prashin Unadkat
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Neurosurgery, North Shore University Hospital at Northwell Health, Manhasset, NY 11030, USA
| | - Tania Rebeiz
- Department of Neurosurgery, North Shore University Hospital at Northwell Health, Manhasset, NY 11030, USA
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- SUNY Downstate College of Medicine, Brooklyn, NY 11225, USA
| | - Vincent De Souza
- Department of Neurosurgery, Staten Island University Hospital at Northwell Health, Staten Island, NY 10305, USA
| | - Angela Xia
- Department of Neurosurgery, North Shore University Hospital at Northwell Health, Manhasset, NY 11030, USA
| | - Julia Jinu
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Biology Department, Adelphi University, Garden City, NY 11530, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Neurosurgery, North Shore University Hospital at Northwell Health, Manhasset, NY 11030, USA
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
10
|
Sethi P, Mehan S, Khan Z, Maurya PK, Kumar N, Kumar A, Tiwari A, Sharma T, Das Gupta G, Narula AS, Kalfin R. The SIRT-1/Nrf2/HO-1 axis: Guardians of neuronal health in neurological disorders. Behav Brain Res 2025; 476:115280. [PMID: 39368713 DOI: 10.1016/j.bbr.2024.115280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
SIRT1 (Sirtuin 1) is a NAD+-dependent deacetylase that functions through nucleoplasmic transfer and is present in nearly all mammalian tissues. SIRT1 is believed to deacetylate its protein substrates, resulting in neuroprotective actions, including reduced oxidative stress and inflammation, increased autophagy, increased nerve growth factors, and preserved neuronal integrity in aging or neurological disease. Nrf2 is a transcription factor that regulates the genes responsible for oxidative stress response and substance detoxification. The activation of Nrf2 guards cells against oxidative damage, inflammation, and carcinogenic stimuli. Several neurological abnormalities and inflammatory disorders have been associated with variations in Nrf2 activation caused by either pharmacological or genetic factors. Recent evidence indicates that Nrf2 is at the center of a complex cellular regulatory network, establishing it as a transcription factor with genuine pleiotropy. HO-1 is most likely a component of a defense mechanism in cells under stress, as it provides negative feedback for cell activation and mediator synthesis. This mediator is upregulated by Nrf2, nitric oxide (NO), and other factors in various inflammatory states. HO-1 or its metabolites, such as CO, may mitigate inflammation by modulating signal transduction pathways. Neurological diseases may be effectively treated by modulating the activity of HO-1. Multiple studies have demonstrated that SIRT1 and Nrf2 share an important connection. SIRT1 enhances Nrf2, activates HO-1, protects against oxidative injury, and decreases neuronal death. This has been associated with numerous neurodegenerative and neuropsychiatric disorders. Therefore, activating the SIRT1/Nrf2/HO-1 pathway may help treat various neurological disorders. This review focuses on the current understanding of the SIRT1 and Nrf2/HO-1 neuroprotective processes and the potential therapeutic applications of their target activators in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Pankaj Kumar Maurya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia 1113, Bulgaria; Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad 2700, Bulgaria
| |
Collapse
|
11
|
Lee KH, Kim UJ, Lee BH, Cha M. Safeguarding the brain from oxidative damage. Free Radic Biol Med 2025; 226:143-157. [PMID: 39547523 DOI: 10.1016/j.freeradbiomed.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Oxidative stress imposes a substantial cellular burden on the brain and contributes to diverse neurodegenerative diseases. Various antioxidant signaling pathways have been implicated in oxidative stress and have a protective effect on brain cells by increasing the release of numerous enzymes and through anti-inflammatory responses to oxidative damage caused by abnormal levels of reactive oxygen species (ROS). Although many molecules evaluated as antioxidants have shown therapeutic potentials in preclinical studies, the results of clinical trials have been less than satisfactory. This review focuses on several signaling pathways involved in oxidative stress that are associated with antioxidants. These pathways have a protective effect against stressors by increasing the release of various enzymes and also exert anti-inflammatory responses against oxidative damage. There is no doubt that oxidative stress is a crucial therapeutic target in the treatment of neurological diseases. Therefore, it is essential to understand the discovery of multiple routes that can efficiently repair the damage caused by ROS and prevent neurodegenerative disorders. This paper aims to provide a concise and objective review of the oxidative and antioxidant pathways and their potential therapeutic applications in treating oxidative injury in the brain.
Collapse
Affiliation(s)
- Kyung Hee Lee
- Department of Dental Hygiene, Division of Health Science, Dongseo University, Busan, 47011, South Korea
| | - Un Jeng Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea; Department of Medical Science, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea; Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
12
|
Desouky MA, Michel HE, Elsherbiny DA, George MY. Recent pharmacological insights on abating toxic protein species burden in neurological disorders: Emphasis on 26S proteasome activation. Life Sci 2024; 359:123206. [PMID: 39489397 DOI: 10.1016/j.lfs.2024.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/30/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Protein homeostasis (proteostasis) refers to the plethora of mechanisms that safeguard the proper folding of the newly synthesized proteins. It entails various intricately regulated cues that demolish the toxic protein species to prevent their aggregation. The ubiquitin-proteasome system (UPS) is recognized as a salient protein degradation system, with a substantial role in maintaining proteostasis. However, under certain circumstances the protein degradation capacity of the UPS is overwhelmed, leading to the accumulation of misfolded proteins. Several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington disease, and amyotrophic lateral sclerosis are characterized with the presence of protein aggregates and proteinopathy. Accordingly, enhancing the 26S proteasome degradation activity might delineate a pioneering approach in targeting various proteotoxic disorders. Regrettably, the exact molecular approaches that enhance the proteasomal activity are still not fully understood. Therefore, this review aimed to underscore several signaling cascades that might restore the degradation capacity of this molecular machine. In this review, we discuss the different molecular components of the UPS and how 26S proteasomes are deleteriously affected in many neurodegenerative diseases. Moreover, we summarize different signaling pathways that can be utilized to renovate the 26S proteasome functional capacity, alongside currently known druggable targets in this circuit and various classes of proteasome activators.
Collapse
Affiliation(s)
- Mahmoud A Desouky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| |
Collapse
|
13
|
Izumi Y, Koyama Y. Nrf2-Independent Anti-Inflammatory Effects of Dimethyl Fumarate: Challenges and Prospects in Developing Electrophilic Nrf2 Activators for Neurodegenerative Diseases. Antioxidants (Basel) 2024; 13:1527. [PMID: 39765855 PMCID: PMC11727036 DOI: 10.3390/antiox13121527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 01/15/2025] Open
Abstract
The NF-E2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway is a potential therapeutic target for central nervous system diseases. This review emphasizes the role of oxidative stress and neuroinflammation in neurodegenerative diseases, highlighting the therapeutic potential of Nrf2 activators such as dimethyl fumarate (DMF). DMF, initially administered for treating psoriasis, has demonstrated efficacy in multiple sclerosis and is metabolized to monomethyl fumarate, which may exert significant therapeutic effects. DMF activates the Nrf2-ARE pathway, and recent studies have indicated that its anti-inflammatory effects occur through Nrf2-independent mechanisms. Electrophilic Nrf2 activators, such as DMF, covalently bind to cysteine residues in proteins and modulate their function. We discuss the implications of cysteine residue modifications by DMF, which may cause both therapeutic benefits and potential off-target effects. Furthermore, we propose a chemical proteomics-based drug discovery approach to achieve desired therapeutic effects by selectively covalently modifying cysteines in target proteins. These findings advocate for a broader understanding of the Nrf2-independent mechanisms of electrophilic Nrf2 activators, thereby improving drug discovery strategies that target neurodegenerative diseases while minimizing toxicity.
Collapse
Affiliation(s)
- Yasuhiko Izumi
- Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan;
| | | |
Collapse
|
14
|
Navarro E, Esteras N. Multitarget Effects of Nrf2 Signalling in the Brain: Common and Specific Functions in Different Cell Types. Antioxidants (Basel) 2024; 13:1502. [PMID: 39765831 PMCID: PMC11673142 DOI: 10.3390/antiox13121502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial regulator of cellular defence mechanisms, essential for maintaining the brain's health. Nrf2 supports mitochondrial function and protects against oxidative damage, which is vital for meeting the brain's substantial energy and antioxidant demands. Furthermore, Nrf2 modulates glial inflammatory responses, playing a pivotal role in preventing neuroinflammation. This review explores these multifaceted functions of Nrf2 within the central nervous system, focusing on its activity across various brain cell types, including neurons, astrocytes, microglia, and oligodendrocytes. Due to the brain's vulnerability to oxidative stress and metabolic challenges, Nrf2 is emerging as a key therapeutic target to enhance resilience against oxidative stress, inflammation, mitochondrial dysfunction, and demyelination, which are central to many neurodegenerative diseases.
Collapse
Affiliation(s)
- Elisa Navarro
- Neurochemistry Research Institute, Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Noemí Esteras
- Neurochemistry Research Institute, Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28040 Madrid, Spain
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
15
|
Wu YL, Sun HL, Chang JC, Lin WY, Chen PY, Chen CC, Lee LY, Li CC, Hsieh M, Chen HW, Yang YC, Liu CS, Liu KL. Erinacine A-Enriched Hericium erinaceus Mycelium Ethanol Extract Lessens Cellular Damage in Cell and Drosophila Models of Spinocerebellar Ataxia Type 3 by Improvement of Nrf2 Activation. Antioxidants (Basel) 2024; 13:1495. [PMID: 39765823 PMCID: PMC11673478 DOI: 10.3390/antiox13121495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), caused by the abnormal expansion of polyglutamine (polyQ) in the ataxin-3 protein, is one of the inherited polyQ neurodegenerative diseases that share similar genetic and molecular features. Mutant polyQ-expanded ataxin-3 protein is prone to aggregation in affected neurons and is predominantly degraded by autophagy, which is beneficial for neurodegenerative disease treatment. Not only does mutant polyQ-expanded ataxin-3 increase susceptibility to oxidative cytotoxicity, but it also hampers antioxidant potency in neuronal cells. Nuclear factor erythroid-derived 2-like 2 (Nrf2), a master transcription factor that controls antioxidant and detoxification gene expression, plays a crucial role in neuroprotection in SCA3 and other neurodegenerative diseases. The present data showed that treatment with erinacine A-enriched Hericium erinaceus mycelium ethanol extract (HEME) extended longevity and improved locomotor activity in ELAV-SCA3tr-Q78 transgenic Drosophila. Moreover, HEME treatment enhanced antioxidant potency and autophagy, which, in turn, corrected levels of mutant polyQ-expanded ataxin-3 and restrained protein aggregation in both cell and Drosophila models of SCA3. Markedly, HEME increased the activation of Nrf2. Silencing Nrf2 protein expression negated most of the promising effects of HEME on SK-N-SH-MJD78 cells, highlighting the critical role of increased Nrf2 activation in the efficacy of HEME treatment. These findings suggest that HEME has therapeutic potential in SCA3 by enhancing autophagic and Nrf2-mediated antioxidant pathways, which may also influence neurodegenerative progression in other polyQ diseases.
Collapse
Affiliation(s)
- Yu-Ling Wu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
| | - Hai-Lun Sun
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Pediatrics, Division of Allergy, Asthma and Rheumatology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Jui-Chih Chang
- Center of Regenerative Medicine and Tissue Repair, Changhua Christian Hospital, Changhua 500, Taiwan;
- General Research Laboratory of Research Department, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Wei-Yong Lin
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Pei-Yin Chen
- Department of Senior Citizen Welfare and Long-Term Care Business (Master Program), Hungkuang University, Taichung 433, Taiwan;
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 325, Taiwan; (C.-C.C.); (L.-Y.L.)
| | - Li-Ya Lee
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 325, Taiwan; (C.-C.C.); (L.-Y.L.)
| | - Chien-Chun Li
- Department of Nutrition, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Mingli Hsieh
- Department of Life Science and Life Science Research Center, Tunghai University, Taichung 407, Taiwan;
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung 404, Taiwan;
| | - Ya-Chen Yang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan;
| | - Chin-San Liu
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Vascular and Genomic Center, Institute of ATP, Changhua Christian Hospital, Changhua 50094, Taiwan
- Department of Neurology, Changhua Christian Hospital, Changhua 500, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
16
|
Shirmard LR, Khezri S, Ahadzadeh S, Azadimoghaddam P, Azizian S, Salimi A. Preparation of gallic acid-loaded chitosan nanoparticles and their chemoprotective effects on N-ethyl-N-nitrosourea-induced hepatotoxicity and mortality in rats. J Mol Histol 2024; 56:1. [PMID: 39585491 DOI: 10.1007/s10735-024-10280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
N-ethyl-N-nitrosourea (ENU) as n-nitrosamine and alkylating agent, ubiquitous within living cells and in the environment can act as a full carcinogen and induce tumor formation in various tissues such as liver. In this study, gallic acid-loaded chitosan nanoparticles (GANPs) were synthesized and evaluated for their chemopreventive effect against ENU-induced hepatotoxicity and mortality in rats. Twenty-four male Wistar rats were divided into four groups including: control, ENU (single doses of 50 mg/kg via intraperitoneal injection), GA + ENU and GANPs + ENU. Animals were orally pretreated with GA (50 mg/kg) and GANPs (50 mg/kg) for 30 days, and liver injuries induced by ENU on the 31st day of study. After ENU administration, weight changes and mortality were monitored during 30 days, and then the animals were sacrificed and alpha-fetoprotein (AFP) as a tumor marker, liver function tests (ALT, AST and ALP), oxidative stress markers (GSH and MDA), mitochondrial toxicity parameters, and histopathological assessment were evaluated. Except for AFP and MDA, ENU caused significant elevation of liver enzymes, mitochondrial ROS formation, collapse of mitochondrial membrane potential depletion of GSH, histopathological abnormalities and mortality in rats. Our data showed that GANPs significantly increased the survival of rats by up to 66%, delayed in death time and prevented weight changes after exposure to ENU. Moreover, GANPs restored liver enzyme levels, ROS formation, mitochondrial dysfunction, GSH levels, and histopathological abnormalities towards normal. Our findings suggest that GANPs revealed a significant protective effect against deadly toxicity induced by ENU as an alkylating full carcinogen agent in liver tissue.
Collapse
Affiliation(s)
- Leila Rezaie Shirmard
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Department of Pharmacology and Toxicology, Associate Professor of Toxicology and Pharmacology School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran
| | - Sara Ahadzadeh
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Paniiiz Azadimoghaddam
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sepideh Azizian
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, Associate Professor of Toxicology and Pharmacology School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran.
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
17
|
Nie RZ, Luo HM, Liu YP, Wang SS, Hou YJ, Chen C, Wang H, Lv HL, Tao XY, Jing ZH, Zhang HK, Li PF. Food Functional Factors in Alzheimer's Disease Intervention: Current Research Progress. Nutrients 2024; 16:3998. [PMID: 39683391 DOI: 10.3390/nu16233998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease (AD) is a complex multifactorial neurodegenerative disease. With the escalating aging of the global population, the societal burden of this disease is increasing. Although drugs are available for the treatment of AD, their efficacy is limited and there remains no effective cure. Therefore, the identification of safe and effective prevention and treatment strategies is urgently needed. Functional factors in foods encompass a variety of natural and safe bioactive substances that show potential in the prevention and treatment of AD. However, current research focused on the use of these functional factors for the prevention and treatment of AD is in its initial stages, and a complete theoretical and application system remains to be determined. An increasing number of recent studies have found that functional factors such as polyphenols, polysaccharides, unsaturated fatty acids, melatonin, and caffeine have positive effects in delaying the progression of AD and improving cognitive function. For example, polyphenols exhibit antioxidant, anti-inflammatory, and neuroprotective effects, and polysaccharides promote neuronal growth and inhibit inflammation and oxidative stress. Additionally, unsaturated fatty acids inhibit Aβ production and Tau protein phosphorylation and reduce neuroinflammation, and melatonin has been shown to protect nerve cells and improve cognitive function by regulating mitochondrial homeostasis and autophagy. Caffeine has also been shown to inhibit inflammation and reduce neuronal damage. Future research should further explore the mechanisms of action of these functional factors and develop relevant functional foods or nutritional supplements to provide new strategies and support for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Rong-Zu Nie
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Huo-Min Luo
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Ya-Ping Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Shuang-Shuang Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yan-Jie Hou
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Chen Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Hang Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Hui-Lin Lv
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Xing-Yue Tao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Zhao-Hui Jing
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Hao-Kun Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Pei-Feng Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
18
|
Bhat AA, Moglad E, Goyal A, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Gaur A, Singh TG, Singh SK, Dua K, Gupta G. Nrf2 pathways in neuroprotection: Alleviating mitochondrial dysfunction and cognitive impairment in aging. Life Sci 2024; 357:123056. [PMID: 39277133 DOI: 10.1016/j.lfs.2024.123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Mitochondrial dysfunction and cognitive impairment are widespread phenomena among the elderly, being crucial factors that contribute to neurodegenerative diseases. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of cellular defense systems, including that against oxidative stress. As such, increased Nrf2 activity may serve as a strategy to avert mitochondrial dysfunction and cognitive decline. Scientific data on Nrf2-mediated neuroprotection was collected from PubMed, Google Scholar, and Science Direct, specifically addressing mitochondrial dysfunction and cognitive impairment in older people. Search terms included "Nrf2", "mitochondrial dysfunction," "cognitive impairment," and "neuroprotection." Studies focusing on in vitro and in vivo models and clinical investigations were included to review Nrf2's therapeutic potential comprehensively. The relative studies have demonstrated that increased Nrf2 activity could improve mitochondrial performance, decrease oxidative pressure, and mitigate cognitive impairment. To a large extent, this is achieved through the modulation of critical cellular signalling pathways such as the Keap1/Nrf2 pathway, mitochondrial biogenesis, and neuroinflammatory responses. The present review summarizes the recent progress in comprehending the molecular mechanisms regarding the neuroprotective benefits mediated by Nrf2 through its substantial role against mitochondrial dysfunction and cognitive impairment. This review also emphasizes Nrf2-target pathways and their contribution to cognitive function improvement and rescue from mitochondria-related abnormalities as treatment strategies for neurodegenerative diseases that often affect elderly individuals.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Sakaka, Al-Jouf, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Ashish Gaur
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
19
|
Ahmed S, Nilofar, Cvetanović Kljakić A, Stupar A, Lončar B, Božunović J, Gašić U, Yıldıztugay E, Ferrante C, Zengin G. Exploring traditional and modern approaches for extracting bioactive compounds from Ferulago trachycarpa. Prep Biochem Biotechnol 2024; 54:1306-1319. [PMID: 38756105 DOI: 10.1080/10826068.2024.2349937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
For more than two millennia, Ferulago species have been revered as therapeutic herbs, maintaining their significance in present-day folk medicine practices. Therefore, the present study was conducted to investigate the phytochemical composition, inhibitory effects on metabolic enzymes, and possible therapeutic applications of F. trachycarpa, specifically focusing on its efficacy in diabetes management, anticholinergic effects, and antioxidant capabilities. The current investigation comprised an evaluation of a range of extracts acquired via conventional and modern methodologies, such as soxhlet (SOX), maceration (MAC) accelerated solvent extraction (ASE), homogenizer-assisted extraction (HAE), supercritical fluid extraction (SFE), microwave-assisted extraction (MW), and ultrasound-assisted extraction (UAE). Various techniques were employed to assess their antioxidant capacity and enzyme inhibition. Furthermore, the research utilized ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) to ascertain the principal phenolic compounds that are responsible for the antioxidant capacity observed in the various F. trachycarpa extracts. Among these, extracts from HAE, ASE, and MW revealed the most promise across all methodologies tested for their antioxidant potential. Furthermore, SFE and MAC extracts inhibited the most enzymes, including cholinesterases, tyrosinase, α -amylase, and α -glycosidase, indicating their potential as efficient natural treatments for several health-related issues.
Collapse
Affiliation(s)
- Shakeel Ahmed
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación, CSIC-UAM, Madrid, Spain
| | - Nilofar
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | | | - Alena Stupar
- Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia
| | - Biljana Lončar
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Božunović
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Evren Yıldıztugay
- Department of Biotechnology, Science Faculty, Selcuk University, Konya, Turkey
| | - Claudio Ferrante
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
20
|
Sood A, Mehrotra A, Dhawan DK, Sandhir R. Neuroprotective effects of Withania somnifera on ischemic stroke are mediated via anti-inflammatory response and modulation of neurotransmitter levels. Neurochem Int 2024; 180:105867. [PMID: 39349219 DOI: 10.1016/j.neuint.2024.105867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/01/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
The present study was designed to evaluate the beneficial effects of hydroalcoholic root extract of Withania somnifera (WS) on ischemia-reperfusion injury (IRI) induced by Middle Cerebral Artery Occlusion (MCAO). MCAO animals showed increase in IL-6, TNF-α and MCP-1 levels in terms of mRNA and protein levels. Concomitantly, mRNA and protein levels for astrocyte and microglial activation markers; GFAP and IBA-1, were increased in MCAO animals. COX-2 and NF-kβ protein levels were also increased in the brains of MCAO animals. The levels of neurotransmitters; glutamate and GABA were increased in the MCAO animals. On the contrary, levels of catecholamines; dopamine, norepinephrine and serotonin were reduced in the MCAO animals. Additionally, MCAO animals showed reduced locomotor activity. However, pre-supplementation with WS hydro-alcoholic root extract at a dose of 300 mg/kg, body weight to MCAO animals reduced the expression of IL-6, TNF-α and MCP-1. In addition, WS also reduced the number of GFAP and Iba-1 positive cells in comparison to MCAO animals. WS pre-supplementation was also observed to inhibit MCAO induced increase in COX-2; NF-kβ proteins and reduce the glutamate levels. The levels of GABA, dopamine, norepinephrine and serotonin were increased in WS pre-supplemented MCAO animals. WS pre-supplementation also prevented motor deficits in the MCAO animals. Taken together, these findings suggest that WS is effective in attenuating IRI induced neuroinflammation, neurochemical alterations and motor deficits in MCAO model of ischemic stroke thereby suggesting its ameliorative role in ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Abhilasha Sood
- Department of Biochemistry, Hargobind Khorana Block, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Arpit Mehrotra
- Department of Biochemistry, Hargobind Khorana Block, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Devinder K Dhawan
- Department of Biophysics, Hargobind Khorana Block, Panjab University, Sectore-25, Chandigarh, 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Hargobind Khorana Block, Panjab University, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
21
|
Haider T, Khan S, Bibi T, Zahra SA, Ali H, Din FU, Shah FA, Youn I, Seo EK. Daidzein ameliorates experimental traumatic brain injury-induced neurological symptoms by suppressing oxidative stress and apoptosis. J Biochem Mol Toxicol 2024; 38:e70019. [PMID: 39425453 DOI: 10.1002/jbt.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
Traumatic brain injury (TBI) causes deficits in neurological function, induces pathological changes, and increases oxidative stress. The current investigation aimed to determine Daidzein's neuroprotective potential in experimental TBI. Initially, the HT-22 cell line exposed to H2O2 underwent in vitro examination, and the results showed that Daidzein had a neuroprotective effect evident from enhanced cell viability and decreased NO generation. Using three different Daidzein doses-1 mg/kg, 5 mg/kg, and 10 mg/kg-in the in vivo experiment, the potential of Daidzein was evaluated against TBI. The neurological severity score (NSS), kondziela's screen test, and elevated plus maze showed improvements after treatment with Daidzein manifested by decreased score, enhanced motor coordination, and anti-anxiety effects. Additionally, Daidzein improved mechanical allodynia and restored the breakdown of the blood-brain barrier. The FTIR spectral analysis showed restoration of the biochemical compositional changes. Furthermore, H & E and Toluidine blue staining revealed an improvement in the histopathological alterations. The RT-qPCR revealed an increase in mRNA expression level of Nrf2, HO-1, and Bcl-2 and the downregulation of Keap-1, Bax and Cleaved caspase-3 expressions. Thus, exhibiting its antioxidant and antiapoptotic potential. The RT-qPCR also manifested a decrease in mRNA expression of GFAP and Iba-1. Further immunohistochemistry results indicated Daidzein's antioxidant and antiapoptotic properties by upregulating Nrf2 and downregulating cleaved caspase-3. Daidzein also lowered the apoptosis index and improved neuronal survival evidenced by flow cytometric analysis. In addition to this, Daidzein notably increased the antioxidant enzyme levels and decreased the oxidative stress markers. The current study's findings point to the neuroprotective potential of the phytoestrogen Daidzein as it lessened neurological abnormalities, decreased oxidative stress, and lowered proapoptotic protein expression.
Collapse
Affiliation(s)
- Tehreem Haider
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tehmina Bibi
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sana Ali Zahra
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Isoo Youn
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Eun Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|
22
|
Al-Awadhi F, Kokkaliari S, Ratnayake R, Paul VJ, Luesch H. Isolation and Characterization of the Cyanobacterial Macrolide Glycoside Moorenaside, an Anti-Inflammatory Analogue of Aurisides Targeting the Keap1/Nrf2 Pathway. JOURNAL OF NATURAL PRODUCTS 2024; 87:2355-2365. [PMID: 39315953 PMCID: PMC11519913 DOI: 10.1021/acs.jnatprod.4c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024]
Abstract
A new 14-membered ring brominated macrolide glycoside, named moorenaside (1), was discovered from a marine cyanobacterial sample collected from Shands Key in Florida. The structure of 1 was established by analysis of spectroscopic data including its relative configuration. The absolute configuration was inferred from optical rotation data and comparison with related compounds. The structure of 1 features an α,β-unsaturated carbonyl system, which is also found in aurisides. The presence of this motif in 1 prompted us to evaluate its effect on Keap1/Nrf2 signaling, a cytoprotective pathway culminating in the activation of antioxidant genes activated upstream by the cysteine alkylation of Keap1. Moorenaside exhibited moderate ARE luciferase activity at 32 μM. Due to the established crosstalk between Nrf2 and NF-κB pathways, we investigated the anti-inflammatory effects of 1 in LPS-induced mouse macrophages (RAW264.7 cells), a commonly used model for inflammation. Moorenaside significantly upregulated Nqo1 (Nrf2 target gene) and downregulated iNos (NF-κB target gene) at 32 μM by 5.0- and 2.5-fold, respectively, resulting in a significant reduction of nitric oxide (NO) levels. Furthermore, we performed RNA-sequencing and demonstrated the transcriptional activity of 1 on a global level and identified canonical pathways and upstream regulators involved in inflammation, immune response, and certain oxidative-stress-underlying diseases such as multiple sclerosis and chronic kidney disease.
Collapse
Affiliation(s)
- Fatma
H. Al-Awadhi
- Department
of Medicinal Chemistry and Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Sofia Kokkaliari
- Department
of Medicinal Chemistry and Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Ranjala Ratnayake
- Department
of Medicinal Chemistry and Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Valerie J. Paul
- Smithsonian
Marine Station, Fort Pierce, Florida 34949, United States
| | - Hendrik Luesch
- Department
of Medicinal Chemistry and Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
23
|
Gao Y, Zhang J, Tang T, Liu Z. Hypoxia Pathways in Parkinson's Disease: From Pathogenesis to Therapeutic Targets. Int J Mol Sci 2024; 25:10484. [PMID: 39408813 PMCID: PMC11477385 DOI: 10.3390/ijms251910484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The human brain is highly dependent on oxygen, utilizing approximately 20% of the body's oxygen at rest. Oxygen deprivation to the brain can lead to loss of consciousness within seconds and death within minutes. Recent studies have identified regions of the brain with spontaneous episodic hypoxia, referred to as "hypoxic pockets". Hypoxia can also result from impaired blood flow due to conditions such as heart disease, blood clots, stroke, or hemorrhage, as well as from reduced oxygen intake or excessive oxygen consumption caused by factors like low ambient oxygen, pulmonary diseases, infections, inflammation, and cancer. Severe hypoxia in the brain can manifest symptoms similar to Parkinson's disease (PD), including cerebral edema, mood disturbances, and cognitive impairments. Additionally, the development of PD appears to be closely associated with hypoxia and hypoxic pathways. This review seeks to investigate the molecular interactions between hypoxia and PD, emphasizing the pathological role of hypoxic pathways in PD and exploring their potential as therapeutic targets.
Collapse
Affiliation(s)
- Yuanyuan Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (J.Z.)
| | - Jiarui Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (J.Z.)
| | - Tuoxian Tang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (J.Z.)
| |
Collapse
|
24
|
Noureldeen ME, Shahin NN, Amin HAA, El-Sawalhi MM, Ghaiad HR. Parthenolide ameliorates 3-nitropropionic acid-induced Huntington's disease-like aberrations via modulating NLRP3 inflammasome, reducing microglial activation and inducing astrocyte shifting. Mol Med 2024; 30:158. [PMID: 39327568 PMCID: PMC11425901 DOI: 10.1186/s10020-024-00917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Huntington's disease (HD) is a progressive neurodegenerative disease that causes motor, cognitive, and psychiatric abnormalities, with no satisfying disease-modifying therapy so far. 3-nitropropionic acid (3NP) induces behavioural deficits, together with biochemical and histological alterations in animals' striata that mimic HD. The role of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome in HD pathogenesis remains largely uncharacterized. Parthenolide (PTL), a naturally occurring nuclear factor kappa B (NF-κB) inhibitor, is also known to inhibit NLRP3 inflammasome. Whether PTL is beneficial in HD has not been established yet. AIM This study evaluated the possible neuroprotective effects of PTL against 3NP-induced behavioural abnormalities, striatal biochemical derangements, and histological aberrations. METHODS Male Wistar rats received PTL (0.5 mg/kg/day, i.p) for 3 weeks and 3NP (10 mg/kg/day, i.p) was administered alongside for the latter 2 weeks to induce HD. Finally, animals were subjected to open-field, Morris water maze and rotarod tests. Rat striata were examined histologically, striatal protein expression levels of glial fibrillary acidic protein (GFAP), cluster of differentiation 45 (CD45) and neuron-specific enolase (NSE) were evaluated immunohistochemically, while those of interleukin (IL)-1β, IL-18, ionized calcium-binding adapter molecule-1 (Iba1) and glutamate were determined by ELISA. Striatal nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein (Keap1), NF-κB, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, S100 calcium-binding protein A10 (S100A10) and complement-3 (C3) were assessed by gene expression analysis. RESULTS PTL improved motor, locomotor, cognitive and anxiety-like behaviours, restored neuronal integrity, upregulated Nrf2, and inhibited NLRP3 inflammasome, NF-κB and microglial activation. Additionally, PTL induced astrocyte shifting towards the neuroprotective A2 phenotype. CONCLUSION PTL exhibits neuroprotection against 3NP-induced HD, that might be ascribed, at least in part, to its modulatory effects on Keap1/Nrf2 and NF-κB/NLRP3 inflammasome signaling.
Collapse
Affiliation(s)
- Mona E Noureldeen
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, 11562, Egypt
| | - Nancy N Shahin
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, 11562, Egypt
| | - Hebat Allah A Amin
- Pathology Department, Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Maha M El-Sawalhi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, 11562, Egypt
| | - Heba R Ghaiad
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, 11562, Egypt.
| |
Collapse
|
25
|
Skv M, Abraham SM, Eshwari O, Golla K, Jhelum P, Maity S, Komal P. Tremendous Fidelity of Vitamin D3 in Age-related Neurological Disorders. Mol Neurobiol 2024; 61:7211-7238. [PMID: 38372958 DOI: 10.1007/s12035-024-03989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Vitamin D3 (VD) is a secosteroid hormone and shows a pleiotropic effect in brain-related disorders where it regulates redox imbalance, inflammation, apoptosis, energy production, and growth factor synthesis. Vitamin D3's active metabolic form, 1,25-dihydroxy Vitamin D3 (1,25(OH)2D3 or calcitriol), is a known regulator of several genes involved in neuroplasticity, neuroprotection, neurotropism, and neuroinflammation. Multiple studies suggest that VD deficiency can be proposed as a risk factor for the development of several age-related neurological disorders. The evidence for low serum levels of 25-hydroxy Vitamin D3 (25(OH)D3 or calcidiol), the major circulating form of VD, is associated with an increased risk of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), dementia, and cognitive impairment. Despite decades of evidence on low VD association with neurological disorders, the precise molecular mechanism behind its beneficial effect remains controversial. Here, we will be delving into the neurobiological importance of VD and discuss its benefits in different neuropsychiatric disorders. The focus will be on AD, PD, and HD as they share some common clinical, pathological, and epidemiological features. The central focus will be on the different attributes of VD in the aspect of its anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholinesterase activity, and psychotropic effect in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Manjari Skv
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Sharon Mariam Abraham
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Omalur Eshwari
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Kishore Golla
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Priya Jhelum
- Centre for Research in Neuroscience and Brain Program, The Research Instituteof the, McGill University Health Centre , Montreal, QC, Canada
| | - Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Pragya Komal
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India.
| |
Collapse
|
26
|
Motomura K, Ueda E, Boateng A, Sugiura M, Kadoyama K, Hitora-Imamura N, Kurauchi Y, Katsuki H, Seki T. Identification of a novel aromatic-turmerone analog that activates chaperone-mediated autophagy through the persistent activation of p38. Front Cell Dev Biol 2024; 12:1418296. [PMID: 39184917 PMCID: PMC11342337 DOI: 10.3389/fcell.2024.1418296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction: Aromatic (Ar)-turmerone is a bioactive component of turmeric oil obtained from Curcuma longa. We recently identified a novel analog (A2) of ar-turmerone that protects dopaminergic neurons from toxic stimuli by activating nuclear factor erythroid 2-related factor 2 (Nrf2). D-cysteine increases Nrf2, leading to the activation of chaperone-mediated autophagy (CMA), a pathway in the autophagy-lysosome protein degradation system, in primary cultured cerebellar Purkinje cells. In this study, we attempted to identify novel analogs of ar-turmerone that activate Nrf2 more potently and investigated whether these analogs activate CMA. Methods: Four novel analogs (A4-A7) from A2 were synthesized. We investigated the effects of A2 and novel 4 analogs on Nrf2 expression via immunoblotting and CMA activity via fluorescence observation. Results: Although all analogs, including A2, increased Nrf2 expression, only A4 activated CMA in SH-SY5Y cells. Additionally, A4-mediated CMA activation was not reversed by Nrf2 inhibition, indicating that A4 activated CMA via mechanisms other than Nrf2 activation. We focused on p38, which participates in CMA activation. Inhibition of p38 significantly prevented A4-mediated activation of CMA. Although all novel analogs significantly increased the phosphorylation of p38 6 h after drug treatment, only A4 significantly increased phosphorylation 24 h after treatment. Finally, we revealed that A4 protected SH-SY5Y cells from the cytotoxicity of rotenone, and that this protection was reversed by inhibiting p38. Conclusion: These findings suggest that the novel ar-turmerone analog, A4, activates CMA and protects SH-SY5Y cells through the persistent activation of p38.
Collapse
Affiliation(s)
- Kensuke Motomura
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Erika Ueda
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Alex Boateng
- Graduate School of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Masaharu Sugiura
- Graduate School of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Keiichi Kadoyama
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Himeji-Dokkyo University, Himeji, Japan
| | - Natsuko Hitora-Imamura
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Himeji-Dokkyo University, Himeji, Japan
| |
Collapse
|
27
|
Imam RA, Hassan FE, Ali IH, Alghamdi MA, Aboulhoda BE. Effect of Selenium nanoparticles on Paraquat-induced-neuroinflammation and oligodendocyte modulation: Implication of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Tissue Cell 2024; 89:102454. [PMID: 38905876 DOI: 10.1016/j.tice.2024.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/11/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Paraquat (PQ), is an extensively used herbicide and is a well-established powerful neurotoxin. However, the mechanism underlying its neurotoxicity still needs further investigation. AIM OF WORK The study investigated the pathogenesis of PQ-induced neuroinflammation of the substantia nigra pars compacta (SNPC) and cerebellum and evaluated the potential effect of selenium nanoparticles (SeN) against such neurotoxicity. METHODS Thirty-six mice were randomly divided into three groups; Control group, PQ group: mice received PQ 10 mg/kg (i.p), and PQ + SeN group; mice received PQ in addition to oral SeN 0.1 mg/kg. All regimens were administered for 14 days. The mice's brains were processed for biochemical, molecular, histological, and immune-histochemical assessment. RESULTS SeN increased the SNPC and cerebellum antioxidants (reduced glutathione, glutathione peroxidase, and superoxide dismutase 1) while decreasing malondialdehyde concentration. Also, SeN increased the anti-inflammatory interleukin (IL)-10 and decreased the pro-inflammatory IL-1β and -6 along with improving the angiogenic nitric oxide and reducing caspase-1. Further, western blots of phosphorylated Janus kinase (JAK2)/signal transducer and activator of transcription3 (STAT3) proteins showed a significant decline. Those improving effects of SeN on SNPC, and cerebellum were supported by the significantly preserved dopaminergic and Purkinje neurons, the enhanced myelin fibers on Luxol fast blue staining, and the marked increase in Olig-2, Platelet-derived growth factor-alpha, and tyrosine hydroxylase immunoreactivity. CONCLUSION SeN could mitigate PQ-induced neurotoxicity via its antioxidant, anti-inflammatory, and antiapoptotic properties.
Collapse
Affiliation(s)
- Reda Abdelnasser Imam
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fatma E Hassan
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza 11562, Egypt; General Medicine Practice Program, Department of Physiology, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Isra H Ali
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt; Nanomedicine Laboratory, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt
| | - Mansour A Alghamdi
- College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha 62529, Saudi Arabia
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
28
|
Guevara C, Vicencio SC, Pizarro IS, Villavicencio-Tejo F, Quintanilla RA, Astudillo P, Ampuero E, Varas R, Orellana JA, Ortiz FC. Evidence for TGF-β1/Nrf2 Signaling Crosstalk in a Cuprizone Model of Multiple Sclerosis. Antioxidants (Basel) 2024; 13:914. [PMID: 39199160 PMCID: PMC11351764 DOI: 10.3390/antiox13080914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic and degenerative disease that impacts central nervous system (CNS) function. One of the major characteristics of the disease is the presence of regions lacking myelin and an oxidative and inflammatory environment. TGF-β1 and Nrf2 proteins play a fundamental role in different oxidative/inflammatory processes linked to neurodegenerative diseases such as MS. The evidence from different experimental settings has demonstrated a TGF-β1-Nrf2 signaling crosstalk under pathological conditions. However, this possibility has not been explored in experimental models of MS. Here, by using the cuprizone-induced demyelination model of MS, we report that the in vivo pharmacological blockage of the TGF-β1 receptor reduced Nrf2, catalase, and TGFβ-1 protein levels in the demyelination phase of cuprizone administration. In addition, ATP production, locomotor function and cognitive performance were diminished by the treatment. Altogether, our results provide evidence for a crosstalk between TGF-β1 and Nrf2 signaling pathways under CNS demyelination, highlighting the importance of the antioxidant cellular response of neurodegenerative diseases such as MS.
Collapse
Affiliation(s)
- Coram Guevara
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Sinay C. Vicencio
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Ignacio S. Pizarro
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile (R.A.Q.)
| | - Rodrigo A. Quintanilla
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile (R.A.Q.)
| | - Pablo Astudillo
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Estibaliz Ampuero
- Laboratorio Neurofarmacología del Comportamiento, Facultad de Química y Biología, Universidad de Santiago, Santiago9170022, Chile
| | - Rodrigo Varas
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Juan A. Orellana
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Fernando C. Ortiz
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| |
Collapse
|
29
|
Bartman AE, Raeisi M, Peiris CD, Jacobsen IE, Martin DB, Doorn JA. A Novel Analog of the Natural Product Fraxinellone Protects against Endogenous and Exogenous Neurotoxicants. ACS Chem Neurosci 2024; 15:2612-2622. [PMID: 38925635 PMCID: PMC11258694 DOI: 10.1021/acschemneuro.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Numerous insults, both endogenous (e.g., glutamate) and exogenous (e.g., pesticides), compromise the function of the nervous system and pose risk factors for damage or later disease. In previous reports, limonoids such as fraxinellone showed significant neuroprotective activity against glutamate (Glu) excitotoxicity and reactive oxygen species (ROS) production in vitro, albeit with minimal mechanistic information provided. Given these findings, a library of novel fraxinellone analogs (including analogs 1 and 2 described here) was synthesized with the goal of identifying compounds exhibiting neuroprotection against insults. Analog 2 was found to be protective against Glu-mediated excitotoxicity with a measured EC50 of 44 and 39 nM for in vitro assays using PC12 and SH-SY5Y cells, respectively. Pretreatment with analog 2 yielded rapid induction of antioxidant genes, namely, Gpx4, Sod1, and Nqo1, as measured via qPCR. Analog 2 mitigated Glu-mediated ROS. Cytoprotection could be replicated using sulforaphane (SFN), a Nrf2 activator, and inhibited via ML-385, which inhibits Nrf2 binding to regulatory DNA sequences, thereby blocking downstream gene expression. Nrf2 DNA-binding activity was demonstrated using a Nrf2 ELISA-based transcription factor assay. In addition, we found that pretreatment with the thiol N-acetyl Cys completely mitigated SFN-mediated induction of antioxidant genes but had no effect on the activity of analog 2, suggesting thiol modification is not critical for its mechanism of action. In summary, our data demonstrate a fraxinellone analog to be a novel, potent, and rapid activator of the Nrf2-mediated antioxidant defense system, providing robust protection against insults.
Collapse
Affiliation(s)
- Anna E. Bartman
- Department
of Pharmaceutical Sciences & Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Mersad Raeisi
- Department
of Chemistry, College of Liberal Arts & Sciences, University of Iowa, Iowa City, Iowa 52242, United States
| | - Clarence D. Peiris
- Department
of Chemistry, College of Liberal Arts & Sciences, University of Iowa, Iowa City, Iowa 52242, United States
| | - Isabella E. Jacobsen
- Department
of Chemistry, College of Liberal Arts & Sciences, University of Iowa, Iowa City, Iowa 52242, United States
| | - David B.C. Martin
- Department
of Chemistry, College of Liberal Arts & Sciences, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jonathan A. Doorn
- Department
of Pharmaceutical Sciences & Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
30
|
Bjedov S, Stegnjaić G, Stanisavljević S, Lazarević M, Pilipović I, Sakač M, Miljković Đ. Anti-Neuroinflammatory Effects of a Novel Bile Acid Derivative. Int J Mol Sci 2024; 25:7136. [PMID: 39000243 PMCID: PMC11241333 DOI: 10.3390/ijms25137136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
In the search for novel potent immunomodulatory nuclear factor-erythroid 2 related factor 2 (Nrf2) activators, a derivative of cholic bile acid, SB140, was synthesized. The synthesis of SB140 aimed to increase the electrophilic functionality of the compound, enhancing its ability to activate Nrf2. Effects of SB140 on microglial cells, myeloid-derived cells (MDC), and T cells were explored in the context of (central nervous system) CNS autoimmunity. SB140 potently activated Nrf2 signaling in MDC and microglia. It was efficient in reducing the ability of microglial cells to produce inflammatory nitric oxide, interleukin (IL)-6, and tumor necrosis factor (TNF). Also, SB140 reduced the proliferation of encephalitogenic T cells and the production of their effector cytokines: IL-17 and interferon (IFN)-γ. On the contrary, the effects of SB140 on anti-inflammatory IL-10 production in microglial and encephalitogenic T cells were limited or absent. These results show that SB140 is a potent Nrf2 activator, as well as an immunomodulatory compound. Thus, further research on the application of SB140 in the treatment of neuroinflammatory diseases is warranted. Animal models of multiple sclerosis and other inflammatory neurological disorders will be a suitable choice for such studies.
Collapse
Grants
- 451-03-66/2024-03/200007 Ministry of Science, , Technological Development, and Innovation, Republic of Serbia
- 451-03-66/2024-03/ 200125 Ministry of Science, Technological Development, and Innovation, Republic of Serbia
- 451-03-65/2024-03/200125 Ministry of Science, Technological Development, and Innovation, Republic of Serbia
Collapse
Affiliation(s)
- Srđan Bjedov
- Department of Chemistry, Biochemistry, and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Goran Stegnjaić
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Suzana Stanisavljević
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Milica Lazarević
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Ivan Pilipović
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Marija Sakač
- Department of Chemistry, Biochemistry, and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| |
Collapse
|
31
|
Martinez AN, Tortelote GG, Pascale CL, Ekanem UOI, Leite APDO, McCormack IG, Dumont AS. Dimethyl Fumarate Mediates Sustained Vascular Smooth Muscle Cell Remodeling in a Mouse Model of Cerebral Aneurysm. Antioxidants (Basel) 2024; 13:773. [PMID: 39061841 PMCID: PMC11274241 DOI: 10.3390/antiox13070773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Cerebral aneurysms (CA) are a type of vascular disease that causes significant morbidity and mortality with rupture. Dysfunction of the vascular smooth muscle cells (VSMCs) from circle of Willis (CoW) vessels mediates CA formation, as they are the major cell type of the arterial wall and play a role in maintaining vessel integrity. Dimethyl fumarate (DMF), a first-line oral treatment for relapsing-remitting multiple sclerosis, has been shown to inhibit VSMC proliferation and reduce CA formation in a mouse model. Potential unwanted side effects of DMF on VSMC function have not been investigated yet. The present study characterizes the impact of DMF on VSMC using single-cell RNA-sequencing (scRNA-seq) in CoW vessels following CA induction and further explores its role in mitochondrial function using in vitro VSMC cultures. Two weeks of DMF treatment following CA induction impaired the transcription of the glutathione redox system and downregulated mitochondrial respiration genes in VSMCs. In vitro, DMF treatment increased lactate formation and enhanced the mitochondrial production of reactive oxygen species (ROS). These effects rendered VSMCs vulnerable to oxidative stress and led to mitochondrial dysfunction and enhancement of apoptosis. Taken together, our data support the concept that the DMF-mediated antiproliferative effect on VSMCs is linked to disturbed antioxidative functions resulting in altered mitochondrial metabolism. This negative impact of DMF treatment on VSMCs may be linked to preexisting alterations of cerebrovascular function due to renal hypertension. Therefore, before severe adverse effects emerge, it would be clinically relevant to develop indices or biomarkers linked to this disturbed antioxidative function to monitor patients undergoing DMF treatment.
Collapse
Affiliation(s)
- Alejandra N. Martinez
- Department of Neurosurgery, The Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70012, USA (A.S.D.)
| | - Giovane G. Tortelote
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Crissey L. Pascale
- Department of Neurosurgery, The Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70012, USA (A.S.D.)
| | - Uduak-Obong I. Ekanem
- Department of Neurosurgery, The Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70012, USA (A.S.D.)
| | - Ana Paula de O. Leite
- Department of Pharmacology, The Tulane Center for Sex-Based Biology and Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Isabella G. McCormack
- Department of Neurosurgery, The Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70012, USA (A.S.D.)
| | - Aaron S. Dumont
- Department of Neurosurgery, The Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70012, USA (A.S.D.)
| |
Collapse
|
32
|
Ram K, Kumar K, Singh D, Chopra D, Mani V, Jaggi AS, Singh N. Beneficial effect of lupeol and metformin in mouse model of intracerebroventricular streptozotocin induced dementia. Metab Brain Dis 2024; 39:661-678. [PMID: 38842663 DOI: 10.1007/s11011-024-01364-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
This study examines the effectiveness of lupeol and metformin in a mouse model of dementia generated by intracerebroventricular streptozotocin (i.c.v., STZ). Dementia was induced in Swiss mice with the i.c.v. administration of STZ at a dosage of 3 mg/kg on the first and third day. The assessment of dementia involved an examination of the Morris Water Maze (MWM) performance, as well as a number of biochemical and histological studies. STZ treatment resulted in significant decrease in MWM performance; various biochemical alterations (increase in brain acetyl cholinesterase (AChE) activity, thiobarbituric acid reactive species (TBARS), nitrite/nitrate, and reduction in nuclear factor erythroid 2 related factor-2 (Nrf-2), reduced glutathione (GSH) levels) and neuroinflammation [increased myeloperoxidase (MPO) activity & neutrophil infiltration]. The administration of Lupeol (50 mg/kg & 100 mg/kg; p.o.) and Metformin (150 mg/kg & 300 mg/kg; p.o.) demonstrated a considerable reduction in the behavioral, biochemical, and histological alterations produced by STZ. Low dose combination of lupeol (50 mg/kg; p.o.) and Metformin (150 mg/kg; p.o.) produced more pronounced effect than that of high doses of either agent alone. It is concluded that Lupeol and Metformin has shown efficacy in dementia with possible synergism between the two and can be explored as potential therapeutic agents for managing dementia of Alzheimer's disease (AD) type.
Collapse
Affiliation(s)
- Khagesh Ram
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, 135001, Yamunanagar, HRY, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Dimple Chopra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassin University, 51452, Buraydah, Saudi Arabia
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
33
|
Abdolmaleki A, Karimian A, Khoshnazar SM, Asadi A, Samarein ZA, Smail SW, Bhattacharya D. The role of Nrf2 signaling pathways in nerve damage repair. Toxicol Res (Camb) 2024; 13:tfae080. [PMID: 38799411 PMCID: PMC11116835 DOI: 10.1093/toxres/tfae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/05/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
The protein, Nuclear factor-E2-related factor 2 (Nrf2), is a transitory protein that acts as a transcription factor and is involved in the regulation of many cytoprotective genes linked to xenobiotic metabolism and antioxidant responses. Based on the existing clinical and experimental data, it can be inferred that neurodegenerative diseases are characterized by an excessive presence of markers of oxidative stress (OS) and a reduced presence of antioxidant defense systems in both the brain and peripheral tissues. The presence of imbalances in the homeostasis between oxidants and antioxidants has been recognized as a substantial factor in the pathogenesis of neurodegenerative disorders. The dysregulations include several cellular processes such as mitochondrial failure, protein misfolding, and neuroinflammation. These dysregulations all contribute to the disruption of proteostasis in neuronal cells, leading to their eventual mortality. A noteworthy component of Nrf2, as shown by recent research undertaken over the last decade, is to its role in the development of resistance to OS. Nrf2 plays a pivotal role in regulating systems that defend against OS. Extant research offers substantiation for the protective and defensive roles of Nrf2 in the context of neurodegenerative diseases. The purpose of this study is to provide a comprehensive analysis of the influence of Nrf2 on OS and its function in regulating antioxidant defense systems within the realm of neurodegenerative diseases. Furthermore, we evaluate the most recent academic inquiries and empirical evidence about the beneficial and potential role of certain Nrf2 activator compounds within the realm of therapeutic interventions.
Collapse
Affiliation(s)
- Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, PO Box: 179, Ardabil, 11367-56199, Iran
| | - Aida Karimian
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, PO Box: 179, Ardabil, 11367-56199, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Imam Khomeini Highway, Mustafa Khomeini Boulevard, Ibn Sina, Kerman, 9986598, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, PO Box: 179, Ardabil, 11367-56199, Iran
| | - Zahra Akhavi Samarein
- Department of Counseling, Faculty of Education and Psychology, University of Mohaghegh Ardabili, PO Box: 179, Ardabil, 11367-56199, Iran
| | - Shukur Wasman Smail
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Kurdistan Region, 1235897, Iraq
| | - Deepak Bhattacharya
- Ph.D., Policy, Nursing, At Fight-Cancer at Home, Medicinal Toxicology & QC, Sri Radha Krishna Raas Mandir, KedarGouri Road, Bhubaneswar, Odisa 751002, India
| |
Collapse
|
34
|
Bufan B, Ćuruvija I, Blagojević V, Grujić-Milanović J, Prijić I, Radosavljević T, Samardžić J, Radosavljevic M, Janković R, Djuretić J. NMDA Receptor Antagonist Memantine Ameliorates Experimental Autoimmune Encephalomyelitis in Aged Rats. Biomedicines 2024; 12:717. [PMID: 38672073 PMCID: PMC11047843 DOI: 10.3390/biomedicines12040717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Aging is closely related to the main aspects of multiple sclerosis (MS). The average age of the MS population is increasing and the number of elderly MS patients is expected to increase. In addition to neurons, N-methyl-D-aspartate receptors (NMDARs) are also expressed on non-neuronal cells, such as immune cells. The aim of this study was to investigate the role of NMDARs in experimental autoimmune encephalomyelitis (EAE) in young and aged rats. Memantine, a non-competitive NMDAR antagonist, was administered to young and aged Dark Agouti rats from day 7 after immunization. Antagonizing NMDARs had a more favourable effect on clinical disease, reactivation, and apoptosis of CD4+ T cells in the target organ of aged EAE rats. The expression of the fractalkine receptor CX3CR1 was increased in memantine-treated rats, but to a greater extent in aged rats. Additionally, memantine increased Nrf2 and Nrf2-regulated enzymes' mRNA expression in brain tissue. The concentrations of superoxide anion radicals, malondialdehyde, and advanced oxidation protein products in brain tissue were consistent with previous results. Overall, our results suggest that NMDARs play a more important role in the pathogenesis of EAE in aged than in young rats.
Collapse
Affiliation(s)
- Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ivana Ćuruvija
- Department of Research and Development, Institute of Virology, Vaccines and Sera, Torlak, 11000 Belgrade, Serbia; (I.Ć.); (V.B.); (I.P.)
| | - Veljko Blagojević
- Department of Research and Development, Institute of Virology, Vaccines and Sera, Torlak, 11000 Belgrade, Serbia; (I.Ć.); (V.B.); (I.P.)
| | - Jelica Grujić-Milanović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department of Cardiovascular Research, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ivana Prijić
- Department of Research and Development, Institute of Virology, Vaccines and Sera, Torlak, 11000 Belgrade, Serbia; (I.Ć.); (V.B.); (I.P.)
| | - Tatjana Radosavljević
- Institute of Pathological Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Janko Samardžić
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (M.R.)
| | - Milica Radosavljevic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (M.R.)
| | - Radmila Janković
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Jasmina Djuretić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
35
|
Merz MP, Seal SV, Grova N, Mériaux S, Guebels P, Kanli G, Mommaerts E, Nicot N, Kaoma T, Keunen O, Nazarov PV, Turner JD. Early-life influenza A (H1N1) infection independently programs brain connectivity, HPA AXIS and tissue-specific gene expression profiles. Sci Rep 2024; 14:5898. [PMID: 38467724 PMCID: PMC10928197 DOI: 10.1038/s41598-024-56601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/08/2024] [Indexed: 03/13/2024] Open
Abstract
Early-life adversity covers a range of physical, social and environmental stressors. Acute viral infections in early life are a major source of such adversity and have been associated with a broad spectrum of later-life effects outside the immune system or "off-target". These include an altered hypothalamus-pituitary-adrenal (HPA) axis and metabolic reactions. Here, we used a murine post-natal day 14 (PND 14) Influenza A (H1N1) infection model and applied a semi-holistic approach including phenotypic measurements, gene expression arrays and diffusion neuroimaging techniques to investigate HPA axis dysregulation, energy metabolism and brain connectivity. By PND 56 the H1N1 infection had been resolved, and there was no residual gene expression signature of immune cell infiltration into the liver, adrenal gland or brain tissues examined nor of immune-related signalling. A resolved early-life H1N1 infection had sex-specific effects. We observed retarded growth of males and altered pre-stress (baseline) blood glucose and corticosterone levels at PND42 after the infection was resolved. Cerebral MRI scans identified reduced connectivity in the cortex, midbrain and cerebellum that were accompanied by tissue-specific gene expression signatures. Gene set enrichment analysis confirmed that these were tissue-specific changes with few common pathways. Early-life infection independently affected each of the systems and this was independent of HPA axis or immune perturbations.
Collapse
Affiliation(s)
- Myriam P Merz
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 2 Avenue de Université, L-4365, Esch-Sur-Alzette, Luxembourg
- Central Biobank Charité, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Snehaa V Seal
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 2 Avenue de Université, L-4365, Esch-Sur-Alzette, Luxembourg
| | - Nathalie Grova
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg
- Inserm U1256, NGERE, Nutrition-Génétique Et Exposition Aux Risques Environnementaux, Université de Lorraine, 54000, Nancy, France
| | - Sophie Mériaux
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg
| | - Pauline Guebels
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg
| | - Georgia Kanli
- In Vivo Imaging Platform, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
- Translational Radiomics, Department of Cancer Research, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
| | - Elise Mommaerts
- LuxGen Genome Center, Laboratoire National de Santé, Luxembourg Institute of Health, 3555, Dudelange, Luxembourg
| | - Nathalie Nicot
- LuxGen Genome Center, Laboratoire National de Santé, Luxembourg Institute of Health, 3555, Dudelange, Luxembourg
| | - Tony Kaoma
- Bioinformatics Platform, Data Integration and Analysis Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Olivier Keunen
- In Vivo Imaging Platform, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
- Translational Radiomics, Department of Cancer Research, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
| | - Petr V Nazarov
- Bioinformatics Platform, Data Integration and Analysis Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
- Multiomics Data Science Research Group, Department of Cancer Research, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Jonathan D Turner
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg.
| |
Collapse
|
36
|
Kim T, Kim HS, Bang Y, Kwon Y, Kim J, Choi HJ, Suh YG. Identification of novel Nrf2-activating neuroprotective agents: Elucidation of structural congeners of (-)-galiellalactone and congener-based novel Nrf2 activators. Bioorg Chem 2024; 144:107109. [PMID: 38219480 DOI: 10.1016/j.bioorg.2024.107109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Herein, (-)-galiellalactone 1 congeners responsible for the nuclear factor erythroid 2-related factor 2 (Nrf2)-activating neuroprotective effects were elucidated. Additionally, novel congener-based Nrf2 activators were identified using a drug repositioning strategy. (-)-Galiellalactone, which comprises a tricyclic lactone skeleton, significantly activates antioxidant response element (ARE)-mediated transcription in neuroblastoma SH-SY5Y cells. Interestingly, two cyclohexene-truncated [3.3] bicyclic lactone analogs, which possess an exocyclic α-methylene-γ-butyrolactone moiety, exhibited higher Nrf2/ARE transcriptional activities than the parent (-)-galiellalactone. We confirmed that the cyclohexene moiety embedding the [3.3] bicyclic lactone congener does not play the essential role of (-)-galiellalactone for Nrf2/ARE activation. Nrf2/ARE activation by novel analogs resulted in the upregulation of downstream antioxidative and phase II detoxifying enzymes, heme oxygenase-1, and NAD(P)H quinone oxidoreductase 1, which are closely related to the cytoprotective effects on neurodegenerative diseases. (-)-Galiellalactone and its [3.3] bicyclic variants 3l and 3p increased the expression of antioxidant genes and exhibited neuroprotective effects against 6-hydroxydopamine-mediated neurotoxicity in the neuroblastoma SH-SY5Y cell line.
Collapse
Affiliation(s)
- Taewoo Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea
| | - Hyun Su Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea
| | - Yeojin Bang
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea
| | - Yoonjung Kwon
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea
| | - Jinhee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea.
| | - Young-Ger Suh
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea.
| |
Collapse
|
37
|
Xiang Y, Song X, Long D. Ferroptosis regulation through Nrf2 and implications for neurodegenerative diseases. Arch Toxicol 2024; 98:579-615. [PMID: 38265475 PMCID: PMC10861688 DOI: 10.1007/s00204-023-03660-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/07/2023] [Indexed: 01/25/2024]
Abstract
This article provides an overview of the background knowledge of ferroptosis in the nervous system, as well as the key role of nuclear factor E2-related factor 2 (Nrf2) in regulating ferroptosis. The article takes Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) as the starting point to explore the close association between Nrf2 and ferroptosis, which is of clear and significant importance for understanding the mechanism of neurodegenerative diseases (NDs) based on oxidative stress (OS). Accumulating evidence links ferroptosis to the pathogenesis of NDs. As the disease progresses, damage to the antioxidant system, excessive OS, and altered Nrf2 expression levels, especially the inhibition of ferroptosis by lipid peroxidation inhibitors and adaptive enhancement of Nrf2 signaling, demonstrate the potential clinical significance of Nrf2 in detecting and identifying ferroptosis, as well as targeted therapy for neuronal loss and mitochondrial dysfunction. These findings provide new insights and possibilities for the treatment and prevention of NDs.
Collapse
Affiliation(s)
- Yao Xiang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Xiaohua Song
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Dingxin Long
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China.
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
38
|
Durmus H, Burak AM, Goktug S, Aysegul B. Metabolomic modelling and neuroprotective effects of carvacrol against acrylamide toxicity in rat's brain and sciatic nerve. Clin Exp Pharmacol Physiol 2024; 51:e13841. [PMID: 38302077 DOI: 10.1111/1440-1681.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
The study aimed to investigate the harmful effects of acrylamide (AA), which forms in carbohydrate-rich foods at temperatures above 120°C, on the central and peripheral nervous systems and to evaluate the potential neuroprotective effects of carvacrol (CRV). Male Wistar Albino rats were subjected to AA (40 mg/kg/bw/day) and CRV (50 mg/kg/bw/day) for 15 days. Following the last administration, evaluations revealed disrupted gait, heightened thermal sensitivity and altered paw withdrawal thresholds in AA-exposed rats. Notably, AA reduced glutathione (GSH) and raised malondialdehyde (MDA) levels in both brain and sciatic nerve tissues. AA raised nuclear factor erythroid 2-related factor 2 (Nrf2), caspase 3 and nuclear factor κB (NF-κB) gene expressions while decreasing NR4A2. CRV co-administration mitigated gait abnormalities, elevated GSH levels and lowered MDA levels in both tissues. CRV also modulated gene expression, reducing Nrf2 and NF-κB while increasing NR4A2. Histopathological signs of AA-induced neurodegeneration and elevated glial fibrillary acidic protein levels observed in brain and sciatic nerve tissues were rectified with simultaneous administration of CRV, thereby demonstrating neuroprotective efficacy in both regions. This study is pioneering in demonstrating CRV's neuroprotective potential against AA-induced neurotoxicity in both central and peripheral nervous systems, effectively addressing limitations in the literature. In conclusion, the study revealed AA-induced neurodegeneration in the brain and sciatic nerve, with CRV significantly mitigating this neurotoxicity. This novel research underscores CRV's promise as a neuroprotective agent against AA-induced adverse effects in both the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Hatipoglu Durmus
- Department of Physiology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Ates M Burak
- Department of Pathology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Senturk Goktug
- Department of Physiology, Faculty of Veterinary Medicine, Aksaray University, Aksaray, Türkiye
| | - Bulut Aysegul
- Department of Pathology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| |
Collapse
|
39
|
Qin Z, Xie L, Li W, Wang C, Li Y. New Insights into Mechanisms Traditional Chinese Medicine for Allergic Rhinitis by Regulating Inflammatory and Oxidative Stress Pathways. J Asthma Allergy 2024; 17:97-112. [PMID: 38405022 PMCID: PMC10888064 DOI: 10.2147/jaa.s444923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
Allergy rhinitis (AR) is becoming more common and has serious medical and societal consequences. Sneezing, paroxysmal nasal blockage, nasal itching, mucosal edema, coughing, and rhinorrhea are symptoms of this type I allergic immunological illness. Immunoglobulin E-mediated inflammation is the cause of it. Because AR is prone to recurrent attacks, extended medication therapy may impair its effectiveness. In addition to negatively affecting the patients' physical health, this can also negatively impact their mental health. During AR development, there are inflammatory and oxidative stress responses that are linked to problems in a number of signal transduction pathways. By using the terms "allergic rhinitis", "traditional Chinese medicine", "inflammation", and "oxidative stress", we screened for pertinent research published over the previous five years in databases like PubMed. We saw that NF-KB, TLR, IL-33/ST2, PI3K/AKT, MAPK, and Nrf2 are some of the most important inflammatory and oxidative stress pathways in AR. Studies have revealed that antioxidant and anti-inflammatory therapy reduced the risk of AR and was therapeutic; however, the impact of the therapy varies widely. The Chinese medical system places a high value on traditional Chinese medicine (TCM), which has been there for virtually all of China's 5000-year history. By influencing signaling pathways related to inflammation and oxidative stress, Chinese herbal medicine and its constituent compounds have been shown to prevent allergic rhinitis. This review will focus on this evidence and provide references for clinical treatment and scientific research applications.
Collapse
Affiliation(s)
- Zhu Qin
- Department of Otolaryngology, Graduate School of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Liangzhen Xie
- Department of Otolaryngology, Graduate School of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
- Department of Otolaryngology, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Wentao Li
- Department of Otolaryngology, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Chao Wang
- Department of Otolaryngology, Graduate School of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Yan Li
- Department of Otolaryngology, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
40
|
Bae SJ, Lee WY, Bak SB, Lee SJ, Hwang SJ, Kim GW, Koo BS, Park SD, Yoo HH, Kim CO, Kang HW, Oh TW, Kim YW. Antioxidant Efficacy of Hwangryunhaedok-tang through Nrf2 and AMPK Signaling Pathway against Neurological Disorders In Vivo and In Vitro. Int J Mol Sci 2024; 25:2313. [PMID: 38396988 PMCID: PMC10889506 DOI: 10.3390/ijms25042313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is a representative cause of dementia and is caused by neuronal loss, leading to the accumulation of aberrant neuritic plaques and the formation of neurofibrillary tangles. Oxidative stress is involved in the impaired clearance of amyloid beta (Aβ), and Aβ-induced oxidative stress causes AD by inducing the formation of neurofibrillary tangles. Hwangryunhaedok-tang (HHT, Kracie K-09®), a traditional herbal medicine prescription, has shown therapeutic effects on various diseases. However, the studies of HHT as a potential treatment for AD are insufficient. Therefore, our study identified the neurological effects and mechanisms of HHT and its key bioactive compounds against Alzheimer's disease in vivo and in vitro. In a 5xFAD mouse model, our study confirmed that HHT attenuated cognitive impairments in the Morris water maze (MWM) test and passive avoidance (PA) test. In addition, the prevention of neuron impairment, reduction in the protein levels of Aβ, and inhibition of cell apoptosis were confirmed with brain tissue staining. In HT-22 cells, HHT attenuates tBHP-induced cytotoxicity, ROS generation, and mitochondrial dysfunction. It was verified that HHT exerts a neuroprotective effect by activating signaling pathways interacting with Nrf2, such as MAPK/ERK, PI3K/Akt, and LKB1/AMPK. Among the components, baicalein, a bioavailable compound of HHT, exhibited neuroprotective properties and activated the Akt, AMPK, and Nrf2/HO-1 pathways. Our findings indicate a mechanism for HHT and its major bioavailable compounds to treat and prevent AD and suggest its potential.
Collapse
Affiliation(s)
- Su-Jin Bae
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
- College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Won-Yung Lee
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
- College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Seon Been Bak
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Seung Jin Lee
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Su-Jin Hwang
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea
| | - Geun-Woo Kim
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Byung-Soo Koo
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Sun-Dong Park
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Hye-Hyun Yoo
- College of Pharmacy, Hanyang University, Ansan 1558, Republic of Korea;
| | - Choon-Ok Kim
- Department of Clinical Pharmacology and Clinical Trials Center, Severance Hospital, Yonsei University Health System, Seoul 03722, Republic of Korea;
| | - Hyung Won Kang
- College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Tae-Woo Oh
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea
- Department of Korean Convergence Medical Science, University of Science & Technology (UST), Daejeon 34054, Republic of Korea
| | - Young Woo Kim
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| |
Collapse
|
41
|
Xiao YC, Chen FE. The vinyl sulfone motif as a structural unit for novel drug design and discovery. Expert Opin Drug Discov 2024; 19:239-251. [PMID: 37978948 DOI: 10.1080/17460441.2023.2284201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Vinyl sulfones are a special sulfur-containing structural unit that have attracted considerable attention, owing to their important role in serving as key structural motifs of various biologically active compounds as well as serving as versatile building blocks for organic transformations. The synthetic strategy of vinyl sulfone derivatives has been substantially upgraded over the past 30 years, and the wide application of this functional group in drug design and discovery has been promoted. AREA COVERED In this review, the authors review the application of vinyl sulfones in drug discovery and select optimized compounds which might have significant impact or potential inspiration for drug design. EXPERT OPINION Vinyl sulfones have been reported to target various macromolecular targets via non-covalent or covalent interactions, including multiple kinases, tubulin, cysteine protease, transcription factor, and so on. Thus, it has been significantly applied as a privileged scaffold in the design of anticancer, anti-infective, anti-inflammatory, and neuroprotective agents. However, much work remains to be done to improve the drug-like properties, such as chemical and metabolic stability, ADME, and toxicity. Besides, the chemical space of vinyl sulfones needs to be expanded, including but not limited to the design of constrained endocyclic and exocyclic vinyl sulfones.
Collapse
Affiliation(s)
- You-Cai Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Fen-Er Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Sharma P, Mittal P. Paraquat (herbicide) as a cause of Parkinson's Disease. Parkinsonism Relat Disord 2024; 119:105932. [PMID: 38008593 DOI: 10.1016/j.parkreldis.2023.105932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023]
Abstract
The four features of Parkinson's disease (PD), which also manifests other non-motor symptoms, are bradykinesia, tremor, postural instability, and stiffness. The pathogenic causes of Parkinsonism include Lewy bodies, intracellular protein clumps of αsynuclein, and the degeneration of dopaminergic neurons in the substantia nigra's pars compacta region. The pathophysiology of PD is still poorly understood due to the complexity of the illness. The apoptotic cell death of neurons in PD, however, has been linked to a variety of intracellular mechanisms, according to a wide spectrum of study. The endoplasmic reticulum's stress, decreased levels of neurotrophic factors, oxidative stress, mitochondrial dysfunction, catabolic alterations in dopamine, and decreased activity of tyrosine hydroxylase are some of these causes. The herbicide paraquat has been used in laboratory studies to create a variety of PD pathological features in numerous in-vitro and in-vivo animals. Due to the unique neurotoxicity that paraquat causes, understanding of the pathophysiology of PD has changed. Parkinson's disease (PD) is more likely to develop among people exposed to paraquat over an extended period of time, according to epidemiological studies. Thanks to this paradigm, the hunt for new therapy targets for PD has expanded. In both in-vitro and in-vivo models, the purpose of this study is to summarise the relationship between paraquat exposure and the onset of Parkinson's disease (PD).
Collapse
Affiliation(s)
| | - Payal Mittal
- University Institute of Pharma Sciences, Mohali, Punjab, India.
| |
Collapse
|
43
|
Varshney V, Kumar A, Parashar V, Kumar A, Goyal A, Garabadu D. Therapeutic Potential of Capsaicin in Various Neurodegenerative Diseases with Special Focus on Nrf2 Signaling. Curr Pharm Biotechnol 2024; 25:1693-1707. [PMID: 38173062 DOI: 10.2174/0113892010277933231122111244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
Neurodegenerative disease is mainly characterized by the accumulation of misfolded proteins, contributing to mitochondrial impairments, increased production of proinflammatory cytokines and reactive oxygen species, and neuroinflammation resulting in synaptic loss and neuronal loss. These pathophysiological factors are a serious concern in the treatment of neurodegenerative diseases. Based on the symptoms of various neurodegenerative diseases, different treatments are available, but they have serious side effects and fail in clinical trials, too. Therefore, treatments for neurodegenerative diseases are still a challenge at present. Thus, it is important to study an alternative option. Capsaicin is a naturally occurring alkaloid found in capsicum. Besides the TRPV1 receptor activator in nociception, capsaicin showed a protective effect in brain-related disorders. Capsaicin also reduces the aggregation of misfolded proteins, improves mitochondrial function, and decreases ROS generation. Its antioxidant role is due to increased expression of an nrf2-mediated signaling pathway. Nrf2 is a nuclear erythroid 2-related factor, a transcription factor, which has a crucial role in maintaining the normal function of mitochondria and the cellular defense system against oxidative stress. Intriguingly, Nrf2 mediated pathway improved the upregulation of antioxidant genes and inhibition of microglial-induced inflammation, improved mitochondrial resilience and functions, leading to decreased ROS in neurodegenerative conditions, suggesting that Nrf2 activation could be a better therapeutic approach to target pathophysiology of neurodegenerative disease. Therefore, the present review has evaluated the potential role of capsaicin as a pharmacological agent for the treatment and management of various neurodegenerative diseases via the Nrf2-mediated signaling pathway.
Collapse
Affiliation(s)
- Vibhav Varshney
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Abhishek Kumar
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Vikas Parashar
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Ankit Kumar
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Ahsas Goyal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Debapriya Garabadu
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda- 151001, Punjab, India
| |
Collapse
|
44
|
Saini AK, Anil N, Vijay AN, Mangla B, Javed S, Kumar P, Ahsan W. Recent Advances in the Treatment Strategies of Friedreich's Ataxia: A Review of Potential Drug Candidates and their Underlying Mechanisms. Curr Pharm Des 2024; 30:1472-1489. [PMID: 38638052 DOI: 10.2174/0113816128288707240404051856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Friedreich's Ataxia (FRDA) is a rare hereditary neurodegenerative disorder characterized by progressive ataxia, cardiomyopathy, and diabetes. The disease is caused by a deficiency of frataxin, a mitochondrial protein involved in iron-sulfur cluster synthesis and iron metabolism. OBJECTIVE This review aims to summarize recent advances in the development of treatment strategies for FRDA, with a focus on potential drug candidates and their mechanisms of action. METHODS A comprehensive literature search was conducted using various authentic scientific databases to identify studies published in the last decade that investigated potential treatment strategies for FRDA. The search terms used included "Friedreich's ataxia", "treatment", "drug candidates", and "mechanisms of action". RESULTS To date, only one drug got approval from US-FDA in the year 2023; however, significant developments were achieved in FRDA-related research focusing on diverse therapeutic interventions that could potentially alleviate the symptoms of this disease. Several promising drug candidates have been identified for the treatment of FRDA, which target various aspects of frataxin deficiency and aim to restore frataxin levels, reduce oxidative stress, and improve mitochondrial function. Clinical trials have shown varying degrees of success, with some drugs demonstrating significant improvements in neurological function and quality of life in FRDA patients. CONCLUSION While there has been significant progress in the development of treatment strategies for FRDA, further research is needed to optimize these approaches and identify the most effective and safe treatment options for patients. The integration of multiple therapeutic strategies may be necessary to achieve the best outcomes in FRDA management.
Collapse
Affiliation(s)
- Aman Kumar Saini
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Neha Anil
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Ardra N Vijay
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, P. Box No. 114, Saudi Arabia
| | - Pankaj Kumar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, P. Box No. 114, Saudi Arabia
| |
Collapse
|
45
|
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104:103-197. [PMID: 37843394 PMCID: PMC11281823 DOI: 10.1152/physrev.00030.2022] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
46
|
Abusree Ahmed A, Fayez Hasan S, Ahmed Rashed L, Ragab N, Shehata Ismail R, Mostafa Gharib D. The Potential Association Between microRNA 135-5P and p62 and Their Effect on NRF2 Pathway in Multiple Sclerosis. Rep Biochem Mol Biol 2024; 12:512-521. [PMID: 39086595 PMCID: PMC11288234 DOI: 10.61186/rbmb.12.4.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/30/2023] [Indexed: 08/02/2024]
Abstract
Background Multiple Sclerosis (MS) is a prevalent non-traumatic disabling disease affecting young adults, characterized by complexity in its pathogenesis. Nuclear factor erythroid 2-Related Factor 2 (NRF2) serves as a crucial transcriptional regulator of anti-inflammatory and antioxidant enzymes, influenced by the ubiquitous protein p62. It acts as a scaffold directing substrates to autophagosomes. This study aims to explore the potential association between microRNA 135-5p and p62 and their impact on inflammation and oxidative stress through the NRF2 pathway in MS. Methods The study included 30 healthy controls and 60 MS patients (relapsing-remitting and secondary progressive). Real-time PCR was employed for the detection of Nrf2, p62, miRNA135-5P, and NF-κB in serum, while p53 levels were determined using ELISA. Results Nrf2 and p62 expression was significantly downregulated in the MS group compared to controls. Conversely, miRNA135-5P, NF-κB expression, and P53 levels were significantly elevated in the MS group. Conclusions This study reveals a potential association between miRNA 135-5p and p62, indicating their role in the pathogenesis of MS. Results suggest that miRNA 135-5p and p62 may influence inflammation and oxidative stress in MS through the NRF2 pathway, potentially mediated by NF-κB and p53.
Collapse
Affiliation(s)
- Azza Abusree Ahmed
- Medical Biochemistry and Molecular Biology Department, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Salwa Fayez Hasan
- Medical Biochemistry and Molecular Biology Department, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Laila Ahmed Rashed
- Medical Biochemistry and Molecular Biology Department, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Noura Ragab
- Medical Biochemistry and Molecular Biology Department, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | | | - Doaa Mostafa Gharib
- Medical Biochemistry and Molecular Biology Department, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
47
|
Wang Y, Pei H, Chen W, Du R, Li J, He Z. Palmatine Protects PC12 Cells and Mice from Aβ25-35-Induced Oxidative Stress and Neuroinflammation via the Nrf2/HO-1 Pathway. Molecules 2023; 28:7955. [PMID: 38138445 PMCID: PMC10745955 DOI: 10.3390/molecules28247955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease is a common degenerative disease which has a great impact on people's daily lives, but there is still a certain market gap in the drug research about it. Palmatine, one of the main components of Huangteng, the rattan stem of Fibraurea recisa Pierre (Menispermaceae), has potential in the treatment of Alzheimer's disease. The aim of this study was to evaluate the neuroprotective effect of palmatine on amyloid beta protein 25-35-induced rat pheochromocytoma cells and AD mice and to investigate its mechanism of action. CCK8 assays, ELISA, the Morris water maze assay, fluorescent probes, calcein/PI staining, immunofluorescent staining and Western blot analysis were used. The experimental results show that palmatine can increase the survival rate of Aβ25-35-induced PC12 cells and mouse hippocampal neurons, reduce apoptosis, reduce the content of TNF-α, IL-1β, IL-6, GSH, SOD, MDA and ROS, improve the learning and memory ability of AD mice, inhibit the expression of Keap-1 and Bax, and promote the expression of Nrf2, HO-1 and Bcl-2. We conclude that palmatine can ameliorate oxidative stress and neuroinflammation produced by Aβ25-35-induced PC12 cells and mice by modulating the Nrf2/HO-1 pathway. In conclusion, our results suggest that palmatine may have a potential therapeutic effect on AD and could be further investigated as a promising therapeutic agent for AD. It provides a theoretical basis for the development of related drugs.
Collapse
Affiliation(s)
- Yu Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
48
|
Ramadan A, Mohammed A, Elnour AA, Sadeq A, Al Mazrouei N, Alkaabi M, Al-Kubaisi KA, Beshir SA, Menon V, AlAmoodi A, Sam KG, Saeed AAAM, Abdalla SF, Hussein SM. The flavonoid luteolin reduces mutant huntingtin aggregation and cytotoxicity in huntingtin-mutated neuroblastoma cells. Saudi Pharm J 2023; 31:101871. [PMID: 38125952 PMCID: PMC10731386 DOI: 10.1016/j.jsps.2023.101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/12/2023] [Indexed: 12/23/2023] Open
Abstract
Background Huntington's disease is an inherited progressive neurodegenerative disorder caused by an expansion of the polyglutamine tract leading to malformation and aggregation of the mutant huntingtin protein in the cell cytoplasm and nucleus of affected brain regions. The development of neuroprotective agents from plants has received considerable research attention. Objective Our study aims to investigate the neuroprotective effects of luteolin and the mechanisms that underline its potential mediated protection in the mutant htt neuroblastoma cells. Methods The mutant htt neuroblastoma cells were transfected with 160Q, and the control wild-type neuroblastoma cells were transfected with 20Q htt for 24 h and later treated with luteolin. Cell viability was determined by MTT and PI staining in both groups, while western blotting was used to evaluate caspase 3 protein expression. Aggregation formation was assessed via immunofluorescence microscopy. Also, western blotting was utilized to measure the protein expression of mutant htt aggregated and soluble protein, Nrf2 and HO-1. The impact of Nrf2 on luteolin-treated neuroblastoma cells was assessed using small interfering RNAs. Results Our study reports that luteolin can protect cultured cells from mutant huntingtin cytotoxicity, evidenced by increased viability and decreased apoptosis. Also, luteolin reduced the accumulation of soluble and insoluble mutant huntingtin aggregates in mutant htt neuroblastoma cells transfected with 160Q compared to the control wild-type. The mutant htt aggregate reduction mediated by luteolin appeared to be independent of the Nrf2 -HO-1 antioxidant pathway. Conclusion Luteolin presents a new potential therapeutic and protective agent for the treatment and decreasing the cytotoxicity in neurodegenerative diseases such as Huntington's disease.
Collapse
Affiliation(s)
- Azza Ramadan
- College of Pharmacy, Al Ain University, Abu Dhabi Campus Abu Dhabi, UAE, AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Abuelnor Mohammed
- Department of Basic Medical Sciences, College of Medical, Dar Al Uloom University, Riyadh, Saudi Arabia
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, People’s Republic of China
| | - Asim Ahmed Elnour
- Program of Clinical Pharmacy, College of Pharmacy, Al Ain University, Abu Dhabi campus, Abu Dhabi-United Arab Emirates (UAE), AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Adel Sadeq
- Program of Clinical Pharmacy, College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Nadia Al Mazrouei
- Department of Pharmacy Practice and Pharmacotherapeutics, Faculty of Pharmacy, University of Sharjah, United Arab Emirates
| | - Maisoun Alkaabi
- New Medical Center (NMC) Royal Women’s Hospital, Abu Dhabi, United Arab Emirates
| | - Khalid Awad Al-Kubaisi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy-University of Sharjah, United Arab Emirates
| | - Semira Abdi Beshir
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College For Girls, Dubai, United Arab Emirates
| | - Vineetha Menon
- Department of Pharmacy Practice, College of Pharmacy, Gulf Medical University, United Arab Emirates
| | - Abdulla AlAmoodi
- Ambulatory Healthcare Services, Academic Affairs, Abu Dhabi Health Services (SEHA), United Arab Emirates
| | - Kishore Ganana Sam
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai, United Arab Emirates
| | - Ali Awadallah Ali Mohamed Saeed
- Department of Pharmacology, Faculty of Clinical and Industrial Pharmacy, National University-Sudan, Mycetoma Research Center, Khartoum, Sudan
| | - Sami Fatehi Abdalla
- Clinical Department, College of Medicine, University of Almaarefa, Riyadh, Saudi Arabia
| | - Samah Mohammed Hussein
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
49
|
Zilberter Y, Tabuena DR, Zilberter M. NOX-induced oxidative stress is a primary trigger of major neurodegenerative disorders. Prog Neurobiol 2023; 231:102539. [PMID: 37838279 PMCID: PMC11758986 DOI: 10.1016/j.pneurobio.2023.102539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Neurodegenerative diseases (NDDs) causing cognitive impairment and dementia are difficult to treat due to the lack of understanding of primary initiating factors. Meanwhile, major sporadic NDDs share many risk factors and exhibit similar pathologies in their early stages, indicating the existence of common initiation pathways. Glucose hypometabolism associated with oxidative stress is one such primary, early and shared pathology, and a likely major cause of detrimental disease-associated cascades; targeting this common pathology may therefore be an effective preventative strategy for most sporadic NDDs. However, its exact cause and trigger remain unclear. Recent research suggests that early oxidative stress caused by NADPH oxidase (NOX) activation is a shared initiating mechanism among major sporadic NDDs and could prove to be the long-sought ubiquitous NDD trigger. We focus on two major NDDs - Alzheimer's disease (AD) and Parkinson's disease (PD), as well as on acquired epilepsy which is an increasingly recognized comorbidity in NDDs. We also discuss available data suggesting the relevance of the proposed mechanisms to other NDDs. We delve into the commonalities among these NDDs in neuroinflammation and NOX involvement to identify potential therapeutic targets and gain a deeper understanding of the underlying causes of NDDs.
Collapse
Affiliation(s)
- Yuri Zilberter
- Aix-Marseille Université, INSERM UMR1106, Institut de Neurosciences des Systèmes, Marseille, France
| | - Dennis R Tabuena
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.
| |
Collapse
|
50
|
Osakabe N, Modafferi S, Ontario ML, Rampulla F, Zimbone V, Migliore MR, Fritsch T, Abdelhameed AS, Maiolino L, Lupo G, Anfuso CD, Genovese E, Monzani D, Wenzel U, Calabrese EJ, Vabulas RM, Calabrese V. Polyphenols in Inner Ear Neurobiology, Health and Disease: From Bench to Clinics. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2045. [PMID: 38004094 PMCID: PMC10673256 DOI: 10.3390/medicina59112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
There is substantial experimental and clinical interest in providing effective ways to both prevent and slow the onset of hearing loss. Auditory hair cells, which occur along the basilar membrane of the cochlea, often lose functionality due to age-related biological alterations, as well as from exposure to high decibel sounds affecting a diminished/damaged auditory sensitivity. Hearing loss is also seen to take place due to neuronal degeneration before or following hair cell destruction/loss. A strategy is necessary to protect hair cells and XIII cranial/auditory nerve cells prior to injury and throughout aging. Within this context, it was proposed that cochlea neural stem cells may be protected from such aging and environmental/noise insults via the ingestion of protective dietary supplements. Of particular importance is that these studies typically display a hormetic-like biphasic dose-response pattern that prevents the occurrence of auditory cell damage induced by various model chemical toxins, such as cisplatin. Likewise, the hormetic dose-response also enhances the occurrence of cochlear neural cell viability, proliferation, and differentiation. These findings are particularly important since they confirmed a strong dose dependency of the significant beneficial effects (which is biphasic), whilst having a low-dose beneficial response, whereas extensive exposures may become ineffective and/or potentially harmful. According to hormesis, phytochemicals including polyphenols exhibit biphasic dose-response effects activating low-dose antioxidant signaling pathways, resulting in the upregulation of vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Modulation of the vitagene network through polyphenols increases cellular resilience mechanisms, thus impacting neurological disorder pathophysiology. Here, we aimed to explore polyphenols targeting the NF-E2-related factor 2 (Nrf2) pathway to neuroprotective and therapeutic strategies that can potentially reduce oxidative stress and inflammation, thus preventing auditory hair cell and XIII cranial/auditory nerve cell degeneration. Furthermore, we explored techniques to enhance their bioavailability and efficacy.
Collapse
Affiliation(s)
- Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Saitama 337-8570, Japan;
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Vincenzo Zimbone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Maria Rita Migliore
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | | | - Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Luigi Maiolino
- Department of Medical, Surgical Advanced Technologies “G. F. Ingrassia”, University of Catania, 95125 Catania, Italy;
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Elisabetta Genovese
- Department of Maternal and Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Daniele Monzani
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37100 Verona, Italy;
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, 35392 Giessen, Germany
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA;
| | - R. Martin Vabulas
- Charité-Universitätsmedizin Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| |
Collapse
|